1
|
Ge A, Xiang W, Li Y, Zhao D, Chen J, Daga P, Dai CC, Yang K, Yan Y, Hao M, Zhang B, Xiao W. Broadening horizons: the multifaceted role of ferroptosis in breast cancer. Front Immunol 2024; 15:1455741. [PMID: 39664391 PMCID: PMC11631881 DOI: 10.3389/fimmu.2024.1455741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/21/2024] [Indexed: 12/13/2024] Open
Abstract
Breast cancer poses a serious threat to women's health globally. Current radiotherapy and chemotherapy regimens can induce drug-resistance effects in cancer tissues, such as anti-apoptosis, anti-pyroptosis, and anti-necroptosis, leading to poor clinical outcomes in the treatment of breast cancer. Ferroptosis is a novel programmed cell death modality characterized by iron overload, excessive generation of reactive oxygen species, and membrane lipid peroxidation. The occurrence of ferroptosis results from the imbalance between intracellular peroxidation mechanisms (executive system) and antioxidant mechanisms (defensive system), specifically involving iron metabolism pathways, amino acid metabolism pathways, and lipid metabolism pathways. In recent years, it has been found that ferroptosis is associated with the progression of various diseases, including tumors, hypertension, diabetes, and Alzheimer's disease. Studies have confirmed that triggering ferroptosis in breast cancer cells can significantly inhibit cancer cell proliferation and invasion, and improve cancer cell sensitivity to radiotherapy and chemotherapy, making induction of ferroptosis a potential strategy for the treatment of breast cancer. This paper reviews the development of the concept of ferroptosis, the mechanisms of ferroptosis (including signaling pathways such as GSH-GPX4, FSP1-CoQ1, DHODH-CoQ10, and GCH1-BH4) in breast cancer disease, the latest research progress, and summarizes the research on ferroptosis in breast cancer disease within the framework of metabolism, reactive oxygen biology, and iron biology. The key regulatory factors and mechanisms of ferroptosis in breast cancer disease, as well as important concepts and significant open questions in the field of ferroptosis and related natural compounds, are introduced. It is hoped that future research will make further breakthroughs in the regulatory mechanisms of ferroptosis and the use of ferroptosis in treating breast cancer cells. Meanwhile, natural compounds may also become a new direction for potential drug development targeting ferroptosis in breast cancer treatment. This provides a theoretical basis and opens up a new pathway for research and the development of drugs for the prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wang Xiang
- Department of Rheumatology, The First People’s Hospital Changde City, Changde, Hunan, China
| | - Yan Li
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Da Zhao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Junpeng Chen
- Psychosomatic Laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, United States
- Tong Jiecheng Studio, Hunan University of Science and Technology, Xiangtan, China
| | - Pawan Daga
- Department of Internal Medicine, University of Louisville, Louisville, KY, United States
| | - Charles C. Dai
- Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, Baltimore, MD, United States
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States
| | - Kailin Yang
- Psychosomatic Laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yexing Yan
- Psychosomatic Laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Moujia Hao
- Psychosomatic Laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | | | - Wei Xiao
- Department of Rheumatology, The First People’s Hospital Changde City, Changde, Hunan, China
| |
Collapse
|
2
|
Shen Z, Yu N, Zhang Y, Jia M, Sun Y, Li Y, Zhao L. The potential roles of HIF-1α in epithelial-mesenchymal transition and ferroptosis in tumor cells. Cell Signal 2024; 122:111345. [PMID: 39134249 DOI: 10.1016/j.cellsig.2024.111345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
In tumors, the rapid proliferation of cells and the imperfect blood supply system lead to hypoxia, which can regulate the adaptation of tumor cells to the hypoxic environment through hypoxia-inducible factor-1α (HIF-1α) and promote tumor development in multiple ways. Recent studies have found that epithelial-mesenchymal transition (EMT) and ferroptosis play important roles in the progression of tumor cells. The activation of HIF-1α is considered a key factor in inducing EMT in tumor cells. When HIF-1α is activated, it can regulate EMT-related genes, causing tumor cells to gradually lose their epithelial characteristics and acquire more invasive mesenchymal traits. The occurrence of EMT allows tumor cells to better adapt to changes in the surrounding tissue, enhancing their migratory and invasive capabilities, thus promoting tumor progression. At the same time, HIF-1α also plays a crucial regulatory role in ferroptosis in tumor cells. In a hypoxic environment, HIF-1α may affect processes such as iron metabolism and oxidative stress responses, inducing ferroptosis in tumor cells. This article briefly reviews the dual role of HIF-1α in EMT and ferroptosis in tumor cells, helping to gain a deeper understanding of the regulatory pathways of HIF-1α in the development of tumor cells, providing a new perspective for understanding the pathogenesis of tumors. The regulation of HIF-1α may become an important strategy for future tumor therapy.
Collapse
Affiliation(s)
- Zhongjun Shen
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Na Yu
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Yanfeng Zhang
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Mingbo Jia
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Ying Sun
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Yao Li
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Liyan Zhao
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China.
| |
Collapse
|
3
|
Hu Y, Wu X, Tan X, Zhang J. Hsa_circRNA_007630 knockdown delays colon cancer progression by modulation of ferroptosis via miR-506-3p/AURKA axis. J Biochem Mol Toxicol 2024; 38:e23771. [PMID: 39015057 DOI: 10.1002/jbt.23771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/06/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024]
Abstract
Colon cancer contributes to high mortality rates internationally that has seriously endangered human health. Aurora kinase A (AURKA) served as a key molecule in colon cancer. However, its role of AURKA on regulating ferroptosis in colon cancer and their possible interactions with miRNAs and circRNAs remain still elusive. Comprehensive bioinformatics analysis after RNA-sequencing was conducted to determine the differentially expressed genes (DEGs), ferroptosis-related DEGs and hub genes. The direct relationship between miR-506-3p and hsa_circRNA_007630 or AURKA was predicted, then verified by dual luciferase reporter and quantitative real-time polymerase chain reaction. The rescue experiments were conducted by cotransfection with si-hsa_circRNA_007630, miR-506-3p inhibitor or pcDNA-AURKA in HT29 cells. Erastin was used to induce ferroptosis in HT29 cells and validated by detecting levels of intracellular Fe2+, lipid reactive oxygen species, glutathione, malondialdehyde and ferroptosis markers expression. We screened a total of 331 DEGs, 26 ferroptosis-related genes, among which 3 hub genes were identified through PPI network analysis. Therein, AURKA expression was elevated in colon cancer cells. Moreover, AURKA was targeted by miR-506-3p, and hsa_circRNA_007630 operated as miR-506-3p sponge. The effect of hsa_circRNA_007630 depletion on the inhibiting malignant phenotypes of HT29 cells was rescued by inhibition of miR-506-3p or AURKA overexpression. Additionally, AURKA reduced erastin-induced ferroptosis in HT29 cells. Depletion of circRNA_007630 exerts as a suppressive role in colon cancer through a novel miR-506-3p/AURKA pathway related to ferroptosis, and might become a novel marker for colon cancer.
Collapse
Affiliation(s)
- Ying Hu
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| | - Xiongjian Wu
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| | - Xiaobin Tan
- Department of Clinical Laboratory, First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| | - Jingzhi Zhang
- Department of Gastroenterology, Ganzhou People's Hospital (Ganzhou Hospital Affiliated to Nanchang University), Ganzhou City, China
| |
Collapse
|
4
|
Wu J, Shi Y, Zhou M, Chen M, Ji S, Liu X, Zhou M, Xia R, Zheng X, Wang W. Nutrient vitamins enabled metabolic regulation of ferroptosis via reactive oxygen species biology. Front Pharmacol 2024; 15:1434088. [PMID: 39092216 PMCID: PMC11291210 DOI: 10.3389/fphar.2024.1434088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Vitamins are dietary components necessary for cellular metabolic balance, especially redox homeostasis; deficient or excessive supply may give rise to symptoms of psychiatric disorders. Exploring the nutritional and metabolic pathways of vitamins could contribute to uncovering the underlying pathogenesis of ferroptosis-associated diseases. This mini-review aims to provide insights into vitamins closely linked to the regulation of ferroptosis from the perspective of cellular reactive oxygen species biology. The mainstream reprogramming mechanisms of ferroptosis are overviewed, focusing on unique biological processes of iron metabolism, lipid metabolism, and amino acid metabolism. Moreover, recent breakthroughs in therapeutic interventions targeting ferroptosis via fully utilizing vitamin-based pharmacological tools were overviewed, covering vitamins (B, C, E, and K). Finally, mechanism insight related to vitamin-associated nutrient signaling was provided, highlighting the pharmacological benefits of metabolically reprogramming ferroptosis-associated diseases.
Collapse
Affiliation(s)
- Junjie Wu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Yanting Shi
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Man Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Min Chen
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Shuying Ji
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Xingxing Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Mengjiao Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Rui Xia
- School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
5
|
Xu L, Wen B, Wu Q, Lu S, Liao J, Mo L, Li Q, Tong X, Yan H. Long non-coding RNA KB-1460A1.5 promotes ferroptosis by inhibiting mTOR/SREBP-1/SCD1-mediated polyunsaturated fatty acid desaturation in glioma. Carcinogenesis 2024; 45:487-499. [PMID: 38422369 DOI: 10.1093/carcin/bgae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/03/2024] [Accepted: 02/28/2024] [Indexed: 03/02/2024] Open
Abstract
Ferroptosis is a new form of regulated cell death caused by the iron-dependent peroxidation of phospholipids and is related to cell metabolism, redox homeostasis and various signalling pathways related to cancer. The long non-coding RNA (lncRNA) KB-1460A1.5 acts as a tumour suppressor gene to regulate tumour growth in gliomas, but its molecular network regulatory mechanism is still unclear. In this study, we found that KB-1460A1.5 can induce ferroptosis in glioma and enhance sensitivity to RSL3, a ferroptosis inducer. Tandem mass tag proteomics and nontargeted metabolomics suggest that KB-1460A1.5 affects polyunsaturated fatty acid metabolic processes. Gas chromatography-mass spectrometry-based medium- and long-chain fatty acid-targeted metabolomics confirmed that upregulation of KB-1460A1.5 decreased the levels of monounsaturated fatty acids, oleic acid (OA) and palmitoleic acid (PO) in glioma cells. The addition of OA and PO restored KB-1460A1.5-induced cellular ferroptosis. Molecularly, KB-1460A1.5 inhibited the mammalian target of rapamycin signalling pathway to suppress the expression of downstream sterol regulatory element-binding protein 1 (SREBP-1), thereby attenuating the stearoyl-CoA desaturase-1 (SCD1)-mediated desaturation of polyunsaturated fatty acids. Finally, an animal model of subcutaneous glioma confirmed that KB-1460A1.5 could inhibit tumour progression, SREBP-1/SCD1 expression and ferroptosis. In conclusion, increasing the expression level of KB-1460A1.5 in glioma can promote the induction of oxidative stress and ferroptosis in cancer cells through SREBP-1/SCD1-mediated adipogenesis, demonstrating therapeutic potential in preclinical models.
Collapse
Affiliation(s)
- Lixia Xu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Key Laboratory of Cerebral Blood Flow Reconstruction and Head and Neck Tumour New Technology Translation, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300070, China
| | - Binli Wen
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300070, China
| | - Qiaoli Wu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Key Laboratory of Cerebral Blood Flow Reconstruction and Head and Neck Tumour New Technology Translation, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300070, China
| | - Shan Lu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Key Laboratory of Cerebral Blood Flow Reconstruction and Head and Neck Tumour New Technology Translation, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300070, China
| | - Jianwen Liao
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Key Laboratory of Cerebral Blood Flow Reconstruction and Head and Neck Tumour New Technology Translation, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300070, China
| | - Lidong Mo
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Key Laboratory of Cerebral Blood Flow Reconstruction and Head and Neck Tumour New Technology Translation, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300070, China
| | - Qingguo Li
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Key Laboratory of Cerebral Blood Flow Reconstruction and Head and Neck Tumour New Technology Translation, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300070, China
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Xiaoguang Tong
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Key Laboratory of Cerebral Blood Flow Reconstruction and Head and Neck Tumour New Technology Translation, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300070, China
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Hua Yan
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Key Laboratory of Cerebral Blood Flow Reconstruction and Head and Neck Tumour New Technology Translation, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300070, China
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, China
| |
Collapse
|
6
|
Li YZ, Deng J, Zhang XD, Li DY, Su LX, Li S, Pan JM, Lu L, Ya JQ, Yang N, Zhou J, Yang LH. Naringenin enhances the efficacy of ferroptosis inducers by attenuating aerobic glycolysis by activating the AMPK-PGC1α signalling axis in liver cancer. Heliyon 2024; 10:e32288. [PMID: 38912485 PMCID: PMC11190665 DOI: 10.1016/j.heliyon.2024.e32288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024] Open
Abstract
Liver cancer is a heterogeneous disease characterized by poor responses to standard therapies and therefore unfavourable clinical outcomes. Understanding the characteristics of liver cancer and developing novel therapeutic strategies are imperative. Ferroptosis, a type of programmed cell death induced by lipid peroxidation, has emerged as a potential target for treatment. Naringenin, a natural compound that modulates lipid metabolism by targeting AMPK, shows promise in enhancing the efficacy of ferroptosis inducers. In this study, we utilized liver cancer cell lines and xenograft mice to explore the synergistic effects of naringenin in combination with ferroptosis inducers, examining both phenotypic outcomes and molecular mechanisms. Our study results indicate that the use of naringenin at non-toxic doses to hepatocytes can significantly enhance the anticancer effects of ferroptosis inducers (erastin, RSL3, and sorafenib). The combination index method confirmed a synergistic effect between naringenin and ferroptosis inducers. In comparison to naringenin or ferroptosis inducers alone, the combined therapy caused more robust lipid peroxidation and hence more severe ferroptotic damage to cancer cells. The inhibition of aerobic glycolysis mediated by the AMPK-PGC1α signalling axis is the key to naringenin's effect on reducing ferroptosis resistance in liver cancer, and the synergistic cytotoxic effect of naringenin and ferroptosis inducers on cancer cells was reversed after pretreatment with an AMPK inhibitor or a PGC1α inhibitor. Taken together, these findings suggest that naringenin could boost cancer cell sensitivity to ferroptosis inducers, which has potential clinical translational value.
Collapse
Affiliation(s)
- Yong-Zhuo Li
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Jing Deng
- Academic Affairs Office, School of Nursing, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiao-Dong Zhang
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Dong-Yang Li
- Academic Affairs Office, School of Nursing, Guangxi Medical University, Nanning, Guangxi, China
| | - Li-Xi Su
- Academic Affairs Office, School of Nursing, Guangxi Medical University, Nanning, Guangxi, China
| | - Shan Li
- Academic Affairs Office, School of Nursing, Guangxi Medical University, Nanning, Guangxi, China
| | - Jian-Min Pan
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Lan Lu
- Academic Affairs Office, School of Nursing, Guangxi Medical University, Nanning, Guangxi, China
| | - Jia-Qi Ya
- Academic Affairs Office, School of Nursing, Guangxi Medical University, Nanning, Guangxi, China
| | - Nuo Yang
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Jing Zhou
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Li-Hui Yang
- Academic Affairs Office, School of Nursing, Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Biological Molecular Medicine Research(Guangxi Medical University), Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
7
|
Mokhtarpour K, Razi S, Rezaei N. Ferroptosis as a promising targeted therapy for triple negative breast cancer. Breast Cancer Res Treat 2024:10.1007/s10549-024-07387-7. [PMID: 38874688 DOI: 10.1007/s10549-024-07387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE Triple negative breast cancer (TNBC) is a challenging subtype characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. Standard treatment options are limited, and approximately 45% of patients develop distant metastasis. Ferroptosis, a regulated form of cell death triggered by iron-dependent lipid peroxidation and oxidative stress, has emerged as a potential targeted therapy for TNBC. METHODS This study utilizes a multifaceted approach to investigate the induction of ferroptosis as a therapeutic strategy for TNBC. It explores metabolic alterations, redox imbalance, and oncogenic signaling pathways to understand their roles in inducing ferroptosis, characterized by lipid peroxidation, reactive oxygen species (ROS) generation, and altered cellular morphology. Critical pathways such as Xc-/GSH/GPX4, ACSL4/LPCAT3, and nuclear factor erythroid 2-related factor 2 (NRF2) are examined for their regulatory roles in ferroptosis and their potential dysregulation contributing to cancer cell survival and resistance. RESULTS Inducing ferroptosis has been shown to inhibit tumor growth, enhance the efficacy of conventional therapies, and overcome drug resistance in TNBC. Lipophilic antioxidants, GPX4 inhibitors, and inhibitors of the Xc- system have been demonstrated to be potential ferroptosis inducers. Additionally, targeting the NRF2 pathway and exploring other ferroptosis regulators, such as ferroptosis suppressor protein 1 (FSP1), and the PERK-eIF2α-ATF4-CHOP pathway, may offer novel therapeutic avenues. CONCLUSION Further research is needed to understand the mechanisms, optimize therapeutic strategies, and evaluate the safety and efficacy of ferroptosis-targeted therapies in TNBC treatment. Overall, targeting ferroptosis represents a promising approach to improving treatment outcomes and overcoming the challenges posed by TNBC.
Collapse
Affiliation(s)
- Kasra Mokhtarpour
- Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Imunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
| | - Nima Rezaei
- Research Center for Imunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
8
|
Chen H, Han Z, Su J, Song X, Ma Q, Lin Y, Ran Z, Li X, Mou R, Wang Y, Li D. Ferroptosis and hepatocellular carcinoma: the emerging role of lncRNAs. Front Immunol 2024; 15:1424954. [PMID: 38846953 PMCID: PMC11153672 DOI: 10.3389/fimmu.2024.1424954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Hepatocellular carcinoma is the most common form of primary liver cancer and poses a significant challenge to the medical community because of its high mortality rate. In recent years, ferroptosis, a unique form of cell death, has garnered widespread attention. Ferroptosis, which is characterized by iron-dependent lipid peroxidation and mitochondrial alterations, is closely associated with the pathological processes of various diseases, including hepatocellular carcinoma. Long non-coding RNAs (lncRNAs), are a type of functional RNA, and play crucial regulatory roles in a variety of biological processes. In this manuscript, we review the regulatory roles of lncRNAs in the key aspects of ferroptosis, and summarize the research progress on ferroptosis-related lncRNAs in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Haoran Chen
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Zhongyu Han
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Junyan Su
- The First People’s Hospital of Longquanyi District, Chengdu, China
| | - Xuanliang Song
- The First People’s Hospital of Longquanyi District, Chengdu, China
| | - Qingquan Ma
- The First People’s Hospital of Longquanyi District, Chengdu, China
| | - Yumeng Lin
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Zijin Ran
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Xueping Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rongkun Mou
- Department of General Surgery, The Third Hospital of Mianyang, Mianyang, China
| | - Yi Wang
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Dongxuan Li
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| |
Collapse
|
9
|
Wang Y, Wu N, Li J, Liang J, Zhou D, Cao Q, Li X, Jiang N. The interplay between autophagy and ferroptosis presents a novel conceptual therapeutic framework for neuroendocrine prostate cancer. Pharmacol Res 2024; 203:107162. [PMID: 38554788 DOI: 10.1016/j.phrs.2024.107162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
In American men, the incidence of prostate cancer (PC) is the highest among all types of cancer, making it the second leading cause of mortality associated with cancer. For advanced or metastatic PC, antiandrogen therapies are standard treatment options. The administration of these treatments unfortunately carries the potential risk of inducing neuroendocrine prostate cancer (NEPC). Neuroendocrine differentiation (NED) serves as a crucial indicator of prostate cancer development, encompassing various factors such as phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR), Yes-associated protein 1 (YAP1), AMP-activated protein kinase (AMPK), miRNA. The processes of autophagy and ferroptosis (an iron-dependent form of programmed cell death) play pivotal roles in the regulation of various types of cancers. Clinical trials and preclinical investigations have been conducted on many signaling pathways during the development of NEPC, with the deepening of research, autophagy and ferroptosis appear to be the potential target for regulating NEPC. Due to the dual nature of autophagy and ferroptosis in cancer, gaining a deeper understanding of the developmental programs associated with achieving autophagy and ferroptosis may enhance risk stratification and treatment efficacy for patients with NEPC.
Collapse
Affiliation(s)
- Youzhi Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Ning Wu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Junbo Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Jiaming Liang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Diansheng Zhou
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Qian Cao
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Institution of Urology, Peking University, Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China.
| | - Ning Jiang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| |
Collapse
|
10
|
Chen Z, Zheng S, Han J, Fu L, Fu J, Zhang Z, Hong P, Feng W. Molecular mechanisms of ferroptosis and its roles in leukemia. Front Oncol 2023; 13:1308869. [PMID: 38125948 PMCID: PMC10731040 DOI: 10.3389/fonc.2023.1308869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Cell death is a complex process required to maintain homeostasis and occurs when cells are damage or reach end of life. As research progresses, it is apparent that necrosis and apoptosis do not fully explain the whole phenomenon of cell death. Therefore, new death modalities such as autophagic cell death, and ferroptosis have been proposed. In recent years, ferroptosis, a new type of non-apoptotic cell death characterized by iron-dependent lipid peroxidation and reactive oxygen species (ROS) accumulation, has been receiving increasing attention. Ferroptosis can be involved in the pathological processes of many disorders, such as ischemia-reperfusion injury, nervous system diseases, and blood diseases. However, the specific mechanisms by which ferroptosis participates in the occurrence and development of leukemia still need to be more fully and deeply studied. In this review, we present the research progress on the mechanism of ferroptosis and its role in leukemia, to provide new theoretical basis and strategies for the diagnosis and treatment of clinical hematological diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Weiying Feng
- Department of Hematology, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| |
Collapse
|
11
|
Hu H, Yao S, Xu Q, Cai X, Mo Z, Yang Z, Chen W, He Q, Dai X, Xu Z. Protein-coated cobalt oxide-hydroxide nanospheres deliver photosensitizer IR780 iodide for near-infrared light-triggered photodynamic/photothermal/chemodynamic therapy against colon cancer. J Mater Chem B 2023; 11:9185-9200. [PMID: 37724440 DOI: 10.1039/d3tb01657a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Phototherapy has garnered worldwide attention for its minimal invasiveness, controllability, and spatial selectivity in treating cancer. One promising approach involves the use of near-infrared dye IR780, which demonstrates both photodynamic therapy (PDT) and photothermal therapy (PTT) effects under 808 nm laser irradiation. However, this hydrophobic dye's toxicity and limited tumor targeting ability severely hamper its suitability for cancer applications. Herein, a biocompatible nanoplatform CoOOH-IR780@BSA (CoIRB) is developed to efficiently deliver IR780 and provide multi-mode treatments for colon tumors. Due to the nanocarrier coating, CoIRB nanoparticles demonstrated reliable dispersion and stability, and their biotoxicity was substantially reduced for safer blood circulation, which overcame the biological barrier of IR780. The nanoplatform has also shown considerable results in phototherapy in vivo and in vitro experiments, with successful inhibition of MC38 tumor growth through intravenous administration. Additionally, the introduction of cobalt ions could induce Fenton-like reactions to activate the production of toxic hydroxyl radicals (˙OH), exerting an assisted chemodynamic therapy (CDT) effect. Notably, these nanodrugs also exhibited potential as scavengers of reductive glutathione (GSH) and hydrogen sulfide (H2S), leading to amplifying oxidative damage of reactive oxygen species (ROS). Overall, the versatile therapeutic platform, CoIRB, has opened up considerable prospects as a biotherapeutic option for combining PDT/PTT/CDT against colon cancer.
Collapse
Affiliation(s)
- Han Hu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Shijie Yao
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Qi Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Xing Cai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zhimin Mo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Zhe Yang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Wenqiu Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
- HAISO Technology Co., Ltd, Wuhan, Hubei 430074, P. R. China
| | - Qianyuan He
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Xiaofang Dai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
12
|
Cai Q, Shen Q, Zhu W, Zhang S, Ke J, Lu Z. Paraquat-induced ferroptosis suppression via NRF2 expression regulation. Toxicol In Vitro 2023; 92:105655. [PMID: 37507096 DOI: 10.1016/j.tiv.2023.105655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Paraquat (PQ) is an environmentally friendly and efficient herbicide, but PQ misuse or intentional self-use can cause death through multiple organ damage and can cause acute lung injury. Existing clinical treatments alleviate symptoms but do not significantly improve the mortality rate. Ferroptosis is a type of necrosis that presents in a manner very similar to the cell damage induced by high doses of PQ, but the role of ferroptosis in paraquat-induced lung injury remains unclear. In this study, we aimed to explore the role of ferroptosis in PQ-induced A549 cell injury and identify the potential mechanisms and critical sites of protection against PQ-induced A549 injury by ferroptosis inhibitors. We found that the ferroptosis inhibitors Ferr-1 and Lip-1 inhibit ferroptosis by attenuating oxidative stress through the upregulation of NRF2 gene expression. The protective role of the ferroptosis inhibitor Dfo was most evident in paraquat-induced cell injury. Dfo inhibited ferroptosis by iron chelation and promoted NRF2 protein level reduction. NRF2 attenuated PQ-induced ferroptosis in A549 cells, mainly through the upregulation of SLC40A1 to encourage the movement of iron to the extracellular side to alleviate iron overload, and the upregulation of SLC7A11 to promote the expression of GPX4 to inhibit lipid peroxidation.
Collapse
Affiliation(s)
- Qiqi Cai
- Department of Emergency Intensive Care Unit, Huangyan Hospital affiliated with Wenzhou Medical University, Taizhou First People's Hospital, Taizhou City, Zhejiang Province, China
| | - Qunhe Shen
- Emergency Department, Enze Hospital, Enze Medical Center, Taizhou, China
| | - Weimin Zhu
- Emergency Department, Enze Hospital, Enze Medical Center, Taizhou, China
| | - Sheng Zhang
- Department of Emergency Intensive Care Unit, Huangyan Hospital affiliated with Wenzhou Medical University, Taizhou First People's Hospital, Taizhou City, Zhejiang Province, China
| | - Jingjing Ke
- Department of Emergency Intensive Care Unit, Huangyan Hospital affiliated with Wenzhou Medical University, Taizhou First People's Hospital, Taizhou City, Zhejiang Province, China
| | - Zhongqiu Lu
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical, the key specialty of traditional Chinese Medicine of Zhejiang Provincial in the 13th Five-Year Plan period (Emergency Department), Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou City, Zhejiang Province, China.
| |
Collapse
|
13
|
Gao X, Hu W, Qian D, Bai X, He H, Li L, Sun S. The Mechanisms of Ferroptosis Under Hypoxia. Cell Mol Neurobiol 2023; 43:3329-3341. [PMID: 37458878 PMCID: PMC10477166 DOI: 10.1007/s10571-023-01388-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/06/2023] [Indexed: 09/05/2023]
Abstract
Ferroptosis is a new form of programmed cell death, which is characterized by the iron-dependent accumulation of lipid peroxidation and increase of ROS, resulting in oxidative stress and cell death. Iron, lipid, and multiple signaling pathways precisely control the occurrence and implementation of ferroptosis. The pathways mainly include Nrf2/HO-1 signaling pathway, p62/Keap1/Nrf2 signaling pathway. Activating p62/Keap1/Nrf2 signaling pathway inhibits ferroptosis. Nrf2/HO-1 signaling pathway promotes ferroptosis. Furthermore, some factors also participate in the occurrence of ferroptosis under hypoxia, such as HIF-1, NCOA4, DMT1. Meanwhile, ferroptosis is related with hypoxia-related diseases, such as MIRI, cancers, and AKI. Accordingly, ferroptosis appears to be a therapeutic target for hypoxia-related diseases.
Collapse
Affiliation(s)
- Xin Gao
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, China
- 2020 Clinical Medicine Class 6, Kunming Medical University, Kunming, 650500, China
| | - Wei Hu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, China
| | - Dianlun Qian
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Kunming Medical University, Kunming, 650032, China
| | - Xiangfeng Bai
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Kunming Medical University, Kunming, 650032, China
| | - Huilin He
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, China
| | - Lin Li
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, China.
| |
Collapse
|
14
|
Lamichhane PP, Samir P. Cellular Stress: Modulator of Regulated Cell Death. BIOLOGY 2023; 12:1172. [PMID: 37759572 PMCID: PMC10525759 DOI: 10.3390/biology12091172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023]
Abstract
Cellular stress response activates a complex program of an adaptive response called integrated stress response (ISR) that can allow a cell to survive in the presence of stressors. ISR reprograms gene expression to increase the transcription and translation of stress response genes while repressing the translation of most proteins to reduce the metabolic burden. In some cases, ISR activation can lead to the assembly of a cytoplasmic membraneless compartment called stress granules (SGs). ISR and SGs can inhibit apoptosis, pyroptosis, and necroptosis, suggesting that they guard against uncontrolled regulated cell death (RCD) to promote organismal homeostasis. However, ISR and SGs also allow cancer cells to survive in stressful environments, including hypoxia and during chemotherapy. Therefore, there is a great need to understand the molecular mechanism of the crosstalk between ISR and RCD. This is an active area of research and is expected to be relevant to a range of human diseases. In this review, we provided an overview of the interplay between different cellular stress responses and RCD pathways and their modulation in health and disease.
Collapse
Affiliation(s)
| | - Parimal Samir
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
15
|
Yan X, Xie Y, Liu H, Huang M, Yang Z, An D, Jiang G. Iron accumulation and lipid peroxidation: implication of ferroptosis in diabetic cardiomyopathy. Diabetol Metab Syndr 2023; 15:161. [PMID: 37468902 DOI: 10.1186/s13098-023-01135-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023] Open
Abstract
Diabetic cardiomyopathy (DC) is a serious heart disease caused by diabetes. It is unrelated to hypertension and coronary artery disease and can lead to heart insufficiency, heart failure and even death. Currently, the pathogenesis of DC is unclear, and clinical intervention is mainly symptomatic therapy and lacks effective intervention objectives. Iron overdose mediated cell death, also known as ferroptosis, is widely present in the physiological and pathological processes of diabetes and DC. Iron is a key trace element in the human body, regulating the metabolism of glucose and lipids, oxidative stress and inflammation, and other biological processes. Excessive iron accumulation can lead to the imbalance of the antioxidant system in DC and activate and aggravate pathological processes such as excessive autophagy and mitochondrial dysfunction, resulting in a chain reaction and accelerating myocardial and microvascular damage. In-depth understanding of the regulating mechanisms of iron metabolism and ferroptosis in cardiovascular vessels can help improve DC management. Therefore, in this review, we summarize the relationship between ferroptosis and the pathogenesis of DC, as well as potential intervention targets, and discuss and analyze the limitations and future development prospects of these targets.
Collapse
Affiliation(s)
- Xuehua Yan
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, Xinjiang, China
| | - Yang Xie
- Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Xinjiang, China
| | - Hongbing Liu
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China
| | - Meng Huang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China
| | - Zhen Yang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China
| | - Dongqing An
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China.
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, Xinjiang, China.
- Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Xinjiang, China.
| | - Guangjian Jiang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China.
| |
Collapse
|
16
|
Li K, Li Y, Ding H, Chen J, Zhang X. Metal-Binding Proteins Cross-Linking with Endoplasmic Reticulum Stress in Cardiovascular Diseases. J Cardiovasc Dev Dis 2023; 10:jcdd10040171. [PMID: 37103050 PMCID: PMC10143100 DOI: 10.3390/jcdd10040171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023] Open
Abstract
The endoplasmic reticulum (ER), an essential organelle in eukaryotic cells, is widely distributed in myocardial cells. The ER is where secreted protein synthesis, folding, post-translational modification, and transport are all carried out. It is also where calcium homeostasis, lipid synthesis, and other processes that are crucial for normal biological cell functioning are regulated. We are concerned that ER stress (ERS) is widespread in various damaged cells. To protect cells' function, ERS reduces the accumulation of misfolded proteins by activating the unfolded protein response (UPR) pathway in response to numerous stimulating factors, such as ischemia or hypoxia, metabolic disorders, and inflammation. If these stimulatory factors are not eliminated for a long time, resulting in the persistence of the UPR, it will aggravate cell damage through a series of mechanisms. In the cardiovascular system, it will cause related cardiovascular diseases and seriously endanger human health. Furthermore, there has been a growing number of studies on the antioxidative stress role of metal-binding proteins. We observed that a variety of metal-binding proteins can inhibit ERS and, hence, mitigate myocardial damage.
Collapse
Affiliation(s)
- Kejuan Li
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730031, China
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730031, China
| | - Hong Ding
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730031, China
| | - Jianshu Chen
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730031, China
| | - Xiaowei Zhang
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730031, China
| |
Collapse
|
17
|
Nakamura Y, Fuse Y, Komiyama S, Nagatake T, Kunisawa J, Hase K. Dietary iodine attenuates allergic rhinitis by inducing ferroptosis in activated B cells. Sci Rep 2023; 13:5398. [PMID: 37012320 PMCID: PMC10070403 DOI: 10.1038/s41598-023-32552-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Iodine-containing formulations have been widely used to treat iodine deficiency and as antiseptics. Lecithin-bound iodine (LBI) has been approved to treat allergic diseases in Japan; however, its underlying mechanism remains unknown. In this study, we show that LBI ameliorated disease symptoms in an ovalbumin (OVA)-induced allergic rhinitis mouse model. LBI suppressed OVA-specific IgE production by attenuating germinal center (GC) reaction in the draining lymph nodes. The antiallergic effect of LBI is most likely attributed to increased serum iodine levels but not thyroid hormone levels. In vitro treatment of activated B cells with potassium iodide induced ferroptosis by increasing intracellular reactive oxygen species (ROS) and ferrous iron in a concentration-dependent manner. Accordingly, LBI diets increased ROS levels in GC B cells of the draining lymph nodes. This study suggests that iodine directly promotes ferroptosis in activated B cells and attenuates GC reactions, leading to the alleviation of allergic symptoms.
Collapse
Affiliation(s)
- Yutaka Nakamura
- Division of Biochemistry, Faculty of Pharmaceutical Science, Keio University, Tokyo, 105-8512, Japan
| | - Yozen Fuse
- Research Committee on Iodine-Related Health Problems, Foundation for Growth Science, Tokyo, 113-0033, Japan
| | - Seiga Komiyama
- Division of Biochemistry, Faculty of Pharmaceutical Science, Keio University, Tokyo, 105-8512, Japan
| | - Takahiro Nagatake
- Laboratory of Functional Anatomy, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa, 214-8571, Japan
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmaceutical Science, Keio University, Tokyo, 105-8512, Japan.
- The Institute of Fermentation Sciences (IFeS), Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa, Fukushima, 960-1296, Japan.
- International Research and Development Centre for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, 108-8639, Japan.
| |
Collapse
|
18
|
Du R, Cheng X, Ji J, Lu Y, Xie Y, Wang W, Xu Y, Zhang Y. Mechanism of ferroptosis in a rat model of premature ovarian insufficiency induced by cisplatin. Sci Rep 2023; 13:4463. [PMID: 36932163 PMCID: PMC10023701 DOI: 10.1038/s41598-023-31712-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
Ferroptosis is widely present in fibrosis-related diseases. The basic pathology of premature ovarian insufficiency (POI) involves ovarian tissue fibrosis, and there are currently fewer relevant studies addressing the association between ferroptosis and POI. This study aimed to demonstrate that ferroptosis induced by cisplatin (CDDP) caused ovarian tissue fibrosis, leading to POI. Vitamin E (VE), a ferroptosis inhibitor, could repair damaged ovarian function. CDDP was used to establish a rat model of POI, and VE was administered to reverse the reproductive toxicity of CDDP. Ovarian function was assessed by histological section staining, follicle counts, sex hormone levels, as well as fertility assays. The extent of ferroptosis was assessed by transmission electron microscopy (TEM), malondialdehyde (MDA), Perls staining. CCK-8, Ethynyl-2-Deoxyuridine (EdU), and scratch assays were used to determine the effect of CDDP and VE on ovarian granulosa cell (GC) viability. Western blot, quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry were performed to evaluate ferroptosis-related molecular changes. Our results showed that CDDP caused follicle development disorders and ovarian tissue fibrosis, the levels of sex hormones suggested impaired ovarian function, and VE could reverse the reproductive toxicity of CDDP. The results of TEM, MDA and Perls staining suggested that the typical mitochondrial signature of ferroptosis was altered in ovarian GCs from the CDDP group, with significantly higher levels of lipid peroxidation and significant iron deposition in ovarian tissue, whereas VE mitigated the extent of ferroptosis. Molecular experiments then confirmed that the ferroptosis-related molecules acetyl CoA synthetase long chain family member 4 (ACSl4), 15-lipoxygenase-1 (ALOX15), solute carrier family 7 member 11 (SLC7A11), and glutathione peroxidase 4 (GPX4) were differentially expressed in each group. In summary, our study preliminarily demonstrated that CDDP may promote GCs to undergo ferroptosis, cause follicle development disorders, ovarian tissue fibrosis, and induce POI by regulating the expression of ACSl4, ALOX15, SLC7A11, and GPX4, while VE improved impaired ovarian function.
Collapse
Grants
- MS12021003, KYCX20_2799, KYCX21_3118 XiCheng
- MS12021003, KYCX20_2799, KYCX21_3118 XiCheng
- MS12021003, KYCX20_2799, KYCX21_3118 XiCheng
- MS12021003, KYCX20_2799, KYCX21_3118 XiCheng
- MS12021003, KYCX20_2799, KYCX21_3118 XiCheng
- MS12021003, KYCX20_2799, KYCX21_3118 XiCheng
- MS12021003, KYCX20_2799, KYCX21_3118 XiCheng
- BE2018672 Yuquan Zhang
- BE2018672 Yuquan Zhang
- BE2018672 Yuquan Zhang
- BE2018672 Yuquan Zhang
- BE2018672 Yuquan Zhang
- BE2018672 Yuquan Zhang
- BE2018672 Yuquan Zhang
Collapse
Affiliation(s)
- Rong Du
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Xi Cheng
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Jingjing Ji
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Yang Lu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Yuanyuan Xie
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Weina Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Yanhua Xu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Yuquan Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, No.20, Xisi Road, Nantong, Jiangsu Province, 226001, China.
| |
Collapse
|
19
|
Tang B, Luo Z, Zhang R, Zhang D, Nie G, Li M, Dai Y. An update on the molecular mechanism and pharmacological interventions for Ischemia-reperfusion injury by regulating AMPK/mTOR signaling pathway in autophagy. Cell Signal 2023; 107:110665. [PMID: 37004834 DOI: 10.1016/j.cellsig.2023.110665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
AMP-activated protein kinase (5'-adenosine monophosphate-activated protein kinase, AMPK)/mammalian target of rapamycin (mTOR) is an important signaling pathway maintaining normal cell function and homeostasis in vivo. The AMPK/mTOR pathway regulates cellular proliferation, autophagy, and apoptosis. Ischemia-reperfusion injury (IRI) is secondary damage that frequently occurs clinically in various disease processes and treatments, and the exacerbated injury during tissue reperfusion increases disease-associated morbidity and mortality. IRI arises from multiple complex pathological mechanisms, among which cell autophagy is a focus of recent research and a new therapeutic target. The activation of AMPK/mTOR signaling in IRI can modulate cellular metabolism and regulate cell proliferation and immune cell differentiation by adjusting gene transcription and protein synthesis. Thus, the AMPK/mTOR signaling pathway has been intensively investigated in studies focused on IRI prevention and treatment. In recent years, AMPK/mTOR pathway-mediated autophagy has been found to play a crucial role in IRI treatment. This article aims to elaborate the action mechanisms of AMPK/mTOR signaling pathway activation in IRI and summarize the progress of AMPK/mTOR-mediated autophagy research in the field of IRI therapy.
Collapse
Affiliation(s)
- Bin Tang
- Department of Ultrasound, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Zhijian Luo
- Department of Ultrasound, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Rong Zhang
- Department of Ultrasound, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Dongmei Zhang
- Department of Ultrasound, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Guojun Nie
- The First Outpatient Department of People's Liberation Army Western Theater General Hospital, Cheng Du, Sichuan Province 61000, China
| | - Mingxing Li
- Department of Ultrasound, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Yan Dai
- Department of pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
20
|
Ma T, Du J, Zhang Y, Wang Y, Wang B, Zhang T. GPX4-independent ferroptosis—a new strategy in disease’s therapy. Cell Death Dis 2022; 8:434. [DOI: 10.1038/s41420-022-01212-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 11/10/2022]
Abstract
AbstractFerroptosis is a form of programmed cell death characterized by intracellular iron accumulation and lipid peroxidation, and earlier studies identified glutathione peroxidase 4 (GPX4) as an essential regulator of this process. Ferroptosis plays an essential role in tumors, degenerative diseases, and ischemia-reperfusion injury. However, researchers have found that inhibition of GPX4 does not entirely suppress ferroptosis in certain diseases, or cells express resistance to ferroptosis agonists that inhibit GPX4. As research progresses, it has been discovered that there are multiple regulatory pathways for ferroptosis that are independent of GPX4. The study of GPX4-independent ferroptosis pathways can better target ferroptosis to prevent and treat various diseases. Here, the currently inhibited pulmonary GPX4-dependent ferroptosis pathways will be reviewed.
Collapse
|
21
|
Chen Q, Ji H, Lin Y, Chen Z, Liu Y, Jin L, Peng R. LncRNAs regulate ferroptosis to affect diabetes and its complications. Front Physiol 2022; 13:993904. [PMID: 36225311 PMCID: PMC9548856 DOI: 10.3389/fphys.2022.993904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Worldwide, the rapid increase in the incidence of diabetes and its complications poses a serious threat to human health. Ferroptosis, which is a new nonapoptotic form of cell death, has been proven to be closely related to the occurrence and development of diabetes and its complications. In recent years, lncRNAs have been confirmed to be involved in the occurrence and development of diabetes and play an important role in regulating ferroptosis. An increasing number of studies have shown that lncRNAs can affect the occurrence and development of diabetes and its complications by regulating ferroptosis. Therefore, lncRNAs have great potential as therapeutic targets for regulating ferroptosis-mediated diabetes and its complications. This paper reviewed the potential impact and regulatory mechanism of ferroptosis on diabetes and its complications, focusing on the effects of lncRNAs on the occurrence and development of ferroptosis-mediated diabetes and its complications and the regulation of ferroptosis-inducing reactive oxygen species, the key ferroptosis regulator Nrf2 and the NF-κB signaling pathway to provide new therapeutic strategies for the development of lncRNA-regulated ferroptosis-targeted drugs to treat diabetes.
Collapse
Affiliation(s)
- Qianqian Chen
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Hao Ji
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Yue Lin
- Department of Emergency, Wenzhou People’s Hospital, The Third Affiliated Hospital of Shanghai University and Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Zheyan Chen
- Department of Plastic Surgery, Wenzhou People’s Hospital, The Third Affiliated Hospital of Shanghai University and Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Yinai Liu
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Libo Jin
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
- *Correspondence: Libo Jin, ; Renyi Peng,
| | - Renyi Peng
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
- *Correspondence: Libo Jin, ; Renyi Peng,
| |
Collapse
|
22
|
Zhang C, Yu J, Yang C, Shang S, Lv X, Cui B, Hua F. Crosstalk between ferroptosis and stress-Implications in cancer therapeutic responses. CANCER INNOVATION 2022; 1:92-113. [PMID: 38089453 PMCID: PMC10686180 DOI: 10.1002/cai2.7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/15/2022] [Indexed: 07/05/2024]
Abstract
Ferroptosis is a newly discovered form of cell death that is characterized by the accumulation of iron-dependent lipid peroxidation. Research on ferroptosis has seen exponential growth over the past few years. Tumor cells are strongly dependent on iron for their growth, which makes them develop mechanisms to increase iron uptake and inhibit iron output, thereby completing iron accumulation. Ferroptosis can be induced or inhibited by various stresses through multiple mechanisms, making it stands at the crossroads of stresses related cancer cell fate determination. In this review, we give a brief summary of ferroptosis hallmarks and provide a systematic analysis of the current molecular mechanisms and regulatory networks of diverse stress conditions on ferroptosis. We also discuss the relationships between ferroptosis and cancer therapy responses to further understand potential targets and therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Cheng Zhang
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Jiao‐jiao Yu
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Chen Yang
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Shuang Shang
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Xiao‐xi Lv
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Bing Cui
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Fang Hua
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| |
Collapse
|