1
|
Park I, Nam H, Lee Y, Smith A, Rehberger T, Lillehoj H. Effect of β-Alanine Metabolite on Gut Integrity and Immunity in Commercial Broiler Chickens Infected with Eimeria maxima. Animals (Basel) 2024; 14:2558. [PMID: 39272343 PMCID: PMC11393982 DOI: 10.3390/ani14172558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
(1) Background: In a metabolomics analysis conducted to investigate the mechanisms behind the growth-promoting effects of probiotics in broilers, β-alanine was found to be significantly elevated. This led to the hypothesis that β-alanine could also contribute to growth-promoting effects in infected broilers. (2) Methods: An in vitro culture system was developed to assess β-alanine's impact on proinflammatory cytokine response in chicken macrophage cells, gut integrity in chicken intestinal epithelial cells, and muscle differentiation in quail muscle cells and primary chicken embryonic muscle cells. In vivo animal feeding studies were then conducted to investigate the effects of dietary β-alanine on various disease parameters in Eimeria maxima-infected broiler chickens. (3) Results: In vitro, β-alanine treatment significantly decreased the gene expression of cytokines in chicken macrophage cells and increased occuldin expression in chicken intestinal epithelial cells. Dietary β-alanine increased the body weight of chickens following Eimeria maxima infection in the H-ALA group. Dietary β-alanine also suppressed cytokines and increased JAM-2 and occludin expression in the H-ALA group compared to the infected group without β-alanine supplementation. (4) Conclusions: These results strongly support the positive effects of dietary β-alanine on intestinal immune responses and gut barrier function in broiler chickens infected with Eimeria maxima.
Collapse
Affiliation(s)
- Inkyung Park
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-USDA, Beltsville, MD 20705, USA
| | - Hyoyoun Nam
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-USDA, Beltsville, MD 20705, USA
| | - Youngsub Lee
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-USDA, Beltsville, MD 20705, USA
| | - Alexandra Smith
- Arm & Hammer Animal and Food Production, Waukesha, WI 53186, USA
| | - Thomas Rehberger
- Arm & Hammer Animal and Food Production, Waukesha, WI 53186, USA
| | - Hyun Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-USDA, Beltsville, MD 20705, USA
| |
Collapse
|
2
|
Zhang S, Zhang J, Lin R, Lu C, Fang B, Shi J, Jiang T, Zhou M. Design and construction of light-regulated gene transcription and protein translation systems in yeast P. Pastoris. J Adv Res 2024:S2090-1232(24)00330-8. [PMID: 39117107 DOI: 10.1016/j.jare.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/17/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024] Open
Abstract
INTRODUCTION P. pastoris is a common host for effective biosynthesis of heterologous proteins as well as small molecules. Accurate regulation of gene transcription and protein synthesis is necessary to coordinate synthetic gene circuits and optimize cellular energy distribution. Traditional methanol or other inducible promoters, natural or engineered, have defects in either fermentation safety or expression capacity. The utilization of chemical inducers typically adds complexity to the product purification process, but there is no other well-controlled protein synthesis system than promoters yet. OBJECTIVE The study aimed to address the aforementioned challenges by constructing light-regulated gene transcription and protein translation systems with excellent expression capacity and light sensitivity. METHODS Trans-acting factors were designed by linking the N. crassa blue-light sensor WC-1 with the activation domain of endogenous transcription factors. Light inducible or repressive promoters were then constructed through chimeric design of cis-elements (light-responsive elements, LREs) and endogenous promoters. Various configurations of trans-acting factor/LRE pairs, along with different LRE positions and copy numbers were tested for optimal promoter performance. In addition to transcription, a light-repressive translation system was constructed through the "rare codon brake" design. Rare codons were deliberately utilized to serve as brakes during protein synthesis, which were switched on and off through the light-regulated changes in the expression of the corresponding pLRE-tRNA. RESULTS As demonstrated with GFP, the light-inducible promoter 4pLRE-cPAOX1 was 70 % stronger than the constitutive promoter PGAP, with L/D ratio = 77. The light-repressive promoter PGAP-pLRE was strictly suppressed by light, with expression capacity comparable with PGAP in darkness. As for the light-repressive translation system, the "triple brake" design successfully eliminated leakage and achieved light repression on protein synthesis without any impact on mRNA expression. CONCLUSION The newly designed light-regulated transcription and translation systems offer innovative tools that optimize the application of P. pastoris in biotechnology and synthetic biology.
Collapse
Affiliation(s)
- Siyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiazhen Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ru Lin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chaoyu Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bohao Fang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiacheng Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tianyi Jiang
- China Innovation Center of Roche, Shanghai 201203, China
| | - Mian Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
3
|
Li G, Li Z, Liu J. Amino acids regulating skeletal muscle metabolism: mechanisms of action, physical training dosage recommendations and adverse effects. Nutr Metab (Lond) 2024; 21:41. [PMID: 38956658 PMCID: PMC11220999 DOI: 10.1186/s12986-024-00820-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
Maintaining skeletal muscle mass is important for improving muscle strength and function. Hence, maximizing lean body mass (LBM) is the primary goal for both elite athletes and fitness enthusiasts. The use of amino acids as dietary supplements is widespread among athletes and physically active individuals. Extensive literature analysis reveals that branched-chain amino acids (BCAA), creatine, glutamine and β-alanine may be beneficial in regulating skeletal muscle metabolism, enhancing LBM and mitigating exercise-induced muscle damage. This review details the mechanisms of these amino acids, offering insights into their efficacy as supplements. Recommended dosage and potential side effects are then outlined to aid athletes in making informed choices and safeguard their health. Lastly, limitations within the current literature are addressed, highlighting opportunities for future research.
Collapse
Affiliation(s)
- Guangqi Li
- School of Physical Education, Northeast Normal university, No. 5268, Renmin Street, Changchun city, Jilin province, 130024, People's Republic of China
| | - Zhaojun Li
- Gaomi Municipal Center for Disease Control and Prevention, Gaomi city, Shandong, People's Republic of China
| | - Junyi Liu
- School of Physical Education, Northeast Normal university, No. 5268, Renmin Street, Changchun city, Jilin province, 130024, People's Republic of China.
| |
Collapse
|
4
|
Alvarenga L, Kemp JA, Baptista BG, Ribeiro M, Lima LS, Mafra D. Production of Toxins by the Gut Microbiota: The Role of Dietary Protein. Curr Nutr Rep 2024; 13:340-350. [PMID: 38587573 DOI: 10.1007/s13668-024-00535-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
PURPOSE OF REVIEW This narrative review will discuss how the intake of specific protein sources (animal and vegetable) providing specific amino acids can modulate the gut microbiota composition and generate toxins. A better understanding of these interactions could lead to more appropriate dietary recommendations to improve gut health and mitigate the risk of complications promoted by the toxic metabolites formed by the gut microbiota. RECENT FINDINGS Gut microbiota is vital in maintaining human health by influencing immune function and key metabolic pathways. Under unfavorable conditions, the gut microbiota can produce excess toxins, which contribute to inflammation and the breakdown of the integrity of the intestinal barrier. Genetic and environmental factors influence gut microbiota diversity, with diet playing a crucial role. Emerging evidence indicates that the gut microbiota significantly metabolizes amino acids from dietary proteins, producing various metabolites with beneficial and harmful effects. Amino acids such as choline, betaine, l-carnitine, tyrosine, phenylalanine, and tryptophan can increase the production of uremic toxins when metabolized by intestinal bacteria. The type of food source that provides these amino acids affects the production of toxins. Plant-based diets and dietary fiber are associated with lower toxin formation than animal-based diets due to the high amino acid precursors in animal proteins.
Collapse
Affiliation(s)
- Livia Alvarenga
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil.
- Graduate Program in Nutrition Science, Federal Fluminense University, Niteroi, Rio de Janeiro (RJ), Brazil.
| | - Julie A Kemp
- Graduate Program in Nutrition Science, Federal Fluminense University, Niteroi, Rio de Janeiro (RJ), Brazil
| | - Beatriz G Baptista
- Graduate Program in Medical Science, Federal Fluminense University, Niteroi, Rio de Janeiro (RJ), Brazil
| | - Marcia Ribeiro
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
| | - Ligia Soares Lima
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
| | - Denise Mafra
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
- Graduate Program in Nutrition Science, Federal Fluminense University, Niteroi, Rio de Janeiro (RJ), Brazil
- Graduate Program in Medical Science, Federal Fluminense University, Niteroi, Rio de Janeiro (RJ), Brazil
| |
Collapse
|
5
|
Qiu Z, Huang R, Wu Y, Li X, Sun C, Ma Y. Decoding the Structural Diversity: A New Horizon in Antimicrobial Prospecting and Mechanistic Investigation. Microb Drug Resist 2024; 30:254-272. [PMID: 38648550 DOI: 10.1089/mdr.2023.0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
The escalating crisis of antimicrobial resistance (AMR) underscores the urgent need for novel antimicrobials. One promising strategy is the exploration of structural diversity, as diverse structures can lead to diverse biological activities and mechanisms of action. This review delves into the role of structural diversity in antimicrobial discovery, highlighting its influence on factors such as target selectivity, binding affinity, pharmacokinetic properties, and the ability to overcome resistance mechanisms. We discuss various approaches for exploring structural diversity, including combinatorial chemistry, diversity-oriented synthesis, and natural product screening, and provide an overview of the common mechanisms of action of antimicrobials. We also describe techniques for investigating these mechanisms, such as genomics, proteomics, and structural biology. Despite significant progress, several challenges remain, including the synthesis of diverse compound libraries, the identification of active compounds, the elucidation of complex mechanisms of action, the emergence of AMR, and the translation of laboratory discoveries to clinical applications. However, emerging trends and technologies, such as artificial intelligence, high-throughput screening, next-generation sequencing, and open-source drug discovery, offer new avenues to overcome these challenges. Looking ahead, we envisage an exciting future for structural diversity-oriented antimicrobial discovery, with opportunities for expanding the chemical space, harnessing the power of nature, deepening our understanding of mechanisms of action, and moving toward personalized medicine and collaborative drug discovery. As we face the continued challenge of AMR, the exploration of structural diversity will be crucial in our search for new and effective antimicrobials.
Collapse
Affiliation(s)
- Ziying Qiu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Rongkun Huang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yuxuan Wu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xinghao Li
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Chunyu Sun
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yunqi Ma
- School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
6
|
Wang J, Qiu Z, Zeng H, Tan Y, Huang Y, Luo J, Shu W. Long-Term Consumption of Purified Water Altered Amino Acid, Fatty Acid and Energy Metabolism in Livers of Rats. Metabolites 2024; 14:289. [PMID: 38786766 PMCID: PMC11122726 DOI: 10.3390/metabo14050289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
The consumption of low-mineral water has been increasing worldwide. Drinking low-mineral water is associated with cardiovascular disease, osteopenia, and certain neurodegenerative diseases. However, the specific mechanism remains unclear. The liver metabolic alterations in rats induced by drinking purified water for 3 months were investigated with a metabolomics-based strategy. Compared with the tap water group, 74 metabolites were significantly changed in the purified water group (6 increased and 68 decreased), including 29 amino acids, 11 carbohydrates, 10 fatty acids, 7 short chain fatty acids (SCFAs), and 17 other biomolecules. Eight metabolic pathways were significantly changed, namely aminoacyl-tRNA biosynthesis; nitrogen metabolism; alanine, aspartate and glutamate metabolism; arginine and proline metabolism; histidine metabolism; biosynthesis of unsaturated fatty acids; butanoate metabolism; and glycine, serine and threonine metabolism. These changes suggested that consumption of purified water induced negative nitrogen balance, reduced expression of some polyunsaturated fatty acids and SCFAs, and disturbed energy metabolism in rats. These metabolic disturbances may contribute to low-mineral-water-associated health risks. The health risk of consuming low-mineral water requires attention.
Collapse
Affiliation(s)
- Jia Wang
- Department of Medical English, College of Basic Medicine, Army Medical University, Chongqing 400038, China;
| | - Zhiqun Qiu
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University, Chongqin 400038, China; (Z.Q.); (H.Z.); (Y.T.); (Y.H.)
| | - Hui Zeng
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University, Chongqin 400038, China; (Z.Q.); (H.Z.); (Y.T.); (Y.H.)
| | - Yao Tan
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University, Chongqin 400038, China; (Z.Q.); (H.Z.); (Y.T.); (Y.H.)
| | - Yujing Huang
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University, Chongqin 400038, China; (Z.Q.); (H.Z.); (Y.T.); (Y.H.)
| | - Jiaohua Luo
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University, Chongqin 400038, China; (Z.Q.); (H.Z.); (Y.T.); (Y.H.)
| | - Weiqun Shu
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University, Chongqin 400038, China; (Z.Q.); (H.Z.); (Y.T.); (Y.H.)
| |
Collapse
|
7
|
Wang Q, Shi J, Liu J, Zhang P, Li L, Xie H, Li H, Wang H, Liu C, Qin P. Integration of transcriptome and metabolome reveals the accumulation of related metabolites and gene regulation networks during quinoa seed development. PLANT MOLECULAR BIOLOGY 2024; 114:10. [PMID: 38319430 DOI: 10.1007/s11103-023-01402-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/15/2023] [Indexed: 02/07/2024]
Abstract
Quinoa seeds are gluten- and cholesterol-free, contain all amino acids required by the human body, have a high protein content, provide endocrine regulation, protein supplementation, and cardiovascular protection effects. However, metabolite accumulation and transcriptional regulatory networks in quinoa seed development are not well understood. Four key stages of seed development in Dianli-3260 and Dianli-557 were thus analyzed and 849 metabolites were identified, among which sugars, amino acids, and lipids were key for developmental processes, and their accumulation showed a gradual decrease. Transcriptome analysis identified 40,345 genes, of which 20,917 were differential between the M and F phases, including 8279 and 12,638 up- and down-regulated genes, respectively. Grain development processes were mainly enriched in galactose metabolism, pentose and glucuronate interconversions, the biosynthesis of amino acids, and carbon metabolism pathways, in which raffinose, phosphoenolpyruvate, series and other metabolites are significantly enriched, gene-LOC110689372, Gene-LOC110710556 and gene-LOC110714584 are significantly expressed, and these metabolites and genes play an important role in carbohydrate metabolism, lipid and Amino acid synthesis of quinoa. This study provides a theoretical basis to expand our understanding of the molecular and metabolic development of quinoa grains.
Collapse
Affiliation(s)
- Qianchao Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Jirong Shi
- Food Crop Research Institute, Zhaotong Academy of Agricultural Sciences, Zhaotong, 657000, China
| | - Junna Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Ping Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Li Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Heng Xie
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Hanxue Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Hongxin Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Chenghong Liu
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences/Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China
| | - Peng Qin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
8
|
Zhang B, Yang Q, Liu N, Zhong Q, Sun Z. The Effects of Glutamine Supplementation on Liver Inflammatory Response and Protein Metabolism in Muscle of Lipopolysaccharide-Challenged Broilers. Animals (Basel) 2024; 14:480. [PMID: 38338123 PMCID: PMC10854980 DOI: 10.3390/ani14030480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/21/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
The aim of our present study was to investigate the effects of Gln supplementation on liver inflammatory responses as well as protein synthesis and degradation in the muscle of LPS-challenged broilers. A total of 120 one-day-old male broiler chickens (Arbor Acres Plus) were randomly arranged in a 2 × 2 factorial design with five replicates per treatment and six broilers per replicate, containing two main factors: immune challenge (injected with LPS in a dose of 0 or 500 µg/kg of body weight) and dietary treatments (supplemented with 1.22% alanine or 1% Gln). After feeding with an alanine or Gln diet for 15 days, broilers were administrated an LPS or a saline injection at 16 and 21 days. The results showed that Gln supplementation alleviated the increased mRNA expressions of interleukin-6, interleukin-1β, and tumor necrosis factor-α induced by LPS in liver. Moreover, the increased activity of aspartate aminotransferase combined with the decreased expression of glutaminase in muscle were observed following Gln addition. In addition, in comparison with the saline treatment, LPS challenge altered the signaling molecules' mRNA expressions associated with protein synthesis and degradation. However, Gln supplementation reversed the negative effects on protein synthesis and degradation in muscle of LPS-challenged broilers. Taken together, Gln supplementation had beneficial effects: alleviating inflammatory responses, promoting protein synthesis, and inhibiting protein degradation of LPS-challenged broilers.
Collapse
Affiliation(s)
- Bolin Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Chang Cheng Road, Cheng Yang District, Qingdao 266109, China
- Department of Biology and Agriculture, Zunyi Normal College, Ping’an Avenue, Hong Huagang District, Zunyi 563006, China
| | - Qian Yang
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888, Xincheng Road, Jingyue District, Changchun 130118, China; (Q.Y.); (N.L.); (Q.Z.)
| | - Ning Liu
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888, Xincheng Road, Jingyue District, Changchun 130118, China; (Q.Y.); (N.L.); (Q.Z.)
| | - Qingzhen Zhong
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888, Xincheng Road, Jingyue District, Changchun 130118, China; (Q.Y.); (N.L.); (Q.Z.)
| | - Zewei Sun
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888, Xincheng Road, Jingyue District, Changchun 130118, China; (Q.Y.); (N.L.); (Q.Z.)
| |
Collapse
|
9
|
Souza ACR, Vasconcelos AR, Dias DD, Komoni G, Name JJ. The Integral Role of Magnesium in Muscle Integrity and Aging: A Comprehensive Review. Nutrients 2023; 15:5127. [PMID: 38140385 PMCID: PMC10745813 DOI: 10.3390/nu15245127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Aging is characterized by significant physiological changes, with the degree of decline varying significantly among individuals. The preservation of intrinsic capacity over the course of an individual's lifespan is fundamental for healthy aging. Locomotion, which entails the capacity for independent movement, is intricately connected with various dimensions of human life, including cognition, vitality, sensory perception, and psychological well-being. Notably, skeletal muscle functions as a pivotal nexus within this intricate framework. Any perturbation in its functionality can manifest as compromised physical performance and an elevated susceptibility to frailty. Magnesium is an essential mineral that plays a central role in approximately 800 biochemical reactions within the human body. Its distinctive physical and chemical attributes render it an indispensable stabilizing factor in the orchestration of diverse cellular reactions and organelle functions, thereby rendering it irreplaceable in processes directly impacting muscle health. This narrative review offers a comprehensive exploration of the pivotal role played by magnesium in maintaining skeletal muscle integrity, emphasizing the critical importance of maintaining optimal magnesium levels for promoting healthy aging.
Collapse
Affiliation(s)
| | | | | | | | - José João Name
- Kilyos Assessoria, Cursos e Palestras, São Paulo 01311-100, Brazil; (A.C.R.S.); (A.R.V.); (D.D.D.); (G.K.)
| |
Collapse
|
10
|
Qi H, Lin G, Guo S, Guo X, Yu C, Zhang M, Gao X. Met stimulates ARID1A degradation and activation of the PI3K-SREBP1 signaling to promote milk fat synthesis in bovine mammary epithelial cells. Anim Biotechnol 2023; 34:4094-4104. [PMID: 37837279 DOI: 10.1080/10495398.2023.2265167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Methionine (Met) can promote milk fat synthesis in bovine mammary epithelial cells (BMECs), but the potential molecular mechanism is largely unknown. In this report, we aim to explore the role and molecular mechanism of AT-rich interaction domain 1A (ARID1A) in milk fat synthesis stimulated by Met. ARID1A knockdown and activation indicated that ARID1A negatively regulated the synthesis of triglycerides, cholesterol and free fatty acids and the formation of lipid droplets in BMECs. ARID1A also negatively regulated the phosphorylation of PI3K and AKT proteins, as well as the expression and maturation of SREBP1. Met stimulated the phosphorylation of PI3K and AKT proteins, as well as the expression and maturation of SREBP1, while ARID1A gene activation blocked the stimulatory effects of Met. We further found that ARID1A was located in the nucleus of BMECs, and Met reduced the nuclear localization and expression of ARID1A. ARID1A gene activation blocked the stimulation of PI3K and SREBP1 mRNA expression by Met. In summary, our data suggests that ARID1A negatively regulates milk fat synthesis stimulated by Met in BMECs through inhibiting the PI3K-SREBP1 signaling pathway, which may provide some new perspectives for improving milk fat synthesis.
Collapse
Affiliation(s)
- Hao Qi
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Gang Lin
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| | - Siqi Guo
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xudong Guo
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| | - Congying Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Minghui Zhang
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| | - Xuejun Gao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
11
|
Ring stage dormancy of Plasmodium falciparum tolerant to artemisinin and its analogues - A genetically regulated "Sleeping Beauty". Int J Parasitol Drugs Drug Resist 2023; 21:61-64. [PMID: 36708651 PMCID: PMC9883618 DOI: 10.1016/j.ijpddr.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
The appearance in 2008 in western Cambodia of Plasmodium falciparum tolerant to artemisinin, defined by longer parasite clearance time following drug administration and in vitro by a slightly higher survival rate of the ring stage after a 3-h treatment with 700 nM artemisinin (or analogues, collectively termed ART), has raised concerns of the possible loss of this frontline antimalarial [used in the form of an artemisinin combination therapy (ACT)], with its low IC50 value against the ring stage and pleiotropic pro-drug/poison property. The key genetic marker of ART tolerance phenotype is a number of non-synonymous mutations in Pfkelch13 propeller domain. This results in defective assembly at the ring stage of a cytostome structure located at cytoplasmic side of the parasite membrane required for invagination of a double-membrane endosome carrying host cytosol haemoglobin to the digestive vacuole. The consequential deprivation of amino acids initiates ring stage parasites bearing the causal mutations in PfK13 (or other key cytostome components) entry into a dormant state ("Sleeping Beauty"), which, after a duration longer than that the short-lived ART, "Sleeping Beauty" ring parasite resumes its normal, but accelerated, development to maintain the 48-h intra-erythrocytic life-cycle. We posit that when ART-tolerant P. falciparum has acquired under ART stress the causative PfK13 mutation (not obligatory if mutations occur in other critical cytostome components), together with other necessary mutations to adjust to the new normalcy and to provide survival competitiveness, ART-tolerant parasite has now evolved into a genetically programmed "Sleeping Beauty". The onus of preventing the spread of ART-tolerant P. falciparum lies with the efficacy of ACT partner drug, hence the recommendation of a triple ACT (TACT). Nevertheless, attention should also be focussed on understanding the mechanisms of dormancy, such as induction, maintenance and recovery, to enable discovery and development of novel antimalarials targeting this unique parasite stage.
Collapse
|
12
|
Tseng CS, Chao YW, Liu YH, Huang YS, Chao HW. Dysregulated proteostasis network in neuronal diseases. Front Cell Dev Biol 2023; 11:1075215. [PMID: 36910151 PMCID: PMC9998692 DOI: 10.3389/fcell.2023.1075215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/15/2023] [Indexed: 03/14/2023] Open
Abstract
Long-term maintenance of synaptic connections is important for brain function, which depends on varying proteostatic regulations to govern the functional integrity of neuronal proteomes. Proteostasis supports an interconnection of pathways that regulates the fate of proteins from synthesis to degradation. Defects in proteostatic signaling are associated with age-related functional decline and neurodegenerative diseases. Recent studies have advanced our knowledge of how cells have evolved distinct mechanisms to safely control protein homeostasis during synthesis, folding and degradation, and in different subcellular organelles and compartments. Neurodegeneration occurs when these protein quality controls are compromised by accumulated pathogenic proteins or aging to an irreversible state. Consequently, several therapeutic strategies, such as targeting the unfolded protein response and autophagy pathways, have been developed to reduce the burden of misfolded proteins and proved useful in animal models. Here, we present a brief overview of the molecular mechanisms involved in maintaining proteostatic networks, along with some examples linking dysregulated proteostasis to neuronal diseases.
Collapse
Affiliation(s)
- Ching-San Tseng
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Wen Chao
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Hsiang Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Shuian Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsu-Wen Chao
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
13
|
Zhang J, Deng L, Zhang X, Cao Y, Li M, Yao J. Multiple Essential Amino Acids Regulate Mammary Metabolism and Milk Protein Synthesis in Lactating Dairy Cows. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Zhang X, Zhao Y, Liang X, Zhang L, Li K, Sun Z, Zhao YF. α-Lipoic acid upregulates gene expression but reduces protein levels of fibroblast growth factor 21 in HepG2 Cells. Basic Clin Pharmacol Toxicol 2022; 131:270-281. [PMID: 35838000 DOI: 10.1111/bcpt.13775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/17/2022] [Accepted: 07/12/2022] [Indexed: 11/27/2022]
Abstract
Fibroblast growth factor 21 (FGF21) is a metabolism-regulating hepatokine, and its expression is finely controlled by the nutrients and cellular stressors. α-Lipoic acid (ALA) regulates fuel metabolism as a nutrient, but it also arouses mitochondrial and endoplasmic reticulum (ER) stress as well as oxidative stress in hepatocytes. However, the role of cellular stress in ALA-regulated FGF21 expression has not been demonstrated as yet. The present study found that ALA upregulated FGF21 gene expression while it reduced FGF21 protein levels in HepG2 cells, which was accompanied by mitochondrial damage that was shown by ATP reduction and ROS elevation. ALA led to mitochondrial stress and ER stress as shown by the increased expression of HSP60, ATF6 and ATF4. Inhibition of ER stress by 4-PBA significantly attenuated ALA-stimulated FGF21 gene expression while it did not influence the reduction of FGF21 protein levels. H2 O2 -induced oxidative stress reduced FGF21 protein levels in HepG2 cells, and anti-oxidation by Tempol blocked ALA-induced reduction of FGF21 proteins. In conclusion, ALA upregulates FGF21 gene expression through the stimulation of mitochondrial and ER stress while it reduces FGF21 protein levels through the induction of oxidative stress in HepG2 cells. Further studies are needed to demonstrate the in vivo effect of ALA on hepatic FGF21 expression.
Collapse
Affiliation(s)
- Xiaochun Zhang
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Yanyan Zhao
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Xiangyan Liang
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Lijun Zhang
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Ke Li
- Shaanxi Key Laboratory of Brain Disorders, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Zhuo Sun
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Yu-Feng Zhao
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| |
Collapse
|
15
|
Hildebrandt W, Keck J, Schmich S, Bonaterra GA, Wilhelm B, Schwarzbach H, Eva A, Bertoune M, Slater EP, Fendrich V, Kinscherf R. Inflammation and Wasting of Skeletal Muscles in Kras-p53-Mutant Mice with Intraepithelial Neoplasia and Pancreatic Cancer-When Does Cachexia Start? Cells 2022; 11:1607. [PMID: 35626644 PMCID: PMC9139525 DOI: 10.3390/cells11101607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
Skeletal muscle wasting critically impairs the survival and quality of life in patients with pancreatic ductal adenocarcinoma (PDAC). To identify the local factors initiating muscle wasting, we studied inflammation, fiber cross-sectional area (CSA), composition, amino acid metabolism and capillarization, as well as the integrity of neuromuscular junctions (NMJ, pre-/postsynaptic co-staining) and mitochondria (electron microscopy) in the hindlimb muscle of LSL-KrasG12D/+; LSL-TrP53R172H/+; Pdx1-Cre mice with intraepithelial-neoplasia (PanIN) 1-3 and PDAC, compared to wild-type mice (WT). Significant decreases in fiber CSA occurred with PDAC but not with PanIN 1-3, compared to WT: These were found in the gastrocnemius (type 2x: −20.0%) and soleus (type 2a: −21.0%, type 1: −14.2%) muscle with accentuation in the male soleus (type 2a: −24.8%, type 1: −17.4%) and female gastrocnemius muscle (−29.6%). Significantly higher densities of endomysial CD68+ and cyclooxygenase-2+ (COX2+) cells were detected in mice with PDAC, compared to WT mice. Surprisingly, CD68+ and COX2+ cell densities were also higher in mice with PanIN 1-3 in both muscles. Significant positive correlations existed between muscular and hepatic CD68+ or COX2+ cell densities. Moreover, in the gastrocnemius muscle, suppressor-of-cytokine-3 (SOCS3) expressions was upregulated >2.7-fold with PanIN 1A-3 and PDAC. The intracellular pools of proteinogenic amino acids and glutathione significantly increased with PanIN 1A-3 compared to WT. Capillarization, NMJ, and mitochondrial ultrastructure remained unchanged with PanIN or PDAC. In conclusion, the onset of fiber atrophy coincides with the manifestation of PDAC and high-grade local (and hepatic) inflammatory infiltration without compromised microcirculation, innervation or mitochondria. Surprisingly, muscular and hepatic inflammation, SOCS3 upregulation and (proteolytic) increases in free amino acids and glutathione were already detectable in mice with precancerous PanINs. Studies of initial local triggers and defense mechanisms regarding cachexia are warranted for targeted anti-inflammatory prevention.
Collapse
Affiliation(s)
- Wulf Hildebrandt
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (J.K.); (S.S.); (G.A.B.); (B.W.); (H.S.); (A.E.); (M.B.); (R.K.)
| | - Jan Keck
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (J.K.); (S.S.); (G.A.B.); (B.W.); (H.S.); (A.E.); (M.B.); (R.K.)
- Department of General, Visceral and Pedriatic Surgery, University Clinics, Georg-August University, Robert-Koch-Str. 40, 37075 Goettingen, Germany
| | - Simon Schmich
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (J.K.); (S.S.); (G.A.B.); (B.W.); (H.S.); (A.E.); (M.B.); (R.K.)
| | - Gabriel A. Bonaterra
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (J.K.); (S.S.); (G.A.B.); (B.W.); (H.S.); (A.E.); (M.B.); (R.K.)
| | - Beate Wilhelm
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (J.K.); (S.S.); (G.A.B.); (B.W.); (H.S.); (A.E.); (M.B.); (R.K.)
| | - Hans Schwarzbach
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (J.K.); (S.S.); (G.A.B.); (B.W.); (H.S.); (A.E.); (M.B.); (R.K.)
| | - Anna Eva
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (J.K.); (S.S.); (G.A.B.); (B.W.); (H.S.); (A.E.); (M.B.); (R.K.)
| | - Mirjam Bertoune
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (J.K.); (S.S.); (G.A.B.); (B.W.); (H.S.); (A.E.); (M.B.); (R.K.)
| | - Emily P. Slater
- Department of Visceral, Thoracic and Vascular Surgery, University Clinics of Giessen and Marburg, Baldinger Str., 35043 Marburg, Germany; (E.P.S.); (V.F.)
| | - Volker Fendrich
- Department of Visceral, Thoracic and Vascular Surgery, University Clinics of Giessen and Marburg, Baldinger Str., 35043 Marburg, Germany; (E.P.S.); (V.F.)
- Center for Endocrine Surgery, Schön Klinik Hamburg-Eilbek, Dehnhaide 120, 22081 Hamburg, Germany
| | - Ralf Kinscherf
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (J.K.); (S.S.); (G.A.B.); (B.W.); (H.S.); (A.E.); (M.B.); (R.K.)
| |
Collapse
|
16
|
Lei Y, Zhou X, Zhao Y, Zhang J. Effects of Exogenous ATP on Melanoma Growth and Tumor Metabolism in C57BL/6 Mice. Comp Med 2022; 72:93-103. [PMID: 35410634 DOI: 10.30802/aalas-cm-21-000099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Altered energy metabolism (glucose, lipid, amino acid) is a hallmark of cancer growth that provides the theoretical basis for the development of metabolic therapies as cancer treatments. ATP is one of the major biochemical constituents of the tumor microenvironment. ATP promotes tumor progression or suppression depending on various factors, including concentration and tumor type. Here we evaluated the antitumor effect of extracellular ATP on melanoma and the potential underlying mechanisms. A subcutaneous tumor model in mice was used to investigate the antitumor effects of ATP. Major lymphocyte cell changes and intratumoral metabolic changes were assessed. Metabolomic analysis (1H nuclear magnetic resonance spectroscopy) was performed on tumor samples. We measured the activities of lactate dehydrogenase A (LDHA) and LDHB in the excised tumors and serum and found that ATP and its metabolites affected the proliferation of and LDHA activity in B16F10 cells, a murine melanoma cell line. In addition, treatment with ATP dose-dependently reduced tumor size in melanoma-bearing mice. Moreover, flow cytometry analysis demonstrated that the antitumor effect of ATP was not achieved through changes in T-cell or B-cell subsets. Metabolomics analysis revealed that ATP treatment simultaneously reduced multiple intratumoral metabolites related to energy metabolism as well as serum and tumor LDHA activities. Furthermore, both ATP and its metabolites significantly suppressed both tumor cell proliferation and LDHA activity in the melanoma cell line. Our results in vivo and in vitro indicate that exogenous ATP inhibits melanoma growth in association with altered intratumoral metabolism.
Collapse
|
17
|
Zheng X, Su H, Wang L, Yao R, Ma Y, Bai L, Wang Y, Guo X, Wang Z. Phosphoproteomics Analysis Reveals a Pivotal Mechanism Related to Amino Acid Signals in Goat Fetal Fibroblast. Front Vet Sci 2021; 8:685548. [PMID: 34414225 PMCID: PMC8370256 DOI: 10.3389/fvets.2021.685548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/05/2021] [Indexed: 11/25/2022] Open
Abstract
In addition to serving as the building blocks for protein synthesis, amino acids serve as critical signaling molecules in cells. However, the mechanism through which amino acid signals are sensed in cells is not yet fully understood. This study examined differences in the phosphorylation levels of proteins in response to amino acid signals in Cashmere goat fetal fibroblasts (GFb). Amino acid deficiency was found to induce autophagy and attenuate mammalian/mechanistic target of rapamycin complex (mTORC1)/Unc-51-like autophagy activating kinase 1 (ULK1) signaling in GFb cells. A total of 144 phosphosites on 102 proteins positively associated with amino acid signaling were screened using phosphorylation-based proteomics analysis. The mitogen-activated protein kinase (MAPK) signaling pathway was found to play a potentially important role in the interaction network involved in the response to amino acid signals, according to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and MAPK1/3 may serve as a central hub for the entire network. Motif analysis identified three master motifs, xxx_S_Pxx, xxx_S_xxE, and xxx_S_xDx, which were centered on those phosphosites at which phosphorylation was positively regulated by amino acid signaling. Additionally, the phosphorylation levels of three membrane proteins, the zinc transporter SLC39A7, the sodium-dependent neutral amino acid transporters SLC1A5 and SLC38A7, and three translation initiation factors, eukaryotic initiation factor (eIF)5B, eIF4G, and eIF3C, were positively regulated by amino acid signals. These pivotal proteins were added to currently known signaling pathways to generate a novel model of the network pathways associated with amino acid signals. Finally, the phosphorylation levels of threonine 203 and tyrosine 205 on MAPK3 in response to amino acid signals were examined by western blot analysis, and the results were consistent with the data from the phosphoproteomics analysis. The findings of this study provide new evidence and insights into the precise mechanism through which amino acid signals are sensed and conducted in Cashmere goat fetal fibroblasts.
Collapse
Affiliation(s)
- Xu Zheng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
- Clinical Laboratory, The Hulunbuir People's Hospital, Hailar, China
| | - Huimin Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Liping Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Ruiyuan Yao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yuze Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Linfeng Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xudong Guo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zhigang Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
18
|
Pu H, Heighes PT, Simpson F, Wang Y, Liang Z, Wischmeyer P, Hugh TJ, Doig GS. Early oral protein-containing diets following elective lower gastrointestinal tract surgery in adults: a meta-analysis of randomized clinical trials. Perioper Med (Lond) 2021; 10:10. [PMID: 33752757 PMCID: PMC7986268 DOI: 10.1186/s13741-021-00179-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 02/22/2021] [Indexed: 02/08/2023] Open
Abstract
Background Although current guidelines make consensus recommendations for the early resumption of oral intake after surgery, a recent comprehensive meta-analysis failed to identify any patient-centered benefits. We hypothesized this finding was attributable to pooling studies providing effective protein-containing diets with ineffective non-protein liquid diets. Therefore, the aim of this paper was to investigate the safety and efficacy of early oral protein-containing diets versus later (traditional) feeding after elective lower gastrointestinal tract surgery in adults. Methods PubMed, Embase, and the China National Knowledge Infrastructure databases were searched from inception until 1 August 2019. Reference lists of retrieved studies were hand searched to identify randomized clinical trials reporting mortality. No language restrictions were applied. Study selection, risk of bias appraisal and data abstraction were undertaken independently by two authors. Disagreements were settled by obtaining an opinion of a third author. Majority decisions prevailed. After assessment of underlying assumptions, a fixed-effects method was used for analysis. The primary outcome was mortality. Secondary outcomes included surgical site infections, postoperative nausea and vomiting, serious postoperative complications and other key measures of safety and efficacy. Results Eight randomized clinical trials recruiting 657 patients were included. Compared with later (traditional) feeding, commencing an early oral protein-containing diet resulted in a statistically significant reduction in mortality (odds ratio [OR] 0.31, P = 0.02, I2 = 0%). An early oral protein-containing diet also significantly reduced surgical site infections (OR 0.39, P = 0.002, I2 = 32%), postoperative nausea and vomiting (OR 0.62, P = 0.04, I2 = 37%), serious postoperative complications (OR 0.60, P = 0.01, I2 = 25%), and significantly improved other major outcomes. No harms attributable to an early oral protein-containing diet were identified. Conclusions The results of this systematic review can be used to upgrade current guideline statements to a grade A recommendation supporting an oral protein-containing diet commenced before the end of postoperative day 1 after elective lower gastrointestinal surgery in adults. Supplementary Information The online version contains supplementary material available at 10.1186/s13741-021-00179-3.
Collapse
Affiliation(s)
- Hong Pu
- Northern Clinical School Intensive Care Research Unit, Faculty of Medicine and Health, University of Sydney, Kolling Building-RNSH, Pacific Hwy, St Leonards, NSW, 2065, Australia.,Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Philippa T Heighes
- Northern Clinical School Intensive Care Research Unit, Faculty of Medicine and Health, University of Sydney, Kolling Building-RNSH, Pacific Hwy, St Leonards, NSW, 2065, Australia
| | - Fiona Simpson
- Northern Clinical School Intensive Care Research Unit, Faculty of Medicine and Health, University of Sydney, Kolling Building-RNSH, Pacific Hwy, St Leonards, NSW, 2065, Australia.,Nutrition Services, Royal North Shore Hospital, Sydney, Australia
| | - Yaoli Wang
- Northern Clinical School Intensive Care Research Unit, Faculty of Medicine and Health, University of Sydney, Kolling Building-RNSH, Pacific Hwy, St Leonards, NSW, 2065, Australia.,Department of Critical Care Medicine, Daping Hospital, Chongqing, People's Republic of China
| | - Zeping Liang
- Northern Clinical School Intensive Care Research Unit, Faculty of Medicine and Health, University of Sydney, Kolling Building-RNSH, Pacific Hwy, St Leonards, NSW, 2065, Australia.,Department of Critical Care Medicine, Daping Hospital, Chongqing, People's Republic of China
| | - Paul Wischmeyer
- Department of Anesthesiology and Surgery, Duke University, Durham, NC, USA
| | - Thomas J Hugh
- Upper GI Surgical Department, Royal North Shore Hospital and the University of Sydney, Sydney, Australia
| | - Gordon S Doig
- Northern Clinical School Intensive Care Research Unit, Faculty of Medicine and Health, University of Sydney, Kolling Building-RNSH, Pacific Hwy, St Leonards, NSW, 2065, Australia.
| |
Collapse
|
19
|
Metabolic Fingerprinting of Murine L929 Fibroblasts as a Cell-Based Tumour Suppressor Model System for Methionine Restriction. Int J Mol Sci 2021; 22:ijms22063039. [PMID: 33809777 PMCID: PMC8002350 DOI: 10.3390/ijms22063039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/27/2022] Open
Abstract
Since Otto Warburg reported in 1924 that cancer cells address their increased energy requirement through a massive intake of glucose, the cellular energy level has offered a therapeutic anticancer strategy. Methionine restriction (MetR) is one of the most effective approaches for inducing low-energy metabolism (LEM) due to the central position in metabolism of this amino acid. However, no simple in vitro system for the rapid analysis of MetR is currently available, and this study establishes the murine cell line L929 as such a model system. L929 cells react rapidly and efficiently to MetR, and the analysis of more than 150 different metabolites belonging to different classes (amino acids, urea and tricarboxylic acid cycle (TCA) cycles, carbohydrates, etc.) by liquid chromatography/mass spectrometry (LC/MS) defines a metabolic fingerprint and enables the identification of specific metabolites representing normal or MetR conditions. The system facilitates the rapid and efficient testing of potential cancer therapeutic metabolic targets. To date, MS studies of MetR have been performed using organisms and yeast, and the current LC/MS analysis of the intra- and extracellular metabolites in the murine cell line L929 over a period of 5 days thus provides new insights into the effects of MetR at the cellular metabolic level.
Collapse
|
20
|
Wu S, Cui Z, Chen X, Zheng L, Ren H, Wang D, Yao J. Diet-ruminal microbiome-host crosstalk contributes to differential effects of calf starter and alfalfa hay on rumen epithelial development and pancreatic α-amylase activity in yak calves. J Dairy Sci 2021; 104:4326-4340. [PMID: 33589262 DOI: 10.3168/jds.2020-18736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 11/16/2020] [Indexed: 12/30/2022]
Abstract
Dietary supplementation of alfalfa hay or calf starter during the preweaning period was beneficial to the gastrointestinal development in dairy calves and lambs. In the present study, we designed 2 experiments using weaning with calf starter and alfalfa hay to investigate the diet-ruminal microbiome-host crosstalk in yak calves by analyzing the ruminal microbiota and rumen epithelial transcriptome. During the preweaning period, supplementation with either alfalfa hay or the starter significantly promoted animal growth and organ development in yak calves, including increases in body weight, body height, body length, chest girth, and development of liver, spleen, and thymus. These improvements could be attributed to increased dry matter intake, rumen fermentation, and development. Butyrate concentration increased in yak calves fed alfalfa hay or the starter, which could further promote ruminal epithelium development. Using 16S rRNA gene amplicon sequencing, we determined that butyrate-producing genera were increased by the supplementation with alfalfa hay or the starter. Transcriptomic analysis of the rumen epithelia revealed that the PI3K-Akt signaling pathway, which is critical in mediating many aspects of cellular function such as cell growth, was upregulated in response to alfalfa hay or the starter supplementation. The starter supplementation also increased the jejunal α-amylase activity, whereas alfalfa hay supplementation reduced the ileal α-amylase activity. Furthermore, the co-supplementation of both the starter and alfalfa hay reduced intestinal α-amylase activity. The starter increased ruminal propionate concentration, whereas alfalfa hay exhibited the opposite trend. The observed opposite effects of the starter and alfalfa hay on rumen propionate concentration corresponded with up- and downregulation, respectively, of the ruminal cholecystokinin involved in pancreatic secretion pathway, and thereby increased and decreased pancreatic α-amylase activity. In conclusion, both alfalfa hay and the starter could promote the growth and ruminal epithelial development of yak calves. The starter and alfalfa hay also differentially affected the intestinal α-amylase activities due to their different chemical components and different effects on ruminal fermentation, especially the ruminal propionate production.
Collapse
Affiliation(s)
- Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Center for Translational Microbiome Research, Department of Molecular, Tumour and Cell Biology, Karolinska Institute, Stockholm, Sweden 17165.
| | - Zhanhong Cui
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, Qinghai 810016, China
| | - Xiaodong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lixin Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dangdang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
21
|
Zhang X, Xu D, Chen M, Wang Y, He L, Wang L, Wu J, Yin J. Impacts of Selected Dietary Nutrient Intakes on Skeletal Muscle Insulin Sensitivity and Applications to Early Prevention of Type 2 Diabetes. Adv Nutr 2021; 12:1305-1316. [PMID: 33418570 PMCID: PMC8321846 DOI: 10.1093/advances/nmaa161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/11/2020] [Accepted: 11/13/2020] [Indexed: 11/14/2022] Open
Abstract
As the largest tissue in the body, skeletal muscle not only plays key roles in movement and glucose uptake and utilization but also mediates insulin sensitivity in the body by myokines. Insulin resistance in the skeletal muscle is a major feature of type 2 diabetes (T2D). A weakened response to insulin could lead to muscle mass loss and dysfunction. Increasing evidence in skeletal muscle cells, rodents, nonhuman primates, and humans has shown that restriction of caloric or protein intake positively mediates insulin sensitivity. Restriction of essential or nonessential amino acids was reported to facilitate glucose utilization and regulate protein turnover in skeletal muscle under certain conditions. Furthermore, some minerals, such as zinc, chromium, vitamins, and some natural phytochemicals such as curcumin, resveratrol, berberine, astragalus polysaccharide, emodin, and genistein, have been shown recently to protect skeletal muscle cells, mice, or humans with or without diabetes from insulin resistance. In this review, we discuss the roles of nutritional interventions in the regulation of skeletal muscle insulin sensitivity. A comprehensive understanding of the nutritional regulation of insulin signaling would contribute to the development of tools and treatment programs for improving skeletal muscle health and for preventing T2D.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Doudou Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Meixia Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yubo Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Linjuan He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiangwei Wu
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, China
| | | |
Collapse
|
22
|
Kim C, Hwang JK. Flavonoids: nutraceutical potential for counteracting muscle atrophy. Food Sci Biotechnol 2020; 29:1619-1640. [PMID: 33282430 PMCID: PMC7708614 DOI: 10.1007/s10068-020-00816-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle plays a vital role in the conversion of chemical energy into physical force. Muscle atrophy, characterized by a reduction in muscle mass, is a symptom of chronic disease (cachexia), aging (sarcopenia), and muscle disuse (inactivity). To date, several trials have been conducted to prevent and inhibit muscle atrophy development; however, few interventions are currently available for muscle atrophy. Recently, food ingredients, plant extracts, and phytochemicals have received attention as treatment sources to prevent muscle wasting. Flavonoids are bioactive polyphenol compounds found in foods and plants. They possess diverse biological activities, including anti-obesity, anti-diabetes, anti-cancer, anti-oxidation, and anti-inflammation. The effects of flavonoids on muscle atrophy have been investigated by monitoring molecular mechanisms involved in protein turnover, mitochondrial activity, and myogenesis. This review summarizes the reported effects of flavonoids on sarcopenia, cachexia, and disuse muscle atrophy, thus, providing an insight into the understanding of the associated molecular mechanisms.
Collapse
Affiliation(s)
- Changhee Kim
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| | - Jae-Kwan Hwang
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| |
Collapse
|
23
|
Mykles DL, Chang ES. Hormonal control of the crustacean molting gland: Insights from transcriptomics and proteomics. Gen Comp Endocrinol 2020; 294:113493. [PMID: 32339519 DOI: 10.1016/j.ygcen.2020.113493] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 04/21/2020] [Indexed: 01/17/2023]
Abstract
Endocrine control of molting in decapod crustaceans involves the eyestalk neurosecretory center (X-organ/sinus gland complex), regenerating limbs, and a pair of Y-organs (YOs), as molting is induced by eyestalk ablation or multiple leg autotomy and suspended in early premolt by limb bud autotomy. Molt-inhibiting hormone (MIH) and crustacean hyperglycemic hormone (CHH), produced in the X-organ/sinus gland complex, inhibit the YO. The YO transitions through four physiological states over the molt cycle: basal in intermolt; activated in early premolt; committed in mid- and late premolt; and repressed in postmolt. We assembled the first comprehensive YO transcriptome over the molt cycle in the land crab, Gecarcinus lateralis, showing that as many as 23 signaling pathways may interact in controlling ecdysteroidogenesis. A proposed model of the MIH/cyclic nucleotide pathway, which maintains the basal YO, consists of cAMP/Ca2+ triggering and nitric oxide (NO)/cGMP summation phases. Mechanistic target of rapamycin (mTOR) signaling is required for YO activation in early premolt and affects the mRNA levels of thousands of genes. Transforming Growth Factor-β (TGFβ)/Activin signaling is required for YO commitment in mid-premolt and high ecdysteroid titers at the end of premolt may trigger YO repression. The G. lateralis YO expresses 99 G protein-coupled receptors, three of which are putative receptors for MIH/CHH. Proteomic analysis shows the importance of radical oxygen species scavenging, cytoskeleton, vesicular secretion, immune response, and protein homeostasis and turnover proteins associated with YO function over the molt cycle. In addition to eyestalk ganglia, MIH mRNA and protein are present in brain, optic nerve, ventral nerve cord, and thoracic ganglion, suggesting that they are secondary sources of MIH. Down-regulation of mTOR signaling genes, in particular Ras homolog enriched in brain or Rheb, compensates for the effects of elevated temperature in the YO, heart, and eyestalk ganglia in juvenile Metacarcinus magister. Rheb expression increases in the activated and committed YO. These data suggest that mTOR plays a central role in mediating molt regulation by physiological and environmental factors.
Collapse
Affiliation(s)
- Donald L Mykles
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA; University of California-Davis Bodega Marine Laboratory, Bodega Bay, CA 94923, USA
| | - Ernest S Chang
- University of California-Davis Bodega Marine Laboratory, Bodega Bay, CA 94923, USA
| |
Collapse
|
24
|
Vasconcelos QDJS, Bachur TPR, Aragão GF. Whey protein supplementation and its potentially adverse effects on health: a systematic review. Appl Physiol Nutr Metab 2020; 46:27-33. [PMID: 32702243 DOI: 10.1139/apnm-2020-0370] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Whey protein comprises soluble whey proteins and its benefits are well described in the literature. However, there are not many studies investigating the potential adverse effect of a diet with indiscriminate use of this supplement. The aim of this study was to perform a systematic review of papers that addressed this theme. A search was conducted in Medline, LILACS, TOXNET, Web of science, and Scopus electronic databases. In the end, 11 documents comprised this review. The majority of the papers associated the damaging effect with the chronic and abusive use of whey protein, with the kidneys and liver being the main organs affected. The other studies related whey protein to aggravation of aggression, presence of acne, and modification of the microbiota. Therefore, excessive consumption over a long period of protein supplementation may have some adverse effects on the body, which is aggravated when associated with sedentary lifestyle. PROSPERO registration no.: CRD42020140466. Novelty: A systematic review of experimental and randomized studies about the use of whey proteins supplements and its impact on physical health. Analysis revealed that chronic and without professional guidance use of whey protein supplementation may cause some adverse effects specially on kidney and liver function. Presented data support a need for future studies co-relating the use of different types of whey protein with and without exercise to better see the impact on human physical health.
Collapse
Affiliation(s)
| | | | - Gislei Frota Aragão
- Faculty of Medicine, Drug Research and Development Center, Federal University of Ceara, Fortaleza, Ceará 60430-275, Brazil.,Health Science Center, Ceará State University, Fortaleza, Ceará 60714-903, Brazil
| |
Collapse
|
25
|
Taylor J, Yeomans AM, Packham G. Targeted inhibition of mRNA translation initiation factors as a novel therapeutic strategy for mature B-cell neoplasms. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:3-25. [PMID: 32924027 PMCID: PMC7116065 DOI: 10.37349/etat.2020.00002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/31/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer development is frequently associated with dysregulation of mRNA translation to enhance both increased global protein synthesis and translation of specific mRNAs encoding oncoproteins. Thus, targeted inhibition of mRNA translation is viewed as a promising new approach for cancer therapy. In this article we review current progress in investigating dysregulation of mRNA translation initiation in mature B-cell neoplasms, focusing on chronic lymphocytic leukemia, follicular lymphoma and diffuse large B-cell lymphoma. We discuss mechanisms and regulation of mRNA translation, potential pathways by which genetic alterations and the tumor microenvironment alters mRNA translation in malignant B cells, preclinical evaluation of drugs targeted against specific eukaryotic initiation factors and current progress towards clinical development. Overall, inhibition of mRNA translation initiation factors is an exciting and promising area for development of novel targeted anti-tumor drugs.
Collapse
Affiliation(s)
- Joe Taylor
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, United Kingdom
| | - Alison M Yeomans
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, United Kingdom
| | - Graham Packham
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, United Kingdom
| |
Collapse
|