1
|
Kirvan CA, Canini H, Swedo SE, Hill H, Veasy G, Jankelow D, Kosanke S, Ward K, Zhao YD, Alvarez K, Hedrick A, Cunningham MW. IgG2 rules: N-acetyl-β-D-glucosamine-specific IgG2 and Th17/Th1 cooperation may promote the pathogenesis of acute rheumatic heart disease and be a biomarker of the autoimmune sequelae of Streptococcus pyogenes. Front Cardiovasc Med 2023; 9:919700. [PMID: 36815140 PMCID: PMC9939767 DOI: 10.3389/fcvm.2022.919700] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/29/2022] [Indexed: 02/09/2023] Open
Abstract
Antecedent group A streptococcal pharyngitis is a well-established cause of acute rheumatic fever (ARF) where rheumatic valvular heart disease (RHD) and Sydenham chorea (SC) are major manifestations. In ARF, crossreactive antibodies and T cells respond to streptococcal antigens, group A carbohydrate, N-acetyl-β-D-glucosamine (GlcNAc), and M protein, respectively, and through molecular mimicry target heart and brain tissues. In this translational human study, we further address our hypothesis regarding specific pathogenic humoral and cellular immune mechanisms leading to streptococcal sequelae in a small pilot study. The aims of the study were to (1) better understand specific mechanisms of pathogenesis in ARF, (2) identify a potential early biomarker of ARF, (3) determine immunoglobulin G (IgG) subclasses directed against GlcNAc, the immunodominant epitope of the group A carbohydrate, by reaction of ARF serum IgG with GlcNAc, M protein, and human neuronal cells (SK-N-SH), and (4) determine IgG subclasses deposited on heart tissues from RHD. In 10 pediatric patients with RHD and 6 pediatric patients with SC, the serum IgG2 subclass reacted significantly with GlcNAc, and distinguished ARF from 7 pediatric patients with uncomplicated pharyngitis. Three pediatric patients who demonstrated only polymigrating arthritis, a major manifestation of ARF and part of the Jones criteria for diagnosis, lacked the elevated IgG2 subclass GlcNAc-specific reactivity. In SC, the GlcNAc-specific IgG2 subclass in cerebrospinal fluid (CSF) selectively targeted human neuronal cells as well as GlcNAc in the ELISA. In rheumatic carditis, the IgG2 subclass preferentially and strongly deposited in valve tissues (n = 4) despite elevated concentrations of IgG1 and IgG3 in RHD sera as detected by ELISA to group A streptococcal M protein. Although our human study of ARF includes a very small limited sample set, our novel research findings suggest a strong IgG2 autoantibody response against GlcNAc in RHD and SC, which targeted heart valves and neuronal cells. Cardiac IgG2 deposition was identified with an associated IL-17A/IFN-γ cooperative signature in RHD tissue which displayed both IgG2 deposition and cellular infiltrates demonstrating these cytokines simultaneously. GlcNAc-specific IgG2 may be an important autoantibody in initial stages of the pathogenesis of group A streptococcal sequelae, and future studies will determine if it can serve as a biomarker for risk of RHD and SC or early diagnosis of ARF.
Collapse
Affiliation(s)
- Christine A. Kirvan
- Department of Biological Sciences, California State University, Sacramento, CA, United States
| | - Heather Canini
- Department of Biological Sciences, California State University, Sacramento, CA, United States
| | - Susan E. Swedo
- Pediatrics and Developmental Neuropsychiatry Branch, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, United States
| | - Harry Hill
- Departments of Pediatrics, Infectious Diseases, Cardiology, and Pathology, University of Utah College of Medicine, Salt Lake City, UT, United States
| | - George Veasy
- Departments of Pediatrics, Infectious Diseases, Cardiology, and Pathology, University of Utah College of Medicine, Salt Lake City, UT, United States
| | - David Jankelow
- Division of Cardiology, University of Witwatersrand, Johannesburg, South Africa
| | - Stanley Kosanke
- Department of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Kent Ward
- Department of Pediatrics, Division of Cardiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Yan D. Zhao
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Kathy Alvarez
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Andria Hedrick
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Madeleine W. Cunningham
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
2
|
Surve NZ, Kerkar PG, Deshmukh CT, Nadkar MY, Mehta PR, Ketheesan N, Sriprakash KS, Karmarkar MG. A longitudinal study of antibody responses to selected host antigens in rheumatic fever and rheumatic heart disease. J Med Microbiol 2021; 70. [PMID: 33956590 DOI: 10.1099/jmm.0.001355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Group A streptococci can trigger autoimmune responses that lead to acute rheumatic fever (ARF) and rheumatic heart disease (RHD).Gap Statement. Some autoantibodies generated in ARF/RHD target antigens in the S2 subfragment region of cardiac myosin. However, little is known about the kinetics of these antibodies during the disease process.Aim. To determine the antibody responses over time in patients and healthy controls against host tissue proteins - cardiac myosin and peptides from its S2 subfragment, tropomyosin, laminin and keratin.Methodology. We used enzyme-linked immunosorbent assays (ELISA) to determine antibody responses in: (1) healthy controls; (2) patients with streptococcal pharyngitis; (3) patients with ARF with carditis and (4) patients with RHD on penicillin prophylaxis.Results. We observed significantly higher antibody responses against extracellular proteins - laminin and keratin in pharyngitis group, patients with ARF and patients with RHD when compared to healthy controls. The antibody responses against intracellular proteins - cardiac myosin and tropomyosin were elevated only in the group of patients with ARF with active carditis. While the reactivity to S2 peptides S2-1-3, 8-11, 14, 16-18, 21-22 and 32 was higher in patients with ARF, the reactivity in the RHD group was high only against S2-1, 9, 11, 12 when compared to healthy controls. The reactivity against S2 peptides reduced as the disease condition stabilized in the ARF group whereas the reactivity remained unaltered in the RHD group. By contrast antibodies against laminin and keratin persisted in patients with RHD.Conclusion. Our findings of antibody responses against host proteins support the multistep hypothesis in the development of rheumatic carditis. The differential kinetics of serum antibody responses against S2 peptides may have potential use as markers of ongoing cardiac damage that can be used to monitor patients with ARF/RHD.
Collapse
Affiliation(s)
- Nuzhat Z Surve
- Department of Microbiology, Seth G S Medical College and King Edward Memorial Hospital, Mumbai, India
| | - Prafulla G Kerkar
- Department of Cardiology, Seth G S Medical College and King Edward Memorial Hospital, Mumbai, India
| | - Chandrahas T Deshmukh
- Department of Pediatrics, Seth G S Medical College and King Edward Memorial Hospital, Mumbai, India
| | - Milind Y Nadkar
- Department of Medicine, Seth G S Medical College and King Edward Memorial Hospital, Mumbai, India
| | - Preeti R Mehta
- Department of Microbiology, Seth G S Medical College and King Edward Memorial Hospital, Mumbai, India
| | - Natkunam Ketheesan
- School of Science and Technology, University of New England, Armidale, Australia
| | | | - Mohan G Karmarkar
- Department of Microbiology, Seth G S Medical College and King Edward Memorial Hospital, Mumbai, India
| |
Collapse
|
3
|
Sikder S, Williams NL, Sorenson AE, Alim MA, Vidgen ME, Moreland NJ, Rush CM, Simpson RS, Govan BL, Norton RE, Cunningham MW, McMillan DJ, Sriprakash KS, Ketheesan N. Group G Streptococcus Induces an Autoimmune Carditis Mediated by Interleukin 17A and Interferon γ in the Lewis Rat Model of Rheumatic Heart Disease. J Infect Dis 2019; 218:324-335. [PMID: 29236994 DOI: 10.1093/infdis/jix637] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/08/2017] [Indexed: 12/17/2022] Open
Abstract
Acute rheumatic fever and rheumatic heart disease (ARF/RHD) have long been described as autoimmune sequelae of Streptococcus pyogenes or group A streptococcal (GAS) infection. Both antibody and T-cell responses against immunodominant GAS virulence factors, including M protein, cross-react with host tissue proteins, triggering an inflammatory response leading to permanent heart damage. However, in some ARF/RHD-endemic regions, throat carriage of GAS is low. Because Streptococcus dysgalactiae subspecies equisimilis organisms, also known as β-hemolytic group C streptococci and group G streptococci (GGS), also express M protein, we postulated that streptococci other than GAS may have the potential to initiate or exacerbate ARF/RHD. Using a model initially developed to investigate the uniquely human disease of ARF/RHD, we have discovered that GGS causes interleukin 17A/interferon γ-induced myocarditis and valvulitis, hallmarks of ARF/RHD. Remarkably the histological, immunological, and functional changes in the hearts of rats exposed to GGS are identical to those exposed to GAS. Furthermore, antibody cross-reactivity to cardiac myosin was comparable in both GGS- and GAS-exposed animals, providing additional evidence that GGS can induce and/or exacerbate ARF/RHD.
Collapse
Affiliation(s)
- Suchandan Sikder
- College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville
| | - Natasha L Williams
- College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville
| | - Alanna E Sorenson
- College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville
| | - Md A Alim
- College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville
| | - Miranda E Vidgen
- INFLAME Biomedical Research Cluster, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore
| | | | - Catherine M Rush
- College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville
| | | | - Brenda L Govan
- College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville
| | | | - Madeleine W Cunningham
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City
| | - David J McMillan
- INFLAME Biomedical Research Cluster, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore
| | - Kadaba S Sriprakash
- Bacterial Pathogenesis Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Natkunam Ketheesan
- College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville
| |
Collapse
|
4
|
Bessen DE, Smeesters PR, Beall BW. Molecular Epidemiology, Ecology, and Evolution of Group A Streptococci. Microbiol Spectr 2018; 6:10.1128/microbiolspec.cpp3-0009-2018. [PMID: 30191802 PMCID: PMC11633622 DOI: 10.1128/microbiolspec.cpp3-0009-2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Indexed: 12/27/2022] Open
Abstract
The clinico-epidemiological features of diseases caused by group A streptococci (GAS) is presented through the lens of the ecology, population genetics, and evolution of the organism. The serological targets of three typing schemes (M, T, SOF) are themselves GAS cell surface proteins that have a myriad of virulence functions and a diverse array of structural forms. Horizontal gene transfer expands the GAS antigenic cell surface repertoire by generating numerous combinations of M, T, and SOF antigens. However, horizontal gene transfer of the serotype determinant genes is not unconstrained, and therein lies a genetic organization that may signify adaptations to a narrow ecological niche, such as the primary tissue reservoirs of the human host. Adaptations may be further shaped by selection pressures such as herd immunity. Understanding the molecular evolution of GAS on multiple levels-short, intermediate, and long term-sheds insight on mechanisms of host-pathogen interactions, the emergence and spread of new clones, rational vaccine design, and public health interventions.
Collapse
Affiliation(s)
- Debra E Bessen
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595
| | - Pierre R Smeesters
- Department of Pediatrics, Queen Fabiola Children's University Hospital, and Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels, 1020, Belgium
| | - Bernard W Beall
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333
| |
Collapse
|
5
|
Guha S, Harikrishnan S, Ray S, Sethi R, Ramakrishnan S, Banerjee S, Bahl VK, Goswami KC, Banerjee AK, Shanmugasundaram S, Kerkar PG, Seth S, Yadav R, Kapoor A, Mahajan AU, Mohanan PP, Mishra S, Deb PK, Narasimhan C, Pancholia AK, Sinha A, Pradhan A, Alagesan R, Roy A, Vora A, Saxena A, Dasbiswas A, Srinivas BC, Chattopadhyay BP, Singh BP, Balachandar J, Balakrishnan KR, Pinto B, Manjunath CN, Lanjewar CP, Jain D, Sarma D, Paul GJ, Zachariah GA, Chopra HK, Vijayalakshmi IB, Tharakan JA, Dalal JJ, Sawhney JPS, Saha J, Christopher J, Talwar KK, Chandra KS, Venugopal K, Ganguly K, Hiremath MS, Hot M, Das MK, Bardolui N, Deshpande NV, Yadava OP, Bhardwaj P, Vishwakarma P, Rajput RK, Gupta R, Somasundaram S, Routray SN, Iyengar SS, Sanjay G, Tewari S, G S, Kumar S, Mookerjee S, Nair T, Mishra T, Samal UC, Kaul U, Chopra VK, Narain VS, Raj V, Lokhandwala Y. CSI position statement on management of heart failure in India. Indian Heart J 2018; 70 Suppl 1:S1-S72. [PMID: 30122238 PMCID: PMC6097178 DOI: 10.1016/j.ihj.2018.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Santanu Guha
- Chairman, CSI Guidelines Committee; Medical College Kolkata, India
| | - S Harikrishnan
- Chief Coordinator, CSI HF Position Statement; Sree Chitra Tirunal Institute for Medical Sciences & Technology, Trivandrum, Kerala, India.
| | - Saumitra Ray
- Convenor, CSI Guidelines Committee; Vivekananda Institute of Medical Sciences, Kolkata
| | - Rishi Sethi
- Joint Coordinator, CSI HF Position Statement; KG Medical University, Lucknow
| | - S Ramakrishnan
- Joint Coordinator, CSI HF Position Statement; All India Institute of Medical Sciences, New Delhi, India
| | - Suvro Banerjee
- Joint Convenor, CSI Guidelines Committee; Apollo Hospitals, Kolkata
| | - V K Bahl
- Joint Coordinator, CSI HF Position Statement; All India Institute of Medical Sciences, New Delhi, India
| | - K C Goswami
- Joint Coordinator, CSI HF Position Statement; All India Institute of Medical Sciences, New Delhi, India
| | - Amal Kumar Banerjee
- Institute of Post Graduate Medical Education & Research, Kolkata, West Bengal, India
| | - S Shanmugasundaram
- Department of Cardiology, Tamil Nadu Medical University, Billroth Hospital, Chennai, Tamil Nadu, India
| | | | - Sandeep Seth
- Joint Coordinator, CSI HF Position Statement; All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Yadav
- Joint Coordinator, CSI HF Position Statement; All India Institute of Medical Sciences, New Delhi, India
| | - Aditya Kapoor
- Department of Cardiology, Sanjay Gandhi PGIMS, Lucknow, Uttar Pradesh, India
| | - Ajaykumar U Mahajan
- Department of Cardiology, LokmanyaTilak Municipal Medical College and General Hospital, Mumbai, Maharashtra, India
| | - P P Mohanan
- Department of Cardiology, Westfort Hi Tech Hospital, Thrissur, Kerala, India
| | - Sundeep Mishra
- Joint Coordinator, CSI HF Position Statement; All India Institute of Medical Sciences, New Delhi, India
| | - P K Deb
- Daffodil Hospitals, Kolkata, West Bengal, India
| | - C Narasimhan
- Department of Cardiology & Chief of Electro Physiology Department, Care Hospitals, Hyderabad, Telangana, India
| | - A K Pancholia
- Clinical & Preventive Cardiology, Arihant Hospital & Research Centre, Indore, Madhya Pradesh, India
| | | | - Akshyaya Pradhan
- Department of Cardiology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - R Alagesan
- The Tamil Nadu Dr.M.G.R. Medical University, Tamil Nadu, India
| | - Ambuj Roy
- Joint Coordinator, CSI HF Position Statement; All India Institute of Medical Sciences, New Delhi, India
| | - Amit Vora
- Arrhythmia Associates, Mumbai, Maharashtra, India
| | - Anita Saxena
- Joint Coordinator, CSI HF Position Statement; All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | - B P Singh
- Department of Cardiology, IGIMS, Patna, Bihar, India
| | | | - K R Balakrishnan
- Cardiac Sciences, Fortis Malar Hospital, Adyar, Chennai, Tamil Nadu, India
| | - Brian Pinto
- Holy Family Hospitals, Mumbai, Maharashtra, India
| | - C N Manjunath
- Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bangalore, Karnataka, India
| | | | - Dharmendra Jain
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Dipak Sarma
- Cardiology & Critical Care, Jorhat Christian Medical Centre Hospital, Jorhat, Assam, India
| | - G Justin Paul
- Department of Cardiology, Madras Medical College, Chennai, Tamil Nadu, India
| | | | | | - I B Vijayalakshmi
- Bengaluru Medical College and Research Institute, Bengaluru, Karnataka, India
| | - J A Tharakan
- Department of Cardiology, P.K. Das Institute of Medical Sciences, Vaniamkulam, Palakkad, Kerala, India
| | - J J Dalal
- Kokilaben Hospital, Mumbai, Maharshtra, India
| | - J P S Sawhney
- Department of Cardiology, Dharma Vira Heart Center, Sir Ganga Ram Hospital, New Delhi, India
| | - Jayanta Saha
- Chairman, CSI Guidelines Committee; Medical College Kolkata, India
| | | | - K K Talwar
- Max Healthcare, Max Super Speciality Hospital, Saket, New Delhi, India
| | - K Sarat Chandra
- Indo-US Super Speciality Hospital & Virinchi Hospital, Hyderabad, Telangana, India
| | - K Venugopal
- Pushpagiri Institute of Medical Sciences, Tiruvalla, Kerala, India
| | - Kajal Ganguly
- Department of Cardiology, N.R.S. Medical College, Kolkata, West Bengal, India
| | | | - Milind Hot
- Department of CTVS, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Mrinal Kanti Das
- B.M. Birla Heart Research Centre & CMRI, Kolkata, West Bengal, India
| | - Neil Bardolui
- Department of Cardiology, Excelcare Hospitals, Guwahati, Assam, India
| | - Niteen V Deshpande
- Cardiac Cath Lab, Spandan Heart Institute and Research Center, Nagpur, Maharashtra, India
| | - O P Yadava
- National Heart Institute, New Delhi, India
| | - Prashant Bhardwaj
- Department of Cardiology, Military Hospital (Cardio Thoracic Centre), Pune, Maharashtra, India
| | - Pravesh Vishwakarma
- Joint Coordinator, CSI HF Position Statement; KG Medical University, Lucknow
| | | | - Rakesh Gupta
- JROP Institute of Echocardiography, New Delhi, India
| | | | - S N Routray
- Department of Cardiology, SCB Medical College, Cuttack, Odisha, India
| | - S S Iyengar
- Manipal Hospitals, Bangalore, Karnataka, India
| | - G Sanjay
- Chief Coordinator, CSI HF Position Statement; Sree Chitra Tirunal Institute for Medical Sciences & Technology, Trivandrum, Kerala, India
| | - Satyendra Tewari
- Department of Cardiology, Sanjay Gandhi PGIMS, Lucknow, Uttar Pradesh, India
| | | | - Soumitra Kumar
- Convenor, CSI Guidelines Committee; Vivekananda Institute of Medical Sciences, Kolkata
| | - Soura Mookerjee
- Chairman, CSI Guidelines Committee; Medical College Kolkata, India
| | - Tiny Nair
- Department of Cardiology, P.R.S. Hospital, Trivandrum, Kerala, India
| | - Trinath Mishra
- Department of Cardiology, M.K.C.G. Medical College, Behrampur, Odisha, India
| | | | - U Kaul
- Batra Heart Center & Batra Hospital and Medical Research Center, New Delhi, India
| | - V K Chopra
- Heart Failure Programme, Department of Cardiology, Medanta Medicity, Gurugram, Haryana, India
| | - V S Narain
- Joint Coordinator, CSI HF Position Statement; KG Medical University, Lucknow
| | - Vimal Raj
- Narayana Hrudayalaya Hospital, Bangalore, Karnataka, India
| | - Yash Lokhandwala
- Mumbai & Visiting Faculty, Sion Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
6
|
Gomaa MH, Ali SS, Fattouh AM, Hamza HS, Badr MM. MBL2 gene polymorphism rs1800450 and rheumatic fever with and without rheumatic heart disease: an Egyptian pilot study. Pediatr Rheumatol Online J 2018; 16:24. [PMID: 29653582 PMCID: PMC5899397 DOI: 10.1186/s12969-018-0245-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/06/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rheumatic fever (RF) is the result of an autoimmune response to pharyngitis caused by infection with Streptococcus pyogenes. RF is most prevalent in Africa and the Middle East. Rheumatic heart disease (RHD) is the most serious complication of RF. Mannose-binding lectin 2 gene (MBL2) has been reported to be correlated with different cardiac conditions. In Egyptian patients as a new studied ethnic population, it is the first time to evaluate the association between MBL2 gene polymorphism rs1800450 and RF with and without RHD. METHODS One hundred and sixty RF patients (80 with RHD and 80 without RHD) and eighty healthy ethnically matched controls were studied. MBL2 (rs1800450) was genotyped by real-time PCR using TaqMan® allele discrimination assay. The MBL level was measured by ELISA. Westergren erythrocytes sedimentation rate (ESR), anti-streptolysin O titer (ASOT), C-reactive protein (CRP) and complements (C3 and C4) were determined. RESULTS The AA genotype with high production of MBL was associated with increased risk of RHD more than the B allele carrying subjects. However, MBL2 genotype related to the low production of MBL was more frequently observed in those patients without RHD. CONCLUSIONS Our results suggested the involvement of MBL2 (rs1800450) polymorphism and its protein in RHD pathogenesis. Also, it might be a promising future strategy to utilize this polymorphism to help differentiate patients with RHD from those without RHD.
Collapse
Affiliation(s)
- Maher Hassan Gomaa
- Biochemistry Department-Faculty of Pharmacy (Boys), Al-Azhar University, Almokhayam Aldaem Street, 6th Province - 13465 Nasr City, Cairo, Egypt
| | - Shawkey Sadik Ali
- Biochemistry Department-Faculty of Pharmacy (Boys), Al-Azhar University, Almokhayam Aldaem Street, 6th Province - 13465 Nasr City, Cairo, Egypt
| | - Aya Mohamed Fattouh
- Department of Pediatrics, Kasr Al-Aini School of Medicine, Cairo University, P.O. Box 99, Manial El-Roda, Cairo, 11553 Egypt
| | - Hala Salah Hamza
- Department of Pediatrics, Kasr Al-Aini School of Medicine, Cairo University, P.O. Box 99, Manial El-Roda, Cairo, 11553 Egypt
| | - Mohamed Mohamed Badr
- Biochemistry Department-Faculty of Pharmacy (Boys), Al-Azhar University, Almokhayam Aldaem Street, 6th Province - 13465 Nasr City, Cairo, Egypt
| |
Collapse
|
7
|
Abstract
Rheumatic heart disease (RHD) is a chronic valvular disease resulting after severe or repetitive episodes of acute rheumatic fever (ARF), an autoimmune response to group A Streptococcus infection. RHD has been almost eliminated with improved social and health infrastructure in affluent countries while it remains a neglected disease with major cause of morbidity and mortality in many low- and middle-income countries, and resource-limited regions of high-income countries. Despite our evolving understanding of the pathogenesis of RHD, there have not been any significant advances to prevent or halt progression of disease in recent history. Long-term penicillin-based treatment and surgery remain the backbone of a RHD control program in the absence of an effective vaccine. The advent of echocardiographic screening algorithms has improved the accuracy of diagnosing RHD and has shed light on the enormous burden of disease. Encouragingly, this has led to a rekindled commitment from researchers in the most affected countries to advocate and take bold actions to end this disease of social inequality.
Collapse
Affiliation(s)
- Bethel Woldu
- Vanderbilt Institute for Global Health, Vanderbilt University, 2525 West End Avenue, Suite 750, Nashville, TN, 37203, USA
| | - Gerald S Bloomfield
- Duke Clinical Research Institute, Duke University, 2400 Pratt Street, Durham, NC, 27705, USA.
| |
Collapse
|
8
|
Carapetis JR, Beaton A, Cunningham MW, Guilherme L, Karthikeyan G, Mayosi BM, Sable C, Steer A, Wilson N, Wyber R, Zühlke L. Acute rheumatic fever and rheumatic heart disease. Nat Rev Dis Primers 2016; 2:15084. [PMID: 27188830 PMCID: PMC5810582 DOI: 10.1038/nrdp.2015.84] [Citation(s) in RCA: 336] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acute rheumatic fever (ARF) is the result of an autoimmune response to pharyngitis caused by infection with group A Streptococcus. The long-term damage to cardiac valves caused by ARF, which can result from a single severe episode or from multiple recurrent episodes of the illness, is known as rheumatic heart disease (RHD) and is a notable cause of morbidity and mortality in resource-poor settings around the world. Although our understanding of disease pathogenesis has advanced in recent years, this has not led to dramatic improvements in diagnostic approaches, which are still reliant on clinical features using the Jones Criteria, or treatment practices. Indeed, penicillin has been the mainstay of treatment for decades and there is no other treatment that has been proven to alter the likelihood or the severity of RHD after an episode of ARF. Recent advances - including the use of echocardiographic diagnosis in those with ARF and in screening for early detection of RHD, progress in developing group A streptococcal vaccines and an increased focus on the lived experience of those with RHD and the need to improve quality of life - give cause for optimism that progress will be made in coming years against this neglected disease that affects populations around the world, but is a particular issue for those living in poverty.
Collapse
Affiliation(s)
- Jonathan R Carapetis
- Telethon Kids Institute, the University of Western Australia, PO Box 855, West Perth, Western Australia 6872, Australia
- Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| | - Andrea Beaton
- Children's National Health System, Washington, District of Columbia, USA
| | - Madeleine W Cunningham
- Department of Microbiology and Immunology, Biomedical Research Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Luiza Guilherme
- Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
- Institute for Immunology Investigation, National Institute for Science and Technology, São Paulo, Brazil
| | - Ganesan Karthikeyan
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Bongani M Mayosi
- Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Craig Sable
- Children's National Health System, Washington, District of Columbia, USA
| | - Andrew Steer
- Department of Paediatrics, the University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Nigel Wilson
- Green Lane Paediatric and Congenital Cardiac Services, Starship Hospital, Auckland, New Zealand
- Department of Paediatrics, University of Auckland, Auckland, New Zealand
| | - Rosemary Wyber
- Telethon Kids Institute, the University of Western Australia, PO Box 855, West Perth, Western Australia 6872, Australia
| | - Liesl Zühlke
- Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
- Department of Paediatric Cardiology, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
9
|
Affiliation(s)
- Mohammed R Essop
- From the Division of Cardiology, CH-Baragwanath Hospital and University of the Witwatersrand, Johannesburg, South Africa.
| | - Ferande Peters
- From the Division of Cardiology, CH-Baragwanath Hospital and University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
10
|
Cunningham MW. Rheumatic fever, autoimmunity, and molecular mimicry: the streptococcal connection. Int Rev Immunol 2014; 33:314-29. [PMID: 24892819 DOI: 10.3109/08830185.2014.917411] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The group A streptococcus, Streptococcus pyogenes, and its link to autoimmune sequelae, has acquired a new level of understanding. Studies support the hypothesis that molecular mimicry between the group A streptococcus and heart or brain are important in directing immune responses in rheumatic fever. Rheumatic carditis, Sydenham chorea and a new group of behavioral disorders called pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections are reviewed with consideration of autoantibody and T cell responses and the role of molecular mimicry between the heart, brain and group A streptococcus as well as how immune responses contribute to pathogenic mechanisms in disease. In rheumatic carditis, studies have investigated human monoclonal autoantibodies and T cell clones for their crossreactivity and their mechanisms leading to valve damage in rheumatic heart disease. Although studies of human and animal sera from group A streptococcal diseases or immunization models have been crucial in providing clues to molecular mimicry and its role in the pathogenesis of rheumatic fever, study of human monoclonal autoantibodies have provided important insights into how antibodies against the valve may activate the valve endothelium and lead to T cell infiltration. Passive transfer of anti-streptococcal T cell lines in a rat model of rheumatic carditis illustrates effects of CD4+ T cells on the valve. Although Sydenham chorea has been known as the neurological manifestation of rheumatic fever for decades, the combination of autoimmunity and behavior is a relatively new concept linking brain, behavior and neuropsychiatric disorders with streptococcal infections. In Sydenham chorea, human mAbs and their expression in transgenic mice have linked autoimmunity to central dopamine pathways as well as dopamine receptors and dopaminergic neurons in basal ganglia. Taken together, the studies reviewed provide a basis for understanding streptococcal sequelae and how immune responses against group A streptococci influence autoimmunity and inflammatory responses in the heart and brain.
Collapse
Affiliation(s)
- Madeleine W Cunningham
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Biomedical Research Center , Oklahoma City, OK , USA
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW To give an overview of the current hypotheses of the pathogenesis of rheumatic fever and group A streptococcal autoimmune sequelae of the heart valve and brain. RECENT FINDINGS Human monoclonal antibodies (mAbs) derived from rheumatic heart disease have provided evidence for crossreactive autoantibodies that target the dominant group A streptococcal epitope of the group A carbohydrate, N-acetyl-beta-D-glucosamine (GlcNAc), and heart valve endothelium, laminin and laminar basement membrane. T cells in peripheral blood and in rheumatic heart valves revealed the presence of T cells crossreactive with streptococcal M protein and cardiac myosin. For initiation of disease, evidence suggests a two-hit hypothesis for antibody attack on the valve endothelium with subsequent extravasation of T cells through activated endothelium into the valve to form granulomatous lesions and Aschoff bodies. Autoantibodies against the group A streptococcal carbohydrate epitope GlcNAc and cardiac myosin and its peptides appear during progression of rheumatic heart disease. However, autoantibodies against collagen that are not crossreactive may form because of the release of collagen from damaged valve or to responses to collagen bound in vitro by certain serotypes of streptococci. In Sydenham chorea, human mAbs derived from disease target the group A carbohydrate epitope GlcNAc and gangliosides and dopamine receptors found on the surface of neuronal cells in the brain. Human mAbs and autoantibodies in Sydenham chorea were found to signal neuronal cells and activate calcium calmodulin-dependent protein kinase II (CaMKII) in neuronal cells and recognize the intracellular protein biomarker tubulin. SUMMARY To summarize, pathogenic mechanisms of crossreactive autoantibodies which target the valve in rheumatic heart disease and the neuronal cell in Sydenham chorea share a common streptococcal epitope GlcNAc and target intracellular biomarkers of disease including cardiac myosin in the myocardium and tubulin, a protein abundant in the brain. However, intracellular antigens are not believed to be the basis for disease. The theme of molecular mimicry in streptococcal autoimmune sequelae is the recognition of targeted intracellular biomarker antigens such as cardiac myosin and brain tubulin, while targeting extracellular membrane antigens such as laminin on the valve surface endothelium or lysoganglioside and dopamine receptors in the brain. Antibody binding to these cell surface antigens may lead to valve damage in rheumatic heart disease or neuropsychiatric behaviors and involuntary movements in Sydenham chorea.
Collapse
|
12
|
Abstract
OBJECTIVE To describe an unusual case of fulminant rheumatic fever presenting acutely as severe respiratory failure managed with extracorporeal membrane oxygenation and ultimately valve replacement while on extracorporeal membrane oxygenation. DESIGN Case report. SETTING Large quaternary care pediatric intensive care unit. PATIENT A 6-yr-old female with profound respiratory failure found to be due to mitral valve dysfunction stemming from acute fulminant rheumatic fever. INTERVENTIONS AND MAIN RESULTS The patient was originally maintained on venovenous extracorporeal membrane oxygenation but required conversion to venoarterial extracorporeal membrane oxygenation due to the progression of her mitral valve disease. Her condition did not improve with atrial septostomy, and she required valve replacement while anticoagulated. She was decannulated in the operating room and extubated 2 days later, and she survived to discharge. The institutional review board subsequently granted a waiver of consent for a report of this case. CONCLUSIONS Manifestations of rheumatic fever can develop acutely even in the setting of an industrialized country. Valvulitis with severe, isolated mitral valve dysfunction may masquerade initially as respiratory failure. Multiple invasive procedures can be performed successfully while patients are fully anticoagulated and on extracorporeal membrane oxygenation support.
Collapse
|
13
|
|
14
|
|