1
|
Wu SM, Pang JJ. Effects of elevated intraocular pressure on alpha ganglion cells in experimental glaucoma mice. Vision Res 2024; 224:108475. [PMID: 39217910 DOI: 10.1016/j.visres.2024.108475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Glaucoma is a leading cause of blindness worldwide and glaucoma patients exhibit an early diffuse loss of retinal sensitivity followed by focal loss of RGCs. Combining some previous published results and some new data, this paper provides our current view on how high IOP (H-IOP) affects the light response sensitivity of a subset of RGCs, the alpha-ganglion cells (αGCs), as well as their presynaptic bipolar cells (DBCs and HBCs) and A2 amacrine cells (AIIACs) in dark-adapted mouse retinas. Our data demonstrate that H-IOP in experimental glaucoma mice significantly decreases light-evoked spike response sensitivity of sONαGCs and sOFFαGCs (i.e., raises thresholds by 1.5-2.5 log units), but not that of the tONαGCs and tOFFαGCs. The sensitivity loss in sONαGCs and sOFFαGCs is mediated by a H-IOP induced suppression of AIIAC response which is caused by a decrease of transmission efficacy of the DBCR→AIIAC synapse. We also provide evidence supporting the hypothesis that BK channels in the A17AC→DBCR feedback synapse are the H-IOP sensor that regulates the DBCR→AIIAC synaptic efficacy, as BK channel blocker IBTX mimics the action of H-IOP. Our results provide useful information for designing strategies for early detection and possible treatments of glaucoma as physiological changes occur before irreversible structural damage.
Collapse
Affiliation(s)
- Samuel M Wu
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, United States.
| | - Ji-Jie Pang
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, United States
| |
Collapse
|
2
|
Szarka G, Ganczer A, Balogh M, Tengölics ÁJ, Futácsi A, Kenyon G, Pan F, Kovács-Öller T, Völgyi B. Gap junctions fine-tune ganglion cell signals to equalize response kinetics within a given electrically coupled array. iScience 2024; 27:110099. [PMID: 38947503 PMCID: PMC11214328 DOI: 10.1016/j.isci.2024.110099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/06/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
Retinal ganglion cells (RGCs) summate inputs and forward a spike train code to the brain in the form of either maintained spiking (sustained) or a quickly decaying brief spike burst (transient). We report diverse response transience values across the RGC population and, contrary to the conventional transient/sustained scheme, responses with intermediary characteristics are the most abundant. Pharmacological tests showed that besides GABAergic inhibition, gap junction (GJ)-mediated excitation also plays a pivotal role in shaping response transience and thus visual coding. More precisely GJs connecting RGCs to nearby amacrine and RGCs play a defining role in the process. These GJs equalize kinetic features, including the response transience of transient OFF alpha (tOFFα) RGCs across a coupled array. We propose that GJs in other coupled neuron ensembles in the brain are also critical in the harmonization of response kinetics to enhance the population code and suit a corresponding task.
Collapse
Affiliation(s)
- Gergely Szarka
- University of Pécs, Szentágothai Research Centre, Pécs, Hungary
- University of Pécs, Department of Neurobiology, Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, Pécs, Hungary
- Center for Neuroscience, University of Pécs, Pécs, Hungary
- SzKK Imaging Core Facility, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Alma Ganczer
- University of Pécs, Szentágothai Research Centre, Pécs, Hungary
- University of Pécs, Department of Neurobiology, Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, Pécs, Hungary
- Center for Neuroscience, University of Pécs, Pécs, Hungary
| | - Márton Balogh
- University of Pécs, Szentágothai Research Centre, Pécs, Hungary
- University of Pécs, Department of Neurobiology, Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, Pécs, Hungary
- Center for Neuroscience, University of Pécs, Pécs, Hungary
| | - Ádám Jonatán Tengölics
- University of Pécs, Szentágothai Research Centre, Pécs, Hungary
- University of Pécs, Department of Neurobiology, Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, Pécs, Hungary
- Center for Neuroscience, University of Pécs, Pécs, Hungary
| | - Anett Futácsi
- University of Pécs, Szentágothai Research Centre, Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, Pécs, Hungary
- Center for Neuroscience, University of Pécs, Pécs, Hungary
- SzKK Imaging Core Facility, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | | | - Feng Pan
- The Hong Kong Polytechnic University, Hong Kong, China
| | - Tamás Kovács-Öller
- University of Pécs, Szentágothai Research Centre, Pécs, Hungary
- University of Pécs, Department of Neurobiology, Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, Pécs, Hungary
- Center for Neuroscience, University of Pécs, Pécs, Hungary
- SzKK Imaging Core Facility, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Béla Völgyi
- University of Pécs, Szentágothai Research Centre, Pécs, Hungary
- University of Pécs, Department of Neurobiology, Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, Pécs, Hungary
- Center for Neuroscience, University of Pécs, Pécs, Hungary
| |
Collapse
|
3
|
Yuan C, Gerhards L, Solov'yov IA, Dedek K. Biotin-cGMP and -cAMP are able to permeate through the gap junctions of some amacrine cells in the mouse retina despite their large size. FRONTIERS IN OPHTHALMOLOGY 2024; 3:1334602. [PMID: 38983094 PMCID: PMC11182161 DOI: 10.3389/fopht.2023.1334602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/22/2023] [Indexed: 07/11/2024]
Abstract
Gap junctions transmit electrical signals in neurons and serve metabolic coupling and chemical communication. Gap junctions are made of intercellular channels with large pores, allowing ions and small molecules to permeate. In the mammalian retina, intercellular coupling fulfills many vital functions in visual signal processing but is also implicated in promoting cell death after insults, such as excitotoxicity or hypoxia. Conversely, some studies also suggested a role for retinal gap junctions in neuroprotection. Recently, gap junctions were also advocated as conduits for therapeutic drug delivery in neurodegenerative disorders. This requires the permeation of rather large molecules through retinal gap junctions. However, the permeability of retinal networks for molecules >0.6 kDa has not been tested systematically. Here, we used the cut-loading method and probed gap junctional networks in the mouse retina for their permeability to cGMP and cAMP coupled to Biotin, using the well-characterized tracer Neurobiotin as control. Biotin-cGMP and -cAMP have a molecular weight of >0.8 kDa. We show that they cannot pass the gap junctions of horizontal cells but can permeate through the gap junctions of specific amacrine cells in the inner retina. These amacrine cells do not comprise AII amacrine cells and nitric oxide-releasing amacrine cells but some unknown type. In summary, we show that some retinal gap junctions are large enough to let molecules >0.8 kDa pass, making the intercellular delivery of therapeutic agents - already successfully exploited, for example, in cancer - also feasible in neurodegenerative diseases.
Collapse
Affiliation(s)
- Chunxu Yuan
- Animal Navigation, Institute for Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Luca Gerhards
- Institute of Physics, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Ilia A Solov'yov
- Institute of Physics, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
- CeNaD - Center for Nanoscale Dynamics, University of Oldenburg, Oldenburg, Germany
| | - Karin Dedek
- Animal Navigation, Institute for Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
4
|
Cepkenovic B, Friedland F, Noetzel E, Maybeck V, Offenhäusser A. Single-neuron mechanical perturbation evokes calcium plateaus that excite and modulate the network. Sci Rep 2023; 13:20669. [PMID: 38001109 PMCID: PMC10673841 DOI: 10.1038/s41598-023-47090-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Mechanical stimulation is a promising means to non-invasively excite and modulate neuronal networks with a high spatial resolution. Despite the thorough characterization of the initiation mechanism, whether or how mechanical responses disperse into non-target areas remains to be discovered. Our in vitro study demonstrates that a single-neuron deformation evokes responses that propagate to about a third of the untouched neighbors. The responses develop via calcium influx through mechanosensitive channels and regeneratively propagate through the neuronal ensemble via gap junctions. Although independent of action potentials and synapses, mechanical responses reliably evoke membrane depolarizations capable of inducing action potentials both in the target and neighbors. Finally, we show that mechanical stimulation transiently potentiates the responding assembly for further inputs, as both gain and excitability are transiently increased exclusively in neurons that respond to a neighbor's mechanical stimulation. The findings indicate a biological component affecting the spatial resolution of mechanostimulation and point to a cross-talk in broad-network mechanical stimulations. Since giga-seal formation in patch-clamp produces a similar mechanical stimulus on the neuron, our findings inform which neuroscientific questions could be reliably tackled with patch-clamp and what recovery post-gigaseal formation is necessary.
Collapse
Affiliation(s)
- Bogdana Cepkenovic
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 1, 52428, Jülich, Germany
- RWTH Aachen University, Templergraben 55, 52062, Aachen, Germany
| | - Florian Friedland
- Institute of Biological Information Processing: Mechanobiology (IBI-2), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 1, 52428, Jülich, Germany
| | - Erik Noetzel
- Institute of Biological Information Processing: Mechanobiology (IBI-2), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 1, 52428, Jülich, Germany
| | - Vanessa Maybeck
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 1, 52428, Jülich, Germany.
| | - Andreas Offenhäusser
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 1, 52428, Jülich, Germany
- RWTH Aachen University, Templergraben 55, 52062, Aachen, Germany
| |
Collapse
|
5
|
Pan F, Massey SC. Dye coupling of horizontal cells in the primate retina. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1173706. [PMID: 38983052 PMCID: PMC11182241 DOI: 10.3389/fopht.2023.1173706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 10/03/2023] [Indexed: 07/11/2024]
Abstract
In the monkey retina, there are two distinct types of axon-bearing horizontal cells, known as H1 and H2 horizontal cells (HCs). In this study, cell bodies were prelabled using 4',6-diamidino-2-phenylindole (DAPI), and both H1 and H2 horizontal cells were filled with Neurobiotin™ to reveal their coupling, cellular details, and photoreceptor contacts. The confocal analysis of H1 and H2 HCs was used to assess the colocalization of terminal dendrites with glutamate receptors at cone pedicles. After filling H1 somas, a large coupled mosaic of H1 cells was labeled. The dendritic terminals of H1 cells contacted red/green cone pedicles, with the occasional sparse contact with blue cone pedicles observed. The H2 cells were also dye-coupled. They had larger dendritic fields and lower densities. The dendritic terminals of H2 cells preferentially contacted blue cone pedicles, but additional contacts with nearly all cones within the dendritic field were still observed. The red/green cones constitute 99% of the input to H1 HCs, whereas H2 HCs receive a more balanced input, which is composed of 58% red/green cones and 42% blue cones. These observations confirm those made in earlier studies on primate horizontal cells by Dacey and Goodchild in 1996. Both H1 and H2 HCs were axon-bearing. H1 axon terminals (H1 ATs) were independently coupled and contacted rod spherules exclusively. In contrast, the H2 axon terminals contacted cones, with some preference for blue cone pedicles, as reported by Chan and Grünert in 1998. The primate retina contains three independently coupled HC networks in the outer plexiform layer (OPL), identified as H1 and H2 somatic dendrites, and H1 ATs. At each cone pedicle, the colocalization of both H1 and H2 dendritic tips with GluA4 subunits close to the cone synaptic ribbons indicates that glutamate signaling from the cones to H1 and H2 horizontal cells is mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors.
Collapse
Affiliation(s)
- Feng Pan
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Centre for Eye and Vision Research (CEVR), Hong Kong, Hong Kong SAR, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Stephen C. Massey
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, TX, United States
| |
Collapse
|
6
|
Jabr RI, Salvage SC, Hatch FS, Fry CH. Calcineurin-dependent regulation of gap junction conductance and connexin phosphorylation in guinea pig left atrium. Pflugers Arch 2023; 475:583-593. [PMID: 36917272 PMCID: PMC10105670 DOI: 10.1007/s00424-023-02798-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023]
Abstract
Atrial fibrillation (AF) occurs from disordered atrial action potential conduction and is associated with reduced gap junction electrical conductance (Gj). The Ca2+ and calmodulin-dependent phosphatase, calcineurin, reduces Gj in ventricular myocardium via a protein phosphatase-1 (PP1)-dependent pathway culminating in phosphorylation of serine368 on connexin43 (pSer368-Cx43). However, characterisation of corresponding pathways in left atrial myocardium, which have a more complex connexin subtype profile, is undefined and was the aim of this study. Gj was measured in guinea-pig left atrium from the frequency-dependent variation of intracellular impedance; intracellular [Ca2+], ([Ca2+]i) in low-Na solution was measured by Fura-2 fluorescence. Phosphorylation of guinea-pig Ser368-Cx43 residues was measured by Western blot; Cx40 was immunoprecipitated and probed for serine/threonine residue phosphorylation. Low-Na solution reversibly reduced Gj, in turn attenuated or prevented by calcineurin inhibitors cyclosporin-A or CAIP, respectively. Moreover, Ser368-Cx43 phosphorylation in low-Na solution was also prevented by CAIP. Changes were partially prevented by fostreicin (FST), a protein phosphatase-2A (PP2A) inhibitor; but not by tautomycin, a PP1 inhibitor. Serine/threonine residues on Cx40 were also phosphorylated in low-Na solution; prevented by CAIP and attenuated by FST. Reduced Gj with raised [Ca2+]i is paralleled by a changed Cx43/Cx40 phosphorylation status; changes mediated by calcineurin and PP2A-dependent pathways, but not PP1. The pharmacological profile underlying changes to guinea-pig atrial gap junction electrical conductance with raised intracellular [Ca2+]i is fundamentally different from that in ventricular myocardium. This provides a targeted drug model whereby atrial and ventricular myocardium can be selectively targeted to correct conduction defects.
Collapse
Affiliation(s)
- R I Jabr
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - S C Salvage
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - F S Hatch
- Department of Biochemistry and Physiology, Surrey University, Guildford, UK
| | - C H Fry
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
7
|
Voufo C, Chen AQ, Smith BE, Yan R, Feller MB, Tiriac A. Circuit mechanisms underlying embryonic retinal waves. eLife 2023; 12:e81983. [PMID: 36790167 PMCID: PMC9988258 DOI: 10.7554/elife.81983] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
Spontaneous activity is a hallmark of developing neural systems. In the retina, spontaneous activity comes in the form of retinal waves, comprised of three stages persisting from embryonic day 16 (E16) to eye opening at postnatal day 14 (P14). Though postnatal retinal waves have been well characterized, little is known about the spatiotemporal properties or the mechanisms mediating embryonic retinal waves, designated stage 1 waves. Using a custom-built macroscope to record spontaneous calcium transients from whole embryonic retinas, we show that stage 1 waves are initiated at several locations across the retina and propagate across a broad range of areas. Blocking gap junctions reduced the frequency and size of stage 1 waves, nearly abolishing them. Global blockade of nAChRs similarly nearly abolished stage 1 waves. Thus, stage 1 waves are mediated by a complex circuitry involving subtypes of nAChRs and gap junctions. Stage 1 waves in mice lacking the β2 subunit of the nAChRs (β2-nAChR-KO) persisted with altered propagation properties and were abolished by a gap junction blocker. To assay the impact of stage 1 waves on retinal development, we compared the spatial distribution of a subtype of retinal ganglion cells, intrinsically photosensitive retinal ganglion cells (ipRGCs), which undergo a significant amount of cell death, in WT and β2-nAChR-KO mice. We found that the developmental decrease in ipRGC density is preserved between WT and β2-nAChR-KO mice, indicating that processes regulating ipRGC numbers and distributions are not influenced by spontaneous activity.
Collapse
Affiliation(s)
- Christiane Voufo
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Andy Quaen Chen
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Benjamin E Smith
- School of Optometry, University of California, BerkeleyBerkeleyUnited States
| | - Rongshan Yan
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Marla B Feller
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Alexandre Tiriac
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
8
|
Myles WE, McFadden SA. Analytical methods for assessing retinal cell coupling using cut-loading. PLoS One 2022; 17:e0271744. [PMID: 35853039 PMCID: PMC9295955 DOI: 10.1371/journal.pone.0271744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/06/2022] [Indexed: 11/25/2022] Open
Abstract
Electrical coupling between retinal neurons contributes to the functional complexity of visual circuits. “Cut-loading” methods allow simultaneous assessment of cell-coupling between multiple retinal cell-types, but existing analysis methods impede direct comparison with gold standard direct dye injection techniques. In the current study, we both improved an existing method and developed two new approaches to address observed limitations. Each method of analysis was applied to cut-loaded dark-adapted Guinea pig retinae (n = 29) to assess coupling strength in the axonless horizontal cell type (‘a-type’, aHCs). Method 1 was an improved version of the standard protocol and described the distance of dye-diffusion (space constant). Method 2 adjusted for the geometric path of dye-transfer through cut-loaded cells and extracted the rate of dye-transfer across gap-junctions in terms of the coupling coefficient (kj). Method 3 measured the diffusion coefficient (De) perpendicular to the cut-axis. Dye transfer was measured after one of five diffusion times (1–20 mins), or with a coupling inhibitor, meclofenamic acid (MFA) (50–500μM after 20 mins diffusion). The standard protocol fits an exponential decay function to the fluorescence profile of a specified retina layer but includes non-specific background fluorescence. This was improved by measuring the fluorescence of individual cell soma and excluding from the fit non-horizontal cells located at the cut-edge (p<0.001) (Method 1). The space constant (Method 1) increased with diffusion time (p<0.01), whereas Methods 2 (p = 0.54) and 3 (p = 0.63) produced consistent results across all diffusion times. Adjusting distance by the mean cell-cell spacing within each tissue reduced the incidence of outliers across all three methods. Method 1 was less sensitive to detecting changes induced by MFA than Methods 2 (p<0.01) and 3 (p<0.01). Although the standard protocol was easily improved (Method 1), Methods 2 and 3 proved more sensitive and generalisable; allowing for detailed assessment of the tracer kinetics between different populations of gap-junction linked cell networks and direct comparison to dye-injection techniques.
Collapse
Affiliation(s)
- William E. Myles
- College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
- * E-mail:
| | - Sally A. McFadden
- College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
9
|
Visual pigment-deficient cones survive and mediate visual signaling despite the lack of outer segments. Proc Natl Acad Sci U S A 2022; 119:2115138119. [PMID: 35197287 PMCID: PMC8892328 DOI: 10.1073/pnas.2115138119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2021] [Indexed: 11/18/2022] Open
Abstract
Rhodopsin and cone opsins are essential for light detection in vertebrate rods and cones, respectively. It is well established that rhodopsin is required for rod phototransduction, outer segment disk morphogenesis, and rod viability. However, the roles of cone opsins are less well understood. In this study, we adopted a loss-of-function approach to investigate the physiological roles of cone opsins in mice. We showed that cones lacking cone opsins do not form normal outer segments due to the lack of disk morphogenesis. Surprisingly, cone opsin-deficient cones survive for at least 12 mo, which is in stark contrast to the rapid rod degeneration observed in rhodopsin-deficient mice, suggesting that cone opsins are dispensable for cone viability. Although the mutant cones do not respond to light directly, they maintain a normal dark current and continue to mediate visual signaling by relaying the rod signal through rod-cone gap junctions. Our work reveals a striking difference between the role of rhodopsin and cone opsins in photoreceptor viability.
Collapse
|
10
|
Zhi Z, Xiang J, Fu Q, Pei X, Zhou D, Cao Y, Xie L, Zhang S, Chen S, Qu J, Zhou X. The Role of Retinal Connexins Cx36 and Horizontal Cell Coupling in Emmetropization in Guinea Pigs. Invest Ophthalmol Vis Sci 2021; 62:27. [PMID: 34283211 PMCID: PMC8300059 DOI: 10.1167/iovs.62.9.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 06/24/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to determine whether retinal gap junctions (GJs) via connexin 36 (Cx36, mediating coupling of many retinal cell types) and horizontal cell (HC-HC) coupling, are involved in emmetropization. Methods Guinea pigs (3 weeks old) were monocularly form deprived (FD) or raised without FD (in normal visual [NV] environment) for 2 days or 4 weeks; alternatively, they wore a -4 D lens (hyperopic defocus [HD]) or 0 D lens for 2 days or 1 week. FD and NV eyes received daily subconjunctival injections of a nonspecific GJ-uncoupling agent, 18-β-Glycyrrhetinic Acid (18-β-GA). The amounts of total Cx36 and of phosphorylated Cx36 (P-Cx36; activated state that increases cell-cell coupling), in the inner and outer plexiform layers (IPLs and OPLs), were evaluated by quantitative immunofluorescence (IF), and HC-HC coupling was evaluated by cut-loading with neurobiotin. Results FD per se (excluding effect of light-attenuation) increased HC-HC coupling in OPL, whereas HD did not affect it. HD for 2 days or 1 week had no significant effect on retinal content of Cx36 or P-Cx36. FD for 4 weeks decreased the total amounts of Cx36 and P-Cx36, and the P-Cx36/Cx36 ratio, in the IPL. Subconjunctival 18-β-GA induced myopia in NV eyes and increased the myopic shifts in FD eyes, while reducing the amounts of Cx36 and P-Cx36 in both the IPL and OPL. Conclusions These results suggest that cell-cell coupling via GJs containing Cx36 (particularly those in the IPL) plays a role in emmetropization and form deprivation myopia (FDM) in mammals. Although both FD and 18-β-GA induced myopia, they had opposite effects on HC-HC coupling. These findings suggest that HC-HC coupling in the OPL might not play a significant role in emmetropization and myopia development.
Collapse
Affiliation(s)
- Zhina Zhi
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Jing Xiang
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Qian Fu
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Xiaomeng Pei
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Dengke Zhou
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Yuqing Cao
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Liqin Xie
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Sen Zhang
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Si Chen
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Jia Qu
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Xiangtian Zhou
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| |
Collapse
|
11
|
Cheng Z, Li Y, Zhu X, Wang K, Ali Y, Shu W, Zhang T, Zhu L, Murray M, Zhou F. The Potential Application of Pentacyclic Triterpenoids in the Prevention and Treatment of Retinal Diseases. PLANTA MEDICA 2021; 87:511-527. [PMID: 33761574 DOI: 10.1055/a-1377-2596] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Retinal diseases are a leading cause of impaired vision and blindness but some lack effective treatments. New therapies are required urgently to better manage retinal diseases. Natural pentacyclic triterpenoids and their derivatives have a wide range of activities, including antioxidative, anti-inflammatory, cytoprotective, neuroprotective, and antiangiogenic properties. Pentacyclic triterpenoids have great potential in preventing and/or treating retinal pathologies. The pharmacological effects of pentacyclic triterpenoids are often mediated through the modulation of signalling pathways, including nuclear factor erythroid-2 related factor 2, high-mobility group box protein 1, 11β-hydroxysteroid dehydrogenase type 1, and Src homology region 2 domain-containing phosphatase-1. This review summarizes recent in vitro and in vivo evidence for the pharmacological potential of pentacyclic triterpenoids in the prevention and treatment of retinal diseases. The present literature supports the further development of pentacyclic triterpenoids. Future research should now attempt to improve the efficacy and pharmacokinetic behaviour of the agents, possibly by the use of medicinal chemistry and targeted drug delivery strategies.
Collapse
Affiliation(s)
- Zhengqi Cheng
- Sydney Pharmacy School, The University of Sydney, Camperdown, Australia
| | - Yue Li
- Sydney Pharmacy School, The University of Sydney, Camperdown, Australia
| | - Xue Zhu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Youmna Ali
- Sydney Pharmacy School, The University of Sydney, Camperdown, Australia
| | - Wenying Shu
- Department of Pharmacy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ting Zhang
- Save Sight Institute, The University of Sydney, Sydney, Australia
| | - Ling Zhu
- Save Sight Institute, The University of Sydney, Sydney, Australia
| | - Michael Murray
- Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Fanfan Zhou
- Sydney Pharmacy School, The University of Sydney, Camperdown, Australia
| |
Collapse
|
12
|
Ogazon del Toro A, Jimenez L, Serrano Rubi M, Castillo A, Hinojosa L, Martinez Rendon J, Cereijido M, Ponce A. Prostaglandin E2 Enhances Gap Junctional Intercellular Communication in Clonal Epithelial Cells. Int J Mol Sci 2021; 22:5813. [PMID: 34071686 PMCID: PMC8198183 DOI: 10.3390/ijms22115813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Prostaglandins are a group of lipids that produce diverse physiological and pathological effects. Among them, prostaglandin E2 (PGE2) stands out for the wide variety of functions in which it participates. To date, there is little information about the influence of PGE2 on gap junctional intercellular communication (GJIC) in any type of tissue, including epithelia. In this work, we set out to determine whether PGE2 influences GJIC in epithelial cells (MDCK cells). To this end, we performed dye (Lucifer yellow) transfer assays to compare GJIC of MDCK cells treated with PGE2 and untreated cells. Our results indicated that (1) PGE2 induces a statistically significant increase in GJIC from 100 nM and from 15 min after its addition to the medium, (2) such effect does not require the synthesis of new mRNA or proteins subunits but rather trafficking of subunits already synthesized, and (3) such effect is mediated by the E2 receptor, which, in turn, triggers a signaling pathway that includes activation of adenylyl cyclase and protein kinase A (PKA). These results widen the knowledge regarding modulation of gap junctional intercellular communication by prostaglandins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Arturo Ponce
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, CDMX, México C.P. 07360, Mexico; (A.O.d.T.); (L.J.); (M.S.R.); (A.C.); (L.H.); (J.M.R.); (M.C.)
| |
Collapse
|
13
|
Fournel R, Hartveit E, Veruki ML. Differential Contribution of Gap Junctions to the Membrane Properties of ON- and OFF-Bipolar Cells of the Rat Retina. Cell Mol Neurobiol 2021; 41:229-245. [PMID: 32323153 PMCID: PMC7870642 DOI: 10.1007/s10571-020-00845-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/08/2020] [Indexed: 01/31/2023]
Abstract
Gap junctions are ubiquitous within the retina, but in general, it remains to be determined whether gap junction coupling between specific cell types is sufficiently strong to mediate functionally relevant coupling via electrical synapses. From ultrastructural, tracer coupling and immunolabeling studies, there is clear evidence for gap junctions between cone bipolar cells, but it is not known if these gap junctions function as electrical synapses. Here, using whole-cell voltage-clamp recording in rat (male and female) retinal slices, we investigated whether the gap junctions of bipolar cells make a measurable contribution to the membrane properties of these cells. We measured the input resistance (RN) of bipolar cells before and after applying meclofenamic acid (MFA) to block gap junctions. In the presence of MFA, RN of ON-cone bipolar cells displayed a clear increase, paralleled by block of the electrical coupling between these cells and AII amacrine cells in recordings of coupled cell pairs. For OFF-cone and rod bipolar cells, RN did not increase in the presence of MFA. The results for rod bipolar cells are consistent with the lack of gap junctions in these cells. However, for OFF-cone bipolar cells, our results suggest that the morphologically identified gap junctions between these cells do not support a junctional conductance that is sufficient to mediate effective electrical coupling. Instead, these junctions might play a role in chemical and/or metabolic coupling between subcellular compartments.
Collapse
Affiliation(s)
- Rémi Fournel
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| | - Espen Hartveit
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| | - Margaret Lin Veruki
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| |
Collapse
|
14
|
An offset ON-OFF receptive field is created by gap junctions between distinct types of retinal ganglion cells. Nat Neurosci 2020; 24:105-115. [PMID: 33230322 PMCID: PMC7769921 DOI: 10.1038/s41593-020-00747-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/23/2020] [Indexed: 01/01/2023]
Abstract
In the vertebrate retina, the location of a neuron's receptive field in visual space closely corresponds to the physical location of synaptic input onto its dendrites, a relationship called the retinotopic map. We report the discovery of a systematic spatial offset between the ON and OFF receptive subfields in F-mini-ON retinal ganglion cells (RGCs). Surprisingly, this property does not come from spatially offset ON and OFF layer dendrites, but instead arises from a network of electrical synapses via gap junctions to RGCs of a different type, the F-mini-OFF. We show that the asymmetric morphology and connectivity of these RGCs can explain their receptive field offset, and we use a multicell model to explore the effects of receptive field offset on the precision of edge-location representation in a population. This RGC network forms a new electrical channel combining the ON and OFF feedforward pathways within the output layer of the retina.
Collapse
|
15
|
Novel Techniques to Study the Bone-Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1225:1-18. [PMID: 32030644 DOI: 10.1007/978-3-030-35727-6_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many cancers commonly metastasize to bone. After entering the bone, cancer cells can interact with surrounding stromal cells, which ultimately influences metastasis progression. Extracellular vesicles, direct cell contact and gap junctions, and cytokines are all mechanisms of intercellular communication that have been observed to occur in the bone microenvironment. These methods of cellular crosstalk can occur between cancer cells and a variety of stromal cells, with each interaction having a different impact on cancer progression. Communication between cancer cells and bone-resident cells has previously been implicated in processes such as cancer cell trafficking and arrest in bone, cancer cell dormancy, cancer cell reactivation, and proliferation. In this chapter we review innovative techniques and model systems that can be used to study bidirectional crosstalk between cancer cells and stromal cells in the bone, with an emphasis specifically on bone-metastatic breast cancer. Investigating how metastatic cancer cells interact with, and are influenced by, the bone microenvironment is crucial to better understanding of the progression of bone metastasis.
Collapse
|
16
|
Abstract
Gap junction-mediated electrical coupling between retinal photoreceptors is an important determinant of photoreceptor function. Yet, quantitative measurements of the junctional conductance between coupled photoreceptors are required to fully assess the effects of coupling on visual performance. Such measurements have been obtained in salamander and other lower vertebrate retinas but are difficult to acquire in mammalian retinas, in part because of the much smaller size of photoreceptors in mammals. Here, we describe in detail a dual whole-cell patch-clamp technique we recently developed to measure the junctional conductance between photoreceptor pairs in the mouse retina. With this method, electrical coupling strength between mouse photoreceptors can be estimated with high accuracy and its impact on retinal processing of visual information further evaluated.
Collapse
|
17
|
Caval-Holme F, Zhang Y, Feller MB. Gap Junction Coupling Shapes the Encoding of Light in the Developing Retina. Curr Biol 2019; 29:4024-4035.e5. [PMID: 31708397 PMCID: PMC6927338 DOI: 10.1016/j.cub.2019.10.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/03/2019] [Accepted: 10/16/2019] [Indexed: 11/28/2022]
Abstract
Detection of ambient illumination in the developing retina prior to maturation of conventional photoreceptors is mediated by intrinsically photosensitive retinal ganglion cells (ipRGCs) and is critical for driving several physiological processes, including light aversion, pupillary light reflexes, and photoentrainment of circadian rhythms. The strategies by which ipRGCs encode variations in ambient light intensity at these early ages are not known. Using unsupervised clustering of two-photon calcium responses followed by inspection of anatomical features, we found that the population activity of the neonatal retina could be modeled as six functional groups that were composed of mixtures of ipRGC subtypes and non-ipRGC cell types. By combining imaging, whole-cell recording, pharmacology, and anatomical techniques, we found that functional mixing of cell types is mediated in part by gap junction coupling. Together, these data show that both cell-autonomous intrinsic light responses and gap junction coupling among ipRGCs contribute to the proper encoding of light intensity in the developing retina.
Collapse
Affiliation(s)
- Franklin Caval-Holme
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yizhen Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Marla B Feller
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
18
|
Breithausen B, Kautzmann S, Boehlen A, Steinhäuser C, Henneberger C. Limited contribution of astroglial gap junction coupling to buffering of extracellular K + in CA1 stratum radiatum. Glia 2019; 68:918-931. [PMID: 31743499 DOI: 10.1002/glia.23751] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022]
Abstract
Astrocytes form large networks, in which individual cells are connected via gap junctions. It is thought that this astroglial gap junction coupling contributes to the buffering of extracellular K+ increases. However, it is largely unknown how the control of extracellular K+ by astroglial gap junction coupling depends on the underlying activity patterns and on the magnitude of extracellular K+ increases. We explored this dependency in acute hippocampal slices (CA1, stratum radiatum) by direct K+ -sensitive microelectrode recordings and acute pharmacological inhibition of gap junctions. K+ transients evoked by synaptic and axonal activity were largely unaffected by acute astroglial uncoupling in slices obtained from young and adult rats. Iontophoretic K+ -application enabled us to generate K+ gradients with defined spatial properties and magnitude. By varying the K+ -iontophoresis position and protocol, we found that acute pharmacological uncoupling increases the amplitude of K+ transients once their initial amplitude exceeded ~10 mM. Our experiments demonstrate that the contribution of gap junction coupling to buffering of extracellular K+ gradients is limited to large and localized K+ increases.
Collapse
Affiliation(s)
- Björn Breithausen
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany
| | - Steffen Kautzmann
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany
| | - Anne Boehlen
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany
| | - Christian Henneberger
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany.,Institute of Neurology, University College London, London, UK.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
19
|
Xu Y, Shen FY, Liu YZ, Wang L, Wang YW, Wang Z. Dependence of Generation of Hippocampal CA1 Slow Oscillations on Electrical Synapses. Neurosci Bull 2019; 36:39-48. [PMID: 31468346 DOI: 10.1007/s12264-019-00419-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 05/26/2019] [Indexed: 01/01/2023] Open
Abstract
Neuronal oscillations in the hippocampus are critical for many brain functions including learning and memory. The underlying mechanism of oscillation generation has been extensively investigated in terms of chemical synapses and ion channels. Recently, electrical synapses have also been indicated to play important roles, as reported in various brain areas in vivo and in brain slices. However, this issue remains to be further clarified, including in hippocampal networks. Here, using the completely isolated hippocampus, we investigated in vitro the effect of electrical synapses on slow CA1 oscillations (0.5 Hz-1.5 Hz) generated intrinsically by the hippocampus. We found that these oscillations were totally abolished by bath application of a general blocker of gap junctions (carbenoxolone) or a specific blocker of electrical synapses (mefloquine), as determined by whole-cell recordings in both CA1 pyramidal cells and fast-spiking cells. Our findings indicate that electrical synapses are required for the hippocampal generation of slow CA1 oscillations.
Collapse
Affiliation(s)
- Yuan Xu
- Institute and Key Laboratory of Brain Functional Genomics of The Chinese Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Feng-Yan Shen
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yu-Zhang Liu
- Institute and Key Laboratory of Brain Functional Genomics of The Chinese Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Lidan Wang
- Institute and Key Laboratory of Brain Functional Genomics of The Chinese Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Ying-Wei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zhiru Wang
- Institute and Key Laboratory of Brain Functional Genomics of The Chinese Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
20
|
Vanden Daele L, Boydens C, Van de Voorde J. Characterization of the retina-induced relaxation in mice. Graefes Arch Clin Exp Ophthalmol 2018; 256:1905-1912. [PMID: 30105641 DOI: 10.1007/s00417-018-4096-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/27/2018] [Accepted: 07/30/2018] [Indexed: 01/24/2023] Open
Abstract
PURPOSE The retinal relaxing factor (RRF) is a continuously released factor from the retina that causes vasorelaxation, the identity and potential role in physiology of which remain largely unknown. Experiments were performed to find out whether the RRF-induced relaxation is influenced by serotonin, glutamate, L-cysteine, the cytochrome P450 pathway, the cyclooxygenase pathway, or oxidative stress. In addition, the sensitivity of retinal and non-retinal arteries towards the RRF was compared. METHODS In vitro tension measurements were performed on isolated mouse femoral or bovine retinal arteries to study the vasorelaxing effect of the RRF, induced by mouse or bovine retinas. RESULTS The presence of serotonin, glutamate, or L-cysteine did not alter the RRF-induced relaxation. Increasing oxidative stress by hydroquinone and diethyldithiocarbamic acid sodium salt enhanced the RRF response. Inhibition of the cytochrome P450 or the cyclooxygenase pathway did not cause any alteration. Surprisingly, the RRF-induced relaxation was enhanced by the presence of flufenamic acid or carbenoxolone. Furthermore, bringing retinal tissue in close contact with retinal or non-retinal arteries induced comparable relaxations. CONCLUSIONS Serotonin, glutamate, L-cysteine, the cytochrome P450, and the cyclooxygenase pathway do not influence the RRF-induced relaxation and the RRF-induced relaxation seems to be resistant to oxidative stress. The mechanism responsible for the enhanced RRF-induced relaxation in the presence of flufenamic acid or carbenoxolone remains elusive and the RRF does not show more effectivity on retinal arteries.
Collapse
Affiliation(s)
- Laura Vanden Daele
- Department of Pharmacology - Vascular Research Unit, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Charlotte Boydens
- Department of Pharmacology - Vascular Research Unit, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Johan Van de Voorde
- Department of Pharmacology - Vascular Research Unit, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| |
Collapse
|
21
|
Abstract
Mammalian circadian clocks have a hierarchical organization, governed by the suprachiasmatic nucleus (SCN) in the hypothalamus. The brain itself contains multiple loci that maintain autonomous circadian rhythmicity, but the contribution of the non-SCN clocks to this hierarchy remains unclear. We examine circadian oscillations of clock gene expression in various brain loci and discovered that in mouse, robust, higher amplitude, relatively faster oscillations occur in the choroid plexus (CP) compared to the SCN. Our computational analysis and modeling show that the CP achieves these properties by synchronization of “twist” circadian oscillators via gap-junctional connections. Using an in vitro tissue coculture model and in vivo targeted deletion of the Bmal1 gene to silence the CP circadian clock, we demonstrate that the CP clock adjusts the SCN clock likely via circulation of cerebrospinal fluid, thus finely tuning behavioral circadian rhythms. The suprachiasmatic nucleus (SCN) has been thought of as the master circadian clock, but peripheral circadian clocks do exist. Here, the authors show that the choroid plexus displays oscillations more robust than the SCN and that can be described as a Poincaré oscillator with negative twist.
Collapse
|
22
|
Elgueta C, Leroy F, Vielma AH, Schmachtenberg O, Palacios AG. Electrical coupling between A17 cells enhances reciprocal inhibitory feedback to rod bipolar cells. Sci Rep 2018; 8:3123. [PMID: 29449585 PMCID: PMC5814567 DOI: 10.1038/s41598-018-21119-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 01/29/2018] [Indexed: 11/09/2022] Open
Abstract
A17 amacrine cells are an important part of the scotopic pathway. Their synaptic varicosities receive glutamatergic inputs from rod bipolar cells (RBC) and release GABA onto the same RBC terminal, forming a reciprocal feedback that shapes RBC depolarization. Here, using patch-clamp recordings, we characterized electrical coupling between A17 cells of the rat retina and report the presence of strongly interconnected and non-coupled A17 cells. In coupled A17 cells, evoked currents preferentially flow out of the cell through GJs and cross-synchronization of presynaptic signals in a pair of A17 cells is correlated to their coupling degree. Moreover, we demonstrate that stimulation of one A17 cell can induce electrical and calcium transients in neighboring A17 cells, thus confirming a functional flow of information through electrical synapses in the A17 coupled network. Finally, blocking GJs caused a strong decrease in the amplitude of the inhibitory feedback onto RBCs. We therefore propose that electrical coupling between A17 cells enhances feedback onto RBCs by synchronizing and facilitating GABA release from inhibitory varicosities surrounding each RBC axon terminal. GJs between A17 cells are therefore critical in shaping the visual flow through the scotopic pathway.
Collapse
Affiliation(s)
- Claudio Elgueta
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.
- Physiology Institute I, Alberts Ludwig University, Freiburg, Germany.
| | - Felix Leroy
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Neuroscience department, Columbia University Medical Center, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Alex H Vielma
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Physiology Institute I, Alberts Ludwig University, Freiburg, Germany
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Physiology Institute I, Alberts Ludwig University, Freiburg, Germany
| | - Adrian G Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Physiology Institute I, Alberts Ludwig University, Freiburg, Germany
| |
Collapse
|
23
|
Protein Kinase C Enhances Electrical Synaptic Transmission by Acting on Junctional and Postsynaptic Ca 2+ Currents. J Neurosci 2018; 38:2796-2808. [PMID: 29440551 DOI: 10.1523/jneurosci.2619-17.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/15/2018] [Accepted: 02/02/2018] [Indexed: 11/21/2022] Open
Abstract
By synchronizing neuronal activity, electrical transmission influences the coordination, pattern, and/or frequency of firing. In the hemaphroditic marine-snail, Aplysia calfornica, the neuroendocrine bag cell neurons use electrical synapses to synchronize a 30 min afterdischarge of action potentials for the release of reproductive hormone. During the afterdischarge, protein kinase C (PKC) is activated, although its impact on bag cell neuron electrical transmission is unknown. This was investigated here by monitoring electrical synapses between paired cultured bag cell neurons using dual whole-cell recording. Voltage clamp revealed a largely voltage-independent junctional current, which was enhanced by treating with a PKC activator, PMA, before recording. We also examined the transfer of presynaptic action potential-like waveforms (generated in voltage clamp) to the postsynaptic cell (measured in current clamp). For control pairs, the presynaptic spike-like waveforms mainly evoked electrotonic potentials; however, when PKC was triggered, these stimuli consistently produced postsynaptic action potentials. To assess whether this involved changes to postsynaptic responsiveness, single bag cell neurons were injected with junctional-like current mimicking that evoked by a presynaptic action potential. Unlike control neurons, which were less likely to spike, cells in PMA always fired action potentials to the junctional-like current. Furthermore, PKC activation increased a postsynaptic voltage-gated Ca2+ current, which was recruited even by modest depolarization associated with an electrotonic potential. Whereas PKC inhibits gap junctions in most systems, bag cell neurons are rather unique, as the kinase potentiates the electrical synapse; in turn, this synergizes with augmented postsynaptic Ca2+ current to promote synchronous firing.SIGNIFICANCE STATEMENT Electrical coupling is a fundamental form of communication. For the bag cell neurons of Aplysia, electrical synapses coordinate a prolonged burst of action potentials known as the afterdischarge. We looked at how protein kinase C, which is upregulated with the afterdischarge, influences information transfer across the synapse. The kinase activation increased junctional current, a remarkable finding given that this enzyme is largely considered inhibitory for gap junctions. There was also an augmentation in the ability of a presynaptic neuron to provoke postsynaptic action potentials. This increased excitability was, in part, due to enhanced postsynaptic voltage-dependent Ca2+ current. Thus, protein kinase C improves the fidelity of electrotonic transmission and promotes synchronous firing by modulating both junctional and membrane conductances.
Collapse
|
24
|
Nagy JI, Pereda AE, Rash JE. Electrical synapses in mammalian CNS: Past eras, present focus and future directions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:102-123. [PMID: 28577972 PMCID: PMC5705454 DOI: 10.1016/j.bbamem.2017.05.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 12/19/2022]
Abstract
Gap junctions provide the basis for electrical synapses between neurons. Early studies in well-defined circuits in lower vertebrates laid the foundation for understanding various properties conferred by electrical synaptic transmission. Knowledge surrounding electrical synapses in mammalian systems unfolded first with evidence indicating the presence of gap junctions between neurons in various brain regions, but with little appreciation of their functional roles. Beginning at about the turn of this century, new approaches were applied to scrutinize electrical synapses, revealing the prevalence of neuronal gap junctions, the connexin protein composition of many of those junctions, and the myriad diverse neural systems in which they occur in the mammalian CNS. Subsequent progress indicated that electrical synapses constitute key elements in synaptic circuitry, govern the collective activity of ensembles of electrically coupled neurons, and in part orchestrate the synchronized neuronal network activity and rhythmic oscillations that underlie fundamental integrative processes. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- James I Nagy
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - John E Rash
- Department of Biomedical Sciences, and Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
25
|
Electrical synapses convey orientation selectivity in the mouse retina. Nat Commun 2017; 8:2025. [PMID: 29229967 PMCID: PMC5725423 DOI: 10.1038/s41467-017-01980-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022] Open
Abstract
Sensory neurons downstream of primary receptors are selective for specific stimulus features, and they derive their selectivity both from excitatory and inhibitory synaptic inputs from other neurons and from their own intrinsic properties. Electrical synapses, formed by gap junctions, modulate sensory circuits. Retinal ganglion cells (RGCs) are diverse feature detectors carrying visual information to the brain, and receive excitatory input from bipolar cells and inhibitory input from amacrine cells (ACs). Here we describe a RGC that relies on gap junctions, rather than chemical synapses, to convey its selectivity for the orientation of a visual stimulus. This represents both a new functional role of electrical synapses as the primary drivers of feature selectivity and a new circuit mechanism for orientation selectivity in the retina. Visual input received by photoreceptors is relayed to retinal ganglion cells (RGCs), which have selectivity for inputs of certain orientations. Here, the authors show that gap junction-mediated input onto one type of RGC contributes to its orientation selectivity.
Collapse
|
26
|
Akopian A, Kumar S, Ramakrishnan H, Roy K, Viswanathan S, Bloomfield SA. Targeting neuronal gap junctions in mouse retina offers neuroprotection in glaucoma. J Clin Invest 2017; 127:2647-2661. [PMID: 28604388 PMCID: PMC5490768 DOI: 10.1172/jci91948] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/27/2017] [Indexed: 01/26/2023] Open
Abstract
The progressive death of retinal ganglion cells and resulting visual deficits are hallmarks of glaucoma, but the underlying mechanisms remain unclear. In many neurodegenerative diseases, cell death induced by primary insult is followed by a wave of secondary loss. Gap junctions (GJs), intercellular channels composed of subunit connexins, can play a major role in secondary cell death by forming conduits through which toxic molecules from dying cells pass to and injure coupled neighbors. Here we have shown that pharmacological blockade of GJs or genetic ablation of connexin 36 (Cx36) subunits, which are highly expressed by retinal neurons, markedly reduced loss of neurons and optic nerve axons in a mouse model of glaucoma. Further, functional parameters that are negatively affected in glaucoma, including the electroretinogram, visual evoked potential, visual spatial acuity, and contrast sensitivity, were maintained at control levels when Cx36 was ablated. Neuronal GJs may thus represent potential therapeutic targets to prevent the progressive neurodegeneration and visual impairment associated with glaucoma.
Collapse
|
27
|
Eleftheriou CG, Cehajic-Kapetanovic J, Martial FP, Milosavljevic N, Bedford RA, Lucas RJ. Meclofenamic acid improves the signal to noise ratio for visual responses produced by ectopic expression of human rod opsin. Mol Vis 2017; 23:334-345. [PMID: 28659709 PMCID: PMC5479694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 06/14/2017] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Retinal dystrophy through outer photoreceptor cell death affects 1 in 2,500 people worldwide with severe impairment of vision in advanced stages of the disease. Optogenetic strategies to restore visual function to animal models of retinal degeneration by introducing photopigments to neurons spared degeneration in the inner retina have been explored, with variable degrees of success. It has recently been shown that the non-steroidal anti-inflammatory and non-selective gap-junction blocker meclofenamic acid (MFA) can enhance the visual responses produced by an optogenetic actuator (channelrhodopsin) expressed in retinal ganglion cells (RGCs) in the degenerate retina. Here, we set out to determine whether MFA could also enhance photoreception by another optogenetic strategy in which ectopic human rod opsin is expressed in ON bipolar cells. METHODS We used in vitro multielectrode array (MEA) recordings to characterize the light responses of RGCs in the rd1 mouse model of advanced retinal degeneration following intravitreal injection of an adenoassociated virus (AAV2) driving the expression of human rod opsin under a minimal grm6 promoter active in ON bipolar cells. RESULTS We found treated retinas were light responsive over five decades of irradiance (from 1011 to 1015 photons/cm2/s) with individual RGCs covering up to four decades. Application of MFA reduced the spontaneous firing rate of the visually responsive neurons under light- and dark-adapted conditions. The change in the firing rate produced by the 2 s light pulses was increased across all intensities following MFA treatment, and there was a concomitant increase in the signal to noise ratio for the visual response. Restored light responses were abolished by agents inhibiting glutamatergic or gamma-aminobutyric acid (GABA)ergic signaling in the MFA-treated preparation. CONCLUSIONS These results confirm the potential of MFA to inhibit spontaneous activity and enhance the signal to noise ratio of visual responses in optogenetic therapies to restore sight.
Collapse
|
28
|
Liu H, Li XZ, Peng M, Ji W, Zhao L, Li L, Zhang L, Si JQ, Ma KT. Role of gap junctions in the contractile response to agonists in the mesenteric resistance artery of rats with acute hypoxia. Mol Med Rep 2017; 15:1823-1831. [DOI: 10.3892/mmr.2017.6188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 12/21/2016] [Indexed: 11/06/2022] Open
|
29
|
Manjarrez-Marmolejo J, Franco-Pérez J. Gap Junction Blockers: An Overview of their Effects on Induced Seizures in Animal Models. Curr Neuropharmacol 2017; 14:759-71. [PMID: 27262601 PMCID: PMC5050393 DOI: 10.2174/1570159x14666160603115942] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 02/26/2016] [Accepted: 04/21/2016] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Gap junctions are clusters of intercellular channels allowing the bidirectional pass of ions directly into the cytoplasm of adjacent cells. Electrical coupling mediated by gap junctions plays a role in the generation of highly synchronized electrical activity. The hypersynchronous neuronal activity is a distinctive characteristic of convulsive events. Therefore, it has been postulated that enhanced gap junctional communication is an underlying mechanism involved in the generation and maintenance of seizures. There are some chemical compounds characterized as gap junction blockers because of their ability to disrupt the gap junctional intercellular communication. OBJECTIVE Hence, the aim of this review is to analyze the available data concerning the effects of gap junction blockers specifically in seizure models. RESULTS Carbenoxolone, quinine, mefloquine, quinidine, anandamide, oleamide, heptanol, octanol, meclofenamic acid, niflumic acid, flufenamic acid, glycyrrhetinic acid and retinoic acid have all been evaluated on animal seizure models. In vitro, these compounds share anticonvulsant effects typically characterized by the reduction of both amplitude and frequency of the epileptiform activity induced in brain slices. In vivo, gap junction blockers modify the behavioral parameters related to seizures induced by 4-aminopyridine, pentylenetetrazole, pilocarpine, penicillin and maximal electroshock. CONCLUSION Although more studies are still required, these molecules could be a promising avenue in the search for new pharmaceutical alternatives for the treatment of epilepsy.
Collapse
Affiliation(s)
| | - Javier Franco-Pérez
- Laboratory of Physiology of Reticular Formation, National Institute of Neurology and Neurosurgery, M.V.S. Insurgentes Sur 3877, Col. La Fama, C.P. 14269, Mexico D.F., Mexico
| |
Collapse
|
30
|
Retinal gap junctions are involved in rhythmogenesis of neuronal activity at remote locations – Study on infra-slow oscillations in the rat olivary pretectal nucleus. Neuroscience 2016; 339:150-161. [DOI: 10.1016/j.neuroscience.2016.09.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/21/2016] [Accepted: 09/21/2016] [Indexed: 12/21/2022]
|
31
|
Qiu XW, Gong HQ, Zhang PM, Liang PJ. The oscillation-like activity in bullfrog ON-OFF retinal ganglion cell. Cogn Neurodyn 2016; 10:481-493. [PMID: 27891197 DOI: 10.1007/s11571-016-9397-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/27/2016] [Accepted: 07/08/2016] [Indexed: 01/24/2023] Open
Abstract
Oscillatory activity of retinal ganglion cell (RGC) has been observed in various species. It was reported such oscillatory activity is raised within large neural network and involved in retinal information coding. In the present research, we found an oscillation-like activity in ON-OFF RGC of bullfrog retina, and studied the mechanisms underlying the ON and OFF activities respectively. Pharmacological experiments revealed that the oscillation-like activity patterns in both ON and OFF pathways were abolished by GABA receptor antagonists, indicating GABAergic inhibition is essential for generating them. At the meantime, such activities in the ON and OFF pathways showed different responses to several other applied drugs. The oscillation-like pattern in the OFF pathway was abolished by glycine receptor antagonist or gap junction blocker, whereas that in the ON pathway was not affected. Furthermore, the blockade of the ON pathway by metabotropic glutamate receptor agonist led to suppression of the oscillation-like pattern in the OFF pathway. These results suggest that the ON pathway has modulatory effect on the oscillation-like activity in the OFF pathway. Therefore, the mechanisms underlying the oscillation-like activities in the ON and OFF pathways are different: the oscillation-like activity in the ON pathway is likely caused by GABAergic amacrine cell network, while that in the OFF pathway needs the contributions of GABAergic and glycinergic amacrine cell network, as well as gap junction connections.
Collapse
Affiliation(s)
- Xiao-Wei Qiu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai, 200240 China
| | - Hai-Qing Gong
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai, 200240 China
| | - Pu-Ming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai, 200240 China
| | - Pei-Ji Liang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai, 200240 China
| |
Collapse
|
32
|
Yaeger DB, Trussell LO. Auditory Golgi cells are interconnected predominantly by electrical synapses. J Neurophysiol 2016; 116:540-51. [PMID: 27121584 PMCID: PMC4978786 DOI: 10.1152/jn.01108.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/26/2016] [Indexed: 11/22/2022] Open
Abstract
The mossy fiber-granule cell-parallel fiber system conveys proprioceptive and corollary discharge information to principal cells in cerebellum-like systems. In the dorsal cochlear nucleus (DCN), Golgi cells inhibit granule cells and thus regulate information transfer along the mossy fiber-granule cell-parallel fiber pathway. Whereas excitatory synaptic inputs to Golgi cells are well understood, inhibitory and electrical synaptic inputs to Golgi cells have not been examined. Using paired recordings in a mouse brain slice preparation, we find that Golgi cells of the cochlear nucleus reliably form electrical synapses onto one another. Golgi cells were only rarely electrically coupled to superficial stellate cells, which form a separate network of electrically coupled interneurons in the DCN. Spikelets had a biphasic effect on the excitability of postjunctional Golgi cells, with a brief excitatory phase and a prolonged inhibitory phase due to the propagation of the prejunctional afterhyperpolarization through gap junctions. Golgi cells and stellate cells made weak inhibitory chemical synapses onto Golgi cells with low probability. Electrical synapses are therefore the predominant form of synaptic communication between auditory Golgi cells. We propose that electrical synapses between Golgi cells may function to regulate the synchrony of Golgi cell firing when electrically coupled Golgi cells receive temporally correlated excitatory synaptic input.
Collapse
Affiliation(s)
- Daniel B Yaeger
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon; and
| | - Laurence O Trussell
- Vollum Institute and Oregon Hearing Research Center, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
33
|
Greschner M, Heitman AK, Field GD, Li PH, Ahn D, Sher A, Litke AM, Chichilnisky EJ. Identification of a Retinal Circuit for Recurrent Suppression Using Indirect Electrical Imaging. Curr Biol 2016; 26:1935-1942. [PMID: 27397894 DOI: 10.1016/j.cub.2016.05.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 11/27/2022]
Abstract
Understanding the function of modulatory interneuron networks is a major challenge, because such networks typically operate over long spatial scales and involve many neurons of different types. Here, we use an indirect electrical imaging method to reveal the function of a spatially extended, recurrent retinal circuit composed of two cell types. This recurrent circuit produces peripheral response suppression of early visual signals in the primate magnocellular visual pathway. We identify a type of polyaxonal amacrine cell physiologically via its distinctive electrical signature, revealed by electrical coupling with ON parasol retinal ganglion cells recorded using a large-scale multi-electrode array. Coupling causes the amacrine cells to fire spikes that propagate radially over long distances, producing GABA-ergic inhibition of other ON parasol cells recorded near the amacrine cell axonal projections. We propose and test a model for the function of this amacrine cell type, in which the extra-classical receptive field of ON parasol cells is formed by reciprocal inhibition from other ON parasol cells in the periphery, via the electrically coupled amacrine cell network.
Collapse
Affiliation(s)
- Martin Greschner
- Department of Neuroscience, Carl von Ossietzky University, Oldenburg 26129, Germany; Systems Neurobiology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Alexander K Heitman
- Systems Neurobiology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Greg D Field
- Systems Neurobiology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Peter H Li
- Systems Neurobiology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Daniel Ahn
- Systems Neurobiology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Alexander Sher
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Alan M Litke
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - E J Chichilnisky
- Systems Neurobiology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Departments of Neurosurgery and Ophthalmology and Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
34
|
Direct Evidence for Daily Plasticity of Electrical Coupling between Rod Photoreceptors in the Mammalian Retina. J Neurosci 2016; 36:178-84. [PMID: 26740659 DOI: 10.1523/jneurosci.3301-15.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Rod photoreceptors are electrically coupled through gap junctions. Coupling is a key determinant of their light response properties, but whether rod electrical coupling is dynamically regulated remains elusive and controversial. Here, we have obtained direct measurements of the conductance between adjacent rods in mouse retina and present evidence that rod electrical coupling strength is dependent on the time of day, the lighting conditions, and the mouse strain. Specifically, we show in CBA/Ca mice that under circadian conditions, the rod junctional conductance has a median value of 98 pS during the subjective day and of 493 pS during the subjective night. In C57BL/6 mice, the median junctional conductance between dark-adapted rods is ∼140 pS, regardless of the time in the circadian cycle. Adaptation to bright light decreases the rod junctional conductance to ∼0 pS, regardless of the time of day or the mouse strain. Together, these results establish the high degree of plasticity of rod electrical coupling over the course of the day. Estimates of the rod coupling strength will provide a foundation for further investigations of rod interactions and the role of rod coupling in the ability of the visual system to anticipate, assimilate, and respond to the daily changes in ambient light intensity. SIGNIFICANCE STATEMENT Many cells in the CNS communicate via gap junctions, or electrical synapses, the regulation of which remains largely unknown. Here, we show that the strength of electrical coupling between rod photoreceptors of the retina is regulated by the time of day and the lighting conditions. This mechanism may help us understand some key aspects of day and night vision as well as some visual malfunctions.
Collapse
|
35
|
Kuo SP, Schwartz GW, Rieke F. Nonlinear Spatiotemporal Integration by Electrical and Chemical Synapses in the Retina. Neuron 2016; 90:320-32. [PMID: 27068789 DOI: 10.1016/j.neuron.2016.03.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 02/02/2016] [Accepted: 03/06/2016] [Indexed: 10/22/2022]
Abstract
Electrical and chemical synapses coexist in circuits throughout the CNS. Yet, it is not well understood how electrical and chemical synaptic transmission interact to determine the functional output of networks endowed with both types of synapse. We found that release of glutamate from bipolar cells onto retinal ganglion cells (RGCs) was strongly shaped by gap-junction-mediated electrical coupling within the bipolar cell network of the mouse retina. Specifically, electrical synapses spread signals laterally between bipolar cells, and this lateral spread contributed to a nonlinear enhancement of bipolar cell output to visual stimuli presented closely in space and time. Our findings thus (1) highlight how electrical and chemical transmission can work in concert to influence network output and (2) reveal a previously unappreciated circuit mechanism that increases RGC sensitivity to spatiotemporally correlated input, such as that produced by motion.
Collapse
Affiliation(s)
- Sidney P Kuo
- Department of Physiology and Biophysics and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Gregory W Schwartz
- Department of Physiology and Biophysics and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Fred Rieke
- Department of Physiology and Biophysics and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
36
|
Bell CL, Murray SA. Adrenocortical Gap Junctions and Their Functions. Front Endocrinol (Lausanne) 2016; 7:82. [PMID: 27445985 PMCID: PMC4925680 DOI: 10.3389/fendo.2016.00082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/20/2016] [Indexed: 12/21/2022] Open
Abstract
Adrenal cortical steroidogenesis and proliferation are thought to be modulated by gap junction-mediated direct cell-cell communication of regulatory molecules between cells. Such communication is regulated by the number of gap junction channels between contacting cells, the rate at which information flows between these channels, and the rate of channel turnover. Knowledge of the factors regulating gap junction-mediated communication and the turnover process are critical to an understanding of adrenal cortical cell functions, including development, hormonal response to adrenocorticotropin, and neoplastic dedifferentiation. Here, we review what is known about gap junctions in the adrenal gland, with particular attention to their role in adrenocortical cell steroidogenesis and proliferation. Information and insight gained from electrophysiological, molecular biological, and imaging (immunocytochemical, freeze fracture, transmission electron microscopic, and live cell) techniques will be provided.
Collapse
Affiliation(s)
- Cheryl L. Bell
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sandra A. Murray
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- *Correspondence: Sandra A. Murray,
| |
Collapse
|
37
|
Abstract
UNLABELLED Visual processing in the retina depends on coordinated signaling by interneurons. Photoreceptor signals are relayed to ∼20 ganglion cell types through a dozen excitatory bipolar interneurons, each responsive to light increments (ON) or decrements (OFF). ON and OFF bipolar cell pathways become tuned through specific connections with inhibitory interneurons: horizontal and amacrine cells. A major obstacle for understanding retinal circuitry is the unknown function of most of the ∼30-40 amacrine cell types, each of which synapses onto a subset of bipolar cell terminals, ganglion cell dendrites, and other amacrine cells. Here, we used a transgenic mouse line in which vasoactive intestinal polypeptide-expressing (VIP+) GABAergic interneurons express Cre recombinase. Targeted whole-cell recordings of fluorescently labeled VIP+ cells revealed three predominant types: wide-field bistratified and narrow-field monostratified cells with somas in the inner nuclear layer (INL) and medium-field monostratified cells with somas in the ganglion cell layer (GCL). Bistratified INL cells integrated excitation and inhibition driven by both ON and OFF pathways with little spatial tuning. Narrow-field INL cells integrated excitation driven by the ON pathway and inhibition driven by both pathways, with pronounced hyperpolarizations at light offset. Monostratified GCL cells integrated excitation and inhibition driven by the ON pathway and showed center-surround spatial tuning. Optogenetic experiments showed that, collectively, VIP+ cells made strong connections with OFF δ, ON-OFF direction-selective, and W3 ganglion cells but weak, inconsistent connections with ON and OFF α cells. Revealing VIP+ cell morphologies, receptive fields and synaptic connections advances our understanding of their role in visual processing. SIGNIFICANCE STATEMENT The retina is a model system for understanding nervous system function. At the first stage, rod and cone photoreceptors encode light and communicate with a complex network of interneurons. These interneurons drive the responses of ganglion cells, which form the optic nerve and transmit visual information to the brain. Presently, we lack information about many of the retina's inhibitory amacrine interneurons. In this study, we used genetically modified mice to study the light responses and intercellular connections of specific amacrine cell types. The results show diversity in the shape and function of the studied amacrine cells and elucidate their connections with specific types of ganglion cell. The findings advance our understanding of the cellular basis for retinal function.
Collapse
|
38
|
All spiking, sustained ON displaced amacrine cells receive gap-junction input from melanopsin ganglion cells. Curr Biol 2015; 25:2763-2773. [PMID: 26441349 DOI: 10.1016/j.cub.2015.09.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/15/2015] [Accepted: 09/05/2015] [Indexed: 11/22/2022]
Abstract
Retinal neurons exhibit sustained versus transient light responses, which are thought to encode low- and high-frequency stimuli, respectively. This dichotomy has been recognized since the earliest intracellular recordings from the 1960s, but the underlying mechanisms are not yet fully understood. We report that in the ganglion cell layer of rat retinas, all spiking amacrine interneurons with sustained ON photoresponses receive gap-junction input from intrinsically photosensitive retinal ganglion cells (ipRGCs), recently discovered photoreceptors that specialize in prolonged irradiance detection. This input presumably allows ipRGCs to regulate the secretion of neuromodulators from these interneurons. We have identified three morphological varieties of such ipRGC-driven displaced amacrine cells: (1) monostratified cells with dendrites terminating exclusively in sublamina S5 of the inner plexiform layer, (2) bistratified cells with dendrites in both S1 and S5, and (3) polyaxonal cells with dendrites and axons stratifying in S5. Most of these amacrine cells are wide field, although some are medium field. The three classes respond to light differently, suggesting that they probably perform diverse functions. These results demonstrate that ipRGCs are a major source of tonic visual information within the retina and exert widespread intraretinal influence. They also add to recent evidence that ganglion cells signal not only to the brain.
Collapse
|
39
|
Barrett JM, Degenaar P, Sernagor E. Blockade of pathological retinal ganglion cell hyperactivity improves optogenetically evoked light responses in rd1 mice. Front Cell Neurosci 2015; 9:330. [PMID: 26379501 PMCID: PMC4548307 DOI: 10.3389/fncel.2015.00330] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/10/2015] [Indexed: 12/17/2022] Open
Abstract
Retinitis pigmentosa (RP) is a progressive retinal dystrophy that causes visual impairment and eventual blindness. Retinal prostheses are the best currently available vision-restoring treatment for RP, but only restore crude vision. One possible contributing factor to the poor quality of vision achieved with prosthetic devices is the pathological retinal ganglion cell (RGC) hyperactivity that occurs in photoreceptor dystrophic disorders. Gap junction blockade with meclofenamic acid (MFA) was recently shown to diminish RGC hyperactivity and improve the signal-to-noise ratio (SNR) of RGC responses to light flashes and electrical stimulation in the rd10 mouse model of RP. We sought to extend these results to spatiotemporally patterned optogenetic stimulation in the faster-degenerating rd1 model and compare the effectiveness of a number of drugs known to disrupt rd1 hyperactivity. We crossed rd1 mice with a transgenic mouse line expressing the light-sensitive cation channel channelrhodopsin2 (ChR2) in RGCs, allowing them to be stimulated directly using high-intensity blue light. We used 60-channel ITO multielectrode arrays to record ChR2-mediated RGC responses from wholemount, ex-vivo retinas to full-field and patterned stimuli before and after application of MFA, 18-β-glycyrrhetinic acid (18BGA, another gap junction blocker) or flupirtine (Flu, a Kv7 potassium channel opener). All three drugs decreased spontaneous RGC firing, but 18BGA and Flu also decreased the sensitivity of RGCs to optogenetic stimulation. Nevertheless, all three drugs improved the SNR of ChR2-mediated responses. MFA also made it easier to discern motion direction of a moving bar from RGC population responses. Our results support the hypothesis that reduction of pathological RGC spontaneous activity characteristic in retinal degenerative disorders may improve the quality of visual responses in retinal prostheses and they provide insights into how best to achieve this for optogenetic prostheses.
Collapse
Affiliation(s)
- John M Barrett
- Faculty of Medical Sciences, Institute of Neuroscience, Newcastle University Newcastle-upon-Tyne, UK
| | - Patrick Degenaar
- Faculty of Science, Agriculture and Engineering, School of Electrical and Electronic Engineering, Newcastle University Newcastle-upon-Tyne, UK
| | - Evelyne Sernagor
- Faculty of Medical Sciences, Institute of Neuroscience, Newcastle University Newcastle-upon-Tyne, UK
| |
Collapse
|
40
|
Modelling the Effects of Electrical Coupling between Unmyelinated Axons of Brainstem Neurons Controlling Rhythmic Activity. PLoS Comput Biol 2015; 11:e1004240. [PMID: 25954930 PMCID: PMC4425518 DOI: 10.1371/journal.pcbi.1004240] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/15/2015] [Indexed: 11/19/2022] Open
Abstract
Gap junctions between fine unmyelinated axons can electrically couple groups of brain neurons to synchronise firing and contribute to rhythmic activity. To explore the distribution and significance of electrical coupling, we modelled a well analysed, small population of brainstem neurons which drive swimming in young frog tadpoles. A passive network of 30 multicompartmental neurons with unmyelinated axons was used to infer that: axon-axon gap junctions close to the soma gave the best match to experimentally measured coupling coefficients; axon diameter had a strong influence on coupling; most neurons were coupled indirectly via the axons of other neurons. When active channels were added, gap junctions could make action potential propagation along the thin axons unreliable. Increased sodium and decreased potassium channel densities in the initial axon segment improved action potential propagation. Modelling suggested that the single spike firing to step current injection observed in whole-cell recordings is not a cellular property but a dynamic consequence of shunting resulting from electrical coupling. Without electrical coupling, firing of the population during depolarising current was unsynchronised; with coupling, the population showed synchronous recruitment and rhythmic firing. When activated instead by increasing levels of modelled sensory pathway input, the population without electrical coupling was recruited incrementally to unpatterned activity. However, when coupled, the population was recruited all-or-none at threshold into a rhythmic swimming pattern: the tadpole “decided” to swim. Modelling emphasises uncertainties about fine unmyelinated axon physiology but, when informed by biological data, makes general predictions about gap junctions: locations close to the soma; relatively small numbers; many indirect connections between neurons; cause of action potential propagation failure in fine axons; misleading alteration of intrinsic firing properties. Modelling also indicates that electrical coupling within a population can synchronize recruitment of neurons and their pacemaker firing during rhythmic activity. Some groups of nerve cells in the brain are connected to each other electrically where their processes make contact and form specialized “gap” junctions. The simplest function of electrical connections is to make activity propagate faster by avoiding the delays resulting from chemical messengers at synaptic connections. In other cases, especially in higher brain regions where more spread out nerve cells may be connected by their axons, the function of electrical coupling is less clear. To understand this type of electrical connection better we have built computer models of a group of electrically coupled nerve cells in the brain which control swimming in very young frog tadpoles. We show that the coupling can be indirect, via other members of the group, and can profoundly influence the properties of the nerve cells which would be recorded during real experiments. The main role of the coupling is to synchronise the firing of the group so they are all recruited together when the tadpole is stimulated and then fire in a rhythm suitable to drive swimming movements. The results from this simple animal raise issues which will help to understand coupling in more complex brains.
Collapse
|
41
|
Jin NG, Chuang AZ, Masson PJ, Ribelayga CP. Rod electrical coupling is controlled by a circadian clock and dopamine in mouse retina. J Physiol 2015; 593:1597-631. [PMID: 25616058 PMCID: PMC4386962 DOI: 10.1113/jphysiol.2014.284919] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/19/2015] [Indexed: 11/08/2022] Open
Abstract
Rod single-photon responses are critical for vision in dim light. Electrical coupling via gap junction channels shapes the light response properties of vertebrate photoreceptors, but the regulation of rod coupling and its impact on the single-photon response have remained unclear. To directly address these questions, we developed a perforated patch-clamp recording technique and recorded from single rod inner segments in isolated intact neural mouse retinae, maintained by superfusion. Experiments were conducted at different times of the day or under constant environmental conditions, at different times across the circadian cycle. We show that rod electrical coupling is regulated by a circadian clock and dopamine, so that coupling is weak during the day and strong at night. Altogether, patch-clamp recordings of single-photon responses in mouse rods, tracer coupling, receptive field measurements and pharmacological manipulations of gap junction and dopamine receptor activity provide compelling evidence that rod coupling is modulated in a circadian manner. These data are consistent with computer modelling. At night, single-photon responses are smaller due to coupling, but the signal-to-noise ratio for a dim (multiphoton) light response is increased at night because of signal averaging between coupled rods.
Collapse
Affiliation(s)
- Nan Ge Jin
- Ruiz Department of Ophthalmology and Visual Science, Medical School, The University of Texas Health Science Centre at Houston6431 Fannin Street, Suite MSB 7.024, Houston, TX, 77030, USA
| | - Alice Z Chuang
- Ruiz Department of Ophthalmology and Visual Science, Medical School, The University of Texas Health Science Centre at Houston6431 Fannin Street, Suite MSB 7.024, Houston, TX, 77030, USA
| | - Philippe J Masson
- Department of Mechanical Engineering, Cullen College of Engineering, University of HoustonN207 Engineering Building 1, Suite W204, Houston, TX, 77204, USA
| | - Christophe P Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, Medical School, The University of Texas Health Science Centre at Houston6431 Fannin Street, Suite MSB 7.024, Houston, TX, 77030, USA
- Graduate School of Biomedical Sciences, The University of Texas Health Science Centre at Houston, 6767 Bertner Avenue, Mitchell BuildingBSRB Suite 3.8344, Houston, TX, 77030, USA
- Neuroscience Graduate Program, The University of Texas Health Science Centre at Houston, Medical School6431 Fannin Street, Suite MSB 7.262, Houston, TX, 77030, USA
- Neuroscience Research Centre, The University of Texas Health Science Centre at HoustonHouston, 6431 Fannin Street, Suite MSB 7.046, TX, 77030, USA
| |
Collapse
|
42
|
Elevated intraocular pressure decreases response sensitivity of inner retinal neurons in experimental glaucoma mice. Proc Natl Acad Sci U S A 2015; 112:2593-8. [PMID: 25675503 DOI: 10.1073/pnas.1419921112] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Glaucoma is the second leading cause of blindness in the United States and the world, characterized by progressive degeneration of the optic nerve and retinal ganglion cells (RGCs). Glaucoma patients exhibit an early diffuse loss of retinal sensitivity followed by focal loss of RGCs in sectored patterns. Recent evidence has suggested that this early sensitivity loss may be associated with dysfunctions in the inner retina, but detailed cellular and synaptic mechanisms underlying such sensitivity changes are largely unknown. In this study, we use whole-cell voltage-clamp techniques to analyze light responses of individual bipolar cells (BCs), AII amacrine cells (AIIACs), and ON and sustained OFF alpha-ganglion cells (ONαGCs and sOFFαGCs) in dark-adapted mouse retinas with elevated intraocular pressure (IOP). We present evidence showing that elevated IOP suppresses the rod ON BC inputs to AIIACs, resulting in less sensitive AIIACs, which alter AIIAC inputs to ONαGCs via the AIIAC→cone ON BC→ONαGC pathway, resulting in lower ONαGC sensitivity. The altered AIIAC response also reduces sOFFαGC sensitivity via the AIIAC→sOFFαGC chemical synapses. These sensitivity decreases in αGCs and AIIACs were found in mice with elevated IOP for 3-7 wk, a stage when little RGC or optic nerve degeneration was observed. Our finding that elevated IOP alters neuronal function in the inner retina before irreversible structural damage occurs provides useful information for developing new diagnostic tools and treatments for glaucoma in human patients.
Collapse
|
43
|
Abstract
The loss of auditory hair cells triggers repair responses within the population of nonsensory supporting cells. When hair cells are irreversibly lost from the mammalian cochlea, supporting cells expand to fill the resulting lesions in the sensory epithelium, an initial repair process that is dependent on gap junctional intercellular communication (GJIC). In the chicken cochlea (the basilar papilla or BP), dying hair cells are extruded from the epithelium and supporting cells expand to fill the lesions and then replace hair cells via mitotic and/or conversion mechanisms. Here, we investigated the involvement of GJIC in the initial epithelial repair process in the aminoglycoside-damaged BP. Gentamicin-induced hair cell loss was associated with a decrease of chicken connexin43 (cCx43) immunofluorescence, yet cCx30-labeled gap junction plaques remained. Fluorescence recovery after photobleaching experiments confirmed that the GJIC remained robust in gentamicin-damaged explants, but regionally asymmetric coupling was no longer evident. Dye injections in slice preparations from undamaged BP explants identified cell types with characteristic morphologies along the neural-abneural axis, but these were electrophysiologically indistinct. In gentamicin-damaged BP, supporting cells expanded to fill space formerly occupied by hair cells and displayed more variable electrophysiological phenotypes. When GJIC was inhibited during the aminoglycoside damage paradigm, the epithelial repair response halted. Dying hair cells were retained within the sensory epithelium and supporting cells remained unexpanded. These observations suggest that repair of the auditory epithelium shares common mechanisms across vertebrate species and emphasize the importance of functional gap junctions in maintaining a homeostatic environment permissive for subsequent hair cell regeneration.
Collapse
|
44
|
Differential regulation of cone calcium signals by different horizontal cell feedback mechanisms in the mouse retina. J Neurosci 2014; 34:11826-43. [PMID: 25164677 DOI: 10.1523/jneurosci.0272-14.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Controlling neurotransmitter release by modulating the presynaptic calcium level is a key mechanism to ensure reliable signal transmission from one neuron to the next. In this study, we investigated how the glutamatergic output of cone photoreceptors (cones) in the mouse retina is shaped by different feedback mechanisms from postsynaptic GABAergic horizontal cells (HCs) using a combination of two-photon calcium imaging and pharmacology at the level of individual cone axon terminals. We provide evidence that hemichannel-mediated (putative ephaptic) feedback sets the cone output gain by defining the basal calcium level, a mechanism that may be crucial for adapting cones to the ambient light level. In contrast, pH-mediated feedback did not modulate the cone basal calcium level but affected the size and shape of light-evoked cone calcium signals in a contrast-dependent way: low-contrast light responses were amplified, whereas high-contrast light responses were reduced. Finally, we provide functional evidence that GABA shapes light-evoked calcium signals in cones. Because we could not localize ionotropic GABA receptors on cone axon terminals using electron microscopy, we suggest that GABA may act through GABA autoreceptors on HCs, thereby possibly modulating hemichannel- and/or pH-mediated feedback. Together, our results suggest that at the cone synapse, hemichannel-mediated (ephaptic) and pH-mediated feedback fulfill distinct functions to adjust the output of cones to changing ambient light levels and stimulus contrasts and that the efficacy of these feedback mechanisms is likely modulated by GABA release in the outer retina.
Collapse
|
45
|
Dargaei Z, Colmers PLW, Hodgson HM, Magoski NS. Electrical coupling between Aplysia bag cell neurons: characterization and role in synchronous firing. J Neurophysiol 2014; 112:2680-96. [PMID: 25185820 DOI: 10.1152/jn.00494.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In neuroendocrine cells, hormone release often requires a collective burst of action potentials synchronized by gap junctions. This is the case for the electrically coupled bag cell neurons in the reproductive system of the marine snail, Aplysia californica. These neuroendocrine cells are found in two clusters, and fire a synchronous burst, called the afterdischarge, resulting in neuropeptide secretion and the triggering of ovulation. However, the physiology and pharmacology of the bag cell neuron electrical synapse are not completely understood. As such, we made dual whole cell recordings from pairs of electrically coupled cultured bag cell neurons. The junctional current was nonrectifying and not influenced by postsynaptic voltage. Furthermore, junctional conductance was voltage independent and, not surprisingly, strongly correlated with coupling coefficient magnitude. The electrical synapse also acted as a low-pass filter, although under certain conditions, electrotonic potentials evoked by presynaptic action potentials could drive postsynaptic spikes. If coupled neurons were stimulated to spike simultaneously, they presented a high degree of action potential synchrony compared with not-coupled neurons. The electrical synapse failed to pass various intracellular dyes, but was permeable to Cs(+), and could be inhibited by niflumic acid, meclofenamic acid, or 5-nitro-2-(3-phenylpropylamino)benzoic acid. Finally, extracellular and sharp-electrode recording from the intact bag cell neuron cluster showed that these pharmacological uncouplers disrupted both electrical coupling and afterdischarge generation in situ. Thus electrical synapses promote bag cell neuron firing synchrony and may allow for electrotonic spread of the burst through the network, ultimately contributing to propagation of the species.
Collapse
Affiliation(s)
- Zahra Dargaei
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, Ontario, Canada
| | - Phillip L W Colmers
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, Ontario, Canada
| | - Heather M Hodgson
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, Ontario, Canada
| | - Neil S Magoski
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
46
|
Palacios-Muñoz A, Escobar MJ, Vielma A, Araya J, Astudillo A, Valdivia G, García IE, Hurtado J, Schmachtenberg O, Martínez AD, Palacios AG. Role of connexin channels in the retinal light response of a diurnal rodent. Front Cell Neurosci 2014; 8:249. [PMID: 25202238 PMCID: PMC4142540 DOI: 10.3389/fncel.2014.00249] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 08/05/2014] [Indexed: 01/02/2023] Open
Abstract
Several studies have shown that connexin channels play an important role in retinal neural coding in nocturnal rodents. However, the contribution of these channels to signal processing in the retina of diurnal rodents remains unclear. To gain insight into this problem, we studied connexin expression and the contribution of connexin channels to the retinal light response in the diurnal rodent Octodon degus (degu) compared to rat, using in vivo ERG recording under scotopic and photopic light adaptation. Analysis of the degu genome showed that the common retinal connexins present a high degree of homology to orthologs expressed in other mammals, and expression of Cx36 and Cx43 was confirmed in degu retina. Cx36 localized mainly to the outer and inner plexiform layers (IPLs), while Cx43 was expressed mostly in cells of the retinal pigment epithelium. Under scotopic conditions, the b-wave response amplitude was strongly reduced by 18-β-glycyrrhetinic acid (β-GA) (−45.1% in degu, compared to −52.2% in rat), suggesting that connexins are modulating this response. Remarkably, under photopic adaptation, β-GA increased the ERG b-wave amplitude in degu (+107.2%) while reducing it in rat (−62.3%). Moreover, β-GA diminished the spontaneous action potential firing rate in ganglion cells (GCs) and increased the response latency of ON and OFF GCs. Our results support the notion that connexins exert a fine-tuning control of the retinal light response and have an important role in retinal neural coding.
Collapse
Affiliation(s)
- Angelina Palacios-Muñoz
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso Valparaíso, Chile
| | - Maria J Escobar
- Departamento de Electrónica, Universidad Técnico Federico Santa María Valparaíso, Chile
| | - Alex Vielma
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso Valparaíso, Chile
| | - Joaquín Araya
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso Valparaíso, Chile
| | - Aland Astudillo
- Departamento de Electrónica, Universidad Técnico Federico Santa María Valparaíso, Chile
| | - Gonzalo Valdivia
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso Valparaíso, Chile
| | - Isaac E García
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso Valparaíso, Chile
| | - José Hurtado
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso Valparaíso, Chile ; Instituto de Sistemas Complejos de Valparaíso Valparaíso, Chile
| | - Oliver Schmachtenberg
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso Valparaíso, Chile
| | - Agustín D Martínez
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso Valparaíso, Chile
| | - Adrian G Palacios
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso Valparaíso, Chile ; Instituto de Sistemas Complejos de Valparaíso Valparaíso, Chile
| |
Collapse
|
47
|
Choi H, Zhang L, Cembrowski MS, Sabottke CF, Markowitz AL, Butts DA, Kath WL, Singer JH, Riecke H. Intrinsic bursting of AII amacrine cells underlies oscillations in the rd1 mouse retina. J Neurophysiol 2014; 112:1491-504. [PMID: 25008417 DOI: 10.1152/jn.00437.2014] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In many forms of retinal degeneration, photoreceptors die but inner retinal circuits remain intact. In the rd1 mouse, an established model for blinding retinal diseases, spontaneous activity in the coupled network of AII amacrine and ON cone bipolar cells leads to rhythmic bursting of ganglion cells. Since such activity could impair retinal and/or cortical responses to restored photoreceptor function, understanding its nature is important for developing treatments of retinal pathologies. Here we analyzed a compartmental model of the wild-type mouse AII amacrine cell to predict that the cell's intrinsic membrane properties, specifically, interacting fast Na and slow, M-type K conductances, would allow its membrane potential to oscillate when light-evoked excitatory synaptic inputs were withdrawn following photoreceptor degeneration. We tested and confirmed this hypothesis experimentally by recording from AIIs in a slice preparation of rd1 retina. Additionally, recordings from ganglion cells in a whole mount preparation of rd1 retina demonstrated that activity in AIIs was propagated unchanged to elicit bursts of action potentials in ganglion cells. We conclude that oscillations are not an emergent property of a degenerated retinal network. Rather, they arise largely from the intrinsic properties of a single retinal interneuron, the AII amacrine cell.
Collapse
Affiliation(s)
- Hannah Choi
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois
| | - Lei Zhang
- Department of Biology, University of Maryland, College Park, Maryland; and
| | - Mark S Cembrowski
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia
| | - Carl F Sabottke
- Department of Biology, University of Maryland, College Park, Maryland; and
| | | | - Daniel A Butts
- Department of Biology, University of Maryland, College Park, Maryland; and
| | - William L Kath
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois
| | - Joshua H Singer
- Department of Biology, University of Maryland, College Park, Maryland; and
| | - Hermann Riecke
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois;
| |
Collapse
|
48
|
Biswas S, Haselier C, Mataruga A, Thumann G, Walter P, Müller F. Pharmacological analysis of intrinsic neuronal oscillations in rd10 retina. PLoS One 2014; 9:e99075. [PMID: 24918437 PMCID: PMC4053359 DOI: 10.1371/journal.pone.0099075] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/11/2014] [Indexed: 12/30/2022] Open
Abstract
In the widely used mouse model of retinal degeneration, rd1, the loss of photoreceptors leads to rhythmic electrical activity of around 10-16 Hz in the remaining retinal network. Recent studies suggest that this oscillation is formed within the electrically coupled network of AII amacrine cells and ON-bipolar cells. A second mouse model, rd10, displays a delayed onset and slower progression of degeneration, making this mouse strain a better model for human retinitis pigmentosa. In rd10, oscillations occur at a frequency of 3-7 Hz, raising the question whether oscillations have the same origin in the two mouse models. As rd10 is increasingly being used as a model to develop experimental therapies, it is important to understand the mechanisms underlying the spontaneous rhythmic activity. To study the properties of oscillations in rd10 retina we combined multi electrode recordings with pharmacological manipulation of the retinal network. Oscillations were abolished by blockers for ionotropic glutamate receptors and gap junctions. Frequency and amplitude of oscillations were modulated strongly by blockers of inhibitory receptors and to a lesser extent by blockers of HCN channels. In summary, although we found certain differences in the pharmacological modulation of rhythmic activity in rd10 compared to rd1, the overall pattern looked similar. This suggests that the generation of rhythmic activity may underlie similar mechanisms in rd1 and rd10 retina.
Collapse
Affiliation(s)
- Sonia Biswas
- Institute of Complex Systems, Cellular Biophysics, ICS-4, Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | - Anja Mataruga
- Institute of Complex Systems, Cellular Biophysics, ICS-4, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Gabriele Thumann
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| | - Peter Walter
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| | - Frank Müller
- Institute of Complex Systems, Cellular Biophysics, ICS-4, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
49
|
Kim J, Lee S, Tsuda S, Zhang X, Asrican B, Gloss B, Feng G, Augustine GJ. Optogenetic mapping of cerebellar inhibitory circuitry reveals spatially biased coordination of interneurons via electrical synapses. Cell Rep 2014; 7:1601-1613. [PMID: 24857665 DOI: 10.1016/j.celrep.2014.04.047] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 02/10/2014] [Accepted: 04/21/2014] [Indexed: 11/26/2022] Open
Abstract
We used high-speed optogenetic mapping technology to examine the spatial organization of local inhibitory circuits formed by cerebellar interneurons. Transgenic mice expressing channelrhodopsin-2 exclusively in molecular layer interneurons allowed us to focally photostimulate these neurons, while measuring resulting responses in postsynaptic Purkinje cells. This approach revealed that interneurons converge upon Purkinje cells over a broad area and that at least seven interneurons form functional synapses with a single Purkinje cell. The number of converging interneurons was reduced by treatment with gap junction blockers, revealing that electrical synapses between interneurons contribute substantially to the spatial convergence. Remarkably, gap junction blockers affected convergence in sagittal slices, but not in coronal slices, indicating a sagittal bias in electrical coupling between interneurons. We conclude that electrical synapse networks spatially coordinate interneurons in the cerebellum and may also serve this function in other brain regions.
Collapse
Affiliation(s)
- Jinsook Kim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Drive, Research Techno Plaza, Singapore 637553, Singapore; Laboratory of Synaptic Circuitry, Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore; A(∗)STAR/Duke-NUS Neuroscience Research Partnership, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Soojung Lee
- Laboratory of Synaptic Circuitry, Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore; A(∗)STAR/Duke-NUS Neuroscience Research Partnership, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Center for Functional Connectomics, Korea Institute of Science and Technology, 39-1 Hawolgokdong, Seongbukgu, Seoul 136-791, Republic of Korea; Department of Maxillofacial Tissue Regeneration, School of Dentistry, Kyung Hee University, Seoul 130-050, Republic of Korea
| | - Sachiko Tsuda
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Drive, Research Techno Plaza, Singapore 637553, Singapore; Laboratory of Synaptic Circuitry, Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore; A(∗)STAR/Duke-NUS Neuroscience Research Partnership, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Xuying Zhang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Brent Asrican
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Bernd Gloss
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Guoping Feng
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - George J Augustine
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Drive, Research Techno Plaza, Singapore 637553, Singapore; Laboratory of Synaptic Circuitry, Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore; A(∗)STAR/Duke-NUS Neuroscience Research Partnership, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Marine Biological Laboratory, Woods Hole, MA 02543, USA; Center for Functional Connectomics, Korea Institute of Science and Technology, 39-1 Hawolgokdong, Seongbukgu, Seoul 136-791, Republic of Korea; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| |
Collapse
|
50
|
Wang TM, Holzhausen LC, Kramer RH. Imaging an optogenetic pH sensor reveals that protons mediate lateral inhibition in the retina. Nat Neurosci 2014; 17:262-8. [PMID: 24441679 PMCID: PMC3985427 DOI: 10.1038/nn.3627] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/04/2013] [Indexed: 11/09/2022]
Abstract
The reciprocal synapse between photoreceptors and horizontal cells underlies lateral inhibition and establishes the antagonistic center-surround receptive fields of retinal neurons to enhance visual contrast. Despite decades of study, the signal mediating the negative feedback from horizontal cells to cones has remained under debate because the small, invaginated synaptic cleft has precluded measurement. Using zebrafish retinas, we show that light elicits a change in synaptic proton concentration with the correct magnitude, kinetics and spatial dependence to account for lateral inhibition. Light, which hyperpolarizes horizontal cells, causes synaptic alkalinization, whereas activating an exogenously expressed ligand-gated Na(+) channel, which depolarizes horizontal cells, causes synaptic acidification. Whereas acidification was prevented by blocking a proton pump, re-alkalinization was prevented by blocking proton-permeant ion channels, suggesting that distinct mechanisms underlie proton efflux and influx. These findings reveal that protons mediate lateral inhibition in the retina, raising the possibility that protons are unrecognized retrograde messengers elsewhere in the nervous system.
Collapse
Affiliation(s)
- Tzu-Ming Wang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Lars C Holzhausen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Richard H Kramer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|