1
|
Waktole H, Ayele Y, Ayalkibet Y, Teshome T, Muluneh T, Ayane S, Borena BM, Abayneh T, Deresse G, Asefa Z, Eguale T, Amenu K, Ashenafi H, Antonissen G. Prevalence, Molecular Detection, and Antimicrobial Resistance of Salmonella Isolates from Poultry Farms across Central Ethiopia: A Cross-Sectional Study in Urban and Peri-Urban Areas. Microorganisms 2024; 12:767. [PMID: 38674711 PMCID: PMC11051739 DOI: 10.3390/microorganisms12040767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
A cross-sectional study was conducted to assess the prevalence, molecular detection, and antimicrobial resistance of Salmonella isolates within 162 poultry farms in selected urban and peri-urban areas of central Ethiopia. A total of 1515 samples, including cloacal swabs (n = 763), fresh fecal droppings (n = 188), litter (n = 188), feed (n = 188), and water (n = 188), were bacteriologically tested. The molecular detection of some culture-positive isolates was performed via polymerase chain reaction (PCR) by targeting spy and sdfl genes for Salmonella Typhimurium and Salmonella Enteritidis, respectively. Risk factors for the occurrence of the bacterial isolates were assessed. Antimicrobial susceptibility testing of PCR-confirmed Salmonella isolates was conducted using 12 antibiotics. In this study, it was observed that 50.6% of the farms were positive for Salmonella. The overall sample-level prevalence of Salmonella was 14.4%. Among the analyzed risk factors, the type of production, breed, and sample type demonstrated a statistically significant association (p < 0.05) with the bacteriological prevalence of Salmonella. The PCR test disclosed that 45.5% (15/33) and 23.3% (10/43) of the isolates were positive for genes of Salmonella Typhimurium and Salmonella Enteritidis, respectively. The antimicrobial susceptibility test disclosed multi-drug resistance to ten of the tested antibiotics that belong to different classes. Substantial isolation of Salmonella Typhimurium and Salmonella Enteritidis in poultry and on poultry farms, along with the existence of multi-drug resistant isolates, poses an alarming risk of zoonotic and food safety issues. Hence, routine flock testing, farm surveillance, biosecurity intervention, stringent antimicrobial use regulations, and policy support for the sector are highly needed.
Collapse
Affiliation(s)
- Hika Waktole
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
- Department of Microbiology, Immunology and Veterinary Public Health, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu P.O. Box 34, Ethiopia; (Y.A.); (Y.A.); (K.A.)
| | - Yonas Ayele
- Department of Microbiology, Immunology and Veterinary Public Health, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu P.O. Box 34, Ethiopia; (Y.A.); (Y.A.); (K.A.)
| | - Yamlaksira Ayalkibet
- Department of Microbiology, Immunology and Veterinary Public Health, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu P.O. Box 34, Ethiopia; (Y.A.); (Y.A.); (K.A.)
| | - Tsedale Teshome
- Department of Clinical Studies, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu P.O. Box 34, Ethiopia; (T.T.); (Z.A.)
| | - Tsedal Muluneh
- Department of Animal Production Studies, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu P.O. Box 34, Ethiopia;
| | - Sisay Ayane
- Department of Veterinary Science, School of Veterinary Medicine, Ambo University, Ambo P.O. Box 19, Ethiopia; (S.A.); (B.M.B.)
| | - Bizunesh Mideksa Borena
- Department of Veterinary Science, School of Veterinary Medicine, Ambo University, Ambo P.O. Box 19, Ethiopia; (S.A.); (B.M.B.)
| | - Takele Abayneh
- National Veterinary Institute (NVI), Bishoftu P.O. Box 19, Ethiopia; (T.A.); (G.D.)
| | - Getaw Deresse
- National Veterinary Institute (NVI), Bishoftu P.O. Box 19, Ethiopia; (T.A.); (G.D.)
| | - Zerihun Asefa
- Department of Clinical Studies, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu P.O. Box 34, Ethiopia; (T.T.); (Z.A.)
| | - Tadesse Eguale
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (T.E.); (H.A.)
| | - Kebede Amenu
- Department of Microbiology, Immunology and Veterinary Public Health, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu P.O. Box 34, Ethiopia; (Y.A.); (Y.A.); (K.A.)
- International Livestock Research Institute (ILRI), Addis Ababa P.O. Box 5689, Ethiopia
| | - Hagos Ashenafi
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (T.E.); (H.A.)
| | - Gunther Antonissen
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| |
Collapse
|
2
|
Lamichhane B, Mawad AMM, Saleh M, Kelley WG, Harrington PJ, Lovestad CW, Amezcua J, Sarhan MM, El Zowalaty ME, Ramadan H, Morgan M, Helmy YA. Salmonellosis: An Overview of Epidemiology, Pathogenesis, and Innovative Approaches to Mitigate the Antimicrobial Resistant Infections. Antibiotics (Basel) 2024; 13:76. [PMID: 38247636 PMCID: PMC10812683 DOI: 10.3390/antibiotics13010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/24/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Salmonella is a major foodborne pathogen and a leading cause of gastroenteritis in humans and animals. Salmonella is highly pathogenic and encompasses more than 2600 characterized serovars. The transmission of Salmonella to humans occurs through the farm-to-fork continuum and is commonly linked to the consumption of animal-derived food products. Among these sources, poultry and poultry products are primary contributors, followed by beef, pork, fish, and non-animal-derived food such as fruits and vegetables. While antibiotics constitute the primary treatment for salmonellosis, the emergence of antibiotic resistance and the rise of multidrug-resistant (MDR) Salmonella strains have highlighted the urgency of developing antibiotic alternatives. Effective infection management necessitates a comprehensive understanding of the pathogen's epidemiology and transmission dynamics. Therefore, this comprehensive review focuses on the epidemiology, sources of infection, risk factors, transmission dynamics, and the host range of Salmonella serotypes. This review also investigates the disease characteristics observed in both humans and animals, antibiotic resistance, pathogenesis, and potential strategies for treatment and control of salmonellosis, emphasizing the most recent antibiotic-alternative approaches for infection control.
Collapse
Affiliation(s)
- Bibek Lamichhane
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Asmaa M. M. Mawad
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Mohamed Saleh
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - William G. Kelley
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Patrick J. Harrington
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Cayenne W. Lovestad
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Jessica Amezcua
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Mohamed M. Sarhan
- Faculty of Pharmacy, King Salman International University (KSIU), Ras Sudr 8744304, Egypt
| | - Mohamed E. El Zowalaty
- Veterinary Medicine and Food Security Research Group, Medical Laboratory Sciences Program, Faculty of Health Sciences, Abu Dhabi Women’s Campus, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Melissa Morgan
- Department of Animal and Food Sciences, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Yosra A. Helmy
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
3
|
Bacterial and viral rodent-borne infections on poultry farms. An attempt at a systematic review. J Vet Res 2023; 67:1-10. [PMID: 37008769 PMCID: PMC10062035 DOI: 10.2478/jvetres-2023-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/01/2023] [Indexed: 03/17/2023] Open
Abstract
Abstract
Introduction
Rodents are quite common at livestock production sites. Their adaptability, high reproductive capacity and omnivorousness make them apt to become a source of disease transmission to humans and animals. Rodents can serve as mechanical vectors or active shedders of many bacteria and viruses, and their transmission can occur through direct contact, or indirectly through contaminated food and water or by the arthropods which parasitise infected rodents. This review paper summarises how rodents spread infectious diseases in poultry production.
Material and Methods
The aim of this review was to use PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) principles to meta-analyse the available data on this topic. Three databases – PubMed, Web of Science and Scopus – and grey literature were searched for papers published from inception to July 2022 using the established keywords.
Results
An initial search identified 2,999 articles that met the criteria established by the keywords. This number remained after removing 597 articles that were repeated in some databases. The articles were searched for any mention of specific bacterial and viral pathogens.
Conclusion
The importance of rodents in the spread of bacterial diseases in poultry has been established, and the vast majority of such diseases involved Salmonella, Campylobacter, Escherichia coli, Staphylococcus (MRSA), Pasteurella, Erysipelothrix or Yersinia infections. Rodents also play a role in the transmission of viruses such as avian influenza virus, avian paramyxovirus 1, avian gammacoronavirus or infectious bursal disease virus, but knowledge of these pathogens is very limited and requires further research to expand it.
Collapse
|
4
|
Falay D, Hardy L, Tanzito J, Lunguya O, Bonebe E, Peeters M, Mattheus W, Van Geet C, Verheyen E, Akaibe D, Katuala P, Ngbonda D, Weill FX, Pardos de la Gandara M, Jacobs J. Urban rats as carriers of invasive Salmonella Typhimurium sequence type 313, Kisangani, Democratic Republic of Congo. PLoS Negl Trop Dis 2022; 16:e0010740. [PMID: 36067238 PMCID: PMC9481155 DOI: 10.1371/journal.pntd.0010740] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/16/2022] [Accepted: 08/13/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Invasive non-typhoidal Salmonella (iNTS-mainly serotypes Enteritidis and Typhimurium) are major causes of bloodstream infections in children in sub-Saharan Africa, but their reservoir remains unknown. We assessed iNTS carriage in rats in an urban setting endemic for iNTS carriage and compared genetic profiles of iNTS from rats with those isolated from humans. METHODOLOGY/PRINCIPAL FINDINGS From April 2016 to December 2018, rats were trapped in five marketplaces and a slaughterhouse in Kisangani, Democratic Republic of the Congo. After euthanasia, blood, liver, spleen, and rectal content were cultured for Salmonella. Genetic relatedness between iNTS from rats and humans-obtained from blood cultures at Kisangani University Hospital-was assessed with multilocus variable-number tandem repeat (VNTR) analysis (MLVA), multilocus sequence typing (MLST) and core-genome MLST (cgMLST). 1650 live-capture traps yielded 566 (34.3%) rats (95.6% Rattus norvegicus, 4.4% Rattus rattus); 46 (8.1%) of them carried Salmonella, of which 13 had more than one serotype. The most common serotypes were II.42:r:- (n = 18 rats), Kapemba (n = 12), Weltevreden and Typhimurium (n = 10, each), and Dublin (n = 8). Salmonella Typhimurium belonged to MLST ST19 (n = 7 rats) and the invasive ST313 (n = 3, isolated from deep organs but not from rectal content). Sixteen human S. Typhimurium isolates (all ST313) were available for comparison: MLVA and cgMLST revealed two distinct rat-human clusters involving both six human isolates, respectively, i.e. in total 12/16 human ST313 isolates. All ST313 Typhimurium isolates from rats and humans clustered with the ST313 Lineage 2 isolates and most were multidrug resistant; the remaining isolates from rats including S. Typhimurium ST19 were pan-susceptible. CONCLUSION The present study provides evidence of urban rats as potential reservoirs of S. Typhimurium ST313 in an iNTS endemic area in sub-Saharan Africa.
Collapse
Affiliation(s)
- Dadi Falay
- Department of Pediatrics, University Hospital of Kisangani, Kisangani, the Democratic Republic of the Congo
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Liselotte Hardy
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jacques Tanzito
- Biodiversity Monitoring Center (Centre de Surveillance de la Biodiversité, CSB), Faculty of Science, University of Kisangani, Kisangani, the Democratic Republic of the Congo
| | - Octavie Lunguya
- Department of Medical Biology, National Institute for Biomedical Research, Kinshasa, the Democratic Republic of the Congo
- Department of Microbiology, University Teaching Hospital of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Edmonde Bonebe
- Department of Medical Biology, National Institute for Biomedical Research, Kinshasa, the Democratic Republic of the Congo
| | - Marjan Peeters
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Wesley Mattheus
- Sciensano, Infectious Diseases in Humans, Bacterial Diseases, Brussels, Belgium
| | - Chris Van Geet
- Department of Cardiovascular Sciences and Pediatrics, KU Leuven and University Hospital Leuven, Leuven, Belgium
| | - Erik Verheyen
- OD Taxonomy & Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Evolutionary Ecology, University of Antwerp, Antwerp, Belgium
| | - Dudu Akaibe
- Biodiversity Monitoring Center (Centre de Surveillance de la Biodiversité, CSB), Faculty of Science, University of Kisangani, Kisangani, the Democratic Republic of the Congo
| | - Pionus Katuala
- Biodiversity Monitoring Center (Centre de Surveillance de la Biodiversité, CSB), Faculty of Science, University of Kisangani, Kisangani, the Democratic Republic of the Congo
| | - Dauly Ngbonda
- Department of Pediatrics, University Hospital of Kisangani, Kisangani, the Democratic Republic of the Congo
| | - François-Xavier Weill
- Institut Pasteur, Université Paris Cité, Unité des bactéries pathogènes entériques, Paris, France
| | | | - Jan Jacobs
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
5
|
Ramatla TA, Mphuthi N, Ramaili T, Taioe M, Thekisoe O, Syakalima M. Molecular detection of zoonotic pathogens causing gastroenteritis in humans:
Salmonella
spp.,
Shigella
spp. and
Escherichia coli
isolated from
Rattus
species inhabiting chicken farms in North West Province, South Africa. J S Afr Vet Assoc 2022; 93:63-69. [DOI: 10.36303/jsava.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Affiliation(s)
- TA Ramatla
- Unit for Environmental Sciences and Management, North-West University,
South Africa
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University,
South Africa
| | - N Mphuthi
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University,
South Africa
| | - T Ramaili
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University,
South Africa
| | - M Taioe
- Unit for Environmental Sciences and Management, North-West University,
South Africa
- Epidemiology, Parasites and Vectors, Agriculture Research Council, Onderstepoort Veterinary Research,
South Africa
| | - O Thekisoe
- Unit for Environmental Sciences and Management, North-West University,
South Africa
| | - M Syakalima
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University,
South Africa
- University of Zambia, School of Veterinary Medicine, Department of Disease Control,
Zambia
| |
Collapse
|
6
|
Sonola VS, Misinzo G, Matee MI. Occurrence of Multidrug-Resistant Staphylococcus aureus among Humans, Rodents, Chickens, and Household Soils in Karatu, Northern Tanzania. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168496. [PMID: 34444245 PMCID: PMC8391185 DOI: 10.3390/ijerph18168496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 11/16/2022]
Abstract
We conducted this study to investigate the isolation frequency and phenotypic antibiotic resistance pattern of Staphylococcus aureus isolated from rodents, chickens, humans, and household soils. Specimens were plated onto mannitol salt agar (Oxoid, Basingstoke, UK) and incubated aerobically at 37 °C for 24 h. Presumptive colonies of S. aureus were subjected to Gram staining, as well as catalase, deoxyribonuclease (DNAse), and coagulase tests for identification. Antibiotic susceptibility testing was performed by using the Kirby-Bauer disc diffusion method on Mueller-Hinton agar (Oxoid, Basingstoke, UK). The antibiotics tested were tetracycline (30 μg), erythromycin (15 μg), gentamicin (10 μg), ciprofloxacin (5 μg), clindamycin (2 μg), and amoxicillin-clavulanate (20 μg/10 μg). The S. aureus strain American Type Culture Collection (ATCC) 25,923 was used as the standard organism. We found that 483 out of 956 (50.2%) samples were positive for S. aureus. The isolation frequencies varied significantly between samples sources, being 52.1%, 66.5%, 74.3%, and 24.5%, respectively, in chickens, humans, rodents, and soil samples (p < 0.001). S. aureus isolates had high resistance against clindamycin (51.0%), erythromycin (50.9%), and tetracycline (62.5%). The overall prevalence of multidrug-resistant (MDR) S. aureus isolates was 30.2%, with 8.7% resistant to at least four different classes of antibiotics.
Collapse
Affiliation(s)
- Valery Silvery Sonola
- Department of Wildlife Management, College of Forestry, Wildlife and Tourism, P.O. Box 3073, Morogoro 67125, Tanzania
- Livestock Training Agency (LITA), Buhuri Campus, P.O. Box 1483, Tanga 21206, Tanzania
- Correspondence:
| | - Gerald Misinzo
- Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3297, Morogoro 67125, Tanzania;
- SACIDS Africa Centre of Excellence for Infectious Diseases, Sokoine University of Agriculture, P.O. Box 3297, Morogoro 67125, Tanzania;
| | - Mecky Isaac Matee
- SACIDS Africa Centre of Excellence for Infectious Diseases, Sokoine University of Agriculture, P.O. Box 3297, Morogoro 67125, Tanzania;
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam 11103, Tanzania
| |
Collapse
|
7
|
Burke CB, Quinn NM, Stapp P. Use of rodenticide bait stations by commensal rodents at the urban-wildland interface: Insights for management to reduce nontarget exposure. PEST MANAGEMENT SCIENCE 2021; 77:3126-3134. [PMID: 33638310 DOI: 10.1002/ps.6345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/21/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pest management professionals use anticoagulant rodenticides, usually placed in tamper-resistant bait stations, to control commensal rodents, but significant concerns remain about exposure of nontarget species, especially at the urban-wildland interface. We deployed digital cameras to monitor use of bait stations placed in 90 residential yards across Orange County, California, USA. Two bait stations, supplied with nontoxic bait, were monitored in each yard for approximately 30 consecutive days during two camera-trapping sessions between December 2017 and March 2019. One station was placed on the ground, while the other was elevated 1-1.5 m to determine if elevating stations could reduce nontarget exposure. RESULTS Black rats (Rattus rattus L.) were present at 80% of sites, with mean activity ranging from 0 to 9.6 h each night. There were no significant differences between elevated and ground stations in the time to discovery, time to bait station entry, or nightly activity of rats. Rats discovered bait stations more quickly, and mean nightly activity was greater, in yards where rats were detected more frequently. Although native rodents visited and entered bait stations occasionally, they were relatively rare among our sites (13.3%), and were detected five times less often at elevated stations compared to those on the ground. Yards visited by these rodents were significantly nearer to areas of green open space and natural vegetation, and tended to have no significant barriers to entry, e.g. solid fences or walls. CONCLUSIONS By elevating bait stations and avoiding placing rodenticides in yards that are likely to be visited by wildlife, pest management professionals may be able to reduce the risk of nontarget exposure, including secondary poisoning of predators and scavengers, while still providing effective control of commensal pests. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Christopher B Burke
- Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Niamh M Quinn
- University of California Agriculture and Natural Resources, South Coast Research and Extension Center, Irvine, CA, USA
| | - Paul Stapp
- Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| |
Collapse
|
8
|
Vobrubová B, Fraňková M, Štolhoferová I, Kaftanová B, Rudolfová V, Chomik A, Chumová P, Stejskal V, Palme R, Frynta D. Relationship between exploratory activity and adrenocortical activity in the black rat (Rattus rattus). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:286-295. [PMID: 33411407 DOI: 10.1002/jez.2440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 11/05/2022]
Abstract
The relationship between physiological and behavioral stress markers is documented in several rodent species. However, there is no information regarding the role of adrenocortical activity in behavior of the black rat (Rattus rattus). Therefore, we hypothesize that the adrenocortical activity of black rats varies between individuals and is related to some of the behaviors in a novel environment. To test this hypothesis, we (i) validated a method for quantifying glucocorticoid metabolites from feces (fGCMs) with an enzyme immunoassay (EIA); (ii) examined variation and diurnal rhythms of feces and GCM production; and (iii) examined the relationship between GCM levels and exploratory behavioral traits. We fulfilled the first aim (i) by successfully performing an ACTH challenge test to validate the use of a 5α-pregnane-3β,11β,21-triol-20-one EIA for measuring fGCMs. Second (ii) we detected considerable consistent interindividual variability in production of both feces and glucocorticoids. The peak production of feces occurred in the first hour of the dark cycle, the peak of fGCMs occurred approximately 3 h later. Lastly, (iii) there was no clear relationship between behavior in the hole board test and GCMs. Grooming, a typical behavioral stress marker, was negatively associated with stress reactivity, while head-dipping in the hole-board test (traditionally considered an exploratory behavior independent of stress) was not correlated with the GCMs. This study offers a first look at GCMs in the black rat, successfully validates a method for their measurement and opens possibilities for future research of the relationship between glucocorticoids and exploratory behavior in this species.
Collapse
Affiliation(s)
- Barbora Vobrubová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia.,RP3 Applied Neuroscience and Neuroimaging, National Institute of Mental Health, Klecany, Czechia
| | - Marcela Fraňková
- Division of Crop Protection and Plant Health, Crop Research Institute, Prague, Czechia
| | - Iveta Štolhoferová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia.,RP3 Applied Neuroscience and Neuroimaging, National Institute of Mental Health, Klecany, Czechia
| | - Barbora Kaftanová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia.,Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Veronika Rudolfová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia.,RP3 Applied Neuroscience and Neuroimaging, National Institute of Mental Health, Klecany, Czechia
| | - Aleksandra Chomik
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Petra Chumová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Václav Stejskal
- Division of Crop Protection and Plant Health, Crop Research Institute, Prague, Czechia
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Daniel Frynta
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia.,RP3 Applied Neuroscience and Neuroimaging, National Institute of Mental Health, Klecany, Czechia
| |
Collapse
|
9
|
Pimentel Sobrinho C, Lima Godoi J, Neves Souza F, Graco Zeppelini C, Espirito Santo V, Carvalho Santiago D, Sady Alves R, Khalil H, Carvalho Pereira T, Hanzen Pinna M, Begon M, Machado Cordeiro S, Neves Reis J, Costa F. Prevalence of Diarrheagenic Escherichia coli (DEC) and Salmonella spp. with zoonotic potential in urban rats in Salvador, Brazil. Epidemiol Infect 2020; 149:e128. [PMID: 33213546 PMCID: PMC8167902 DOI: 10.1017/s095026882000285x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/15/2020] [Accepted: 09/16/2020] [Indexed: 11/29/2022] Open
Abstract
Studies evaluating the occurrence of enteropathogenic bacteria in urban rats (Rattus spp.) are scarce worldwide, specifically in the urban environments of tropical countries. This study aims to estimate the prevalence of diarrhoeagenic Escherichia coli (DEC) and Salmonella spp. with zoonotic potential in urban slum environments. We trapped rats between April and June 2018 in Salvador, Brazil. We collected rectal swabs from Rattus spp., and cultured for E. coli and Salmonella spp., and screened E. coli isolates by polymerase chain reaction to identify pathotypes. E. coli were found in 70% of Rattus norvegicus and were found in four Rattus rattus. DEC were isolated in 31.3% of the 67 brown rats (R. norvegicus). The pathotypes detected more frequently were shiga toxin E. coli in 11.9%, followed by atypical enteropathogenic E. coli in 10.4% and enteroinvasive E. coli in 4.5%. From the five black rats (R. rattus), two presented DEC. Salmonella enterica was found in only one (1.4%) of 67 R. norvegicus. Our findings indicate that both R. norvegicus and R. rattus are host of DEC and, at lower prevalence, S. enterica, highlighting the importance of rodents as potential sources of pathogenic agents for humans.
Collapse
Affiliation(s)
| | - J. Lima Godoi
- Biology Institute, Federal University of Bahia, UFBA, Salvador, Brazil
| | - F. Neves Souza
- Biology Institute, Federal University of Bahia, UFBA, Salvador, Brazil
| | | | - V. Espirito Santo
- Collective Health Institute, Federal University of Bahia, UFBA, Salvador, Brazil
| | - D. Carvalho Santiago
- Collective Health Institute, Federal University of Bahia, UFBA, Salvador, Brazil
| | - R. Sady Alves
- School of Veterinary Medicine, Federal University of Bahia, UFBA, Salvador, Brazil
| | - H. Khalil
- Collective Health Institute, Federal University of Bahia, UFBA, Salvador, Brazil
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - T. Carvalho Pereira
- Collective Health Institute, Federal University of Bahia, UFBA, Salvador, Brazil
| | - M. Hanzen Pinna
- School of Veterinary Medicine, Federal University of Bahia, UFBA, Salvador, Brazil
| | - M. Begon
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | | - J. Neves Reis
- School of Pharmacy, Federal University of Bahia, UFBA, Salvador, Brazil
| | - F. Costa
- Collective Health Institute, Federal University of Bahia, UFBA, Salvador, Brazil
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
10
|
Camba SI, Del Valle FP, Umali DV, Soma T, Shirota K, Katoh H, Sasai K. The Expanded Role of Roof-Rats ( Rattus rattus) in Salmonella spp. Contamination of a Commercial Layer Farm in East Japan. Avian Dis 2020; 64:46-52. [PMID: 32267124 DOI: 10.1637/0005-2086-64.1.46] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 11/18/2019] [Indexed: 11/05/2022]
Abstract
Rodents serve as amplifiers of Salmonella infections in poultry flocks and can serve as a source of Salmonella contamination in the environment even after thorough cleaning and disinfection. This study aims to determine the dynamics of Salmonella occurrence in rodents and its relation to Salmonella contamination in the layer farm environment, including air dusts and eggs. From 2008 to 2017, roof rats (Rattus rattus), environmental swabs, air dusts, and eggs were collected from an intensive commercial layer farm in East Japan and were tested for Salmonella spp. using standard procedures. In roof rat samples, the Salmonella isolation rate was reached at 10% (95% confidence interval [CI] 8.1-21.9) in which Salmonella Corvallis, Salmonella Infantis, Salmonella Potsdam, and Salmonella Mbandaka were the frequent isolates from the cecal portion of the intestines. On the other hand, the prevalence rate of Salmonella in environmental swabs was at 5.1% (95% CI 2.2-7.4) while air dusts were at 0.9% (95% CI 0.2-1.8). It was observed that the prevalence of predominant Salmonella serotypes shifted over time; in roof rats, it was noted that Salmonella Potsdam gradually replaced Salmonella Infantis. In environmental swabs and eggs, Salmonella Corvallis and Salmonella Potsdam increased significantly while Salmonella Infantis became less frequent. In air dusts, Salmonella Corvallis was observed to decrease and Salmonella Potsdam became more common. Based on our findings, the role of roof rats in the epidemiology of Salmonella in layer farms was expanded from being a reservoir and an amplifier host into a shifting vessel of the most predominant serotypes.
Collapse
Affiliation(s)
- Sherwin I Camba
- Poultry Products Quality Control Co. (PPQC Co. Ltd) 125-7 Daiwa Dakeonsen, Nihonmatsu, Fukushima 964-0062, Japan.,Department of Veterinary Clinical Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka 598-8531, Japan
| | - Fletcher P Del Valle
- Poultry Products Quality Control Co. (PPQC Co. Ltd) 125-7 Daiwa Dakeonsen, Nihonmatsu, Fukushima 964-0062, Japan.,Department of Veterinary Clinical Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka 598-8531, Japan
| | - Dennis V Umali
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of the Philippines-Los Baños, College, Laguna 4031, Philippines
| | - Takehisa Soma
- Veterinary Diagnostic Laboratory, Marupi Lifetech Co., Ltd., 103 Fushiocho, Ikeda, Osaka 563-0011, Japan
| | - Kazutoshi Shirota
- Poultry Products Quality Control Co. (PPQC Co. Ltd) 125-7 Daiwa Dakeonsen, Nihonmatsu, Fukushima 964-0062, Japan
| | - Hiromitsu Katoh
- Poultry Products Quality Control Co. (PPQC Co. Ltd) 125-7 Daiwa Dakeonsen, Nihonmatsu, Fukushima 964-0062, Japan.,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of the Philippines-Los Baños, College, Laguna 4031, Philippines.,Department of Veterinary Clinical Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka 598-8531, Japan
| | - Kazumi Sasai
- Department of Veterinary Clinical Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka 598-8531, Japan,
| |
Collapse
|
11
|
Ramatla TA, Mphuthi N, Ramaili T, Taioe MO, Thekisoe OMM, Syakalima M. Molecular detection of virulence genes in Salmonella spp. isolated from chicken faeces in Mafikeng, South Africa. J S Afr Vet Assoc 2020; 91:e1-e7. [PMID: 32787420 PMCID: PMC7433231 DOI: 10.4102/jsava.v91i0.1994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 02/21/2020] [Accepted: 03/16/2020] [Indexed: 11/29/2022] Open
Abstract
Chickens have been implicated in most Salmonella disease outbreaks because they act as carriers of the pathogen in their gut. There are over 2500 serotypes of Salmonella that have been reported worldwide and 2000 of these serovars can be found in chickens. The main objective of this study was to determine the Salmonella serotypes found in poultry farms around Mafikeng district, South Africa. Salmonella was identified according to the guidelines of the International Organization for Standardization (ISO) (ISO 6579:2002) standard techniques. Faecal samples were collected and analysed for Salmonella using conventional cultural methods and polymerase chain reaction targeting the 16S Ribosomal Deoxyribonucleic acid (rDNA) gene for Salmonella identification. Out of 130 presumptive Salmonella isolates determined by urease and triple sugar iron tests, only 46 isolates were identified as Salmonella serotypes of which S. Typhimurium was the most frequent with 18 (39.1%), followed by S. Heidelberg with 9 (19.6%), S. bongori with 7 (15.2%), S. Enteritidis with 6 (13.0%) and both S. Paratyphi B and S. Newport with 3 (6.5%) each. Seven virulence genes including invA 100%, spy 39%, hilA 9%, misL 30%, sdfI 13%, orfL 11% and spiC 9% were detected from these Salmonella isolates in this study. The presence of these virulence genes indicates high pathogenicity potential of these isolates which is a serious public health concern because of zoonotic potential of Salmonella.
Collapse
Affiliation(s)
- Tsepo A Ramatla
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng.
| | | | | | | | | | | |
Collapse
|
12
|
Alam MS, Takahashi S, Ito M, Suzuki M, Komura M, Sangsriratanakul N, Shoham D, Takehara K. Bactericidal Efficacy of Food Additive-Grade Calcium Hydroxide Against Salmonella Infantis on Eggshells. Avian Dis 2019; 62:177-183. [PMID: 29944400 DOI: 10.1637/11677-052117-reg.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The bactericidal efficacy of food additive-grade calcium hydroxide [FdCa(OH)2] was evaluated for inactivation of Salmonella Infantis and Salmonella Enteritidis in liquid and Salmonella Infantis on contaminated eggshells. The activity of FdCa(OH)2 was also compared with that of sodium hypochlorite (NaOCl) containing 150 ppm chlorine (150 ppm NaOCl). FdCa(OH)2 solutions (0.1% and 0.2%) in the presence or absence of organic materials (5% calf serum [CS]) at pH 12.6 were used to inactivate Salmonella Infantis and Salmonella Enteritidis in a reaction tube or on eggshells artificially contaminated with Salmonella Infantis. Both 0.1% and 0.2% FdCa(OH)2 were capable of inactivating Salmonella Infantis and Salmonella Enteritidis in liquid at >3 log10 colony-forming units (CFU)/ml within 3 and 1 min of contact time, respectively, even in the presence of 5% CS. Additionally, 0.1% and 0.2% FdCa(OH)2 reduced bacterial levels on contaminated eggshells to >3 log10 CFU/ml, within 3 and 1 min, respectively, in the presence of 5% CS. Without CS, 0.1% and 0.2% FdCa(OH)2 could reduce bacteria on eggshells to >3 log10 CFU/ml within 1 min and 30 sec, respectively. In contrast, 150 ppm NaOCl solution could not inactivate bacteria on eggshells down to >3 log10 CFU/ml within 3 min contact time, either with or without CS, and no bacterial reduction was observed in redistilled water. The findings of the present study indicate that FdCa(OH)2 solution has high efficacy against foodborne bacteria and may be a good candidate for enhancement of biosecurity at farms and egg processing plants.
Collapse
Affiliation(s)
- Md Shahin Alam
- A Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,B The United Graduate School of Veterinary Science, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Satoru Takahashi
- A Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Mariko Ito
- A Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Mayuko Suzuki
- A Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Miyuki Komura
- A Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Natthanan Sangsriratanakul
- A Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,B The United Graduate School of Veterinary Science, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Dany Shoham
- A Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,C Bar-Ilan University, Begin-Sadat Center for Strategic Studies, Ramat Gan 5290002, Israel
| | - Kazuaki Takehara
- A Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,B The United Graduate School of Veterinary Science, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
13
|
MacKenzie KD, Palmer MB, Köster WL, White AP. Examining the Link between Biofilm Formation and the Ability of Pathogenic Salmonella Strains to Colonize Multiple Host Species. Front Vet Sci 2017; 4:138. [PMID: 29159172 PMCID: PMC5581909 DOI: 10.3389/fvets.2017.00138] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 08/09/2017] [Indexed: 12/11/2022] Open
Abstract
Salmonella are important pathogens worldwide and a predominant number of human infections are zoonotic in nature. The ability of strains to form biofilms, which is a multicellular behavior characterized by the aggregation of cells, is predicted to be a conserved strategy for increased persistence and survival. It may also contribute to the increasing number of infections caused by ingestion of contaminated fruits and vegetables. There is a correlation between biofilm formation and the ability of strains to colonize and replicate within the intestines of multiple host species. These strains predominantly cause localized gastroenteritis infections in humans. In contrast, there are salmonellae that cause systemic, disseminated infections in a select few host species; these “invasive” strains have a narrowed host range, and most are unable to form biofilms. This includes host-restricted Salmonella serovar Typhi, which are only able to infect humans, and atypical gastroenteritis strains associated with the opportunistic infection of immunocompromised patients. From the perspective of transmission, biofilm formation is advantageous for ensuring pathogen survival in the environment. However, from an infection point of view, biofilm formation may be an anti-virulence trait. We do not know if the capacity to form biofilms prevents a strain from accessing the systemic compartments within the host or if loss of the biofilm phenotype reflects a change in a strain’s interaction with the host. In this review, we examine the connections between biofilm formation, Salmonella disease states, degrees of host adaptation, and how this might relate to different transmission patterns. A better understanding of the dynamic lifecycle of Salmonella will allow us to reduce the burden of livestock and human infections caused by these important pathogens.
Collapse
Affiliation(s)
- Keith D MacKenzie
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK, Canada.,Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Melissa B Palmer
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK, Canada.,Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Wolfgang L Köster
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK, Canada.,Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Aaron P White
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK, Canada.,Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
14
|
Martelli F, Lambert M, Butt P, Cheney T, Tatone FA, Callaby R, Rabie A, Gosling RJ, Fordon S, Crocker G, Davies RH, Smith RP. Evaluation of an enhanced cleaning and disinfection protocol in Salmonella contaminated pig holdings in the United Kingdom. PLoS One 2017; 12:e0178897. [PMID: 28594930 PMCID: PMC5464571 DOI: 10.1371/journal.pone.0178897] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/19/2017] [Indexed: 02/06/2023] Open
Abstract
Salmonella is the second most commonly reported zoonotic gastrointestinal pathogen in the European Union, and a significant proportion of the cases are linked to the consumption of contaminated pork. Reduction of Salmonella at the farm level helps to mininimise the contamination pressure at the slaughterhouse, and therefore the number of Salmonella bacteria entering the food chain. Cleaning and disinfection (C&D) between batches of pigs is an intervention measure that has potential to reduce the transmission of Salmonella contamination within farms. In this study, two pig finisher buildings in each of 10 Salmonella positive farms were sampled pre-C&D, post-C&D, post-restocking with the following batch of pigs, and shortly before these pigs were sent to slaughter. The incoming batch of pigs was also sampled before it reached the study building (pre-restocking). At each visit, pooled and individual faecal samples were collected and Salmonella isolation was carried out according to an ISO 6579:2002 Annex D-based method. One building on each farm (intervention) was cleaned and disinfected according to a rigorous protocol consisting of several steps and a Defra-approved disinfectant used at the General Orders concentration, whilst the other building (control) was cleaned and disinfected as per normal farm routine. At the post-C&D visit, Enterobacteriaceae and total bacterial counts were determined to evaluate residual faecal contamination and general hygiene levels. Rodent specialists visited the farms before and after C&D and rodent carcasses were collected for Salmonella testing. The intervention buildings were significantly less likely (p = 0.004) to be positive for Salmonella after C&D. The pre-restocking pigs had the highest likelihood (p<0.001) of being Salmonella positive (often with multiple serovars) and there was no significant difference between intervention and control buildings in Salmonella prevalence at the post-restocking visit (p = 0.199). However, the pigs housed in the intervention buildings were significantly less likely (p = 0.004) to be positive for Salmonella at slaughter age. Multivariable analysis suggested that cleaning all fixtures of buildings, leaving the pens empty for 2-3 days and using an effective disinfectant are factors significantly improving the likelihood of removing Salmonella contamination during C&D. Signs of rodents were recorded in all farms, but rodent activity and harbourage availability decreased between visits. All the rats tested were Salmonella negative. S. Typhimurium or its monophasic variants were isolated from 6 mouse carcasses in 3 farms where the same serovars were isolated from pigs. This study demonstrates that an appropriate C&D programme significantly reduces the likelihood of residual contamination in Salmonella positive pig buildings, and suggests a significant reduction in the prevalence of Salmonella in the pigs in appropriately cleaned and disinfected buildings when sampled before slaughter. Due to a high prevalence of infection in replacement pigs, control of Salmonella in pig farms is challenging. Rodents may also contribute to the carry-over of infection between batches. C&D is a useful measure to help reduce the number of infected pigs going to the slaughterhouse, but should be supplemented by other control measures along the pig breeding and production chain.
Collapse
Affiliation(s)
- Francesca Martelli
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Mark Lambert
- National Wildlife Management Centre, Animal and Plant Health Agency, Sand Hutton, United Kingdom
| | | | - Tanya Cheney
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Addlestone, United Kingdom
| | | | - Rebecca Callaby
- National Wildlife Management Centre, Animal and Plant Health Agency, Sand Hutton, United Kingdom
| | - André Rabie
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Rebecca J. Gosling
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | | | | | - Robert H. Davies
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Richard Piers Smith
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Addlestone, United Kingdom
| |
Collapse
|
15
|
Avian Pathogenicity Genes and Antibiotic Resistance in Escherichia coli Isolates from Wild Norway Rats (Rattus norvegicus) in British Columbia, Canada. J Wildl Dis 2016; 52:418-21. [DOI: 10.7589/2015-09-238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Kosoy M, Khlyap L, Cosson JF, Morand S. Aboriginal and invasive rats of genus Rattus as hosts of infectious agents. Vector Borne Zoonotic Dis 2015; 15:3-12. [PMID: 25629775 DOI: 10.1089/vbz.2014.1629] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
From the perspective of ecology of zoonotic pathogens, the role of the Old World rats of the genus Rattus is exceptional. The review analyzes specific characteristics of rats that contribute to their important role in hosting pathogens, such as host-pathogen relations and rates of rat-borne infections, taxonomy, ecology, and essential factors. Specifically the review addresses recent taxonomic revisions within the genus Rattus that resulted from applications of new genetic tools in understanding relationships between the Old World rats and the infectious agents that they carry. Among the numerous species within the genus Rattus, only three species-the Norway rat (R. norvegicus), the black or roof rat (R. rattus), and the Asian black rat (R. tanezumi)-have colonized urban ecosystems globally for a historically long period of time. The fourth invasive species, R. exulans, is limited to tropical Asia-Pacific areas. One of the points highlighted in this review is the necessity to discriminate the roles played by rats as pathogen reservoirs within the land of their original diversification and in regions where only one or few rat species were introduced during the recent human history.
Collapse
Affiliation(s)
- Michael Kosoy
- 1 Centers for Disease Control and Prevention , Division of Vector-Borne Diseases, Fort Collins, Colorado
| | | | | | | |
Collapse
|
17
|
PREVALENCE AND CHARACTERISTICS OF ESCHERICHIA COLI AND SALMONELLA SPP. IN THE FECES OF WILD URBAN NORWAY AND BLACK RATS (RATTUS NORVEGICUS AND RATTUS RATTUS) FROM AN INNER-CITY NEIGHBORHOOD OF VANCOUVER, CANADA. J Wildl Dis 2015; 51:589-600. [PMID: 25932669 DOI: 10.7589/2014-09-242] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although rat feces are widely suspected to be a source of pathogenic bacteria, few investigators have studied fecal pathogens in rats. We investigated the prevalence and characteristics of Escherichia coli and Salmonella spp. in Norway and black rats (Rattus norvegicus and Rattus rattus, respectively) from an urban neighborhood of Vancouver, Canada, collected September 2011-August 2012. Colon content was cultured for E. coli and Salmonella spp. and screened for the seven most-common enteropathogenic Shiga toxin-producing E. coli (STEC) serotypes by PCR. Isolates were tested for antimicrobial resistance and Salmonella isolates were serotyped. We detected E. coli in 397/633 (62.7%) urban rats. Forty-one of 397 (6.5%) E. coli isolates were resistant to ≥ 1 antimicrobial while 17 (4.3%) were multidrug resistant (including two isolates demonstrating extended-spectrum β-lactamase resistance). Ten of 633 (1.6%) urban rats were carrying STEC serotypes including O145, O103, O26, and O45. Norway rats were more likely to be carrying E. coli compared to black rats, and there was geographic clustering of specific resistance patterns and STEC serotypes. Salmonella spp. were detected in 3/633 (0.5%) rats including serotypes Derby, Indiana, and Enteritidis. In contrast to zoonotic pathogens for which rats are the natural reservoir (e.g., Leptospira interrogans, Rickettsia typhi, Seoul virus), rats likely acquired E. coli and Salmonella spp. from their environment. The ability of rats to be a 'sponge' for environmental pathogens has received little consideration, and the ecology and public health significance of these organisms in rats requires further investigation.
Collapse
|
18
|
Chakma S, Picard J, Duffy R, Constantinoiu C, Gummow B. A Survey of Zoonotic Pathogens Carried by Non-Indigenous Rodents at the Interface of the Wet Tropics of North Queensland, Australia. Transbound Emerg Dis 2015; 64:185-193. [PMID: 25906923 DOI: 10.1111/tbed.12360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Indexed: 11/29/2022]
Abstract
In 1964, Brucella was isolated from rodents trapped in Wooroonooran National Park (WNP), in Northern Queensland, Australia. Genotyping of bacterial isolates in 2008 determined that they were a novel Brucella species. This study attempted to reisolate this species of Brucella from rodents living in the boundary area adjacent to WNP and to establish which endo- and ecto-parasites and bacterial agents were being carried by non-indigenous rodents at this interface. Seventy non-indigenous rodents were trapped [Mus musculus (52), Rattus rattus (17) and Rattus norvegicus (1)], euthanized and sampled on four properties adjacent to the WNP in July 2012. Organ pools were screened by culture for Salmonella, Leptospira and Brucella species, real-time PCR for Coxiella burnetii and conventional PCR for Leptospira. Collected ecto- and endo-parasites were identified using morphological criteria. The percentage of rodents carrying pathogens were Leptospira (40%), Salmonella choleraesuis ssp. arizonae (14.29%), ectoparasites (21.42%) and endoparasites (87%). Brucella and C. burnetii were not identified, and it was concluded that their prevalences were below 12%. Two rodent-specific helminthic species, namely Syphacia obvelata (2.86%) and Nippostrongylus brasiliensis (85.71%), were identified. The most prevalent ectoparasites belonged to Laelaps spp. (41.17%) followed by Polyplax spp. (23.53%), Hoplopleura spp. (17.65%), Ixodes holocyclus (17.64%) and Stephanocircus harrisoni (5.88%), respectively. These ectoparasites, except S. harrisoni, are known to transmit zoonotic pathogens such as Rickettsia spp. from rat to rat and could be transmitted to humans by other arthropods that bite humans. The high prevalence of pathogenic Leptospira species is of significant public health concern. This is the first known study of zoonotic agents carried by non-indigenous rodents living in the Australian wet-tropical forest interface.
Collapse
Affiliation(s)
- S Chakma
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Qld, Australia
| | - J Picard
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Qld, Australia
| | - R Duffy
- College of Marine and Environmental Sciences, James Cook University, Townsville, Qld, Australia
| | - C Constantinoiu
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Qld, Australia
| | - B Gummow
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Qld, Australia.,Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
19
|
Application of Molecular Approaches for Understanding Foodborne Salmonella Establishment in Poultry Production. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/813275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Salmonellosis in the United States is one of the most costly foodborne diseases. Given that Salmonella can originate from a wide variety of environments, reduction of this organism at all stages of poultry production is critical. Salmonella species can encounter various environmental stress conditions which can dramatically influence their survival and colonization. Current knowledge of Salmonella species metabolism and physiology in relation to colonization is traditionally based on studies conducted primarily with tissue culture and animal infection models. Consequently, while there is some information about environmental signals that control Salmonella growth and colonization, much still remains unknown. Genetic tools for comprehensive functional genomic analysis of Salmonella offer new opportunities for not only achieving a better understanding of Salmonella pathogens but also designing more effective intervention strategies. Now the function(s) of each single gene in the Salmonella genome can be directly assessed and previously unknown genetic factors that are required for Salmonella growth and survival in the poultry production cycle can be elucidated. In particular, delineating the host-pathogen relationships involving Salmonella is becoming very helpful for identifying optimal targeted gene mutagenesis strategies to generate improved vaccine strains. This represents an opportunity for development of novel vaccine approaches for limiting Salmonella establishment in early phases of poultry production. In this review, an overview of Salmonella issues in poultry, a general description of functional genomic technologies, and their specific application to poultry vaccine developments are discussed.
Collapse
|
20
|
Adesiyun A, Webb L, Musai L, Louison B, Joseph G, Stewart-Johnson A, Samlal S, Rodrigo S. Survey of Salmonella contamination in chicken layer farms in three Caribbean countries. J Food Prot 2014; 77:1471-80. [PMID: 25198837 DOI: 10.4315/0362-028x.jfp-14-021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study was conducted to investigate the demography, management, and production practices on layer chicken farms in Trinidad and Tobago, Grenada, and St. Lucia and the frequency of risk factors for Salmonella infection. The frequency of isolation of Salmonella from the layer farm environment, eggs, feeds, hatchery, and imported day-old chicks was determined using standard methods. Of the eight risk factors (farm size, age group of layers, source of day-old chicks, vaccination, sanitation practices, biosecurity measures, presence of pests, and previous disease outbreaks) for Salmonella infection investigated, farm size was the only risk factor significantly associated (P = 0.031) with the prevalence of Salmonella; 77.8% of large farms were positive for this pathogen compared with 33.3 and 26.1% of medium and small farms, respectively. The overall isolation rate of Salmonella from 35 layer farms was 40.0%. Salmonella was isolated at a significantly higher rate (P < 0.05) from farm environments than from the cloacae. Only in Trinidad and Tobago did feeds (6.5% of samples) and pooled egg contents (12.5% of samples) yield Salmonella; however, all egg samples from hotels, hatcheries, and airports in this country were negative. Salmonella Anatum, Salmonella group C, and Salmonella Kentucky were the predominant serotypes in Trinidad and Tobago, Grenada, and St. Lucia, respectively. Although Salmonella infections were found in layer birds sampled, table eggs appear to pose minimal risk to consumers. However, the detection of Salmonella -contaminated farm environments and feeds cannot be ignored. Only 2.9% of the isolates belonged to Salmonella Enteritidis, a finding that may reflect the impact of changes in farm management and poultry production in the region.
Collapse
Affiliation(s)
- Abiodun Adesiyun
- School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago.
| | - Lloyd Webb
- Institute of Public Health Studies, College of Veterinary Medicine, Nursing and Allied Health, Tuskegee University, Tuskegee, Alabama 36088, USA
| | - Lisa Musai
- Poultry Surveillance Unit, Ministry of Food Production, Port of Spain, Trinidad and Tobago
| | - Bowen Louison
- Ministry of Agriculture, Forestry and Fisheries, Ministerial Complex, Tanteen, St. George's Grenada, West Indies
| | - George Joseph
- Veterinary and Livestock Services, Ministry of Agriculture, Food Production, Rural Development and Fisheries, Castries, St. Lucia
| | - Alva Stewart-Johnson
- School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Sannandan Samlal
- School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Shelly Rodrigo
- Department of Public Health and Preventive Medicine, School of Medicine, St. George's University, University Centre, Grenada, West Indies
| |
Collapse
|
21
|
Scientific Opinion on the risk posed by pathogens in food of non‐animal origin. Part 2 (Salmonella and Norovirus in leafy greens eaten raw as salads). EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3600] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
22
|
Geographical information software and shopper card data, aided in the discovery of a Salmonella Enteritidis outbreak associated with Turkish pine nuts. Epidemiol Infect 2014; 142:2567-71. [PMID: 24534462 DOI: 10.1017/s0950268814000223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
In 2011, from August to November, the Monroe County Department of Public Health (MCDPH) investigated 47 salmonellosis cases. Geographical information software (GIS) was used to map the address locations of these cases. The resulting GIS analysis and culture information indicated that there were two distinct clusters of Salmonella that were geographically different. Pulsed-field gel electrophoresis (PFGE) testing was run at the New York State Department of Health Wadsworth Laboratory and identified S. Enteritidis (23 cases) and S. Typhimurium (10 cases). The epidemiological investigation identified Turkish pine nuts as the link between ill S. Enteritidis cases. Pine nut samples sent for laboratory testing were a PFGE match to human isolates with S. Enteritidis. A national recall of Turkish pine nuts ensued. A multistate outbreak was identified as a result of the initial investigation of MCDPH, in which 43 people were infected with the outbreak strain from five states. GIS software and shopper card data provided important tools in the epidemiological investigation.
Collapse
|
23
|
PREVALENCE OFSALMONELLA ENTERICASEROVAR ALBANY IN CAPTIVE ZOO WILD ANIMALS IN THE CULIACÁN ZOO IN MEXICO. J Zoo Wildl Med 2013; 44:8-14. [DOI: 10.1638/1042-7260-44.1.8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
Shirota K, Umali DV, Suzuki T, Katoh H. Epizootiologic role of feeds in the epidemiology of Salmonella Senftenberg contamination in commercial layer farms in eastern Japan. Avian Dis 2012; 56:516-20. [PMID: 23050468 DOI: 10.1637/9964-101611-reg.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In total, 40 commercial layer farms and 32 replacement pullet farms with a combined population of 7.5 million adult layers and 6.6 million replacement pullets from six prefectures in eastern Japan were investigated for Salmonella Senftenberg contamination. We randomly collected 17,956 environmental samples, 5816 feed samples, and 218,470 egg samples from commercial layer farms; and 427 feed samples and 2896 environmental samples from replacement pullet farms. We monitored all samples for Salmonella. Samples were primarily enriched in Hajna tetrathinoate broth for 24 hr at 37 C followed by incubation in desoxycholate hydrogen sulfide lactose agar for 18 hr at 37 C. Salmonella colonies were confirmed and identified by biochemical tests and serotyped using Salmonella O and H antigens. We recorded 171 environmental samples (0.95%) and 10 feed samples (0.17%) that were positive for Salmonella spp. in which 36 environmental samples (0.20%) and six feed samples (0.10%) were identified as Salmonella Senftenberg. All Salmonella Senftenberg strains were isolated from nine replacement pullet farms. No Salmonella Senftenberg strains were isolated from adult layer farms and from eggs. Pulse field gel electrophoresis of BlnI-digested chromosomal DNA of 19 Salmonella Senftenberg isolates from feeds and environmental samples yielded a single identical DNA pattern. Traceback information showed that all positive feed samples were from a single feed source. Timeline studies showed that Salmonella Senftenberg contamination occurred first mostly in the feeds and then spread to the environment and other farms. This study demonstrated that the prevalence of Salmonella Senftenberg contamination in commercial layer facilities in eastern Japan is very low. Moreover, feed contamination played a major role in the epizootiology and spread of this pathogen in commercial poultry flocks. Given the resilient and persistent nature of this particular Salmonella serotype, routine monitoring and strict quality control measures at the feed level are recommended to prevent the colonization of poultry facilities with Salmonella Senftenberg that may lead to future outbreaks.
Collapse
Affiliation(s)
- Kazutoshi Shirota
- Poultry Products Quality Control Co., 125-7 Daiwa Dakeonsen, Nihonmatsu, Fukushima 964-0062, Japan
| | | | | | | |
Collapse
|
25
|
Occurrence of pathogens in wild rodents caught on Swedish pig and chicken farms. Epidemiol Infect 2012; 141:1885-91. [DOI: 10.1017/s0950268812002609] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
SUMMARYA total of 207 wild rodents were caught on nine pig farms, five chicken farms and five non-farm locations in Sweden and surveyed for a selection of bacteria, parasites and viruses.Lawsonia intracellulariaand pathogenicYersinia enterocoliticawere only detected in rodents on pig farms (9% and 8% prevalence, respectively) which indicate that these agents are more likely to be transmitted to rodents from pigs or the environment on infected farms.Brachyspira hyodysenteriae(1%),Brachyspira intermedia(2%),Campylobacter jejuni(4%),Campylobacter upsaliensis(2%), leptospires (7%) and encephalomyocarditis virus (9%) were also detected from rodents not in contact with farm animals.GiardiaandCryptosporidiumspp. were common, although no zoonotic types were verified, andSalmonella entericawas isolated from 1/11 mice on one farm but not detected by PCR from any of the rodents.Trichinellaspp. andToxoplasma gondiiwere not detected.
Collapse
|
26
|
Dewaele I, Rasschaert G, Wildemauwe C, Van Meirhaeghe H, Vanrobaeys M, De Graef E, Herman L, Ducatelle R, Heyndrickx M, De Reu K. Polyphasic characterization of Salmonella Enteritidis isolates on persistently contaminated layer farms during the implementation of a national control program with obligatory vaccination: A longitudinal study. Poult Sci 2012; 91:2727-35. [DOI: 10.3382/ps.2012-02218] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Abstract
A total of 105 033 eggs were collected across Japan from June 2010 to January 2011 and tested for Salmonella Enteritidis to provide data for the risk profiling of S. Enteritidis in eggs by the Food Safety Commission of Japan. S. Enteritidis isolates were recovered from three samples (20 eggs/sample) and these samples were different in regard to sampling period, grading and packaging centre and farm. The prevalence of S. Enteritidis in commercial eggs in Japan is estimated at ∼0·003% which was a tenfold decrease in prevalence compared to similar surveillance in the mid 1990s. The decrease in the contamination in commercial eggs is considered a contributory factor in the decrease of foodborne diseases associated with S. Enteritidis in this period.
Collapse
|
28
|
Lapuz RRSP, Umali DV, Suzuki T, Shirota K, Katoh H. Comparison of the prevalence of Salmonella infection in layer hens from commercial layer farms with high and low rodent densities. Avian Dis 2012; 56:29-34. [PMID: 22545525 DOI: 10.1637/9704-030711-reg.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A comparison on the prevalence of Salmonella infection in layer hens from commercial layer farms with high and low rodent densities was investigated. Out of 280 laying hens sampled from three commercial layer farms with high rodent densities, Salmonella enterica subsp. enterica serovar Enteritidis (Salmonella Enteritidis) was isolated from 20 (7.14%) hens and Salmonella enterica subsp. enterica serovar Infantis (Salmonella Infantis) from three (1.07%) hens. In contrast, layer hens sampled from four commercial layer farms with low rodent densities were negative for any salmonellae. Significant differences (P < 0.05) in the isolation rates of Salmonella from various organs of infected layer hens were also noted. For Salmonella Enteritidis, liver (55.0%) and the oviduct (55.0%) had the highest isolation rates while all Salmonella Infantis isolates were from the oviduct. Pulsed field gel electrophoresis (PFGE) analysis of BlnI-digested chromosomal DNA of Salmonella Enteritidis isolated from layer hens and rodents showed similar patterns. PFGE analysis of Salmonella Infantis isolated from layer hens, rodents, eggs, and the environment yielded identical patterns. In this study, the significantly higher prevalence rate (P < 0.05) of Salmonella Enteritidis and Salmonella Infantis in layer hens from high rodent density farms could be attributed to the high rodent population density. The persistent Salmonella Enteritidis and Salmonella Infantis infection inside layer houses may have been amplified by the increasing numbers in the rodent population over the years, which increased the opportunity for environment-rodent-chicken interaction and the transmission of salmonellae to chickens. Monitoring of salmonellae from rodents inside poultry premises is recommended to be an effective additional tool in the assessment of the Salmonella status of layer flocks.
Collapse
Affiliation(s)
- Randy Rhon Simoun P Lapuz
- College of Veterinary Medicine, University of the Philippines, Los Baños College, Laguna, 4031 Philippines
| | | | | | | | | |
Collapse
|
29
|
|
30
|
Backhans A, Fellström C. Rodents on pig and chicken farms - a potential threat to human and animal health. Infect Ecol Epidemiol 2012; 2:IEE-2-17093. [PMID: 22957130 PMCID: PMC3426328 DOI: 10.3402/iee.v2i0.17093] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 01/20/2012] [Accepted: 01/23/2012] [Indexed: 02/06/2023] Open
Abstract
Rodents can cause major problems through spreading various diseases to animals and humans. The two main species of rodents most commonly found on farms around the world are the house mouse (Mus musculus) and the brown rat (Rattus norvegicus). Both species are omnivorous and can breed year-round under favourable conditions. This review describes the occurrence of pathogens in rodents on specialist pig and chicken farms, which are usually closed units with a high level of bio-security. However, wild rodents may be difficult to exclude completely, even from these sites, and can pose a risk of introducing and spreading pathogens. This article reviews current knowledge regarding rodents as a hazard for spreading disease on farms. Most literature available regards zoonotic pathogens, while the literature regarding pathogens that cause disease in farm animals is more limited.
Collapse
Affiliation(s)
- Annette Backhans
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | |
Collapse
|
31
|
Abstract
SUMMARYHuman salmonellosis cases, particularly those caused by Salmonella Enteritidis, have been closely linked to egg consumption. This epidemiological survey was conducted to determine the baseline Salmonella prevalence and identify the risk factors for Salmonella prevalence in laying-hen farms in Japan. Caecal excrement samples and dust samples were obtained from 400 flocks in 338 laying-hen farms. Salmonella was identified in 20·7% of the farms and 19·5% of the flocks. The prevalence of Salmonella was significantly higher in flocks reared in windowless houses than in those reared in open houses. In addition, the risk of Salmonella presence was significantly higher when the windowless house farms implemented induced moulting or in-line egg processing. Efforts to reduce human salmonellosis in Japan should continue to focus on the establishment of control measures in laying-hen farms, especially those with windowless houses implementing induced moulting and equipped with in-line egg processing.
Collapse
|
32
|
Nkogwe C, Raletobana J, Stewart-Johnson A, Suepaul S, Adesiyun A. Frequency of Detection of Escherichia coli, Salmonella spp., and Campylobacter spp. in the Faeces of Wild Rats (Rattus spp.) in Trinidad and Tobago. Vet Med Int 2011; 2011:686923. [PMID: 21547220 PMCID: PMC3087471 DOI: 10.4061/2011/686923] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 01/29/2011] [Accepted: 02/04/2011] [Indexed: 11/20/2022] Open
Abstract
The study was conducted to determine the frequency of isolation of Salmonella, Campylobacter and E. coli O157 in the faecal samples of rats trapped across the regional corporations in Trinidad and to assess their resistance to antimicrobial agents. A total of 204 rats were trapped for the detection of selected bacteria. Standard methods were used to isolate Salmonella, Campylobacter and E. coli O157. Characterization of E. coli was done on sorbitol MacConkey agar to determine non-sorbitol fermentation, blood agar to determine haemolytic and mucoid colonies and by using E. coli O157 antiserum to determine O157 strain. The disc diffusion method was used to determine resistance to nine antimicrobial agents. Of the 204 rats, 4 (2.0%), 7 (3.4%) and 171 (83.8%) were positive for Salmonella spp., Campylobacter spp. and E. coli, respectively. Of the 171 isolates of E. coli tested 0 (0.0%), 25 (14.6%) and 19 (11.1%) were haemolytic, mucoid and non-sorbitol fermenters, respectively. All isolates were negative for the O157 strain. The frequency of resistance to the 9 antimicrobial agents tested was 75% (3 of 4) for Salmonella, 85.7% (6 of 7) of Campylobacter spp. and 36.3% (62 of 171) for E. coli (P < .05; χ(2)).
Collapse
Affiliation(s)
- Comfort Nkogwe
- School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
| | | | | | | | | |
Collapse
|
33
|
Abstract
SUMMARYWe examined 20 300 raw shell chicken eggs sold at retail stores in Japan for Salmonella outside and inside eggs. The eggs were purchased at 220 retail stores throughout Japan between August 2007 and January 2008. Of 2030 pooled egg samples (10 eggs/sample), Salmonella was isolated from five shell samples (0·25%), but not from any of egg-content samples. The serovars of the isolates were Salmonella Enteritidis (2), S. Derby, S. Livingstone and S. Cerro. The samples positive for Salmonella originated from five different egg grading and packaging (GP) centres. All the GP centres washed their egg shells according to government guidelines for hygienic practice in GP centres. Thus, practical control measures at GP centres need to be reviewed and implemented to diminish Salmonella prevalence of egg shells because Salmonella contamination on eggs is a potential hazard for foodborne salmonellosis in Japan.
Collapse
|
34
|
Lutful Kabir SM. Avian colibacillosis and salmonellosis: a closer look at epidemiology, pathogenesis, diagnosis, control and public health concerns. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:89-114. [PMID: 20195435 PMCID: PMC2819778 DOI: 10.3390/ijerph7010089] [Citation(s) in RCA: 219] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 01/11/2010] [Indexed: 11/16/2022]
Abstract
Avian colibacillosis and salmonellosis are considered to be the major bacterial diseases in the poultry industry world-wide. Colibacillosis and salmonellosis are the most common avian diseases that are communicable to humans. This article provides the vital information on the epidemiology, pathogenesis, diagnosis, control and public health concerns of avian colibacillosis and salmonellosis. A better understanding of the information addressed in this review article will assist the poultry researchers and the poultry industry in continuing to make progress in reducing and eliminating avian colibacillosis and salmonellosis from the poultry flocks, thereby reducing potential hazards to the public health posed by these bacterial diseases.
Collapse
Affiliation(s)
- S M Lutful Kabir
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan.
| |
Collapse
|
35
|
Search for Salmonella spp. in ostrich productive chain of Brazilian southeast region. Trop Anim Health Prod 2009; 41:1607-14. [DOI: 10.1007/s11250-009-9354-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 04/08/2009] [Indexed: 10/20/2022]
|