1
|
Liang C, Li F, Gu C, Xie L, Yan W, Wang X, Shi R, Linghu S, Liu T. Metabolomic profiling of ocular tissues in rabbit myopia: Uncovering differential metabolites and pathways. Exp Eye Res 2024; 240:109796. [PMID: 38244883 DOI: 10.1016/j.exer.2024.109796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/22/2024]
Abstract
To investigate the metabolic difference among tissue layers of the rabbits' eye during the development of myopia using metabolomic techniques and explore any metabolic links or cascades within the ocular wall. Ultra Performance Liquid Chromatography - Mass Spectrometry (UPLC-MS) was utilized for untargeted metabolite screening (UMS) to identify the significant differential metabolites produced between myopia (MY) and control (CT) (horizontal). Subsequently, we compared those key metabolites among tissues (Sclera, Choroid, Retina) of MY for distribution and variation (longitudinal). A total of 6285 metabolites were detected in the three tissues. The differential metabolites were screened and the metabolic pathways of these metabolites in each myopic tissue were labeled, including tryptophan and its metabolites, pyruvate, taurine, caffeine metabolites, as well as neurotransmitters like glutamate and dopamine. Our study suggests that multiple metabolic pathways or different metabolites under the same pathway, might act on different parts of the eyeball and contribute to the occurrence and development of myopia by affecting the energy supply to the ocular tissues, preventing antioxidant stress, affecting scleral collagen synthesis, and regulating various neurotransmitters mutually.
Collapse
Affiliation(s)
- Chengpeng Liang
- Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou Province, China.
| | - Fayuan Li
- Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Chengqi Gu
- Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Ling Xie
- Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Wen Yan
- Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Xiaoye Wang
- Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Rong Shi
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Shaorong Linghu
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Taixiang Liu
- Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou Province, China; Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China.
| |
Collapse
|
2
|
Hirano AA, Vuong HE, Kornmann HL, Schietroma C, Stella SL, Barnes S, Brecha NC. Vesicular Release of GABA by Mammalian Horizontal Cells Mediates Inhibitory Output to Photoreceptors. Front Cell Neurosci 2020; 14:600777. [PMID: 33335476 PMCID: PMC7735995 DOI: 10.3389/fncel.2020.600777] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Feedback inhibition by horizontal cells regulates rod and cone photoreceptor calcium channels that control their release of the neurotransmitter glutamate. This inhibition contributes to synaptic gain control and the formation of the center-surround antagonistic receptive fields passed on to all downstream neurons, which is important for contrast sensitivity and color opponency in vision. In contrast to the plasmalemmal GABA transporter found in non-mammalian horizontal cells, there is evidence that the mechanism by which mammalian horizontal cells inhibit photoreceptors involves the vesicular release of the inhibitory neurotransmitter GABA. Historically, inconsistent findings of GABA and its biosynthetic enzyme, L-glutamate decarboxylase (GAD) in horizontal cells, and the apparent lack of surround response block by GABAergic agents diminished support for GABA's role in feedback inhibition. However, the immunolocalization of the vesicular GABA transporter (VGAT) in the dendritic and axonal endings of horizontal cells that innervate photoreceptor terminals suggested GABA was released via vesicular exocytosis. To test the idea that GABA is released from vesicles, we localized GABA and GAD, multiple SNARE complex proteins, synaptic vesicle proteins, and Cav channels that mediate exocytosis to horizontal cell dendritic tips and axonal terminals. To address the perceived relative paucity of synaptic vesicles in horizontal cell endings, we used conical electron tomography on mouse and guinea pig retinas that revealed small, clear-core vesicles, along with a few clathrin-coated vesicles and endosomes in horizontal cell processes within photoreceptor terminals. Some small-diameter vesicles were adjacent to the plasma membrane and plasma membrane specializations. To assess vesicular release, a functional assay involving incubation of retinal slices in luminal VGAT-C antibodies demonstrated vesicles fused with the membrane in a depolarization- and calcium-dependent manner, and these labeled vesicles can fuse multiple times. Finally, targeted elimination of VGAT in horizontal cells resulted in a loss of tonic, autaptic GABA currents, and of inhibitory feedback modulation of the cone photoreceptor Cai, consistent with the elimination of GABA release from horizontal cell endings. These results in mammalian retina identify the central role of vesicular release of GABA from horizontal cells in the feedback inhibition of photoreceptors.
Collapse
Affiliation(s)
- Arlene A. Hirano
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Helen E. Vuong
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Helen L. Kornmann
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Cataldo Schietroma
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Salvatore L. Stella
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Steven Barnes
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Doheny Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nicholas C. Brecha
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
3
|
Nivison-Smith L, Chua J, Tan SS, Kalloniatis M. Amino acid signatures in the developing mouse retina. Int J Dev Neurosci 2013; 33:62-80. [PMID: 24368173 DOI: 10.1016/j.ijdevneu.2013.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 12/13/2013] [Indexed: 11/29/2022] Open
Abstract
This study characterizes the developmental patterns of seven key amino acids: glutamate, γ-amino-butyric acid (GABA), glycine, glutamine, aspartate, alanine and taurine in the mouse retina. We analyze amino acids in specific bipolar, amacrine and ganglion cell sub-populations (i.e. GABAergic vs. glycinergic amacrine cells) and anatomically distinct regions of photoreceptors and Müller cells (i.e. cell bodies vs. endfeet) by extracting data from previously described pattern recognition analysis. Pattern recognition statistically classifies all cells in the retina based on their neurochemical profile and surpasses the previous limitations of anatomical and morphological identification of cells in the immature retina. We found that the GABA and glycine cellular content reached adult-like levels in most neurons before glutamate. The metabolic amino acids glutamine, aspartate and alanine also reached maturity in most retinal cells before eye opening. When the overall amino acid profiles were considered for each cell group, ganglion cells and GABAergic amacrine cells matured first, followed by glycinergic amacrine cells and finally bipolar cells. Photoreceptor cell bodies reached adult-like amino acid profiles at P7 whilst Müller cells acquired typical amino acid profiles in their cell bodies at P7 and in their endfeet by P14. We further compared the amino acid profiles of the C57Bl/6J mouse with the transgenic X-inactivation mouse carrying the lacZ gene on the X chromosome and validated this animal model for the study of normal retinal development. This study provides valuable insight into normal retinal neurochemical maturation and metabolism and benchmark amino acid values for comparison with retinal disease, particularly those which occur during development.
Collapse
Affiliation(s)
- Lisa Nivison-Smith
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW, Australia
| | - Jacqueline Chua
- Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | - Seong-Seng Tan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Michael Kalloniatis
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW, Australia; Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia; Centre for Eye Health, Sydney, Australia.
| |
Collapse
|
4
|
Chua J, Nivison-Smith L, Tan SS, Kalloniatis M. Metabolic profiling of the mouse retina using amino acid signatures: Insight into developmental cell dispersion patterns. Exp Neurol 2013; 250:74-93. [DOI: 10.1016/j.expneurol.2013.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/15/2013] [Accepted: 09/09/2013] [Indexed: 11/17/2022]
Affiliation(s)
- Jacqueline Chua
- Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
5
|
Chua J, Nivison-Smith L, Fletcher EL, Trenholm S, Awatramani GB, Kalloniatis M. Early remodeling of müller cells in therd/rdmouse model of retinal dystrophy. J Comp Neurol 2013; 521:2439-53. [DOI: 10.1002/cne.23307] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 12/11/2012] [Accepted: 01/17/2013] [Indexed: 12/13/2022]
|
6
|
Nivison-Smith L, Collin SP, Zhu Y, Ready S, Acosta ML, Hunt DM, Potter IC, Kalloniatis M. Retinal amino acid neurochemistry of the southern hemisphere lamprey, Geotria australis. PLoS One 2013; 8:e58406. [PMID: 23516473 PMCID: PMC3596384 DOI: 10.1371/journal.pone.0058406] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 02/04/2013] [Indexed: 01/01/2023] Open
Abstract
Lampreys are one of the two surviving groups of the agnathan (jawless) stages in vertebrate evolution and are thus ideal candidates for elucidating the evolution of visual systems. This study investigated the retinal amino acid neurochemistry of the southern hemisphere lamprey Geotria australis during the downstream migration of the young, recently-metamorphosed juveniles to the sea and during the upstream migration of the fully-grown and sexually-maturing adults to their spawning areas. Glutamate and taurine were distributed throughout the retina, whilst GABA and glycine were confined to neurons of the inner retina matching patterns seen in most other vertebrates. Glutamine and aspartate immunoreactivity was closely matched to Müller cell morphology. Between the migratory phases, few differences were observed in the distribution of major neurotransmitters i.e. glutamate, GABA and glycine, but changes in amino acids associated with retinal metabolism i.e. glutamine and aspartate, were evident. Taurine immunoreactivity was mostly conserved between migrant stages, consistent with its role in primary cell functions such as osmoregulation. Further investigation of glutamate signalling using the probe agmatine (AGB) to map cation channel permeability revealed entry of AGB into photoreceptors and horizontal cells followed by accumulation in inner retinal neurons. Similarities in AGB profiles between upstream and downstream migrant of G. australis confirmed the conservation of glutamate neurotransmission. Finally, calcium binding proteins, calbindin and calretinin were localized to the inner retina whilst recoverin was localized to photoreceptors. Overall, conservation of major amino acid neurotransmitters and calcium-associated proteins in the lamprey retina confirms these elements as essential features of the vertebrate visual system. On the other hand, metabolic elements of the retina such as neurotransmitter precursor amino acids and Müller cells are more sensitive to environmental changes associated with migration.
Collapse
Affiliation(s)
- Lisa Nivison-Smith
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Shaun P. Collin
- School of Animal Biology and the University of Western Australia Oceans Institute, University of Western Australia, Crawley, Western Australia, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Yuan Zhu
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Sarah Ready
- Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | - Monica L. Acosta
- Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | - David M. Hunt
- School of Animal Biology and the University of Western Australia Oceans Institute, University of Western Australia, Crawley, Western Australia, Australia
| | - Ian C. Potter
- School of Biological Sciences and Biotechnology, Murdoch University, Murdoch, Western Australia, Australia
| | - Michael Kalloniatis
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
- Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
- Centre for Eye Health, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Bulley S, Shen W. Reciprocal regulation between taurine and glutamate response via Ca2+-dependent pathways in retinal third-order neurons. J Biomed Sci 2010; 17 Suppl 1:S5. [PMID: 20804625 PMCID: PMC2994392 DOI: 10.1186/1423-0127-17-s1-s5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Although taurine and glutamate are the most abundant amino acids conducting neural signals in the central nervous system, the communication between these two neurotransmitters is largely unknown. This study explores the interaction of taurine and glutamate in the retinal third-order neurons. Using specific antibodies, both taurine and taurine transporters were localized in photoreceptors and Off-bipolar cells, glutamatergic neurons in retinas. It is possible that Off-bipolar cells release juxtaposed glutamate and taurine to activate the third-order neurons in retina. The interaction of taurine and glutamate was studied in acutely dissociated third-order neurons in whole-cell patch-clamp recording and Ca2+ imaging. We find that taurine effectively reduces glutamate-induced Ca2+ influx via ionotropic glutamate receptors and voltage-dependent Ca2+ channels in the neurons, and the effect of taurine was selectively inhibited by strychnine and picrotoxin, but not GABA receptor antagonists, although GABA receptors are present in the neurons. A CaMKII inhibitor partially reversed the effect of taurine, suggesting that a Ca2+/calmodulin-dependent pathway is involved in taurine regulation. On the other hand, a rapid influx of Ca2+ through ionotropic glutamate receptors could inhibit the amplitude and kinetics of taurine-elicited currents in the third-order neurons, which could be controlled with intracellular application of BAPTA a fast Ca2+ chelator. This study indicates that taurine is a potential neuromodulator in glutamate transmission. The reciprocal inhibition between taurine and glutamate in the postsynaptic neurons contributes to computation of visual signals in the retinal neurons.
Collapse
Affiliation(s)
- Simon Bulley
- College of Biomedical Science, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | | |
Collapse
|
8
|
Schubert T, Huckfeldt RM, Parker E, Campbell JE, Wong ROL. Assembly of the outer retina in the absence of GABA synthesis in horizontal cells. Neural Dev 2010; 5:15. [PMID: 20565821 PMCID: PMC2919532 DOI: 10.1186/1749-8104-5-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 06/18/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The inhibitory neurotransmitter gamma-amino-butyric acid (GABA) not only modulates excitability in the mature nervous system but also regulates neuronal differentiation and circuit development. Horizontal cells, a subset of interneurons in the outer retina, are transiently GABAergic during the period of cone photoreceptor synaptogenesis. In rodents, both horizontal cells and cone axonal terminals express GABAA receptors. To explore the possibility that transient GABA expression in mouse neonatal horizontal cells influences the structural development of synaptic connectivity in the outer retina, we examined a mutant in which expression of GAD67, the major synthesizing enzyme for GABA, is selectively knocked out in the retina. RESULTS Immunocytochemistry and electron microscopy revealed that the assembly of triad synapses involving cone axonal pedicles and the dendrites of horizontal and bipolar cells is unaffected in the mutant retina. Moreover, loss of GABA synthesis in the outer retina did not perturb the spatial distributions and cell densities of cones and horizontal cells. However, there were some structural alterations at the cellular level: the average size of horizontal cell dendritic clusters was larger in the mutant, and there was also a small but significant increase in cone photoreceptor pedicle area. Moreover, metabotropic glutamate receptor 6 (mGluR6) receptors on the dendrites of ON bipolar cells occupied a slightly larger proportion of the cone pedicle in the mutant. CONCLUSIONS Together, our analysis shows that transient GABA synthesis in horizontal cells is not critical for synapse assembly and axonal and dendritic lamination in the outer retina. However, pre- and postsynaptic structures are somewhat enlarged in the absence of GABA in the developing outer retina, providing for a modest increase in potential contact area between cone photoreceptors and their targets. These findings differ from previous results in which pharmacological blockade of GABAA receptors in the neonatal rabbit retina caused a reduction in cone numbers and led to a grossly disorganized outer retina.
Collapse
Affiliation(s)
- Timm Schubert
- Department of Biological Structure, University of Washington, School of Medicine, 1959 NE Pacific St, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
9
|
Development of excitatory and inhibitory neurotransmitters in transitory cholinergic neurons, starburst amacrine cells, and GABAergic amacrine cells of rabbit retina, with implications for previsual and visual development of retinal ganglion cells. Vis Neurosci 2010; 27:19-42. [PMID: 20392300 DOI: 10.1017/s0952523810000052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Starburst amacrine cells (SACs), the only acetylcholine (ACh)-releasing amacrine cells (ACs) in adult rabbit retina, contain GABA and are key elements in the retina's directionally selective (DS) mechanism. Unlike many other GABAergic ACs, they use glutamic acid decarboxlyase (GAD)(67), not GAD(65), to synthesize GABA. Using immunocytochemistry, we demonstrate the apoptosis at birth (P0) of transitory putative ACs that exhibit immunoreactivity (IR) for the ACh-synthetic enzyme choline acetyltransferase (ChAT), GAD(67), and the GABA transporter, GAT1. Only a few intact, displaced ChAT-immunoreactive SAC bodies are detected at P0. At P2, ChAT-IR is detected in the two narrowly stratified substrata of starburst dendrites in the inner plexiform layer (IPL). Quantitative analysis reveals that in the first postnatal week, only a small fraction of SACs cells express ChAT- and GABA-IR. Not until the end of the second week are they expressed in all SACs. At P0, a three-tiered stratification of GABA-IR is present in the IPL, entirely different from the adult pattern of seven substrata, emerging at P3-P4, and optimally visualized at P13. At P0, GAD(65) is detectable in normally placed AC bodies. At P1, GAD(65)-IR appears in dendrites of nonstarburst GABAergic ACs, and by P5 is robust in the adult pattern of four substrata in the IPL. GAD(65)-IR never co-localizes with ChAT-IR. In a temporal comparison of our data with physiological, pharmacological, and ultrastructural studies, we suggest that transitory ChAT-immunoreactive cells share with SACs production of stage II (nicotinic) waves of previsual synchronous activity in ganglion cells (GCs). Further, we conclude that (1) GAD(65)-immunoreactive, non-SAC GABAergic ACs are the most likely candidates responsible for the suppression of stage III (muscarinic/AMPA-kainate) waves and (2) DS responses first appear in DS GCs, when about 50% of SACs express ChAT- and GABA-IR, and in 100% of DS GCs, when expression occurs in all SACs.
Collapse
|
10
|
Localization of Taurine Transporter, Taurine, and Zinc in Goldfish Retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 643:233-42. [DOI: 10.1007/978-0-387-75681-3_24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
|
11
|
Ferreiro-Galve S, Candal E, Carrera I, Anadón R, Rodríguez-Moldes I. Early development of GABAergic cells of the retina in sharks: an immunohistochemical study with GABA and GAD antibodies. J Chem Neuroanat 2008; 36:6-16. [PMID: 18524536 DOI: 10.1016/j.jchemneu.2008.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 03/17/2008] [Accepted: 04/18/2008] [Indexed: 11/24/2022]
Abstract
We studied the ontogeny and organization of GABAergic cells in the retina of two elasmobranches, the lesser-spotted dogfish (Scyliorhinus canicula) and the brown shyshark (Haploblepharus fuscus) by using immunohistochemistry for gamma-aminobutyric acid (GABA) and glutamic acid decarboxylase (GAD). Both antibodies revealed the same pattern of immunoreactivity and both species showed similar organization of GABAergic cells. GABAergic cells were first detected in neural retina of embryos at stage 26, which showed a neuroepithelial appearance without any layering. In stages 27-29 the retina showed similar organization but the number of neuroblastic GABAergic cells increased. When layering became apparent in the central retina (stage-30 embryos), GABAergic cells mainly appeared organized in the outer and inner retina, and GABAergic processes and fibres were seen in the primordial inner plexiform layer (IPL), optic fibre layer and optic nerve stalk. In stage-32 embryos, layering was completed in the central retina, where immunoreactivity appeared in perikarya of the horizontal cell layer, inner nuclear layer and ganglion cell layer, and in numerous processes coursing in the IPL, optic fibre layer and optic nerve. From stage 32 to hatching (stage 34), the layered retina extends from centre-to-periphery, recapitulating that observed in the central retina at earlier stages. In adults, GABA/GAD immunoreactivity disappears from the horizontal cell layer except in the marginal retina. Our results indicate that the source of GABA in the shark retina can be explained by its synthesis by GAD. Such synthesis precedes layering and synaptogenesis, thus supporting a developmental role for GABA in addition to act as neurotransmitter and neuromodulator.
Collapse
Affiliation(s)
- Susana Ferreiro-Galve
- Department of Cell Biology and Ecology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
12
|
Neurochemical differentiation of horizontal and amacrine cells during transformation of the sea lamprey retina. J Chem Neuroanat 2008; 35:225-32. [DOI: 10.1016/j.jchemneu.2007.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 12/10/2007] [Accepted: 12/10/2007] [Indexed: 11/19/2022]
|
13
|
Morphogenesis in the retina of a slow-developing teleost: emergence of the GABAergic system in relation to cell proliferation and differentiation. Brain Res 2007; 1194:21-7. [PMID: 18178176 DOI: 10.1016/j.brainres.2007.11.065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 11/16/2007] [Accepted: 11/26/2007] [Indexed: 11/22/2022]
Abstract
Gamma-aminobutyric acid (GABA) has been implicated in cell proliferation and differentiation during development. In the present study, immunohistochemical techniques were used to investigate the development of the GABAergic system in the retina of the trout and its relation to markers of differentiation [calretinin (CR), and tyrosine hydroxylase (TH)]. The expression of Pax6, an eye-patterning protein involved in the proliferation and emergence of specific retinal cell types, was also studied. Retinal layering was observed to begin centrally in prehatching embryos, as the first GABAergic cells appeared in the ganglion cell layer (GCL) and inner part of the inner nuclear layer (INL). At hatching, GABAergic cells were also observed in the horizontal cell layer (HCL). In alevins, GABAergic cells and processes spread laterally following retinal growth although they did not invade neuroblastic retinal regions. CR- and Pax6-immunoreactive (ir) cells were first seen in the GCL and the inner part of the INL, whereas sparse TH-ir cells appeared in the INL. In juveniles, GABAergic cells were observed in the GCL, inner part of the INL and HCL, whereas CR-ir cells spread to the outer part of the INL and HCL. A subset of CR-ir in the GCL and of Pax6-ir cells in the GCL and INL showed colocalization with GABAergic markers. This study provides further comparative knowledge about the development of GABAergic system of the retina in teleosts and shows differences and similarities with that reported in fast-developing species such as zebrafish, in which retinal expression of GABA was transient in some populations.
Collapse
|
14
|
Villar-Cerviño V, Abalo XM, Villar-Cheda B, Meléndez-Ferro M, Pérez-Costas E, Holstein GR, Martinelli GP, Rodicio MC, Anadón R. Presence of glutamate, glycine, and gamma-aminobutyric acid in the retina of the larval sea lamprey: comparative immunohistochemical study of classical neurotransmitters in larval and postmetamorphic retinas. J Comp Neurol 2007; 499:810-27. [PMID: 17048230 DOI: 10.1002/cne.21136] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The neurochemistry of the retina of the larval and postmetamorphic sea lamprey was studied via immunocytochemistry using antibodies directed against the major candidate neurotransmitters [glutamate, glycine, gamma-aminobutyric acid (GABA), aspartate, dopamine, serotonin] and the neurotransmitter-synthesizing enzyme tyrosine hydroxylase. Immunoreactivity to rod opsin and calretinin was also used to distinguish some retinal cells. Two retinal regions are present in larvae: the central retina, with opsin-immunoreactive photoreceptors, and the lateral retina, which lacks photoreceptors and is mainly neuroblastic. We observed calretinin-immunostained ganglion cells in both retinal regions; immunolabeled bipolar cells were detected in the central retina only. Glutamate immunoreactivity was present in photoreceptors, ganglion cells, and bipolar cells. Faint to moderate glycine immunostaining was observed in photoreceptors and some cells of the ganglion cell/inner plexiform layer. No GABA-immunolabeled perikarya were observed. GABA-immunoreactive centrifugal fibers were present in the central and lateral retina. These centrifugal fibers contacted glutamate-immunostained ganglion cells. No aspartate, serotonin, dopamine, or TH immunoreactivity was observed in larvae, whereas these molecules, as well as GABA, glycine, and glutamate, were detected in neurons of the retina of recently transformed lamprey. Immunoreactivity to GABA was observed in outer horizontal cells, some bipolar cells, and numerous amacrine cells, whereas immunoreactivity to glycine was found in amacrine cells and interplexiform cells. Dopamine and serotonin immunoreactivity was found in scattered amacrine cells. Amacrine and horizontal cells did not express classical neurotransmitters (with the possible exception of glycine) during larval life, so transmitter-expressing cells of the larval retina appear to participate only in the vertical processing pathway.
Collapse
Affiliation(s)
- Verona Villar-Cerviño
- Departamento de Biología Celular y Ecología, Facultad de Biología, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Martins RAP, Pearson RA. Control of cell proliferation by neurotransmitters in the developing vertebrate retina. Brain Res 2007; 1192:37-60. [PMID: 17597590 DOI: 10.1016/j.brainres.2007.04.076] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 04/04/2007] [Accepted: 04/20/2007] [Indexed: 01/24/2023]
Abstract
In the developing vertebrate retina, precise coordination of retinal progenitor cell proliferation and cell-cycle exit is essential for the formation of a functionally mature retina. Unregulated or disrupted cell proliferation may lead to dysplasia, retinal degeneration or retinoblastoma. Both cell-intrinsic and -extrinsic factors regulate the proliferation of progenitor cells during CNS development. There is now growing evidence that in the developing vertebrate retina, both slow and fast neurotransmitter systems modulate the proliferation of retinal progenitor cells. Classic neurotransmitters, such as GABA (gamma-amino butyric acid), glycine, glutamate, ACh (acetylcholine) and ATP (adenosine triphosphate) are released, via vesicular or non-vesicular mechanisms, into the immature retinal environment. Furthermore, these neurotransmitters signal through functional receptors even before synapses are formed. Recent evidence indicates that the activation of purinergic and muscarinic receptors may regulate the cell-cycle machinery and consequently the expansion of the retinal progenitor pool. Interestingly, GABA and glutamate appear to have opposing roles, inducing retinal progenitor cell-cycle exit. In this review, we present recent findings that begin to elucidate the roles of neurotransmitters as regulators of progenitor cell proliferation at early stages of retinal development. These studies also raise several new questions, including how these neurotransmitters regulate specific cell-cycle pathways and the mechanisms by which retinal progenitor cells integrate the signals from neurotransmitters and other exogenous factors during vertebrate retina development.
Collapse
Affiliation(s)
- Rodrigo A P Martins
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, MS323, Memphis, TN 38105, USA.
| | | |
Collapse
|
16
|
Sun D, Vingrys AJ, Kalloniatis M. Metabolic and functional profiling of the normal rat retina. J Comp Neurol 2007; 505:92-113. [PMID: 17729258 DOI: 10.1002/cne.21478] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We established a metabolic and functional profile map of the normal rat retina, given the premise that: 1) amino acid neurochemistry reflects metabolic integrity and cellular identity, and 2) the permeation of a cation channel probe, agmatine (1-amino-4-guanidobutane, AGB), reflects cation channel functionality. The purpose was to provide a unique method of simultaneously assessing the metabolic and functional characteristics of the normal retina, upon which a comparison can be made to disease models. Quantitative pattern recognition analysis of overlapping amino acid and AGB expression profiles was used to provide a statistically robust classification of all neural elements according to their metabolic and functional characteristics. This classification was spatially complete and with single-cell resolution. The resulting classification demonstrated 28 statistically separable theme classes dominated by characteristic glutamate, GABA, glycine, and/or taurine profiles, with each of the neuronal theme classes containing further subtypes. The inclusion of a functional parameter (AGB mapping) in the classification process nearly doubled the number of neural elements that could be ascribed a neurochemical/cation profile, compared to when amino acid labeling was used alone. Strong endogenous glutamate gated AGB labeling was observed in horizontal cells, rod bipolar cells, cholinergic amacrine cells, and AII amacrine cells. The resulting amino acid and AGB profile matrix constitutes a nomogram for assessing cellular responses to experimental challenges in models of ocular disease.
Collapse
Affiliation(s)
- Daniel Sun
- Department of Optometry and Vision Science, University of Auckland, New Zealand
| | | | | |
Collapse
|
17
|
Jenkins SA, Simmons DD. GABAergic neurons in the lateral superior olive of the hamster are distinguished by differential expression of gad isoforms during development. Brain Res 2006; 1111:12-25. [PMID: 16919247 DOI: 10.1016/j.brainres.2006.06.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 06/07/2006] [Accepted: 06/09/2006] [Indexed: 12/27/2022]
Abstract
Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter that is synthesized by two isoforms of glutamic acid decarboxylase (GAD), GAD65 and GAD67. Using in situ hybridization and immunocytochemical techniques in hamsters, we investigated the postnatal development of GAD isoforms within the lateral superior olive (LSO) where GABAergic neurons form part of a descending efferent projection to the cochlea. In the neonatal hamster LSO, GAD67 immunoreactivity, GAD67 transcript labeling, and intense GABA immunostaining are at low levels. However, robust GAD65 mRNA expression is found throughout the LSO during the early postnatal period. The neonatal GABAergic expression patterns are in stark contrast to the adult where the LSO has robust GAD67 mRNA expression and weak GAD65 mRNA expression. Cells exhibiting intense GABA immunolabeling were also found in the same LSO locations as robust GAD67 mRNA expression and intense GAD67 immunoreactivity. Additionally, GAD67-positive cells in the LSO were retrogradely labeled from the cochlea confirming that these cells are a part of the lateral olivocochlear system. The late onset of GAD67 expression and intense GABA immunoreactivity in LSO neurons are consistent with the relatively late maturation of the lateral olivocochlear neurons inferred from previous studies. During development, these data lead us to conclude that the GABAergic portion of the lateral olivocochlear system is distinguished by preferential GAD67 expression, intense GABA immunoreactivity, and relatively late postnatal onset.
Collapse
Affiliation(s)
- S A Jenkins
- Interdepartmental Program for Neuroscience, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|
18
|
Madl JE, McIlnay TR, Powell CC, Gionfriddo JR. Depletion of taurine and glutamate from damaged photoreceptors in the retinas of dogs with primary glaucoma. Am J Vet Res 2005; 66:791-9. [PMID: 15934606 DOI: 10.2460/ajvr.2005.66.791] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether taurine and glutamate contents are reduced in damaged photoreceptors in dogs with primary glaucoma (PG) in a manner consistent with an ischemia-like release of both of these amino acids from damaged cells. SAMPLE POPULATION Retinas from 6 dogs with PG and 3 control dogs. PROCEDURE Serial, semithin sections of each canine retina were stained with toluidine blue to identify damaged photoreceptors or via immunogold techniques to quantify taurine and glutamate content in retinal cells. RESULTS Regions with a thin outer nuclear layer and pathologic nuclear changes in photoreceptors were evident in retinas of dogs with PG. The density of immunostaining for taurine in damaged photoreceptors was significantly reduced to (mean +/- SEM) 37.5 +/- 2.6% of the density in adjacent undamaged photoreceptors. Photoreceptors with decreased taurine immunostaining also had decreased glutamate immunostaining, consistent with ischemia-like release of both of these amino acids from damaged cells. Immunostaining for glutamate, but not taurine, was increased in presumptive radial glial cells (i.e., Miller cells) in damaged regions, consistent with an ischemia-induced redistribution of amino acids in dogs with PG. CONCLUSIONS AND CLINICAL RELEVANCE Retinal damage in dogs with PG includes ischemia-like losses of taurine and glutamate from photoreceptors and accumulation of glutamate, but not taurine, in nearby Müller cells. These changes are consistent with glutamate release and depletion of intracellular taurine in damaged regions, perhaps contributing to progressive damage in these areas.
Collapse
Affiliation(s)
- James E Madl
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1601, USA
| | | | | | | |
Collapse
|
19
|
Abstract
Taurine, a multifunctional amino acid prevalent in developing nervous tissues, regulates the number of rod photoreceptors in developing postnatal rodent retina. In this issue of Neuron, Young and Cepko show that taurine acts via GlyRalpha2 subunit-containing glycine receptors expressed by retinal progenitor cells at birth.
Collapse
Affiliation(s)
- René C Rentería
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
20
|
Kay JN, Roeser T, Mumm JS, Godinho L, Mrejeru A, Wong ROL, Baier H. Transient requirement for ganglion cells during assembly of retinal synaptic layers. Development 2004; 131:1331-42. [PMID: 14973290 DOI: 10.1242/dev.01040] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The inner plexiform layer (IPL) of the vertebrate retina comprises functionally specialized sublaminae, representing connections between bipolar, amacrine and ganglion cells with distinct visual functions. Developmental mechanisms that target neurites to the correct synaptic sublaminae are largely unknown. Using transgenic zebrafish expressing GFP in subsets of amacrine cells, we imaged IPL formation and sublamination in vivo and asked whether the major postsynaptic cells in this circuit, the ganglion cells, organize the presynaptic inputs. We found that in the lak/ath5 mutant retina, where ganglion cells are never born, formation of the IPL is delayed, with initial neurite outgrowth ectopically located and grossly disorganized. Over time, the majority of early neurite projection errors are corrected, and major ON and OFF sublaminae do form. However, focal regions of disarray persist where sublaminae do not form properly. Bipolar axons, which arrive later, are targeted correctly, except at places where amacrine stratification is disrupted. The lak mutant phenotype reveals that ganglion cells have a transient role organizing the earliest amacrine projections to the IPL. However, it also suggests that amacrine cells interact with each other during IPL formation; these interactions alone appear sufficient to form the IPL. Furthermore, our results suggest that amacrines may guide IPL sublamination by providing stratification cues for other cell types.
Collapse
Affiliation(s)
- Jeremy N Kay
- Program in Neuroscience and Department of Physiology, University of California, San Francisco, 513 Parnassus Avenue Box 0444, San Francisco, CA 94143, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Sholl-Franco A, Marques PMB, Ferreira CMC, de Araujo EG. IL-4 increases GABAergic phenotype in rat retinal cell cultures: involvement of muscarinic receptors and protein kinase C. J Neuroimmunol 2002; 133:20-9. [PMID: 12446004 DOI: 10.1016/s0165-5728(02)00327-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interleukin-4 (IL-4) is an anti-inflammatory cytokine. During injuries, infections and neurodegenerative diseases, high levels of this molecule are expressed in the brain. In the present work, we investigated the effect of IL-4 on GABAergic differentiation of retinal cells kept in vitro. We analyzed either the uptake of [3H]-gamma-aminobutyric acid (GABA) or the expression of glutamic acid decarboxylase (GAD-67) following IL-4 treatment. We have also investigated the pharmacological modulation of the [3H]-GABA uptake by cholinergic activation. Our results demonstrate that IL-4 increases the uptake of [3H]-GABA after 48 h in culture in a dose-dependent manner (0.5-100 U/ml). The maximal effect was obtained with 5 U/ml (75% increase). This effect was blocked by 1 mM of nipecotic acid, demonstrating the involvement of the GAT-1 subtype of GABA transporter. The IL-4 effect depends on M1 muscarinic activity, an increase in intracellular calcium levels, tyrosine kinase activity and protein kinase C (PKC) activity. Treatment with IL-4 for 48 h induced an increase of 90% in the number of GAD- and GABA-immunoreactive cells when compared with control cultures. Our results indicate that IL-4 modulates the GABAergic phenotype of retinal cells in culture. This result can suggest an important role for this cytokine either during the normal development of retinal circuitry or during neuroprotection after injuries.
Collapse
Affiliation(s)
- Alfred Sholl-Franco
- Departamento de Neurobiologia, Programa de Neuroimunologia, Instituto de Biologia, Centro de Estudos Gerais, Universidade Federal Fluminense, CP# 100180, RJ 24001-970, RJ, Niterói, Brazil
| | | | | | | |
Collapse
|
22
|
Shankaranarayana Rao BS, Raju TR. Enhanced metabolic activity coincides with survival and differentiation of cultured rat retinal ganglion cells exposed to glutamate. Neuroscience 2002; 113:547-53. [PMID: 12150775 DOI: 10.1016/s0306-4522(02)00200-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurotransmitters are prominent candidates for trans-cellular signals that influence the development of the CNS. The present study has examined the effect of glutamate on survival, differentiation and metabolic activity of cultured rat retinal ganglion cells at 3 days in vitro. Retinal cultures from neonatal Wistar rats were treated with glutamate for 48 h. The metabolic activity was markedly increased in the retinal ganglion cells exposed to 20 microM glutamate. This was accompanied by an enhanced survival of these neurons. The number of differentiated retinal ganglion cells as determined by microtubule-associated protein-2 labeling was significantly increased following exposure to low but not higher doses of glutamate. The effect of glutamate on the metabolic activity and differentiation was blocked by tetrodotoxin. The results of the present study shows that glutamate has a significant effect on survival, differentiation and metabolic activity. An increase in the metabolic activity indicates an enhancement in the electrical activity. Thus, our results are consistent with the hypothesis that glutamate is critically involved in the regulation of electrical activity in developing rat retinal ganglion cells.
Collapse
|
23
|
Abstract
Most synapses rely on regulated exocytosis for determining the concentration of transmitter in the synaptic cleft. However, this mechanism may not be universal. Several synapses in the retina appear to use a synaptic machinery in which transmitter transporters play an essential role. Two types of transport-mediated synapses have been proposed. These synapses have been best observed in horizontal cells and cones of nonmammalian retinas. Horizontal cells use a transporter to mediate a bidirectional shuttle, whose balance point is set by ion concentrations and voltage. Nonmammalian cones combine exocytosis and the activity of a transporter. Because exocytosis is voltage independent over most of a cone's physiological voltage range, a voltage-dependent transporter determines the concentration of transmitter in the synaptic cleft. These two synapses may be models for transport-mediated synapses that operate in other parts of the brain.
Collapse
Affiliation(s)
- E A Schwartz
- Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, Chicago, Illinois 60637, USA.
| |
Collapse
|
24
|
Cueva JG, Haverkamp S, Reimer RJ, Edwards R, Wässle H, Brecha NC. Vesicular gamma-aminobutyric acid transporter expression in amacrine and horizontal cells. J Comp Neurol 2002; 445:227-37. [PMID: 11920703 PMCID: PMC3696019 DOI: 10.1002/cne.10166] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The vesicular gamma-aminobutyric acid (GABA) transporter (VGAT), which transports the inhibitory amino acid transmitters GABA and glycine, is localized to synaptic vesicles in axon terminals. The localization of VGAT immunoreactivity to mouse and rat retina was evaluated with light and electron microscopy by using well-characterized VGAT antibodies. Specific VGAT immunoreactivity was localized to numerous varicose processes in all laminae of the inner plexiform layer (IPL) and to the outer plexiform layer (OPL). Amacrine cell somata characterized by weak VGAT immunoreactivity in the cytoplasm were located in the ganglion cell layer and proximal inner nuclear layer (INL) adjacent to the IPL. In rat retina, VGAT-immunoreactive cell bodies also contained GABA, glycine, or parvalbumin (PV) immunoreactivity, suggesting vesicular uptake of GABA or glycine by these cells. A few varicose VGAT-immunoreactive processes entered the OPL from the IPL. VGAT immunoreactivity in the OPL was predominantly localized to horizontal cell processes. VGAT and calcium binding protein-28K immunoreactivities (CaBP; a marker for horizontal cells) were colocalized in processes and terminals distributed to the OPL. Furthermore, VGAT immunoreactivity overlapped or was immediately adjacent to postsynaptic density-95 (PSD-95) immunoreactivity, which is prominent in photoreceptor terminals. Preembedding immunoelectron microscopy of mouse and rat retinae showed that VGAT immunoreactivity was localized to horizontal cell processes and their terminals. Immunoreactivity was distributed throughout the cytoplasm of the horizontal cell processes. Taken together, these findings demonstrate VGAT immunoreactivity in both amacrine and horizontal cell processes, suggesting these cells contain vesicles that accumulate GABA and glycine, possibly for vesicular release.
Collapse
Affiliation(s)
- Juan G Cueva
- Department of Neurobiology, University of California at Los Angeles, Los Angeles, California 90095-1763, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Taurine is a free amino acid found in high millimolar concentrations in mammalian tissue and is particularly abundant in the retina. Mammals synthesize taurine endogenously with varying abilities, with some species more dependent on dietary sources of taurine than others. Human children appear to be more dependent on dietary taurine than adults. Specifically, it has been established that visual dysfunction in both human and animal subjects results from taurine deficiency. Moreover, the deficiency is reversed with simple nutritional supplementation with taurine. The data suggest that taurine is an important neurochemical factor in the visual system. However, the exact function or functions of taurine in the retina are still unresolved despite continuing scientific study. Nevertheless, the importance of taurine in the retina is implied in the following experimental findings: (1) Taurine exhibits significant effects on biochemical systems in vitro. (2) The distribution of taurine is tightly regulated in the different retinal cell types through the development of the retina. (3) Taurine depletion results in significant retinal lesions. (4) Taurine release and uptake has been found to employ distinct regulatory mechanisms in the retina.
Collapse
Affiliation(s)
- Julius D Militante
- Department of Pharmacology, Texas Tech University Health Sciences Center, Lubbock 79430, USA
| | | |
Collapse
|
26
|
Kha HT, Finkelstein DI, Tomas D, Drago J, Pow DV, Horne MK. Projections from the substantia nigra pars reticulata to the motor thalamus of the rat: single axon reconstructions and immunohistochemical study. J Comp Neurol 2001; 440:20-30. [PMID: 11745605 DOI: 10.1002/cne.1367] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This is a study in the rat of the distribution of specific neurotransmitters in neurones projecting from the substantia nigra reticulata (SNR) to the ventrolateral (VL) and ventromedial (VM) thalamic nuclei. Individual axons projecting from the SNR to these thalamic nuclei have also been reconstructed following small injection of the anterograde tracer dextran biotin into the the SNR. Analysis of reconstructions revealed two populations of SNR neurones projecting onto the VL and VM thalamic nuclei. One group projects directly onto the VM and VL, and the other projects to the VM/VL and to the parafascicular nucleus. In another set of experiments Fluoro-Gold was injected into the VL/VM to label SNR projection neurones retrogradely, and immunohistochemistry was performed to determine the distribution of choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT), gamma-aminobutyric acid (GABA), and glutamate in Fluoro-Gold-labelled SNR projection neurones. Most SNR-VL/VM thalamic projection neurones were immunoreactive to acetylcholine or glutamate, whereas only 25% of the projection neurones were found to be immunoreactive to GABA.
Collapse
Affiliation(s)
- H T Kha
- Neurosciences Group, Department of Medicine, Monash Medical Centre, Clayton 3168, Australia
| | | | | | | | | | | |
Collapse
|
27
|
A critical role of the strychnine-sensitive glycinergic system in spontaneous retinal waves of the developing rabbit. J Neurosci 2001. [PMID: 11438591 DOI: 10.1523/jneurosci.21-14-05158.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the developing vertebrate retina, spontaneous electric activity occurs rhythmically in the form of propagating waves and is believed to play a critical role in activity-dependent visual system development, including the establishment of precise retinal and geniculate circuitry. To elucidate how spontaneous retinal waves encode specific developmental cues at various developmental stages, it is necessary to understand how the waves are generated and regulated. Using Ca(2+) imaging and patch clamp in a flat-mount perinatal rabbit retinal preparation, this study demonstrates that, in addition to the cholinergic system, a strychnine-sensitive system in the inner retina plays an obligatory and developmentally regulated role in the initiation and propagation of spontaneous retinal waves. This system, which is believed to be the glycinergic network, provided an excitatory drive during early retinal development. It then became inhibitory after postnatal day 1 (P1) to P2, an age when a number of coordinated transitions in neurotransmitter systems occurred concomitantly, and finally contributed to the complete inhibition and disappearance of spontaneous waves after P7-P9. This glycinergic contribution was notably distinct from that of the ionotropic GABAergic system, which was found to exert an inhibitory but nonessential influence on the early wave formation. Blocking glycine- and GABA-gated anion currents had opposing effects on spontaneous retinal waves between embryonic day 29 and P0, suggesting that Cl(-) transporters, particularly R(+)-butylindazone-sensitive K-Cl cotransporters, may have a synapse- and/or cell type-specific distribution pattern, in addition to an age-dependent expression pattern in the inner retina. Overall, the results revealed an important reliance of spontaneous retinal waves on dynamic and coordinated interactions among multiple, nonredundant neurotransmitter systems.
Collapse
|
28
|
Greka A, Lipton SA, Zhang D. Expression of GABA(C) receptor rho1 and rho2 subunits during development of the mouse retina. Eur J Neurosci 2000; 12:3575-82. [PMID: 11029627 DOI: 10.1046/j.1460-9568.2000.00247.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Retinal gamma-aminobutyric acid type C (GABA(C)) receptors consist of rho subunits. Here we report our results from a competitive PCR and patch-clamp electrophysiology study quantifying rho subunit message and characterizing GABA(C) receptor-mediated currents at different stages of mouse retinal development. Mouse rho1 message is first detected at postnatal day 6 (P6), increases significantly until P9 and remains at this level through adulthood, whereas mouse rho2 message does not appear until P9, peaks at P15 and remains at this level through adulthood. There is an approximate twofold excess of rho1 compared to rho2 message at most stages of development, which persists in adulthood. Functional GABA(C) receptors are detected in acutely dissociated bipolar cells of P9 or older mouse retina. Early in development (P9-10), GABA(C) receptors are composed solely of rho1 subunits, but subsequently contain rho1 and/or rho2 subunits (by P11 and later). These findings are intriguing because the onset and rapid increase in rho subunit transcription and functional expression match the initiation and active period of bipolar cell differentiation in retinal development as well as the stage of eye opening and initial visual experience in the rodent. The investigation of mouse rho subunits here forms a basis for future studies on the role of GABA(C) receptors in retinal development.
Collapse
MESH Headings
- Age Factors
- Animals
- Animals, Newborn
- Bicuculline/pharmacology
- Fetus
- GABA Antagonists/pharmacology
- Gene Expression Regulation, Developmental/physiology
- Mice
- Mice, Inbred C57BL
- Neurons, Afferent/cytology
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Organophosphorus Compounds/pharmacology
- Picrotoxin/pharmacology
- RNA, Messenger/metabolism
- Receptors, GABA/chemistry
- Receptors, GABA/drug effects
- Receptors, GABA/genetics
- Receptors, GABA/metabolism
- Retina/cytology
- Retina/embryology
- Retina/growth & development
- Retina/metabolism
- gamma-Aminobutyric Acid/metabolism
- gamma-Aminobutyric Acid/pharmacology
Collapse
Affiliation(s)
- A Greka
- Center for Neuroscience and Ageing, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, California 90237, USA
| | | | | |
Collapse
|
29
|
Sun H, Crossland WJ. Quantitative assessment of localization and colocalization of glutamate, aspartate, glycine, and GABA immunoreactivity in the chick retina. THE ANATOMICAL RECORD 2000; 260:158-79. [PMID: 10993953 DOI: 10.1002/1097-0185(20001001)260:2<158::aid-ar60>3.0.co;2-v] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We examined the posthatch chick retina for the frequency of occurrence of localization and colocalization of four amino acid transmitter candidates: glutamate (Glu), aspartate (Asp), gamma aminobutyric acid (GABA), and glycine (Gly) using postembedding methods. We support previous studies of Glu, Asp, GABA, and Gly localization in the direct and indirect functional pathways of the chick retina and extend these studies with new qualitative and quantitative observations. We found that photoreceptors show distinct cellular immunoreactivity for both Glu (Glu+) and Asp+, but not for Gly (Gly-) or GABA. Moreover, there is compartmentalization of Glu and Asp staining within the photoreceptors. All horizontal cells react strongly with Asp and Glu, about three-fourths are GABA+ and three-fourths of these are Gly+. Bipolar cells are uniformly Glu+, heterogeneously Asp+, occasionally Gly+, but GABA-. A majority of amacrine cells stain heterogeneously with all antibodies: 90% are Gly+, slightly more than half colocalize Glu, GABA, and Gly. Furthermore, amacrine cells in the outer two or three rows of cells are more likely to be stained by Gly than Glu, Asp, or GABA. Confirming previous studies, ganglion cells were mostly immunoreactive for Glu and Asp with fewer reactive for GABA and Gly. Strong and distinctly cellular immunoreactivity was found in both central and peripheral retina. Our findings show: 1) there is extensive colocalization of Glu, Asp, GABA, and Gly among most retinal neurons, including some cells that contain all four; 2) cells of the direct functional pathway tend to be labeled by Glu and Asp generally to the exclusion of GABA and Gly, while those of the indirect pathway tend to be labeled by GABA+ and/or Gly+ in addition to Glu+ and Asp+; 3) different cell body layers have distinct patterns of colocalization; and 4) there is no qualitative difference in staining patterns between peripheral and central retina.
Collapse
Affiliation(s)
- H Sun
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
30
|
Nguyen LT, Grzywacz NM. Colocalization of choline acetyltransferase and gamma-aminobutyric acid in the developing and adult turtle retinas. J Comp Neurol 2000; 420:527-38. [PMID: 10805925 DOI: 10.1002/(sici)1096-9861(20000515)420:4<527::aid-cne9>3.0.co;2-i] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Acetylcholine and gamma -aminobutyric acid (GABA) are putative neurotransmitters in the adult vertebrate retina. In this study, cells that coexpress choline acetyltransferase (ChAT) and GABA or glutamic acid decarboxylase (GAD) were investigated in turtle retinas from stage 14 (S14) to adulthood by using a double-labeling immunofluorescence technique. ChAT immunoreactivity was observed at S15 and included not only the presumptive starburst cholinergic amacrine cells but also a population in the ganglion cell layer (GCL) that expressed ChAT transiently during the embryonic stages (see the accompanying paper: Nguyen et al. [2000] J. Comp. Neurol. 420:512-526).
Collapse
Affiliation(s)
- L T Nguyen
- The Smith-Kettlewell Eye Research Institute, San Francisco, California 94115, USA
| | | |
Collapse
|
31
|
Stenkamp DL, Frey RA, Prabhudesai SN, Raymond PA. Function for Hedgehog genes in zebrafish retinal development. Dev Biol 2000; 220:238-52. [PMID: 10753513 DOI: 10.1006/dbio.2000.9629] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hedgehog (hh) genes encode secreted signaling proteins that have important developmental functions in vertebrates and invertebrates. In Drosophila, expression of hh coordinates retinal development by propagating a wave of photoreceptor differentiation across the eye primordium. Here we report that two vertebrate hh genes, sonic hedgehog (shh) and tiggy-winkle hedgehog (twhh), may perform similar functions in the developing zebrafish. Both shh and twhh are expressed in the embryonic zebrafish retinal pigmented epithelium (RPE), initially in a discrete ventral patch which then expands outward in advance of an expanding wave of photoreceptor recruitment in the subjacent neural retina. A gene encoding a receptor for the hedgehog protein, ptc-2, is expressed by retinal neuroepithelial cells. Injection of a cocktail of antisense (alphashh/alphatwhh) oligonucleotides reduces expression of both hh genes in the RPE and slows or arrests the progression of rod and cone photoreceptor differentiation. Zebrafish strains known to have mutations in Hh signaling pathway genes similarly exhibit retardation of photoreceptor differentiation. We propose that hedgehog genes may play a role in propagating photoreceptor differentiation across the developing eye of the zebrafish.
Collapse
Affiliation(s)
- D L Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844-3051, USA
| | | | | | | |
Collapse
|
32
|
Abstract
Synchronized spontaneous rhythmic activity is a feature common to many parts of the developing nervous system. In the early visual system, before vision, developing circuits in the retina generate synchronized patterns of bursting activity that contain information useful for patterning connections between retinal ganglion cells and their central targets. However, how developing retinal circuits generate and regulate these spontaneous activity patterns is still incompletely understood. Here we show that in developing retinal circuits, the nature of excitatory neurotransmission driving correlated bursting activity in ganglion cells is not fixed but undergoes a developmental shift from cholinergic to glutamatergic transmission. In addition, we show that this shift occurs as presynaptic glutamatergic bipolar cells form functional connections onto the ganglion cells, implicating the role of bipolar cells in providing endogenous drive to bursting activity later in development. This transition coincides with the period when subsets of ganglion cells (On and Off cells) develop distinct activity patterns that are thought to underlie the refinement of their connectivity with their central targets. Here, our results suggest that the differences in activity patterns of On and Off ganglion cells may be conferred by differential synaptic drive from On and Off bipolar cells, respectively. Taken together, our results suggest that the regulation of patterned spontaneous activity by neurotransmitters undergoes systematic change as new cellular elements are added to developing circuits and also that these new elements can help specify distinct activity patterns appropriate for shaping connectivity patterns at later ages.
Collapse
|
33
|
|
34
|
Yamasaki EN, Barbosa VD, De Mello FG, Hokoc JN. GABAergic system in the developing mammalian retina: dual sources of GABA at early stages of postnatal development. Int J Dev Neurosci 1999; 17:201-13. [PMID: 10452364 DOI: 10.1016/s0736-5748(99)00002-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
In the present work, we have characterized the maturation of the GABAergic system in mammalian retina. Immunoreactivity for GABA, GAD (glutamic acid decarboxylase, EC 4.1.1.15) -65 and -67 in the adult rat retina was localized in cells in the inner nuclear and ganglion cell layers. This pattern was established around postnatal day 8 and included transient GABA and GAD-67 expression in horizontal cells. GAD activity was very low at P1 and P4, increasing after P8, reaching maximal activity by P21 and decreasing to attain adult values by P30. GABA content was approximately constant from P1 to P13, increasing thereafter to reach adult levels. GAD protein content increased progressively with postnatal development and the two isoforms could be distinguished at P8. The disparity between retinal GABA content vs. presence and activity of the synthesizing enzyme, led us to investigate the alternative pathway for GABA synthesis that utilizes putrescine as a substrate. Highest levels of ornithine decarboxylase activity (the limiting step for putrescine synthesis) were found between P1 and P4, decreasing to very low levels after P13. The same pattern was observed for putrescine content in the retina. Highest amounts were found at P1, that decreased and remained constant after P13. Additionally, approximately 40% of tritiated putrescine incorporated by P1, P4 and adult retinas was converted into GABA. Our results suggest the existence of two different sources of GABA in mammalian retina, one that uses glutamate as a precursor and predominates in the mature nervous system and another that utilizes putrescine and is present transiently at early developmental stages.
Collapse
Affiliation(s)
- E N Yamasaki
- Laboratório de Neurobiologia da Retina, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Brazil.
| | | | | | | |
Collapse
|
35
|
Casini G, Rickman DW, Trasarti L, Brecha NC. Postnatal development of parvalbumin immunoreactive amacrine cells in the rabbit retina. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 111:107-17. [PMID: 9804913 DOI: 10.1016/s0165-3806(98)00127-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the adult rabbit, rat and cat retina, parvalbumin (PV) immunoreactivity is primarily localized to a population of narrow-field, bistratified amacrine cells, the AII amacrine cells-major interneurons of the rod pathway. This investigation examines the postnatal development of PV immunoreactivity in order to better understand the ontogeny of the AII amacrine cell population and the formation of the rod pathway. Rabbit retinas at various postnatal ages were processed for immunohistochemistry using a monoclonal antibody directed to PV and analyzed morphometrically. On the day of birth, PV immunoreactive cell bodies are numerous in the proximal inner nuclear layer (INL) in all retinal regions. These cells have a primary process directed towards the inner plexiform layer (IPL). At postnatal day (PND) 2, a few faint immunoreactive processes are observed in the IPL. At PND 4, well-stained processes are observed to ramify mainly in the proximal IPL. At PND 6, strongly immunoreactive processes are present in both the distal and proximal IPL, and at PND 10 they form a continuous, dense plexus in both levels of the IPL. By PND 10, the morphology of PV immunoreactive cells is similar to PV immunoreactive cells in adult retinas. The density of PV immunoreactive cells in the proximal INL increases from PND 2 to PND 5, then it gradually decreases to adult values, while the total number of PV immunoreactive cell bodies increases until PND 10. PV immunoreactive amacrine cells at PND 2, as in the adult, are nonrandomly distributed across the retinal surface. These studies show that PV immunoreactive amacrine cells have a developmental profile that is similar to several other amacrine cell types. This includes the elaboration of processes in the IPL during the first postnatal week and a mature appearance towards the end of the second week of life, about the time of eye opening. These observations indicate that the AII amacrine cell may participate in the processing of visual information at eye opening.
Collapse
Affiliation(s)
- G Casini
- Department of Environmental Sciences, Tuscia University, 01100, Viterbo, Italy
| | | | | | | |
Collapse
|
36
|
Nag TC, Jotwani G, Wadhwa S. Immunohistochemical localization of taurine in the retina of developing and adult human and adult monkey. Neurochem Int 1998; 33:195-200. [PMID: 9761464 DOI: 10.1016/s0197-0186(98)00004-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The localization of taurine in the retina of fetal (12-25 weeks of gestation), postnatal (five-month-old infant) and adult human (35- and 65-year-old) was examined by immunohistochemistry. Additionally, retinas of fresh adult monkey, which served as positive controls, were employed. No immunoreactivity was found in the fetal retinas from 12-15 weeks of gestation. At 1617 weeks of gestation, the ganglion cells and some of their axons were conspicuously labelled for taurine. At 18-19 weeks, Muller glial endfeet, the inner plexiform layer, some amacrine and putative horizontal cells and photoreceptors showed moderate immunoreactivity. With further development at 20-21 and 24-25 weeks of gestation, the immunoreactivity was prominent in Muller cell endfeet, some bipolar cells and in horizontal cells that were aligned in a row in the inner nuclear layer, close to the fovea. At both fetal stages, the photoreceptors and horizontal cells showed strong immunoreactivity. In the postnatal infant retina, taurine immunoreactivity was present in some amacrine cells and photoreceptor inner segments and nuclei, but not in ganglion and horizontal cells, which was also the pattern noted in the adult monkey and human retinas. With development, a shift in the intensity of taurine immunoreactivity was noted towards the outer retina. The expression of taurine immunoreactivity in most fetal retinal neurons implies a role for this amino acid in the normal development as well as maturation of human retina.
Collapse
Affiliation(s)
- T C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi
| | | | | |
Collapse
|
37
|
|
38
|
Abstract
The appearance of endogenous glutamate during retinal regeneration in the newt was examined by immunohistochemistry. Glutamate-like immunoreactivity (Glu-LI) first appeared in prospective ganglion cells along the vitreal margin of retinas that were about six cells thick, in prospective photoreceptors immediately before segregation of retinal plexiform layers and then in prospective bipolar cells immediately after the initial appearance of thin plexiform layers. In retinas nearing complete regeneration, Müller cells showed immunoreactivity. The appearance of glutamatergic phenotypes during retinal regeneration seemed to follow the order of cell differentiation [T. Saito, Y. Kaneko, F. Maruo, M. Niino, Y. Sakaki, Study of the regenerating newt retina by electrophysiology and immunohistochemistry (bipolar- and cone-specific antigen localization), J. Exp. Zool. 270 (1994) 491-500]. However, changes in the amount of endogenous glutamate during retinal regeneration were more complex. On the one hand, Glu-LI at the prospective ganglion cell layer temporarily increased during the initial period of segregation of the inner plexiform layer. On the other hand, immunoreactivity in the photoreceptor layer declined during segregation of the outer plexiform layer. The transient expression of immunoreactivity may represent a function of glutamate in events such as cell survival or neurite extension during retinal regeneration.
Collapse
Affiliation(s)
- C Chiba
- University of Tsukuba, Institute of Biological Sciences, Tsukuba, Ibaraki 305, Japan.
| |
Collapse
|
39
|
Anadón R, Meléndez-Ferro M, Pérez-Costas E, Pombal MA, Rodicio MC. Centrifugal fibers are the only GABAergic structures of the retina of the larval sea lamprey: an immunocytochemical study. Brain Res 1998; 782:297-302. [PMID: 9519276 DOI: 10.1016/s0006-8993(97)01330-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The structures of the retina immunoreactive to GABA are described in larval lamprey. Although GABAergic cells develop early in the retinas of vertebrates, no GABA-immunoreactive perikarya were observed in the retina of lamprey larvae. The only GABA-immunoreactive structures were beaded fibers of the centrifugal system, which produced a dense plexus at the level of the optic fiber/inner plexiform layer in both the central (photoreceptor-bearing) and lateral (no-photoreceptor) parts of the retina. These fibers do not ascend toward the outer plexiform layer. Nerve fibers in the optic nerve and neuronal perikarya of the M5 nucleus of the mesencephalon, which is known to project to the retina, were also GABA-immunoreactive. The distribution of centrifugal fibers closely matches that of ganglion cells revealed by retrograde labelling with fluorescein-coupled dextran-amine, and the presence of biplexiform ganglion cells in larvae is confirmed. That the ganglion cells and the centrifugal fibers appears to be the only structures differentiated in the lateral retina of the larva suggests that the GABAergic centrifugal fibers may have a role, perhaps the neurotrophic maintenance of retinal ganglion cells, during the very long larval phase of lampreys.
Collapse
Affiliation(s)
- R Anadón
- Department of Fundamental Biology, University of Santiago de Compostela, Spain.
| | | | | | | | | |
Collapse
|
40
|
Karne A, Oakley DM, Wong GK, Wong RO. Immunocytochemical localization of GABA, GABAA receptors, and synapse-associated proteins in the developing and adult ferret retina. Vis Neurosci 1997; 14:1097-108. [PMID: 9447691 DOI: 10.1017/s0952523800011809] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Gamma-aminobutyric acid (GABA) modulates the pattern of correlated spontaneous bursting activity between amacrine cells and ganglion cells of the ferret retina during the first postnatal month. Here, we demonstrate the presence of an anatomical network which may underlie these interactions throughout the period when correlated bursting activity is observed, by immunolabelling the neonatal ferret retina for GABA, GABAA receptors, and synapse-associated proteins. GABA immunoreactivity was detected in cell somata in the ganglion cell layer (GCL), in amacrine cells, and in the inner plexiform layer (IPL) by embryonic day 38. This pattern remained largely unchanged throughout neonatal development and in the adult. By contrast to other mammals, the outer plexiform layer (OPL) was only very weakly labelled for GABA, at all ages studied. Strong, punctate, immunolabelling for the beta 2/3 subunit of the GABAA receptor was apparent in the IPL by birth, and appeared in the OPL by the second postnatal week. The possibility that synaptic interactions in the IPL occur during bursting activity was examined by immunolabelling for synapse-associated proteins. Strong immunoreactivity for synaptic vesicle proteins, Synapsin I and II, and synaptic vesicle-2 (SV2), a synaptic vesicle transporter protein, was observed in the IPL by birth. Immunoreactivity for SNAP-25, a protein associated with vesicle fusion, was also intense at the level of the IPL and in the nerve fiber layer of the retina at birth. Taken together, these patterns of immunoreactivity suggest the presence of a GABAergic network in the IPL of the ferret retina by birth, coinciding with the appearance of correlated bursting activity in the inner retina.
Collapse
Affiliation(s)
- A Karne
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
41
|
Crook DK, Pow DV. Analysis of the distribution of glycine and GABA in amacrine cells of the developing rabbit retina: a comparison with the ontogeny of a functional GABA transport system in retinal neurons. Vis Neurosci 1997; 14:751-63. [PMID: 9279003 DOI: 10.1017/s0952523800012700] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The objectives of this study were to (1) determine whether the glycinergic and GABAergic amacrine cells in the developing rabbit retina were neurochemically distinct at birth, (2) determine if the ratio of GABAergic to glycinergic amacrine cells was constant during development, (3) determine whether the capacity to take up a GABA analogue was restricted to GABAergic neurons, and (4) whether initiation of GABA transport into GABAergic neurons preceded the presence of a content of GABA in these neurons. We have used a novel strategy to immunolocalize a non-endogenous GABA analogue, gamma-vinyl GABA, which is taken up into neurons by a GABA transporter. Examination of serial semithin resin-embedded sections of neonatal rabbit retinae that had been immunolabelled for glycine, GABA or gamma-vinyl GABA revealed that at 1 day postnatum, 60% of amacrine cells contain glycine but not GABA and did not accumulate gamma-vinyl GABA, which is similar to the percentage of glycinergic amacrine cells in the adult retina. The vast majority of the remaining amacrine cells contained GABA and many also transported gamma-vinyl GABA; however, a significant number of GABA-containing cells failed to accumulate gamma-vinyl GABA suggesting that possession of a content of GABA did not have to be preceded by, or be concomitant with, the presence of a GABA transport system. By 10 days postnatum, over 99% of GABA-containing amacrine cells also transported gamma-vinyl GABA indicating their functional maturity. Analysis of the horizontal cells revealed no evidence for uptake of gamma-vinyl GABA, but another GABA analogue, diaminobutyric acid, which is a substrate both for the neuron-associated GABA transporter and the glial GABA transporter, was accumulated into some horizontal cells at 21 days postnatum, a time point when these cells also contain endogenous GABA. We conclude that amacrine cells are committed to being GABAergic or glycinergic at, or prior to birth, and that in some amacrine cells, expression of a content of GABA may occur prior to the capacity to transport GABA. Conversely, in some ganglion cells transport of gamma-vinyl GABA may precede a content of GABA.
Collapse
Affiliation(s)
- D K Crook
- Department of Physiology and Pharmacology, University of Queensland, Brisbane, Australia
| | | |
Collapse
|
42
|
Abstract
Taurine is the second most abundant free amino acid in the brain where its osmoregulatory function is well established. Taurine-deprived kittens show retinal pathology leading to blindness. In the inner ear, taurine has been reported to be the most abundant free amino acid although its role in inner ear function is not known. Immunohistochemistry was employed here to investigate the localisation of taurine in normal cochleae of the guinea pig compared with two different conditions: experimentally induced endolymphatic hydrops and after oral administration of glycerol. In normal cochleae, by light microscopy, taurine-like immunoreaction was never observed in the sensory outer hair cells and appeared absent from the inner hair cells. In contrast taurine-like immunolabeling was found to be present in all supporting tissue with the striking exception of the tectorial membrane and the outer pillar cell which had no or little taurine immunoreactivity respectively. In early experimental endolymphatic hydrops, the distribution of taurine-like immunoreactivity appeared similar to that observed for normal cochleae. In long-term hydrops, degenerated outer hair cells were replaced by the swelling of the phalangeal process of the Deiters' cells which became highly immunoreactive to taurine. After glycerol administration, the tectorial membrane became more tightly bound to the apical surface of the sensory hair cells and distinctly immunoreactive to taurine. The localisation of taurine in the organ of Corti shown here is consistent with taurine being involved in the maintenance of osmotic equilibrium in the normal and perhaps also in the restructuration of the pathological organ of Corti.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Cochlea/chemistry
- Cochlea/cytology
- Edema/chemically induced
- Edema/metabolism
- Edema/physiopathology
- Endolymph/chemistry
- Female
- Glycerol/administration & dosage
- Glycerol/toxicity
- Guinea Pigs
- Hair Cells, Auditory, Inner/chemistry
- Hair Cells, Auditory, Inner/cytology
- Hair Cells, Auditory, Outer/chemistry
- Hair Cells, Auditory, Outer/cytology
- Immune Sera/immunology
- Immunohistochemistry
- Solvents/administration & dosage
- Solvents/toxicity
- Taurine/analysis
- Taurine/immunology
- Tectorial Membrane/chemistry
- Vestibular Nucleus, Lateral/chemistry
- Vestibular Nucleus, Lateral/cytology
- Water-Electrolyte Balance
Collapse
Affiliation(s)
- K C Horner
- INSERM, Laboratoire d'Audiologie Expérimentale, Université Bordeaux II, France
| | | |
Collapse
|
43
|
Abstract
The goal was to investigate possible monosynaptic GABAergic projections from the inferior colliculus (IC) to thalamocortical neurons of the medial geniculate body (MGB) in the rat. Although there is little evidence for such a projection in other sensory thalamic nuclei, a GABAergic, ascending auditory projection was reported recently in the cat. In the present study, immunohistochemical and tract-tracing methods were used to identify neurons in the IC that contain GABA and project to the MGB. GABA-positive projection neurons were most numerous in the central nucleus and less so in the dorsal and lateral cortex. They were rare in the lateral tegmental system and brachium of the IC. The dorsal nucleus of the lateral lemniscus also contained GABA-positive projection neurons. In brain slices, stimulation of the brachium produced monosynaptic inhibitory postsynaptic potentials in morphologically identified thalamocortical relay neurons. The inhibitory potentials cannot originate locally, because they persisted when ionotropic glutamatergic transmission was blocked. Typically, brachium stimulation elicited a GABAA-mediated inhibitory potential followed by an excitatory potential and a longer latency GABAB-mediated inhibitory potential. We conclude that the GABA-containing neurons of the IC make short-latency, monosynaptic inputs to the thalamocortical projection neurons in the MGB. Such inputs may distinguish the main auditory pathway from indirect or tegmental auditory pathways as well as from other sensory systems. Monosynaptic inhibitory inputs to the medial geniculate may be important for the regulation of firing patterns in thalamocortical neurons.
Collapse
|
44
|
Nag TC, Wadhwa S. Expression of GABA in the fetal, postnatal, and adult human retinas: an immunohistochemical study. Vis Neurosci 1997; 14:425-32. [PMID: 9194311 DOI: 10.1017/s0952523800012104] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The expression of GABA in the human fetal (12-25 weeks of gestation), postnatal (five-month-old), and adult (35-year-old) retinas was investigated by immunohistochemistry. GABA expression was seen as early as 12 weeks in the undifferentiated cells of the inner neuroblast zone; a few optic nerve fiber layer axons were clearly labeled, suggesting that some of the stained cell bodies were prospective ganglion cells, others could be displaced amacrine cells. From 16-17 to 24-25 weeks, intense labeling was found in the amacrine, displaced amacrine, and some ganglion cells. During this time period, horizontal cells (identified by calbindin immunohistochemistry), undergoing migration (periphery) and differentiation (center), expressed GABA prominently. In the postnatal retina, some horizontal cells were moderately labeled, but very weakly in a few cells, in the adult. The Müller cells developed immunoreactivity first weakly at 12 weeks and then moderately from 16-17 weeks onward. The staining was also evident in the postnatal and adult retinas, showing labeled processes of these glial cells. Virtually no axons in the adult optic nerve and nerve fiber layer were stained; the staining was restricted to a few, large ganglion cells and displaced amacrine cells: Some amacrines were also labeled. The possibility that GABA might play a role in horizontal cell differentiation and maturation is highlighted. Other evidences suggest that GABA might play a role in metabolism during retinal development.
Collapse
Affiliation(s)
- T C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
45
|
Abstract
We used postembedding immunocytochemistry to determine the localisation of the amino acid neurotransmitters glutamate, gamma-aminobutyrate (GABA), and glycine, potential neurotransmitter precursors (aspartate and glutamine), and taurine in the rat retina during postnatal development. All amino acids investigated were present at birth; however, only the inhibitory neurotransmitters GABA and glycine displayed neuronal localisation. GABA was localised in a sparse population of amacrine cells, and glycine immunoreactivity was found in cells within the ventricular zone that appeared to migrate through the neuroblastic layer. Glutamate labelling was diffuse across the retina until postnatal day (PND) 8. Localisation of glutamine was evident within Müller's cells by PND 6, in agreement with the known age of onset of glutamine synthetase activity. Based on the findings of uptake of radiolabelled glutamate and GABA by PND 8 and changes in immunoreactivity, we propose that Müller's cells evolve at PND 6-8 from their precursor cells, the radial glial cells. Evidence for differences in glutamate turnover in the infant retina was seen on examination of aspartate and glutamine immunoreactivity. Aspartate labelling was weak until PND 11, when ganglion cells and some amacrine cells were labelled. Unlike the mature retina, a large number of amacrine cells were glutamine immunoreactive in the PND 6 retina. One reason for the observed differences in precursor pooling may be a lack of neuronal neurotransmitter release and overall low metabolic activity. We also investigated the response of the developing retina to ischaemic insult to test the physiological hypoxia model of vascular development. Our findings are consistent with the hypothesis that the developing retina has increased tolerance to ischaemic insult. Our findings suggest that, although the retina is morphologically adult like by PND 8, there are differences in neurotransmitter turnover in the immature rat retina.
Collapse
Affiliation(s)
- E L Fletcher
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Australia
| | | |
Collapse
|
46
|
Keilhoff G, Seidel B, Noack H, Tischmeyer W, Stanek D, Wolf G. Patterns of nitric oxide synthase at the messenger RNA and protein levels during early rat brain development. Neuroscience 1996; 75:1193-201. [PMID: 8938752 DOI: 10.1016/0306-4522(96)00330-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
There is substantial evidence that the intra- and intercellular messenger nitric oxide, generated enzymatically from L-arginine by nitric oxide synthase in different isoforms, is involved in the development of nervous tissue. In this study we investigated the nitric oxide expression in the pre- and postnatally developing rat brain. With regard to messenger RNA, all of the basic nitric oxide synthase isoforms (neuronal, endothelial and macrophage nitric oxide synthase) were already expressed at embryonic day 10 and showed a temporary decrease at embryonic day 17. Western blot analysis of the three isoform proteins revealed a time pattern that was different from those of messenger RNAs. Although the endothelial nitric oxide synthase isoform was also expressed at embryonic day 10, no quantitative changes were observed over the whole time period studied. Protein amounts of brain and inducible nitric oxide synthase were first detectable at embryonic day 15, with a tendency to rise. A parallel time pattern was found for the NADPH-diaphorase activity in our light microscopic studies, whereas ultrastructurally the reaction product was seen in the brain pallium even of 13-day-old embryos. The data indicate a permanent presence of the transcripts for all nitric oxide synthase isoforms in the rat central nervous system from embryonic day 10 onwards, although the expression of respective proteins and staining patterns may differ.
Collapse
Affiliation(s)
- G Keilhoff
- Institute of Medical Neurobiology, University of Magdeburg, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
The development of synapse-like specializations was investigated in the inner plexiform layer of the developing chick retina by using light and electron microscopy. Six monoclonal antibodies, directed against glycine and gamma-aminobutyric acid (GABA)A receptor subunits, the intracellular receptor-associated protein gephyrin, synaptotagmin, and synaptophysin were used to determine the initial appearance and distribution of their antigens. Synaptophysin and synaptotagmin immunoreactivity was detected in the retina concurrent with the formation of the inner plexiform layer at embryonic day 7. This early appearance before synaptic differentiation, together with the transient expression of synaptotagmin immunoreactivity in the synapse-free optic fiber layer, suggests that in the developing central nervous system (CNS) these proteins are not confined to synapses. The first immunofluorescence signal detected with specific antibodies against the beta 2 and beta 3-subunits of the GABAA receptor, the glycine receptor, and gephyrin appeared at embryonic day 12. In contrast, the alpha 1-subunit of the adult-type glycine receptor heteromeric complex was detectable only at later stages of development, after embryonic day 16, suggesting a change in the subunit composition of some glycine receptor complexes. The staining was clearly punctate, indicating the clustering of the alpha 1-subunit at synapses. Electron microscopic investigation revealed the first postsynaptic densities and active zones in the inner plexiform layer of the retina at embryonic day 12. These results reveal different patterns of development for the investigated pre- and postsynaptic proteins and indicate a parallel appearance of gephyrin, glycine receptor, and the beta 2 and beta 3-subunits of the GABAA receptor with the first synaptic specializations in the inner plexiform layer of the developing chick retina.
Collapse
Affiliation(s)
- H Hering
- Department of Neuroanatomy, Max-Planck-Institute for Brain Research, Frankfurt, Germany
| | | |
Collapse
|
48
|
Herrmann K. Differential distribution of AMPA receptors and glutamate during pre- and postnatal development in the visual cortex of ferrets. J Comp Neurol 1996; 375:1-17. [PMID: 8913890 DOI: 10.1002/(sici)1096-9861(19961104)375:1<1::aid-cne1>3.0.co;2-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Immunohistochemical methods were used to study the distribution and time-course of appearance of cells expressing glutamate and alpha-amino-3-hydroxy-5-methyl-4-isoaxazole propionic acid (AMPA)-type glutamate receptors (GluR1 and GluR2/3) during development of the ferret visual cortex. Glutamate is present in many neurons in the ventricular zone, intermediate zone, developing cortical plate, and marginal zone as early as embryonic day (E) 34 (birth is at E41 in ferrets). Glutamate attains its adult distribution coincident with the completion of cellular migration. By contrast, GluR1 immunoreactivity emerges more slowly. By birth, GluR1 immunoreactivity is present only in a few neurons in the marginal zone and ventricular zone but is abundant in the marginal zone and subplate, where synaptogenesis commences. The number and staining intensity of GluR1-positive cells increases dramatically during the first two postnatal weeks and is maximal between the second and third week, before slowly declining to adult levels. Cortical cells immunopositive for GluR2/3 follow a similar pattern, although their distribution differs: GluR2/3-positive cells are mainly pyramidal cells. During the first postnatal week, GluR2/3 is also transiently present in fibers in the intermediate zone, which at this stage contains many thalamocortical and callosal and corticofugal axons. The abundance of glutamate at fetal stages, especially in the ventricular zone, is consistent with the previously proposed role of glutamate in mediating trophic effects in vivo, as previously demonstrated in vitro. The expression of AMPA receptors, as well as their transient overexpression, confirms the results of in situ hybridization studies and may imply a developmental role in neuronal differentiation for these receptors, in addition to their mature role in mediating cortical transmission.
Collapse
Affiliation(s)
- K Herrmann
- Laboratory of Neurophysiology, National Institute of Mental Health, NIHAC, Poolesville, Maryland 20837, USA.
| |
Collapse
|
49
|
Casini G, Grassi A, Trasarti L, Bagnoli P. Developmental expression of protein kinase C immunoreactivity in rod bipolar cells of the rabbit retina. Vis Neurosci 1996; 13:817-31. [PMID: 8903026 DOI: 10.1017/s0952523800009081] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Rod bipolar cells constitute the second-order neuron in the rod pathway. Previous investigations of the rabbit retina have evaluated the development of other components of the rod pathway, namely the dopaminergic and AII amacrine cell populations. To gain further insights into the maturation of this retinal circuitry, we studied the development of rod bipolar cells, identified with antibodies directed to the alpha isoform of protein kinase C (PKC), in the rabbit retina. Lightly immunostained PKC-immunoreactive (IR) somata are first observed at postnatal day (PND) 6 in the distal inner nuclear layer (INI.). Immunostaining is also observed in the outer plexiform layer (OPL), indicating the presence of PKC-IR dendrites. PKC-IR axons are present in the INL oriented toward the inner plexiform layer (IPL). Several of them terminate with enlarged structures resembling growth cones. At PND 8, some immunostained terminal bulbs, characteristic of rod bipolar cells, are detected in the proximal IPL. PKC-IR cells at PND 11 (cye opening) display stronger immunostaining and more mature characteristics than at earlier ages. The dendritic arborizations of these cells in the OPL and their axon terminals in the IPL attain mature morphology at later ages (PND 30 or older). The density of PKC-IR cells shows a peak at PND 11 followed by a drastic decrease up to adulthood. The total number of PKC-IR cells increases from PND 6 to PND 11 and then it remains almost unchanged until adulthood. The mosaic of PKC-IR cells is nonrandom in some retinal locations at PND 6, but the overall regularity index at PND 6 is lower than at older ages. The present data provide a comprehensive evaluation of the development of rod bipolar cells in the postnatal rabbit retina and are consistent with those previously reported for dopaminergic and AII amacrine cell populations, indicating that different components of the rod pathway follow a similar pattern of maturation, presumably allowing the rod pathway to be functional at eye opening.
Collapse
Affiliation(s)
- G Casini
- Department of Environmental Sciences, Tuscia University, Viterbo, Italy
| | | | | | | |
Collapse
|
50
|
Pow DV, Baldridge W, Crook DK. Activity-dependent transport of GABA analogues into specific cell types demonstrated at high resolution using a novel immunocytochemical strategy. Neuroscience 1996; 73:1129-43. [PMID: 8809830 DOI: 10.1016/0306-4522(96)00097-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have raised antisera against the GABA analogues gamma-vinyl GABA, diaminobutyric acid and gabaculine. These analogues are thought to be substrates for high-affinity GABA transporters. Retinae were exposed to micromolar concentrations of these analogues in the presence or absence of uptake inhibitors and then fixed and processed for immunocytochemistry at the light and electron microscopic levels. Immunolabelling for gamma-vinyl GABA revealed specific labelling of GABAergic amacrine cells and displaced amacrine cells in retinae of rabbits, cats, chickens, fish and a monkey. GABA-containing horizontal cells of cat and monkey retinae failed to exhibit labelling for gamma-vinyl GABA, suggesting that they lacked an uptake system for this molecule. In light-adapted fish, gamma-vinyl GABA was readily detected in H1 horizontal cells; similar labelling was also observed in light-adapted chicken retinae. The pattern of labelling in the fish and chicken retinae was modified by dark adaptation, when labelling was greatly reduced in the horizontal cells, indicating the activity dependence of GABA (analogue) transport. Intraperitoneal injection of gamma-vinyl GABA into rats resulted in its transport across the blood-brain barrier and subsequent uptake into populations of GABAergic neurons. The other analogues investigated in this study exhibited different patterns of transport; gabaculine was taken up into glial cells, whilst diaminobutyric acid was taken up into neurons, glial cells and retinal pigment epithelia. Thus, these analogues are probably substrates for different GABA transporters. We conclude that immunocytochemical detection of the high-affinity uptake of gamma-vinyl GABA permits the identification of GABAergic neurons which are actively transporting GABA, and suggest that this novel methodology will be a useful tool in rapidly assessing the recent activity of GABAergic neurons at the cellular level.
Collapse
Affiliation(s)
- D V Pow
- Department of Physiology and Pharmacology, University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|