1
|
Wang M, Hua Y, Bai Y. A review of the application of exercise intervention on improving cognition in patients with Alzheimer's disease: mechanisms and clinical studies. Rev Neurosci 2025; 36:1-25. [PMID: 39029521 DOI: 10.1515/revneuro-2024-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, leading to sustained cognitive decline. An increasing number of studies suggest that exercise is an effective strategy to promote the improvement of cognition in AD. Mechanisms of the benefits of exercise intervention on cognitive function may include modulation of vascular factors by affecting cardiovascular risk factors, regulating cardiorespiratory health, and enhancing cerebral blood flow. Exercise also promotes neurogenesis by stimulating neurotrophic factors, affecting neuroplasticity in the brain. Additionally, regular exercise improves the neuropathological characteristics of AD by improving mitochondrial function, and the brain redox status. More and more attention has been paid to the effect of Aβ and tau pathology as well as sleep disorders on cognitive function in persons diagnosed with AD. Besides, there are various forms of exercise intervention in cognitive improvement in patients with AD, including aerobic exercise, resistance exercise, and multi-component exercise. Consequently, the purpose of this review is to summarize the findings of the mechanisms of exercise intervention on cognitive function in patients with AD, and also discuss the application of different exercise interventions in cognitive impairment in AD to provide a theoretical basis and reference for the selection of exercise intervention in cognitive rehabilitation in AD.
Collapse
Affiliation(s)
- Man Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai 200040, China
- Department of Rehabilitation Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yan Hua
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai 200040, China
| | - Yulong Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai 200040, China
| |
Collapse
|
2
|
Embang JEG, Tan YHV, Ng YX, Loyola GJP, Wong LW, Guo Y, Dong Y. Role of sleep and neurochemical biomarkers in synaptic plasticity related to neurological and psychiatric disorders: A scoping review. J Neurochem 2025; 169:e16270. [PMID: 39676063 DOI: 10.1111/jnc.16270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 12/17/2024]
Abstract
Sleep is vital for maintaining physical and mental well-being, impacting cognitive functions like memory and learning through neuroplasticity. Sleep disturbances prevalent in neurological and psychiatric disorders exacerbate cognitive decline, imposing societal burdens. Exploring the relationship between sleep and neuroplasticity elucidates the mechanisms influencing cognition, particularly amidst the prevalent sleep disturbances in these clinical populations. While existing reviews provide valuable insights, gaps remain in understanding the neurophysiological mechanisms underlying sleep and cognitive function. This scoping review aims to investigate the characteristic patterns of sleep parameters and neurochemical biomarkers in reflecting neuroplasticity changes related to neurological and psychiatric disorders and to explore how these markers interact and influence cognition at the molecular level. Studies involving adults and older adults were included, excluding animal models and the paediatric population. Selected studies explored the relationship between sleep parameter or neurochemical biomarker changes and cognitive impairment, reflecting underlying neuroplasticity changes. Peer-reviewed articles, clinical trials, theses, and dissertations in English were included while excluding secondary research and non-peer-reviewed sources. A three-step search strategy was executed following the updated Joanna Briggs Institute methodology for scoping reviews. Published studies were retrieved from nine databases, grey literature, expert recommendations, and hand-searching of the included studies' bibliography. A basic qualitative content synthesis of 34 studies was conducted per JBI's scoping review guidance. Slow-wave and Rapid-Eye Movement sleep, sleep spindles, sleep cycle disruption, K-Complex(KC) density, Hippocampal sEEG, BDNF, IL-6, iNOS mRNA expression, plasma serotonin, CSF Aβ-42, t-tau and p-tau proteins, and serum cortisol revealed associations with cognitive dysfunction. Examining the relationship between sleep parameters, neurochemical biomarkers, and cognitive function reveals neuronal mechanisms that guide potential therapeutic interventions and enhance quality patient care.
Collapse
Affiliation(s)
- Johann Emilio Gonzales Embang
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
- Division of Nursing, National University Hospital, Singapore City, Singapore
- National University Health System, Singapore City, Singapore
| | - Ying Hui Valerie Tan
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
- Division of Nursing, National University Hospital, Singapore City, Singapore
- National University Health System, Singapore City, Singapore
| | - Yu Xuan Ng
- National University Health System, Singapore City, Singapore
- Division of Nursing, Alexandra Hospital, Singapore City, Singapore
| | - Gerard Jude Ponce Loyola
- College of Medicine, University of the Philippines, Manila, Philippines
- Philippine General Hospital, Manila, Philippines
| | - Lik-Wei Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Yuqing Guo
- Sue & Bill Gross School of Nursing, University of California, Irvine, California, USA
| | - Yanhong Dong
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| |
Collapse
|
3
|
Hopkins MA, Tabuchi M. The power of the rocking cradle: improving sleep function by gentle vibration. Sleep 2024; 47:zsae245. [PMID: 39441991 DOI: 10.1093/sleep/zsae245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Indexed: 10/25/2024] Open
Affiliation(s)
- Makenzie A Hopkins
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
4
|
Valencia-Sanchez S, Davis M, Martensen J, Hoeffer C, Link C, Opp MR. Sleep-wake behavior and responses to sleep deprivation and immune challenge of protein kinase RNA-activated knockout mice. Brain Behav Immun 2024; 121:74-86. [PMID: 39043346 PMCID: PMC11563030 DOI: 10.1016/j.bbi.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024] Open
Abstract
Protein Kinase RNA-activated (PKR) is an enzyme that plays a role in many systemic processes, including modulation of inflammation, and is implicated in neurodegenerative diseases, such as Alzheimer's disease (AD). PKR phosphorylation results in the production of several cytokines involved in the regulation / modulation of sleep, including interleukin-1β, tumor necrosis factor-α and interferon-γ. We hypothesized targeting PKR would alter spontaneous sleep of mice, attenuate responses to sleep deprivation, and inhibit responses to immune challenge. To test these hypotheses, we determined the sleep-wake phenotype of mice lacking PKR (knockout; PKR-/-) during undisturbed baseline conditions; in responses to six hours of sleep deprivation; and after immune challenge with lipopolysaccharide (LPS). Adult male mice (C57BL/6J, n = 7; PKR-/-, n = 7) were surgically instrumented with EEG recording electrodes and an intraperitoneal microchip to record core body temperature. During undisturbed baseline conditions, PKR -/- mice spent more time in non-rapid eye movement sleep (NREMS) and rapid-eye movement sleep (REMS), and less time awake at the beginning of the dark period of the light:dark cycle. Delta power during NREMS, a measure of sleep depth, was less in PKR-/- mice during the dark period, and core body temperatures were lower during the light period. Both mouse strains responded to sleep deprivation with increased NREMS and REMS, although these changes did not differ substantively between strains. The initial increase in delta power during NREMS after sleep deprivation was greater in PKR-/- mice, suggesting a faster buildup of sleep pressure with prolonged waking. Immune challenge with LPS increased NREMS and inhibited REMS to the same extent in both mouse strains, whereas the initial LPS-induced suppression of delta power during NREMS was greater in PKR-/- mice. Because sleep regulatory and immune responsive systems in brain are redundant and overlapping, other mediators and signaling pathways in addition to PKR are involved in the responses to acute sleep deprivation and LPS immune challenge.
Collapse
Affiliation(s)
- S Valencia-Sanchez
- Department of Integrative Physiology, University of Colorado Boulder, USA
| | - M Davis
- Department of Integrative Physiology, University of Colorado Boulder, USA
| | - J Martensen
- Department of Integrative Physiology, University of Colorado Boulder, USA
| | - C Hoeffer
- Institute for Behavioral Genetics, University of Colorado Boulder, USA
| | - C Link
- Department of Integrative Physiology, University of Colorado Boulder, USA
| | - M R Opp
- Department of Integrative Physiology, University of Colorado Boulder, USA.
| |
Collapse
|
5
|
Kegyes-Brassai AC, Pierson-Bartel R, Bolla G, Kamondi A, Horvath AA. Disruption of sleep macro- and microstructure in Alzheimer's disease: overlaps between neuropsychology, neurophysiology, and neuroimaging. GeroScience 2024:10.1007/s11357-024-01357-z. [PMID: 39333449 DOI: 10.1007/s11357-024-01357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/14/2024] [Indexed: 09/29/2024] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia, often associated with impaired sleep quality and disorganized sleep structure. This study aimed to characterize changes in sleep macrostructure and K-complex density in AD, in relation to neuropsychological performance and brain structural changes. We enrolled 30 AD and 30 healthy control participants, conducting neuropsychological exams, brain MRI, and one-night polysomnography. AD patients had significantly reduced total sleep time (TST), sleep efficiency, and relative durations of non-rapid eye movement (NREM) stages 2 (S2), 3 (S3), and rapid eye movement (REM) sleep (p < 0.01). K-complex (KC) density during the entire sleep period and S2 (p < 0.001) was significantly decreased in AD. We found strong correlations between global cognitive performance and relative S3 (p < 0.001; r = 0.86) and REM durations (p < 0.001; r = 0.87). TST and NREM stage 1 (S1) durations showed a moderate negative correlation with amygdaloid and hippocampal volumes (p < 0.02; r = 0.51-0.55), while S3 and REM sleep had a moderate positive correlation with cingulate cortex volume (p < 0.02; r = 0.45-0.61). KC density strongly correlated with global cognitive function (p < 0.001; r = 0.66) and the thickness of the anterior cingulate cortex (p < 0.05; r = 0.45-0.47). Our results indicate significant sleep organization changes in AD, paralleling cognitive decline. Decreased slow wave sleep and KCs are strongly associated with cingulate cortex atrophy. Since sleep changes are prominent in early AD, they may serve as prognostic markers or therapeutic targets.
Collapse
Affiliation(s)
| | | | - Gergo Bolla
- School of PhD Studies, Semmelweis University, Budapest, Hungary
- Neurocognitive Research Centre, Nyírő Gyula National Institute of Psychiatry, and Addictology, Budapest, Hungary
| | - Anita Kamondi
- Neurocognitive Research Centre, Nyírő Gyula National Institute of Psychiatry, and Addictology, Budapest, Hungary
- Department of Neurosurgery and Neurointervention, Semmelweis University, Budapest, Hungary
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Andras Attila Horvath
- Neurocognitive Research Centre, Nyírő Gyula National Institute of Psychiatry, and Addictology, Budapest, Hungary
- Department of Anatomy Histology and Embryology, Semmelweis University, Budapest, Hungary
- HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
6
|
Mueller C, Nenert R, Catiul C, Pilkington J, Szaflarski JP, Amara AW. Relationship between sleep, physical fitness, brain microstructure, and cognition in healthy older adults: A pilot study. Brain Res 2024; 1839:149016. [PMID: 38768934 DOI: 10.1016/j.brainres.2024.149016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND There is a critical need for neuroimaging markers of brain integrity to monitor effects of modifiable lifestyle factors on brain health. This observational, cross-sectional study assessed relationships between brain microstructure and sleep, physical fitness, and cognition in healthy older adults. METHODS Twenty-three adults aged 60 and older underwent whole-brain multi-shell diffusion imaging, comprehensive cognitive testing, polysomnography, and exercise testing. Neurite Orientation Dispersion and Density Imaging (NODDI) was used to quantify neurite density (NDI) and orientation dispersion (ODI). Diffusion tensor imaging (DTI) was used to quantify axial diffusivity (AxD), fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD). Relationships between sleep efficiency (SE), time and percent in N3 sleep, cognitive function, physical fitness (VO2 peak) and the diffusion metrics in regions of interest and the whole brain were evaluated. RESULTS Higher NDI in bilateral white and gray matter was associated with better executive functioning. NDI in the right anterior cingulate and adjacent white matter was positively associated with language skills. Higher NDI in the left posterior corona radiata was associated with faster processing speed. Physical fitness was positively associated with NDI in the left precentral gyrus and corticospinal tract. N3 % was positively associated with NDI in the left caudate and right pre- and postcentral gyri. Higher ODI in the left putamen and adjacent white matter was associated with better executive function. CONCLUSION NDI and ODI derived from NODDI are potential neuroimaging markers for associations between brain microstructure and modifiable risk factors in aging. If these associations are observable in clinical samples, NODDI could be incorporated into clinical trials assessing the effects of modifiable risk factors on brain integrity in aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Christina Mueller
- University of Alabama at Birmingham, Department of Neurology, 1719 6(th) Ave S, Birmingham, AL 35233, United States.
| | - Rodolphe Nenert
- University of Alabama at Birmingham, Department of Neurology, 1719 6(th) Ave S, Birmingham, AL 35233, United States
| | - Corina Catiul
- University of Alabama at Birmingham, Department of Neurology, 1719 6(th) Ave S, Birmingham, AL 35233, United States
| | - Jennifer Pilkington
- University of Alabama at Birmingham, Department of Neurology, 1719 6(th) Ave S, Birmingham, AL 35233, United States
| | - Jerzy P Szaflarski
- University of Alabama at Birmingham, Department of Neurology, 1719 6(th) Ave S, Birmingham, AL 35233, United States
| | - Amy W Amara
- University of Alabama at Birmingham, Department of Neurology, 1719 6(th) Ave S, Birmingham, AL 35233, United States; University of Colorado Anschutz Medical Campus, 1635 Aurora Ct, Aurora, CO 80045, United States
| |
Collapse
|
7
|
Li Y, Yan Z, Shao N, Tang S, Zhang X, Liu XM, Tang J. Dual orexin receptor antagonist ameliorates sleep deprivation-induced learning and memory impairment in APP/PS1 mice. Sleep Med 2024; 121:303-314. [PMID: 39047304 DOI: 10.1016/j.sleep.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Sleep is considered closely related to cognitive function, and cognitive impairment is the main clinical manifestation of Alzheimer's disease (AD). Sleep disturbance in AD patients is more severe than that in healthy elderly individuals. Additionally, sleep deprivation reportedly increases the activity of the hypothalamic orexin system and the risk of AD. To investigate whether intervention with the orexin system can improve sleep disturbance in AD and its impact on AD pathology. In this study, six-month-old amyloid precursor protein/presenilin 1 mice were subjected to six weeks of chronic sleep deprivation and injected intraperitoneally with almorexant, a dual orexin receptor antagonist (DORA), to investigate the effects and mechanisms of sleep deprivation and almorexant intervention on learning and memory in mice with AD. We found that sleep deprivation aggravated learning and memory impairment and increased brain β-amyloid (Aβ) deposition in mice with AD. The application of almorexant can increase the total sleep time of sleep-deprived mice and reduce cognitive impairment and Aβ deposition, which is related to the improvement in Aquaporin-4 polarity. Thus, DORA may be an effective strategy for delaying the progression of AD patients by improving the sleep disturbances.
Collapse
Affiliation(s)
- Yaran Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, China
| | - Zian Yan
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, China
| | - Na Shao
- Department of Neurology, Shandong Provincial Qian Foshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shi Tang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China; Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, China.
| | - Xiao Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, China
| | - Xiao Min Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, China
| | - Jiyou Tang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, China
| |
Collapse
|
8
|
Leach S, Krugliakova E, Sousouri G, Snipes S, Skorucak J, Schühle S, Müller M, Ferster ML, Da Poian G, Karlen W, Huber R. Acoustically evoked K-complexes together with sleep spindles boost verbal declarative memory consolidation in healthy adults. Sci Rep 2024; 14:19184. [PMID: 39160150 PMCID: PMC11333484 DOI: 10.1038/s41598-024-67701-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
Over the past decade, phase-targeted auditory stimulation (PTAS), a neuromodulation approach which presents auditory stimuli locked to the ongoing phase of slow waves during sleep, has shown potential to enhance specific aspects of sleep functions. However, the complexity of PTAS responses complicates the establishment of causality between specific electroencephalographic events and observed benefits. Here, we used down-PTAS during sleep to specifically evoke the early, K-complex (KC)-like response following PTAS without leading to a sustained increase in slow-wave activity throughout the stimulation window. Over the course of two nights, one with down-PTAS, the other without, high-density electroencephalography (hd-EEG) was recorded from 14 young healthy adults. The early response exhibited striking similarities to evoked KCs and was associated with improved verbal memory consolidation via stimulus-evoked spindle events nested into the up-phase of ongoing 1 Hz waves in a central region. These findings suggest that the early, KC-like response is sufficient to boost memory, potentially by orchestrating aspects of the hippocampal-neocortical dialogue.
Collapse
Affiliation(s)
- Sven Leach
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Elena Krugliakova
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Georgia Sousouri
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Mobile Health Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
- Institute of Pharmacology & Toxicology, University of Zurich, Zurich, Switzerland
| | - Sophia Snipes
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jelena Skorucak
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Selina Schühle
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Manuel Müller
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Maria Laura Ferster
- Mobile Health Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | - Giulia Da Poian
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Walter Karlen
- Mobile Health Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
- Institute of Biomedical Engineering, Faculty of Engineering, Computer Science and Psychology, Ulm University, Ulm, Germany
| | - Reto Huber
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
9
|
Stankeviciute L, Blackman J, Tort-Colet N, Fernández-Arcos A, Sánchez-Benavides G, Suárez-Calvet M, Iranzo Á, Molinuevo JL, Gispert JD, Coulthard E, Grau-Rivera O. Memory performance mediates subjective sleep quality associations with cerebrospinal fluid Alzheimer's disease biomarker levels and hippocampal volume among individuals with mild cognitive symptoms. J Sleep Res 2024; 33:e14108. [PMID: 38035770 DOI: 10.1111/jsr.14108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
Sleep disturbances are prevalent in Alzheimer's disease (AD), affecting individuals during its early stages. We investigated associations between subjective sleep measures and cerebrospinal fluid (CSF) biomarkers of AD in adults with mild cognitive symptoms from the European Prevention of Alzheimer's Dementia Longitudinal Cohort Study, considering the influence of memory performance. A total of 442 participants aged >50 years with a Clinical Dementia Rating (CDR) score of 0.5 completed the Pittsburgh Sleep Quality Index questionnaire and underwent neuropsychological assessment, magnetic resonance imaging acquisition, and CSF sampling. We analysed the relationship of sleep quality with CSF AD biomarkers and cognitive performance in separated multivariate linear regression models, adjusting for covariates. Poorer cross-sectional sleep quality was associated with lower CSF levels of phosphorylated tau and total tau alongside better immediate and delayed memory performance. After adjustment for delayed memory scores, associations between CSF biomarkers and sleep quality became non-significant, and further analysis revealed that memory performance mediated this relationship. In post hoc analyses, poorer subjective sleep quality was associated with lesser hippocampal atrophy, with memory performance also mediating this association. In conclusion, worse subjective sleep quality is associated with less altered AD biomarkers in adults with mild cognitive symptoms (CDR score 0.5). These results could be explained by a systematic recall bias affecting subjective sleep assessment in individuals with incipient memory impairment. Caution should therefore be exercised when interpreting subjective sleep quality measures in memory-impaired populations, emphasising the importance of complementing subjective measures with objective assessments.
Collapse
Affiliation(s)
- Laura Stankeviciute
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Jonathan Blackman
- North Bristol NHS Trust, Bristol, UK
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Núria Tort-Colet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Ana Fernández-Arcos
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
- Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | - Álex Iranzo
- Neurology Service, Hospital Clínic de Barcelona and Institut D'Investigacions Biomèdiques, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic de Barcelona, Barcelona, Spain
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Elizabeth Coulthard
- North Bristol NHS Trust, Bristol, UK
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
- Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| |
Collapse
|
10
|
Mueller C, Nenert R, Catiul C, Pilkington J, Szaflarski JP, Amara AW. Brain metabolites are associated with sleep architecture and cognitive functioning in older adults. Brain Commun 2024; 6:fcae245. [PMID: 39104903 PMCID: PMC11300014 DOI: 10.1093/braincomms/fcae245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/09/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024] Open
Abstract
Sleep deficits are a possible risk factor for development of cognitive decline and dementia in older age. Research suggests that neuroinflammation may be a link between the two. This observational, cross-sectional study evaluated relationships between sleep architecture, neuroinflammation and cognitive functioning in healthy older adults. Twenty-two adults aged ≥60 years underwent whole-brain magnetic resonance spectroscopic imaging (in vivo method of visualizing increased brain temperatures as a proxy for neuroinflammation), supervised laboratory-based polysomnography, and comprehensive neurocognitive testing. Multiple regressions were used to assess relationships between magnetic resonance spectroscopic imaging-derived brain temperature and metabolites related to inflammation (choline; myo-inositol; N-acetylaspartate), sleep efficiency, time and % N3 sleep and cognitive performance. Choline, myo-inositol and N-acetylaspartate were associated with sleep efficiency and cognitive performance. Higher choline and myo-inositol in the bilateral frontal lobes were associated with slower processing speed and lower sleep efficiency. Higher choline and myo-inositol in bilateral frontoparietal regions were associated with better cognitive performance. Higher N-acetylaspartate around the temporoparietal junction and adjacent white matter was associated with better visuospatial function. Brain temperature was not related to cognitive or sleep outcomes. Our findings are consistent with the limited literature regarding neuroinflammation and its relationships with sleep and cognition in older age, which has implicated ageing microglia and astrocytes in circadian dysregulation, impaired glymphatic clearance and increased blood-brain barrier integrity, with downstream effects of neurodegeneration and cognitive decline. Inflammatory processes remain difficult to measure in the clinical setting, but magnetic resonance spectroscopic imaging may serve as a marker of the relationship between neuroinflammation, sleep and cognitive decline in older adults.
Collapse
Affiliation(s)
- Christina Mueller
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Rodolphe Nenert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Corina Catiul
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jennifer Pilkington
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jerzy P Szaflarski
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Amy W Amara
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Lam AKF, Carrick J, Kao CH, Phillips CL, Zheng YZ, Yee BJ, Kim JW, Grunstein RR, Naismith SL, D’Rozario AL. Electroencephalographic slowing during REM sleep in older adults with subjective cognitive impairment and mild cognitive impairment. Sleep 2024; 47:zsae051. [PMID: 38394454 PMCID: PMC11168761 DOI: 10.1093/sleep/zsae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/27/2023] [Indexed: 02/25/2024] Open
Abstract
STUDY OBJECTIVES In older adults with Alzheimer's disease, slowing of electroencephalographic (EEG) activity during REM sleep has been observed. Few studies have examined EEG slowing during REM in those with mild cognitive impairment (MCI) and none have examined its relationship with cognition in this at-risk population. METHODS Two hundred and ten older adults (mean age = 67.0, SD = 8.2 years) underwent comprehensive neuropsychological, medical, and psychiatric assessment and overnight polysomnography. Participants were classified as subjective cognitive impairment (SCI; n = 75), non-amnestic MCI (naMCI, n = 85), and amnestic MCI (aMCI, n = 50). REM EEG slowing was defined as (δ + θ)/(α + σ + β) power and calculated for frontal, central, parietal, and occipital regions. Analysis of variance compared REM EEG slowing between groups. Correlations between REM EEG slowing and cognition, including learning and memory, visuospatial and executive functions, were examined within each subgroup. RESULTS The aMCI group had significantly greater REM EEG slowing in the parietal and occipital regions compared to the naMCI and SCI groups (partial η2 = 0.06, p < 0.05 and 0.06, p < 0.05, respectively), and greater EEG slowing in the central region compared to SCI group (partial η2 = 0.03, p < 0.05). Greater REM EEG slowing in parietal (r = -0.49) and occipital regions (r = -0.38 [O1/M2] and -0.33 [O2/M1]) were associated with poorer visuospatial performance in naMCI. CONCLUSIONS REM EEG slowing may differentiate older adults with memory impairment from those without. Longitudinal studies are now warranted to examine the prognostic utility of REM EEG slowing for cognitive and dementia trajectories.
Collapse
Affiliation(s)
- Aaron Kin Fu Lam
- School of Psychology, University of Sydney, Camperdown, NSW, Australia
- Woolcock Institute of Medical Research, Centre for Sleep and Chronobiology, Glebe, NSW, Australia
- School of Psychological Sciences, Faculty of Medicine, Macquarie University, Sydney, NSW, Australia
| | - James Carrick
- School of Psychology, University of Sydney, Camperdown, NSW, Australia
| | - Chien-Hui Kao
- Woolcock Institute of Medical Research, Centre for Sleep and Chronobiology, Glebe, NSW, Australia
- School of Psychological Sciences, Faculty of Medicine, Macquarie University, Sydney, NSW, Australia
| | - Craig L Phillips
- Woolcock Institute of Medical Research, Centre for Sleep and Chronobiology, Glebe, NSW, Australia
- School of Psychological Sciences, Faculty of Medicine, Macquarie University, Sydney, NSW, Australia
| | - Yi Zhong Zheng
- Woolcock Institute of Medical Research, Centre for Sleep and Chronobiology, Glebe, NSW, Australia
| | - Brendon J Yee
- Woolcock Institute of Medical Research, Centre for Sleep and Chronobiology, Glebe, NSW, Australia
- Sydney Medical School, Faculty of Medicine and Health, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Central Clinical School, University of Sydney, Camperdown, NSW, Australia
| | - Jong Won Kim
- Department of Healthcare IT, Inje University, Gimhae, Gyeongsangnam-do, South Korea
| | - Ronald R Grunstein
- Woolcock Institute of Medical Research, Centre for Sleep and Chronobiology, Glebe, NSW, Australia
- Sydney Medical School, Faculty of Medicine and Health, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Sharon L Naismith
- School of Psychology, University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Angela L D’Rozario
- Woolcock Institute of Medical Research, Centre for Sleep and Chronobiology, Glebe, NSW, Australia
- School of Psychological Sciences, Faculty of Medicine, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
12
|
Pérez-Carbonell L, Iranzo A. REM sleep and neurodegeneration. J Sleep Res 2024:e14263. [PMID: 38867555 DOI: 10.1111/jsr.14263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Several brainstem, subcortical and cortical areas are involved in the generation of rapid eye movement (REM) sleep. The alteration of these structures as a result of a neurodegenerative process may therefore lead to REM sleep anomalies. REM sleep behaviour disorder is associated with nightmares, dream-enacting behaviours and increased electromyographic activity in REM sleep. Its isolated form is a harbinger of synucleinopathies such as Parkinson's disease or dementia with Lewy bodies, and neuroprotective interventions are advocated. This link might also be present in patients taking antidepressants, with post-traumatic stress disorder, or with a history of repeated traumatic head injury. REM sleep likely contributes to normal memory processes. Its alteration has also been proposed to be part of the neuropathological changes occurring in Alzheimer's disease.
Collapse
Affiliation(s)
- Laura Pérez-Carbonell
- Sleep Disorders Centre, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK
| | - Alex Iranzo
- Neurology Service, Sleep Disorders Centre, Hospital Clínic de Barcelona, IDIBAPS, CIBERNED, University of Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Jones AM, Itti L, Sheth BR. Expert-level sleep staging using an electrocardiography-only feed-forward neural network. Comput Biol Med 2024; 176:108545. [PMID: 38749325 DOI: 10.1016/j.compbiomed.2024.108545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/05/2024] [Accepted: 04/28/2024] [Indexed: 05/31/2024]
Abstract
Reliable classification of sleep stages is crucial in sleep medicine and neuroscience research for providing valuable insights, diagnoses, and understanding of brain states. The current gold standard method for sleep stage classification is polysomnography (PSG). Unfortunately, PSG is an expensive and cumbersome process involving numerous electrodes, often conducted in an unfamiliar clinic and annotated by a professional. Although commercial devices like smartwatches track sleep, their performance is well below PSG. To address these disadvantages, we present a feed-forward neural network that achieves gold-standard levels of agreement using only a single lead of electrocardiography (ECG) data. Specifically, the median five-stage Cohen's kappa is 0.725 on a large, diverse dataset of 5 to 90-year-old subjects. Comparisons with a comprehensive meta-analysis of between-human inter-rater agreement confirm the non-inferior performance of our model. Finally, we developed a novel loss function to align the training objective with Cohen's kappa. Our method offers an inexpensive, automated, and convenient alternative for sleep stage classification-further enhanced by a real-time scoring option. Cardiosomnography, or a sleep study conducted with ECG only, could take expert-level sleep studies outside the confines of clinics and laboratories and into realistic settings. This advancement democratizes access to high-quality sleep studies, considerably enhancing the field of sleep medicine and neuroscience. It makes less-expensive, higher-quality studies accessible to a broader community, enabling improved sleep research and more personalized, accessible sleep-related healthcare interventions.
Collapse
Affiliation(s)
- Adam M Jones
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA.
| | - Laurent Itti
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Bhavin R Sheth
- Department of Electrical & Computer Engineering, University of Houston, Houston, TX, USA; Center for NeuroEngineering and Cognitive Systems, University of Houston, Houston, TX, USA
| |
Collapse
|
14
|
Sato T, Ochiishi T, Higo-Yamamoto S, Oishi K. Circadian and sleep phenotypes in a mouse model of Alzheimer's disease characterized by intracellular accumulation of amyloid β oligomers. Exp Anim 2024; 73:186-192. [PMID: 38092387 PMCID: PMC11091359 DOI: 10.1538/expanim.23-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/06/2023] [Indexed: 05/08/2024] Open
Abstract
Disturbances in sleep-wake and circadian rhythms may reportedly precede the onset of cognitive symptoms in the early stages of Alzheimer's disease (AD); however, the underlying mechanisms of these AD-induced sleep disturbances remain unelucidated. To specifically evaluate the involvement of amyloid beta (Aβ) oligomers in AD-induced sleep disturbances, we examined circadian and sleep phenotypes using an Aβ-GFP transgenic (Aβ-GFP Tg) mouse characterized by intracellular accumulation of Aβ oligomers. The circadian rhythm and free-running period of wheel running activity were identical between Aβ-GFP Tg and littermate wild-type mice. The durations of rapid eye movement (REM) sleep were elongated in Aβ-GFP Tg mice; however, the durations of non-REM sleep and wakefulness were unaffected. The Aβ-GFP Tg mice exhibited shifts in the electroencephalogram (EEG) power spectra toward higher frequencies in the inactive light phase. These findings suggest that the intracellular accumulation of Aβ oligomers might be associated with sleep quality; however, its impact on circadian systems is limited.
Collapse
Affiliation(s)
- Tomoyuki Sato
- Healthy Food Science Research Group, Cellular, and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Tomoyo Ochiishi
- Molecular Neurobiology Research Group, Biomedical Research Institute (BMRI), National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Sayaka Higo-Yamamoto
- Healthy Food Science Research Group, Cellular, and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Katsutaka Oishi
- Healthy Food Science Research Group, Cellular, and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
15
|
Slutsky I. Linking activity dyshomeostasis and sleep disturbances in Alzheimer disease. Nat Rev Neurosci 2024; 25:272-284. [PMID: 38374463 DOI: 10.1038/s41583-024-00797-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 02/21/2024]
Abstract
The presymptomatic phase of Alzheimer disease (AD) starts with the deposition of amyloid-β in the cortex and begins a decade or more before the emergence of cognitive decline. The trajectory towards dementia and neurodegeneration is shaped by the pathological load and the resilience of neural circuits to the effects of this pathology. In this Perspective, I focus on recent advances that have uncovered the vulnerability of neural circuits at early stages of AD to hyperexcitability, particularly when the brain is in a low-arousal states (such as sleep and anaesthesia). Notably, this hyperexcitability manifests before overt symptoms such as sleep and memory deficits. Using the principles of control theory, I analyse the bidirectional relationship between homeostasis of neuronal activity and sleep and propose that impaired activity homeostasis during sleep leads to hyperexcitability and subsequent sleep disturbances, whereas sleep disturbances mitigate hyperexcitability via negative feedback. Understanding the interplay among activity homeostasis, neuronal excitability and sleep is crucial for elucidating the mechanisms of vulnerability to and resilience against AD pathology and for identifying new therapeutic avenues.
Collapse
Affiliation(s)
- Inna Slutsky
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
16
|
Almeida VN. Somatostatin and the pathophysiology of Alzheimer's disease. Ageing Res Rev 2024; 96:102270. [PMID: 38484981 DOI: 10.1016/j.arr.2024.102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024]
Abstract
Among the central features of Alzheimer's disease (AD) progression are altered levels of the neuropeptide somatostatin (SST), and the colocalisation of SST-positive interneurons (SST-INs) with amyloid-β plaques, leading to cell death. In this theoretical review, I propose a molecular model for the pathogenesis of AD based on SST-IN hypofunction and hyperactivity. Namely, hypofunctional and hyperactive SST-INs struggle to control hyperactivity in medial regions in early stages, leading to axonal Aβ production through excessive presynaptic GABAB inhibition, GABAB1a/APP complex downregulation and internalisation. Concomitantly, excessive SST-14 release accumulates near SST-INs in the form of amyloids, which bind to Aβ to form toxic mixed oligomers. This leads to differential SST-IN death through excitotoxicity, further disinhibition, SST deficits, and increased Aβ release, fibrillation and plaque formation. Aβ plaques, hyperactive networks and SST-IN distributions thereby tightly overlap in the brain. Conversely, chronic stimulation of postsynaptic SST2/4 on gulutamatergic neurons by hyperactive SST-INs promotes intense Mitogen-Activated Protein Kinase (MAPK) p38 activity, leading to somatodendritic p-tau staining and apoptosis/neurodegeneration - in agreement with a near complete overlap between p38 and neurofibrillary tangles. This model is suitable to explain some of the principal risk factors and markers of AD progression, including mitochondrial dysfunction, APOE4 genotype, sex-dependent vulnerability, overactive glial cells, dystrophic neurites, synaptic/spine losses, inter alia. Finally, the model can also shed light on qualitative aspects of AD neuropsychology, especially within the domains of spatial and declarative (episodic, semantic) memory, under an overlying pattern of contextual indiscrimination, ensemble instability, interference and generalisation.
Collapse
Affiliation(s)
- Victor N Almeida
- Institute of Psychiatry, Faculty of Medicine, University of São Paulo (USP), Brazil; Faculty of Languages, Federal University of Minas Gerais (UFMG), Brazil.
| |
Collapse
|
17
|
Gorgoni M, Cenani J, Scarpelli S, D'Atri A, Alfonsi V, Annarumma L, Pietrogiacomi F, Ferrara M, Marra C, Rossini PM, De Gennaro L. The role of the sleep K-complex on the conversion from mild cognitive impairment to Alzheimer's disease. J Sleep Res 2024; 33:e14046. [PMID: 37718942 DOI: 10.1111/jsr.14046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/24/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
The present literature points to an alteration of the human K-complex during non-rapid eye movement sleep in Alzheimer's disease. Nevertheless, the few findings on the K-complex changes in mild cognitive impairment and their possible predictive role on the Alzheimer's disease conversion show mixed findings, lack of replication, and a main interest for the frontal region. The aim of the present study was to assess K-complex measures in amnesic mild cognitive impairment subsequently converted in Alzheimer's disease over different cortical regions, comparing them with healthy controls and stable amnesic mild cognitive impairment. We assessed baseline K-complex density, amplitude, area under the curve and overnight changes in frontal, central and parietal midline derivations of 12 amnesic mild cognitive impairment subsequently converted in Alzheimer's disease, 12 stable amnesic mild cognitive impairment and 12 healthy controls. We also assessed delta electroencephalogram power, to determine if K-complex alterations in amnesic mild cognitive impairment occur with modification of the electroencephalogram power in the frequency range of the slow-wave activity. We found a reduced parietal K-complex density in amnesic mild cognitive impairment subsequently converted in Alzheimer's disease compared with stable amnesic mild cognitive impairment and healthy controls, without changes in K-complex morphology and overnight modulation. Both amnesic mild cognitive impairment groups showed decreased slow-wave sleep percentage compared with healthy controls. No differences between groups were observed in slow-wave activity power. Our findings suggest that K-complex alterations in mild cognitive impairment may be observed earlier in parietal regions, likely mirroring the topographical progression of Alzheimer's disease-related brain pathology, and express a frontal predominance only in a full-blown phase of Alzheimer's disease. Consistently with previous results, such K-complex modification occurs in the absence of significant electroencephalogram power changes in the slow oscillations range.
Collapse
Affiliation(s)
- Maurizio Gorgoni
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Jessica Cenani
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Serena Scarpelli
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Aurora D'Atri
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | | | | | - Michele Ferrara
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Camillo Marra
- Institute of Neurology, Catholic University, Rome, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - Luigi De Gennaro
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
18
|
Orlando IF, O'Callaghan C, Lam A, McKinnon AC, Tan JBC, Michaelian JC, Kong SDX, D'Rozario AL, Naismith SL. Sleep spindle architecture associated with distinct clinical phenotypes in older adults at risk for dementia. Mol Psychiatry 2024; 29:402-411. [PMID: 38052981 PMCID: PMC11116104 DOI: 10.1038/s41380-023-02335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023]
Abstract
Sleep spindles are a hallmark of non-REM sleep and play a fundamental role in memory consolidation. Alterations in these spindles are emerging as sensitive biomarkers for neurodegenerative diseases of ageing. Understanding the clinical presentations associated with spindle alterations may help to elucidate the functional role of these distinct electroencephalographic oscillations and the pathophysiology of sleep and neurodegenerative disorders. Here, we use a data-driven approach to examine the sleep, memory and default mode network connectivity phenotypes associated with sleep spindle architecture in older adults (mean age = 66 years). Participants were recruited from a specialist clinic for early diagnosis and intervention for cognitive decline, with a proportion showing mild cognitive deficits on neuropsychological testing. In a sample of 88 people who underwent memory assessment, overnight polysomnography and resting-state fMRI, a k-means cluster analysis was applied to spindle measures of interest: fast spindle density, spindle duration and spindle amplitude. This resulted in three clusters, characterised by preserved spindle architecture with higher fast spindle density and longer spindle duration (Cluster 1), and alterations in spindle architecture (Clusters 2 and 3). These clusters were further characterised by reduced memory (Clusters 2 and 3) and nocturnal hypoxemia, associated with sleep apnea (Cluster 3). Resting-state fMRI analysis confirmed that default mode connectivity was related to spindle architecture, although directionality of this relationship differed across the cluster groups. Together, these results confirm a diversity in spindle architecture in older adults, associated with clinically meaningful phenotypes, including memory function and sleep apnea. They suggest that resting-state default mode connectivity during the awake state can be associated with sleep spindle architecture; however, this is highly dependent on clinical phenotype. Establishing relationships between clinical and neuroimaging features and sleep spindle alterations will advance our understanding of the bidirectional relationships between sleep changes and neurodegenerative diseases of ageing.
Collapse
Affiliation(s)
- Isabella F Orlando
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Claire O'Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Aaron Lam
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Andrew C McKinnon
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Joshua B C Tan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Johannes C Michaelian
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Shawn D X Kong
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia
| | - Angela L D'Rozario
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia
- School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
| | - Sharon L Naismith
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia.
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia.
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia.
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia.
| |
Collapse
|
19
|
Nous A, Seynaeve L, Feys O, Wens V, De Tiège X, Van Mierlo P, Baroumand AG, Nieboer K, Allemeersch GJ, Mangelschots S, Michiels V, van der Zee J, Van Broeckhoven C, Ribbens A, Houbrechts R, De Witte S, Wittens MMJ, Bjerke M, Vanlersberghe C, Ceyssens S, Nagels G, Smolders I, Engelborghs S. Subclinical epileptiform activity in the Alzheimer continuum: association with disease, cognition and detection method. Alzheimers Res Ther 2024; 16:19. [PMID: 38263073 PMCID: PMC10804650 DOI: 10.1186/s13195-023-01373-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/17/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Epileptic seizures are an established comorbidity of Alzheimer's disease (AD). Subclinical epileptiform activity (SEA) as detected by 24-h electroencephalography (EEG) or magneto-encephalography (MEG) has been reported in temporal regions of clinically diagnosed AD patients. Although epileptic activity in AD probably arises in the mesial temporal lobe, electrical activity within this region might not propagate to EEG scalp electrodes and could remain undetected by standard EEG. However, SEA might lead to faster cognitive decline in AD. AIMS 1. To estimate the prevalence of SEA and interictal epileptic discharges (IEDs) in a well-defined cohort of participants belonging to the AD continuum, including preclinical AD subjects, as compared with cognitively healthy controls. 2. To evaluate whether long-term-EEG (LTM-EEG), high-density-EEG (hd-EEG) or MEG is superior to detect SEA in AD. 3. To characterise AD patients with SEA based on clinical, neuropsychological and neuroimaging parameters. METHODS Subjects (n = 49) belonging to the AD continuum were diagnosed according to the 2011 NIA-AA research criteria, with a high likelihood of underlying AD pathophysiology. Healthy volunteers (n = 24) scored normal on neuropsychological testing and were amyloid negative. None of the participants experienced a seizure before. Subjects underwent LTM-EEG and/or 50-min MEG and/or 50-min hd-EEG to detect IEDs. RESULTS We found an increased prevalence of SEA in AD subjects (31%) as compared to controls (8%) (p = 0.041; Fisher's exact test), with increasing prevalence over the disease course (50% in dementia, 27% in MCI and 25% in preclinical AD). Although MEG (25%) did not withhold a higher prevalence of SEA in AD as compared to LTM-EEG (19%) and hd-EEG (19%), MEG was significantly superior to detect spikes per 50 min (p = 0.002; Kruskall-Wallis test). AD patients with SEA scored worse on the RBANS visuospatial and attention subset (p = 0.009 and p = 0.05, respectively; Mann-Whitney U test) and had higher left frontal, (left) temporal and (left and right) entorhinal cortex volumes than those without. CONCLUSION We confirmed that SEA is increased in the AD continuum as compared to controls, with increasing prevalence with AD disease stage. In AD patients, SEA is associated with more severe visuospatial and attention deficits and with increased left frontal, (left) temporal and entorhinal cortex volumes. TRIAL REGISTRATION Clinicaltrials.gov, NCT04131491. 12/02/2020.
Collapse
Affiliation(s)
- Amber Nous
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
- Department of Biomedical Sciences, Universiteit Antwerpen, Antwerp, Belgium
- Laboratory of Pharmaceutical Chemistry, Drug Analysis and Drug Information (FASC), Research Group Experimental Pharmacology (EFAR), Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Laura Seynaeve
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Odile Feys
- Department of Neurology, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Hôpital Erasme, Brussels, Belgium
- Laboratoire de Neuroimagerie Et Neuroanatomie Translationnelles (LN2T), Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Brussels, Belgium
| | - Vincent Wens
- Laboratoire de Neuroimagerie Et Neuroanatomie Translationnelles (LN2T), Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Brussels, Belgium
- Department of Translational Neuroimaging, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Hôpital Erasme, Brussels, Belgium
| | - Xavier De Tiège
- Laboratoire de Neuroimagerie Et Neuroanatomie Translationnelles (LN2T), Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Brussels, Belgium
- Department of Translational Neuroimaging, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Hôpital Erasme, Brussels, Belgium
| | | | | | - Koenraad Nieboer
- Department of Radiology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Gert-Jan Allemeersch
- Department of Radiology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Shana Mangelschots
- Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
- Department of Biomedical Sciences, Universiteit Antwerpen, Antwerp, Belgium
| | - Veronique Michiels
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Julie van der Zee
- Department of Biomedical Sciences, Universiteit Antwerpen, Antwerp, Belgium
- Neurodegenerative Brain Diseases, VIB Center for Molecular Neurology, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Department of Biomedical Sciences, Universiteit Antwerpen, Antwerp, Belgium
- Neurodegenerative Brain Diseases, VIB Center for Molecular Neurology, Antwerp, Belgium
| | | | | | - Sara De Witte
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Mandy Melissa Jane Wittens
- Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
- Department of Biomedical Sciences, Universiteit Antwerpen, Antwerp, Belgium
| | - Maria Bjerke
- Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
- Department of Biomedical Sciences, Universiteit Antwerpen, Antwerp, Belgium
- Department of Clinical Biology, Laboratory of Clinical Neurochemistry, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Caroline Vanlersberghe
- Department of Anaesthesiology and Perioperative Medicine, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Sarah Ceyssens
- Department of Nuclear Medicine, Universitair Ziekenhuis Antwerpen, University of Antwerp, Antwerpen, Belgium
| | - Guy Nagels
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- Artificial Intelligence Supported Modelling in Clinical Sciences (AIMS) Research Group, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ilse Smolders
- Laboratory of Pharmaceutical Chemistry, Drug Analysis and Drug Information (FASC), Research Group Experimental Pharmacology (EFAR), Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Sebastiaan Engelborghs
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.
- Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium.
- Department of Biomedical Sciences, Universiteit Antwerpen, Antwerp, Belgium.
| |
Collapse
|
20
|
Huang H, Zhuang Z, Wan Y, Shi J, Yuan X, Wang D, Chen S. Knowledge Structure and Emerging Trends of Mild Cognitive Impairment with Dyssomnias in Recent 20 Years: A Bibliometric Analysis via CiteSpace and VOSviewer. Behav Neurol 2024; 2024:6622212. [PMID: 38223295 PMCID: PMC10787659 DOI: 10.1155/2024/6622212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/21/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024] Open
Abstract
Background Mild cognitive impairment (MCI), an intermediate stage between normal aging and dementia, has emerged as a prominent research area in geriatric care due to its heightened propensity for progressing toward dementia. Sleep plays a pivotal role in cognitive function, with dyssomnias not only exacerbating cognitive and affective symptoms associated with neurodegenerative diseases but also contributing to disease progression. Aim This bibliometric analysis investigates the global research on MCI with dyssomnias over the past two decades, aiming to discern key findings, research domains, and emerging trends in this field. Methods In this study, a bibliometric analysis was conducted using the search terms "MCI" and "sleep". Data were extracted from the Web of Science Core Collection database, and visualization and collaborative analysis were performed using CiteSpace and VOSviewer. Results This study encompassed 546 publications from 2003 to 2023. The publication volume and citation rate consistently increased over time. Neurosciences, Clinical Neurology, and Geriatrics Gerontology emerged as the top three research fields. The Journal of Alzheimer's Disease had the highest publication count, while Sleep Medicine received the most citations. USA, China, and Italy led in publication output. Collaborative clusters among authors and institutions were identified, but cooperation between clusters was limited. Active cocited reference clusters included "obstructive sleep apnea", "possible mediating pathways", and "isolated rapid eye movement sleep behaviour disorder". The top frequently mentioned keywords, besides "MCI", were "Alzheimer's disease", "dementia", "risk factor", and "Parkinson's Disease". Notable keyword clusters spanned circadian rhythm, Parkinson's disease, MCI, dementia with Lewy body, subjective cognitive impairment, Lewy body disease, Alzheimer's disease, and dietary patterns. Conclusion The field of MCI with dyssomnias is rapidly expanding, encompassing a wide range of neurodegenerative disorders and sleep disturbances. Current research endeavors are primarily focused on elucidating the underlying pathogenesis, predicting disease progression, and developing innovative treatment strategies for individuals affected by MCI with dyssomnias.
Collapse
Affiliation(s)
- Haoyu Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China
| | - Zesen Zhuang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China
| | - Yiwen Wan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China
| | - Jiao Shi
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China
| | - Xu Yuan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China
| | - Dan Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China
| | - Shangjie Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China
| |
Collapse
|
21
|
Hanert A, Schönfeld R, Weber FD, Nowak A, Döhring J, Philippen S, Granert O, Burgalossi A, Born J, Berg D, Göder R, Häussermann P, Bartsch T. Reduced overnight memory consolidation and associated alterations in sleep spindles and slow oscillations in early Alzheimer's disease. Neurobiol Dis 2024; 190:106378. [PMID: 38103701 DOI: 10.1016/j.nbd.2023.106378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
Spatial navigation critically underlies hippocampal-entorhinal circuit function that is early affected in Alzheimer's disease (AD). There is growing evidence that AD pathophysiology dynamically interacts with the sleep/wake cycle impairing hippocampal memory. To elucidate sleep-dependent consolidation in a cohort of symptomatic AD patients (n = 12, 71.25 ± 2.16 years), we tested hippocampal place learning by means of a virtual reality task and verbal memory by a word-pair association task before and after a night of sleep. Our results show an impaired overnight memory retention in AD compared with controls in the verbal task, together with a significant reduction of sleep spindle activity (i.e., lower amplitude of fast sleep spindles, p = 0.016) and increased duration of the slow oscillation (SO; p = 0.019). Higher spindle density, faster down-to-upstate transitions within SOs, and the time delay between SOs and nested spindles predicted better memory performance in healthy controls but not in AD patients. Our results show that mnemonic processing and memory consolidation in AD is slightly impaired as reflected by dysfunctional oscillatory dynamics and spindle-SO coupling during NonREM sleep. In this translational study based on experimental paradigms in animals and extending previous work in healthy aging and preclinical disease stages, our results in symptomatic AD further deepen the understanding of the memory decline within a bidirectional relationship of sleep and AD pathology.
Collapse
Affiliation(s)
- Annika Hanert
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital of Schleswig Holstein, 24105 Kiel, Germany
| | - Robby Schönfeld
- Institute of Psychology, Division of Clinical Psychology, Martin-Luther-University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Frederik D Weber
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72074 Tübingen, Germany; Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 EN Nijmegen, the Netherlands; Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands
| | - Alexander Nowak
- Department of Psychiatry and Psychotherapy, Sleep Laboratory, University Hospital of Schleswig Holstein, 24105 Kiel, Germany
| | - Juliane Döhring
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital of Schleswig Holstein, 24105 Kiel, Germany; Institute for General Medicine, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
| | - Sarah Philippen
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital of Schleswig Holstein, 24105 Kiel, Germany
| | - Oliver Granert
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital of Schleswig Holstein, 24105 Kiel, Germany
| | - Andrea Burgalossi
- Institute of Neurobiology, Werner-Reichardt Center for Integrative Neuroscience, University of Tübingen, 72074 Tübingen, Germany
| | - Jan Born
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72074 Tübingen, Germany
| | - Daniela Berg
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital of Schleswig Holstein, 24105 Kiel, Germany
| | - Robert Göder
- Department of Psychiatry and Psychotherapy, Sleep Laboratory, University Hospital of Schleswig Holstein, 24105 Kiel, Germany
| | - Peter Häussermann
- Department of Geriatric Psychiatry, LVR Klinik Köln, Academic Teaching Hospital, University of Cologne, Köln, Germany
| | - Thorsten Bartsch
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital of Schleswig Holstein, 24105 Kiel, Germany.
| |
Collapse
|
22
|
Wei J, Wang M, Guo Y, Liu Y, Dong X. Sleep structure assessed by objective measurement in patients with mild cognitive impairment: A meta-analysis. Sleep Med 2024; 113:397-405. [PMID: 38134714 DOI: 10.1016/j.sleep.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
OBJECTIVES A meta-analysis was used to explore the characteristic changes in objective sleep structure of patients with mild cognitive impairment (MCI) compared with cognitively healthy older adults. MATERIALS AND METHODS PubMed, EMBAS, Cochrane Library, Scopus, and Web of Science were searched until November 2023. A literature quality evaluation was performed according to the Newcastle-Ottawa Scale, and a meta-analysis was performed by RevMan 5.3 software. RESULTS Fifteen studies with 771 participants were finally included. Compared with normal control groups, patients with MCI had a decreased total sleep time by 34.44 min, reduction in sleep efficiency by 7.96 %, increased waking after sleep onset by 19.61 min, and increased sleep latency by 6.97 min. Ten included studies showed that the patients with MCI had increased N1 sleep by 2.72 % and decreased N3 sleep by 0.78 %; however, there was no significant difference between the MCI and control groups in percentage of N2 sleep. Moreover, Twelve included studies reported the MCI groups had shorter REM sleep of 2.69 %. CONCLUSION Our results provide evidence of abnormal sleep architecture in patients with MCI. As a "plastic state," abnormal sleep architecture may be a promising therapeutic target for slowing cognitive decline and dementia prevention.
Collapse
Affiliation(s)
- Jianing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Min Wang
- Department of Nursing, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yuanli Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yanjin Liu
- Department of Nursing, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaofang Dong
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| |
Collapse
|
23
|
Jo KJ, Ho S, Hong YJ, Jeong JH, Kim S, Wang MJ, Choi SH, Han S, Yang DW, Park KH. Relationship Between Amyloid Positivity and Sleep Characteristics in the Elderly With Subjective Cognitive Decline. Dement Neurocogn Disord 2024; 23:22-29. [PMID: 38362054 PMCID: PMC10864700 DOI: 10.12779/dnd.2024.23.1.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 02/17/2024] Open
Abstract
Background and Purpose Alzheimer's disease (AD) is a neurodegenerative disease characterized by a progressive decline in cognition and performance of daily activities. Recent studies have attempted to establish the relationship between AD and sleep. It is believed that patients with AD pathology show altered sleep characteristics years before clinical symptoms appear. This study evaluated the differences in sleep characteristics between cognitively asymptomatic patients with and without some amyloid burden. Methods Sleep characteristics of 76 subjects aged 60 years or older who were diagnosed with subjective cognitive decline (SCD) but not mild cognitive impairment (MCI) or AD were measured using Fitbit® Alta HR, a wristwatch-shaped wearable device. Amyloid deposition was evaluated using brain amyloid plaque load (BAPL) and global standardized uptake value ratio (SUVR) from fluorine-18 florbetaben positron emission tomography. Each component of measured sleep characteristics was analyzed for statistically significant differences between the amyloid-positive group and the amyloid-negative group. Results Of the 76 subjects included in this study, 49 (64.5%) were female. The average age of the subjects was 70.72±6.09 years when the study started. 15 subjects were classified as amyloid-positive based on BAPL. The average global SUVR was 1.598±0.263 in the amyloid-positive group and 1.187±0.100 in the amyloid-negative group. Time spent in slow-wave sleep (SWS) was significantly lower in the amyloid-positive group (39.4±13.1 minutes) than in the amyloid-negative group (49.5±13.1 minutes) (p=0.009). Conclusions This study showed that SWS is different between the elderly SCD population with and without amyloid positivity. How SWS affects AD pathology requires further research.
Collapse
Affiliation(s)
- Kyung Joon Jo
- Department of Neurology, College of Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - SeongHee Ho
- Department of Neurology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yun Jeong Hong
- Department of Neurology, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| | - Jee Hyang Jeong
- Department of Neurology, Ewha Womans University Seoul Hospital, Ewha Womans University School of Medicine, Seoul, Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
- Clinical Neuroscience Center, Seoul National University Bundang Hospital, Seongnam, Korea
| | | | - Seong Hye Choi
- Department of Neurology, Inha University, School of Medicine, Incheon, Korea
| | | | - Dong Won Yang
- Department of Neurology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kee Hyung Park
- Department of Neurology, College of Medicine, Gachon University Gil Medical Center, Incheon, Korea
| |
Collapse
|
24
|
Elkins G, Padilla VJ, Otte J, Sanford K, Benge J, Stevens A, Scullin M, Corlett CE, Ekanayake V. Hypnosis Intervention for Sleep Disturbances in Individuals with Mild Cognitive Impairment: A Randomized Pilot Study. Int J Clin Exp Hypn 2024; 72:16-28. [PMID: 38100554 PMCID: PMC10841837 DOI: 10.1080/00207144.2023.2279672] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/24/2023] [Indexed: 12/17/2023]
Abstract
Poor sleep quality is highly prevalent among individuals with mild cognitive impairment (MCI). Further, poor sleep quality is associated with reduced quality of life, increased stress response, memory impairments, and progression to dementia among individuals with MCI. Pharmacological treatments for sleep have mixed efficacy and can lead to dependency. Therefore, alternatives to pharmacological treatments for improving sleep among individuals with MCI are needed. The present study reports on the feasibility of a non-pharmacological self-administered hypnosis intervention focused on sleep quality in adults with MCI. It was hypothesized that the hypnosis intervention program would be feasible and have acceptable levels of adherence to daily hypnosis practice. A two-armed randomized controlled pilot trial was conducted using a sample of 21 adults with MCI. Eligible participants were randomly assigned to listen to either hypnosis audio recordings or sham hypnosis recordings for five weeks. Program feasibility, program adherence, pain intensity, stress, and sleep quality were measured using a daily home practice log, questionnaires, and wrist actigraphy. The results found mid or higher levels of treatment satisfaction, ease of use, and perceived effectiveness at one-week follow-up, with participants in the hypnosis arm reporting greater perceived benefit. Adherence to assigned audio recordings and meetings were likewise within acceptable margins in both groups. No intervention-related adverse events were reported in either treatment condition. Significant improvements in sleep quality, sleep duration, and daytime sleepiness were found for the hypnosis intervention. The results of this study can be used to inform future research on the effects of hypnosis on sleep quality in adults with MCI.
Collapse
Affiliation(s)
- Gary Elkins
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Victor J Padilla
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Julie Otte
- Indiana University School of Nursing, Indianapolis, Indiana, USA
| | - Keith Sanford
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Jared Benge
- Department of Neurology, Dell Medical School, University of Texas at Austin, USA
- Mulva Clinic for the Neurosciences, UT Health Austin, Texas, USA
| | - Alan Stevens
- Center for Health Research, Baylor Scott and White Health, Temple, Texas, USA
| | - Michael Scullin
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Chris E Corlett
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Vindhya Ekanayake
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| |
Collapse
|
25
|
Johnson CE, Duncan MJ, Murphy MP. Sex and Sleep Disruption as Contributing Factors in Alzheimer's Disease. J Alzheimers Dis 2024; 97:31-74. [PMID: 38007653 PMCID: PMC10842753 DOI: 10.3233/jad-230527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Alzheimer's disease (AD) affects more women than men, with women throughout the menopausal transition potentially being the most under researched and at-risk group. Sleep disruptions, which are an established risk factor for AD, increase in prevalence with normal aging and are exacerbated in women during menopause. Sex differences showing more disrupted sleep patterns and increased AD pathology in women and female animal models have been established in literature, with much emphasis placed on loss of circulating gonadal hormones with age. Interestingly, increases in gonadotropins such as follicle stimulating hormone are emerging to be a major contributor to AD pathogenesis and may also play a role in sleep disruption, perhaps in combination with other lesser studied hormones. Several sleep influencing regions of the brain appear to be affected early in AD progression and some may exhibit sexual dimorphisms that may contribute to increased sleep disruptions in women with age. Additionally, some of the most common sleep disorders, as well as multiple health conditions that impair sleep quality, are more prevalent and more severe in women. These conditions are often comorbid with AD and have bi-directional relationships that contribute synergistically to cognitive decline and neuropathology. The association during aging of increased sleep disruption and sleep disorders, dramatic hormonal changes during and after menopause, and increased AD pathology may be interacting and contributing factors that lead to the increased number of women living with AD.
Collapse
Affiliation(s)
- Carrie E. Johnson
- University of Kentucky, College of Medicine, Department of Molecular and Cellular Biochemistry, Lexington, KY, USA
| | - Marilyn J. Duncan
- University of Kentucky, College of Medicine, Department of Neuroscience, Lexington, KY, USA
| | - M. Paul Murphy
- University of Kentucky, College of Medicine, Department of Molecular and Cellular Biochemistry, Lexington, KY, USA
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY, USA
| |
Collapse
|
26
|
Wunderlin M, Zeller CJ, Senti SR, Fehér KD, Suppiger D, Wyss P, Koenig T, Teunissen CE, Nissen C, Klöppel S, Züst MA. Acoustic stimulation during sleep predicts long-lasting increases in memory performance and beneficial amyloid response in older adults. Age Ageing 2023; 52:afad228. [PMID: 38163288 PMCID: PMC10758173 DOI: 10.1093/ageing/afad228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Sleep and neurodegeneration are assumed to be locked in a bi-directional vicious cycle. Improving sleep could break this cycle and help to prevent neurodegeneration. We tested multi-night phase-locked acoustic stimulation (PLAS) during slow wave sleep (SWS) as a non-invasive method to improve SWS, memory performance and plasma amyloid levels. METHODS 32 healthy older adults (agemean: 68.9) completed a between-subject sham-controlled three-night intervention, preceded by a sham-PLAS baseline night. RESULTS PLAS induced increases in sleep-associated spectral-power bands as well as a 24% increase in slow wave-coupled spindles, known to support memory consolidation. There was no significant group-difference in memory performance or amyloid-beta between the intervention and control group. However, the magnitude of PLAS-induced physiological responses were associated with memory performance up to 3 months post intervention and beneficial changes in plasma amyloid. Results were exclusive to the intervention group. DISCUSSION Multi-night PLAS is associated with long-lasting benefits in memory and metabolite clearance in older adults, rendering PLAS a promising tool to build upon and develop long-term protocols for the prevention of cognitive decline.
Collapse
Affiliation(s)
- Marina Wunderlin
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, 3012 Bern, Switzerland
| | - Céline Jacqueline Zeller
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, 3012 Bern, Switzerland
| | - Samira Rafaela Senti
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
| | - Kristoffer Daniel Fehér
- University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
| | - Debora Suppiger
- Department of Neonatology, University Hospital Zurich and University of Zurich, 8006 Zürich, Switzerland
| | - Patric Wyss
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
| | - Thomas Koenig
- University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
| | - Charlotte Elisabeth Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| | - Christoph Nissen
- University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
- Division of Psychiatric Specialties, Geneva University Hospitals (HUG), 1205 Geneva, Switzerland
| | - Stefan Klöppel
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
| | - Marc Alain Züst
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
| |
Collapse
|
27
|
Mayer G, Stenmanns C, Doeppner TR, Hermann DM, Gronewold J. [Sleep and dementia]. Z Gerontol Geriatr 2023; 56:556-560. [PMID: 37676320 DOI: 10.1007/s00391-023-02237-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 09/08/2023]
Abstract
Aging is associated with changes in sleep structure and cerebral deposition of amyloid beta and tau proteins. Sleep disturbances precede the onset of dementia by years. Comorbid sleep disorders, such as insomnia and sleep-disordered breathing, a family history of dementia and epigenetic factors can contribute to the development of dementia. This article explores the question of the interaction between sleep and dementia based on the existing literature. Alterations caused by slow wave sleep lead to changes in the glymphatic clearance of amyloid beta, tau proteins and other proteins. Transient and chronic sleep disorders cause disturbances in the brain areas responsible for cognition and behavior. Sleep-regulating brain areas are the first to be affected in the neurodegenerative process and accelerate the risk of dementia. Circadian age-related changes in amyloid beta and tau proteins affect the amount and depth of sleep and vice versa. Amyloid beta in cerebrospinal fluid shows an inverse correlation with sleep. Orexins modulate amyloid beta and sleep.
Collapse
Affiliation(s)
- Geert Mayer
- Philipps-Universität Marburg, Marburg, Deutschland.
- , Privatweg 2, 34582, Borken, Deutschland.
| | - Carla Stenmanns
- Klinik für Orthopädie und Unfallchirurgie, Altersmedizin, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Deutschland
| | - Thorsten R Doeppner
- Klinik für Neurologie, Universitätsklinkum Gießen und Marburg, Gießen, Deutschland
| | - Dirk M Hermann
- Klinik für Neurologie, Universitätsklinikum Essen, Essen, Deutschland
| | - Janine Gronewold
- Klinik für Neurologie, Universitätsklinikum Essen, Essen, Deutschland
| |
Collapse
|
28
|
Hector A, Provost C, Delignat-Lavaud B, Bouamira K, Menaouar CA, Mongrain V, Brouillette J. Hippocampal injections of soluble amyloid-beta oligomers alter electroencephalographic activity during wake and slow-wave sleep in rats. Alzheimers Res Ther 2023; 15:174. [PMID: 37833786 PMCID: PMC10571363 DOI: 10.1186/s13195-023-01316-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Soluble amyloid-beta oligomers (Aβo) begin to accumulate in the human brain one to two decades before a clinical diagnosis of Alzheimer's disease (AD). The literature supports that soluble Aβo are implicated in synapse and neuronal losses in the brain regions such as the hippocampus. This region importantly contributes to explicit memory, the first type of memory affected in AD. During AD preclinical and prodromal stages, people are also experiencing wake/sleep alterations such as insomnia (e.g., difficulty initiating sleep, decreased sleep duration), excessive daytime sleepiness, and sleep schedule modifications. In addition, changes in electroencephalographic (EEG) activity during wake and sleep have been reported in AD patients and animal models. However, the specific contribution of Aβo to wake/sleep alterations is poorly understood and was investigated in the present study. METHODS Chronic hippocampal injections of soluble Aβo were conducted in male rats and combined with EEG recording to determine the progressive impact of Aβ pathology specifically on wake/sleep architecture and EEG activity. Bilateral injections were conducted for 6 consecutive days, and EEG acquisition was done before, during, and after Aβo injections. Immunohistochemistry was used to assess neuron numbers in the hippocampal dentate gyrus (DG). RESULTS Aβo injections did not affect the time spent in wakefulness, slow wave sleep (SWS), and paradoxical sleep but altered EEG activity during wake and SWS. More precisely, Aβo increased slow-wave activity (SWA; 0.5-5 Hz) and low-beta activity (16-20 Hz) during wake and decreased theta (5-9 Hz) and alpha (9-12 Hz) activities during SWS. Moreover, the theta activity/SWA ratio during wake and SWS was decreased by Aβo. These effects were significant only after 6 days of Aβo injections and were found with alterations in neuron counts in the DG. CONCLUSIONS We found multiple modifications of the wake and SWS EEG following Aβo delivery to the hippocampus. These findings expose a specific EEG signature of Aβ pathology and can serve the development of non-invasive and cost-effective markers for the early diagnosis of AD or other amyloid-related diseases.
Collapse
Affiliation(s)
- Audrey Hector
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Québec, Canada
- Center for Advanced Research in Sleep Medicine, CIUSSS-NIM, Montréal, Québec, Canada
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Chloé Provost
- Center for Advanced Research in Sleep Medicine, CIUSSS-NIM, Montréal, Québec, Canada
| | - Benoît Delignat-Lavaud
- Center for Advanced Research in Sleep Medicine, CIUSSS-NIM, Montréal, Québec, Canada
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Khadija Bouamira
- Center for Advanced Research in Sleep Medicine, CIUSSS-NIM, Montréal, Québec, Canada
| | | | - Valérie Mongrain
- Center for Advanced Research in Sleep Medicine, CIUSSS-NIM, Montréal, Québec, Canada.
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.
- Department of Neuroscience, Université de Montréal, Montréal, Québec, Canada.
| | - Jonathan Brouillette
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Québec, Canada.
- Center for Advanced Research in Sleep Medicine, CIUSSS-NIM, Montréal, Québec, Canada.
| |
Collapse
|
29
|
Blackman J, Morrison HD, Gabb V, Biswas B, Li H, Turner N, Jolly A, Trender W, Hampshire A, Whone A, Coulthard E. Remote evaluation of sleep to enhance understanding of early dementia due to Alzheimer's Disease (RESTED-AD): an observational cohort study protocol. BMC Geriatr 2023; 23:590. [PMID: 37742001 PMCID: PMC10518099 DOI: 10.1186/s12877-023-04288-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 09/06/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Sleep and circadian rhythm disorders are well recognised in both AD (Alzheimer's Disease) dementia and MCI-AD (Mild Cognitive Impairment due to Alzheimer's Disease). Such abnormalities include insomnia, excessive daytime sleepiness, decreased sleep efficiency, increased sleep fragmentation and sundowning. Enhancing understanding of sleep abnormalities may unveil targets for intervention in sleep, a promising approach given hypotheses that sleep disorders may exacerbate AD pathological progression and represent a contributory factor toward impaired cognitive performance and worse quality of life. This may also permit early diagnosis of AD pathology, widely acknowledged as a pre-requisite for future disease-modifying therapies. This study aims to bridge the divide between in-laboratory polysomnographic studies which allow for rich characterisation of sleep but in an unnatural setting, and naturalistic studies typically approximating sleep through use of non-EEG wearable devices. It is also designed to record sleep patterns over a 2 month duration sufficient to capture both infradian rhythm and compensatory responses following suboptimal sleep. Finally, it harnesses an extensively phenotyped population including with AD blood biomarkers. Its principal aims are to improve characterisation of sleep and biological rhythms in individuals with AD, particularly focusing on micro-architectural measures of sleep, compensatory responses to suboptimal sleep and the relationship between sleep parameters, biological rhythms and cognitive performance. METHODS/DESIGN This observational cohort study has two arms (AD-MCI / mild AD dementia and aged-matched healthy adults). Each participant undergoes a baseline visit for collection of demographic, physiological and neuropsychological information utilising validated questionnaires. The main study period involves 7 nights of home-based multi-channel EEG sleep recording nested within an 8-week study period involving continuous wrist-worn actigraphy, sleep diaries and regular brief cognitive tests. Measurement of sleep parameters will be at home thereby obtaining a real-world, naturalistic dataset. Cognitive testing will be repeated at 6 months to stratify participants by longitudinal disease progression. DISCUSSION This study will generate new insights particularly in micro-architectural measures of sleep, circadian patterns and compensatory sleep responses in a population with and without AD neurodegenerative change. It aims to enhance standards of remotely based sleep research through use of a well-phenotyped population and advanced sleep measurement technology.
Collapse
Affiliation(s)
- Jonathan Blackman
- Bristol Medical School, University of Bristol, Bristol, BS2 8DZ UK
- Bristol Brain Centre, North Bristol NHS Trust, Bristol, BS10 5NB UK
| | - Hamish Duncan Morrison
- Bristol Medical School, University of Bristol, Bristol, BS2 8DZ UK
- Bristol Brain Centre, North Bristol NHS Trust, Bristol, BS10 5NB UK
| | - Victoria Gabb
- Bristol Medical School, University of Bristol, Bristol, BS2 8DZ UK
- Bristol Brain Centre, North Bristol NHS Trust, Bristol, BS10 5NB UK
| | - Bijetri Biswas
- Bristol Medical School, University of Bristol, Bristol, BS2 8DZ UK
| | - Haoxuan Li
- Bristol Medical School, University of Bristol, Bristol, BS2 8DZ UK
- Bristol Brain Centre, North Bristol NHS Trust, Bristol, BS10 5NB UK
| | - Nicholas Turner
- Bristol Medical School, University of Bristol, Bristol, BS2 8DZ UK
| | - Amy Jolly
- Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
| | - William Trender
- Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
| | - Adam Hampshire
- Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
| | - Alan Whone
- Bristol Brain Centre, North Bristol NHS Trust, Bristol, BS10 5NB UK
| | - Elizabeth Coulthard
- Bristol Medical School, University of Bristol, Bristol, BS2 8DZ UK
- Bristol Brain Centre, North Bristol NHS Trust, Bristol, BS10 5NB UK
- Bristol Medical School, Learning & Research Building, Southmead Hospital, University of Bristol, Bristol, BS10 5NB UK
| |
Collapse
|
30
|
Züst MA, Mikutta C, Omlin X, DeStefani T, Wunderlin M, Zeller CJ, Fehér KD, Hertenstein E, Schneider CL, Teunissen CE, Tarokh L, Klöppel S, Feige B, Riemann D, Nissen C. The Hierarchy of Coupled Sleep Oscillations Reverses with Aging in Humans. J Neurosci 2023; 43:6268-6279. [PMID: 37586871 PMCID: PMC10490476 DOI: 10.1523/jneurosci.0586-23.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
A well orchestrated coupling hierarchy of slow waves and spindles during slow-wave sleep supports memory consolidation. In old age, the duration of slow-wave sleep and the number of coupling events decrease. The coupling hierarchy deteriorates, predicting memory loss and brain atrophy. Here, we investigate the dynamics of this physiological change in slow wave-spindle coupling in a frontocentral electroencephalography position in a large sample (N = 340; 237 females, 103 males) spanning most of the human life span (age range, 15-83 years). We find that, instead of changing abruptly, spindles gradually shift from being driven by slow waves to driving slow waves with age, reversing the coupling hierarchy typically seen in younger brains. Reversal was stronger the lower the slow-wave frequency, and starts around midlife (age range, ∼40-48 years), with an established reversed hierarchy between 56 and 83 years of age. Notably, coupling strength remains unaffected by age. In older adults, deteriorating slow wave-spindle coupling, measured using the phase slope index (PSI) and the number of coupling events, is associated with blood plasma glial fibrillary acidic protein levels, a marker for astrocyte activation. Data-driven models suggest that decreased sleep time and higher age lead to fewer coupling events, paralleled by increased astrocyte activation. Counterintuitively, astrocyte activation is associated with a backshift of the coupling hierarchy (PSI) toward a "younger" status along with increased coupling occurrence and strength, potentially suggesting compensatory processes. As the changes in coupling hierarchy occur gradually starting at midlife, we suggest there exists a sizable window of opportunity for early interventions to counteract undesirable trajectories associated with neurodegeneration.SIGNIFICANCE STATEMENT Evidence accumulates that sleep disturbances and cognitive decline are bidirectionally and causally linked, forming a vicious cycle. Improving sleep quality could break this cycle. One marker for sleep quality is a clear hierarchical structure of sleep oscillations. Previous studies showed that sleep oscillations decouple in old age. Here, we show that, rather, the hierarchical structure gradually shifts across the human life span and reverses in old age, while coupling strength remains unchanged. This shift is associated with markers for astrocyte activation in old age. The shifting hierarchy resembles brain maturation, plateau, and wear processes. This study furthers our comprehension of this important neurophysiological process and its dynamic evolution across the human life span.
Collapse
Affiliation(s)
- Marc Alain Züst
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
| | - Christian Mikutta
- University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
- Private Clinic Meiringen, 3860 Meiringen, Switzerland
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Ximena Omlin
- University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
| | - Tatjana DeStefani
- University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
| | - Marina Wunderlin
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
| | - Céline Jacqueline Zeller
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
| | - Kristoffer Daniel Fehér
- University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
- Division of Psychiatric Specialties, Geneva University Hospitals (HUG), 1201 Geneva, Switzerland
| | - Elisabeth Hertenstein
- University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
| | - Carlotta L Schneider
- University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
| | - Charlotte Elisabeth Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Leila Tarokh
- University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
| | - Stefan Klöppel
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
| | - Bernd Feige
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, 79104 Freiburg, Germany
| | - Dieter Riemann
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, 79104 Freiburg, Germany
| | - Christoph Nissen
- University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
- Division of Psychiatric Specialties, Geneva University Hospitals (HUG), 1201 Geneva, Switzerland
| |
Collapse
|
31
|
陈 璋, 李 桃, 唐 向. [Application of Polysomnography in Common Neurodegenerative Diseases]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:1058-1064. [PMID: 37866969 PMCID: PMC10579074 DOI: 10.12182/20230960304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Indexed: 10/24/2023]
Abstract
At present, the etiology and pathogenesis of most neurodegenerative diseases are still not fully understood, which poses challenges for the prevention, diagnosis, and treatment of these diseases. Sleep disorders are one of the common chief complaints of neurodegenerative diseases. When patients suffer from comorbid sleep disorder and neurodegenerative diseases, the severity of their condition increases, the quality of their life drops further, and the difficulty of treatment increases. A large number of studies have been conducted to monitor the sleep of patients with neurodegenerative diseases, and it has been found that there are significant changes in their polysomnography (PSG) results compared to those of healthy control populations. In addition, there are also significant differences between the PSG findings of patients with different neurodegenerative diseases and the differences are closely associated with the pathogenesis and development of the disease. Herein, we discussed the characteristics of the sleep structure of patients with Parkinson's disease, Alzheimer's disease, Huntington's disease, and dementia with Lewy bodies and provided a brief review of the sleep disorders and the PSG characteristics of these patients. The paper will help improve the understanding of the pathogenesis and pathological changes of neurodegenerative diseases, clarify the relationship between sleep disorders and these diseases, improve clinicians' further understanding of these diseases, and provide a basis for future research.
Collapse
Affiliation(s)
- 璋玥 陈
- 四川大学华西医院 睡眠医学中心 (成都 610041)Sleep Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 桃美 李
- 四川大学华西医院 睡眠医学中心 (成都 610041)Sleep Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 向东 唐
- 四川大学华西医院 睡眠医学中心 (成都 610041)Sleep Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
32
|
Lee YF, Russ AN, Zhao Q, Perle SJ, Maci M, Miller MR, Hou SS, Algamal M, Zhao Z, Li H, Gelwan N, Liu Z, Gomperts SN, Araque A, Galea E, Bacskai BJ, Kastanenka KV. Optogenetic targeting of astrocytes restores slow brain rhythm function and slows Alzheimer's disease pathology. Sci Rep 2023; 13:13075. [PMID: 37567942 PMCID: PMC10421876 DOI: 10.1038/s41598-023-40402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023] Open
Abstract
Patients with Alzheimer's disease (AD) exhibit non-rapid eye movement (NREM) sleep disturbances in addition to memory deficits. Disruption of NREM slow waves occurs early in the disease progression and is recapitulated in transgenic mouse models of beta-amyloidosis. However, the mechanisms underlying slow-wave disruptions remain unknown. Because astrocytes contribute to slow-wave activity, we used multiphoton microscopy and optogenetics to investigate whether they contribute to slow-wave disruptions in APP/PS1 mice. The power but not the frequency of astrocytic calcium transients was reduced in APP/PS1 mice compared to nontransgenic controls. Optogenetic activation of astrocytes at the endogenous frequency of slow waves restored slow-wave power, reduced amyloid deposition, prevented neuronal calcium elevations, and improved memory performance. Our findings revealed malfunction of the astrocytic network driving slow-wave disruptions. Thus, targeting astrocytes to restore circuit activity underlying sleep and memory disruptions in AD could ameliorate disease progression.
Collapse
Affiliation(s)
- Yee Fun Lee
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Alyssa N Russ
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Qiuchen Zhao
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Stephen J Perle
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Megi Maci
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Morgan R Miller
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Steven S Hou
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Moustafa Algamal
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Zhuoyang Zhao
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Hanyan Li
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Noah Gelwan
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Zhe Liu
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Stephen N Gomperts
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Elena Galea
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Brian J Bacskai
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Ksenia V Kastanenka
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
33
|
Chen CW, Kwok YT, Cheng YT, Huang YS, Kuo TBJ, Wu CH, Du PJ, Yang AC, Yang CCH. Reduced slow-wave activity and autonomic dysfunction during sleep precede cognitive deficits in Alzheimer's disease transgenic mice. Sci Rep 2023; 13:11231. [PMID: 37433857 DOI: 10.1038/s41598-023-38214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023] Open
Abstract
Occurrence of amyloid-β (Aβ) aggregation in brain begins before the clinical onset of Alzheimer's disease (AD), as preclinical AD. Studies have reported that sleep problems and autonomic dysfunction associate closely with AD. However, whether they, especially the interaction between sleep and autonomic function, play critical roles in preclinical AD are unclear. Therefore, we investigated how sleep patterns and autonomic regulation at different sleep-wake stages changed and whether they were related to cognitive performance in pathogenesis of AD mice. Polysomnographic recordings in freely-moving APP/PS1 and wild-type (WT) littermates were collected to study sleep patterns and autonomic function at 4 (early disease stage) and 8 months of age (advanced disease stage), cognitive tasks including novel object recognition and Morris water maze were performed, and Aβ levels in brain were measured. APP/PS1 mice at early stage of AD pathology with Aβ aggregation but without significant differences in cognitive performance had frequent sleep-wake transitions, lower sleep-related delta power percentage, lower overall autonomic activity, and lower parasympathetic activity mainly during sleep compared with WT mice. The same phenomenon was observed in advanced-stage APP/PS1 mice with significant cognitive deficits. In mice at both disease stages, sleep-related delta power percentage correlated positively with memory performance. At early stage, memory performance correlated positively with sympathetic activity during wakefulness; at advanced stage, memory performance correlated positively with parasympathetic activity during both wakefulness and sleep. In conclusion, sleep quality and distinction between wake- and sleep-related autonomic function may be biomarkers for early AD detection.
Collapse
Affiliation(s)
- Chieh-Wen Chen
- Institute of Brain Science, Brain Research Center, and Sleep Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Taipei, 11221, Taiwan
- Sleep Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Health and Leisure Management, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Yam-Ting Kwok
- Department of Neurology, Far Eastern Memorial Hospital, New Taipei, Taiwan
| | - Yu-Ting Cheng
- Institute of Brain Science, Brain Research Center, and Sleep Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Taipei, 11221, Taiwan
- Sleep Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Shan Huang
- Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Terry B J Kuo
- Institute of Brain Science, Brain Research Center, and Sleep Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Taipei, 11221, Taiwan
- Sleep Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
- Center for Mind and Brain Medicine, Tsaotun Psychiatric Center, Ministry of Health and Welfare, Nantou, Taiwan
| | - Cheng-Han Wu
- Institute of Brain Science, Brain Research Center, and Sleep Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Taipei, 11221, Taiwan
- Sleep Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Jing Du
- Institute of Brain Science, Brain Research Center, and Sleep Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Taipei, 11221, Taiwan
- Sleep Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Albert C Yang
- Institute of Brain Science, Brain Research Center, and Sleep Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Taipei, 11221, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Institute of Brain Science, Digital Medicine and Smart Healthcare Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Taipei, 11221, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Cheryl C H Yang
- Institute of Brain Science, Brain Research Center, and Sleep Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Taipei, 11221, Taiwan.
- Sleep Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan.
| |
Collapse
|
34
|
Semyachkina-Glushkovskaya O, Penzel T, Poluektov M, Fedosov I, Tzoy M, Terskov A, Blokhina I, Sidorov V, Kurths J. Phototherapy of Alzheimer's Disease: Photostimulation of Brain Lymphatics during Sleep: A Systematic Review. Int J Mol Sci 2023; 24:10946. [PMID: 37446135 DOI: 10.3390/ijms241310946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The global number of people with Alzheimer's disease (AD) doubles every 5 years. It has been established that unless an effective treatment for AD is found, the incidence of AD will triple by 2060. However, pharmacological therapies for AD have failed to show effectiveness and safety. Therefore, the search for alternative methods for treating AD is an urgent problem in medicine. The lymphatic drainage and removal system of the brain (LDRSB) plays an important role in resistance to the progression of AD. The development of methods for augmentation of the LDRSB functions may contribute to progress in AD therapy. Photobiomodulation (PBM) is considered to be a non-pharmacological and safe approach for AD therapy. Here, we highlight the most recent and relevant studies of PBM for AD. We focus on emerging evidence that indicates the potential benefits of PBM during sleep for modulation of natural activation of the LDRSB at nighttime, providing effective removal of metabolites, including amyloid-β, from the brain, leading to reduced progression of AD. Our review creates a new niche in the therapy of brain diseases during sleep and sheds light on the development of smart sleep technologies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Oxana Semyachkina-Glushkovskaya
- Department of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Thomas Penzel
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
- Interdisziplinäres Schlafmedizinisches Zentrum, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Mikhail Poluektov
- Department of Nervous Diseases, Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya 2, Building 4, 119435 Moscow, Russia
| | - Ivan Fedosov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Maria Tzoy
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Andrey Terskov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Inna Blokhina
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Viktor Sidorov
- Company "Lazma" for Research and Production Enterprise of Laser Medical Equipment, Kuusinena Str. 11, 123308 Moscow, Russia
| | - Jürgen Kurths
- Department of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
- Department of Complexity Science, Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
| |
Collapse
|
35
|
Giannouli V, Tsolaki M. In the Hands of Hypnos: Associations between Sleep, Cognitive Performance and Financial Capacity in aMCI and Mild AD. Sleep Sci 2023; 16:231-236. [PMID: 37425966 PMCID: PMC10325838 DOI: 10.1055/s-0043-1770796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023] Open
Abstract
Objective The aim of this monocentric observational study is to assess whether sleep disorders can predict financial capacity in single-and multiple-domain aMCI (amnestic Mild Cognitive Impairment), mild Alzheimer's Disease (AD), and healthy controls. Methods Older participants from Northern Greece were examined with several neuropsychological tests, including Mini-Mental State Examination (MMSE), Geriatric Depression Scale (GDS-15), and the Legal Capacity for Property Law Transactions Assessment Scale (LCPLTAS). Sleep duration and quality were based on caregiver/family members' reports in the Sleep Disorders Inventory (SDI). Results These preliminary findings coming from 147 participants indicate for the first time that apart from MMSE, complex cognitive functions, such as financial capacity may be also directly linked to the frequency of sleep-disturbed behaviours as indicated by SDI frequency questions, both in aMCI and mild AD. Discussion An urgency for further investigation of the neglected sleep factor should be added in financial capacity assessment protocols.
Collapse
Affiliation(s)
- Vaitsa Giannouli
- Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece, Greece
| | - Magda Tsolaki
- Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece, Greece
| |
Collapse
|
36
|
Parker JL, Vakulin A, Melaku YA, Wittert GA, Martin SA, D’Rozario AL, Catcheside PG, Lechat B, Toson B, Teare AJ, Appleton SL, Adams RJ. Associations of Baseline Sleep Microarchitecture with Cognitive Function After 8 Years in Middle-Aged and Older Men from a Community-Based Cohort Study. Nat Sci Sleep 2023; 15:389-406. [PMID: 37252206 PMCID: PMC10225127 DOI: 10.2147/nss.s401655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023] Open
Abstract
Purpose Prospective studies examining associations between baseline sleep microarchitecture and future cognitive function recruited from small samples with predominantly short follow-up. This study examined sleep microarchitecture predictors of cognitive function (visual attention, processing speed, and executive function) after 8 years in community-dwelling men. Patients and Methods Florey Adelaide Male Ageing Study participants (n=477) underwent home-based polysomnography (2010-2011), with 157 completing baseline (2007-2010) and follow-up (2018-2019) cognitive assessments (trail-making tests A [TMT-A] and B [TMT-B] and the standardized mini-mental state examination [SMMSE]). Whole-night F4-M1 sleep EEG recordings were processed following artifact exclusion, and quantitative EEG characteristics were obtained using validated algorithms. Associations between baseline sleep microarchitecture and future cognitive function (visual attention, processing speed, and executive function) were examined using linear regression models adjusted for baseline obstructive sleep apnoea, other risk factors, and cognition. Results The final sample included men aged (mean [SD]) 58.9 (8.9) years at baseline, overweight (BMI 28.5 [4.2] kg/m2), and well educated (75.2% ≥Bachelor, Certificate, or Trade), with majorly normal baseline cognition. Median (IQR) follow-up was 8.3 (7.9, 8.6) years. In adjusted analyses, NREM and REM sleep EEG spectral power was not associated with TMT-A, TMT-B, or SMMSE performance (all p>0.05). A significant association of higher N3 sleep fast spindle density with worse TMT-B performance (B=1.06, 95% CI [0.13, 2.00], p=0.026) did not persist following adjustment for baseline TMT-B performance. Conclusion In this sample of community-dwelling men, sleep microarchitecture was not independently associated with visual attention, processing speed, or executive function after 8 years.
Collapse
Affiliation(s)
- Jesse L Parker
- Flinders Health and Medical Research Institute, Adelaide Institute for Sleep Health, Flinders University, Adelaide, SA, Australia
| | - Andrew Vakulin
- Flinders Health and Medical Research Institute, Adelaide Institute for Sleep Health, Flinders University, Adelaide, SA, Australia
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Yohannes Adama Melaku
- Flinders Health and Medical Research Institute, Adelaide Institute for Sleep Health, Flinders University, Adelaide, SA, Australia
| | - Gary A Wittert
- Freemasons Centre for Male Health and Wellbeing, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Sean A Martin
- Freemasons Centre for Male Health and Wellbeing, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Angela L D’Rozario
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
- The University of Sydney, Faculty of Science, School of Psychology, Sydney, NSW, Australia
| | - Peter G Catcheside
- Flinders Health and Medical Research Institute, Adelaide Institute for Sleep Health, Flinders University, Adelaide, SA, Australia
| | - Bastien Lechat
- Flinders Health and Medical Research Institute, Adelaide Institute for Sleep Health, Flinders University, Adelaide, SA, Australia
| | - Barbara Toson
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Alison J Teare
- Flinders Health and Medical Research Institute, Adelaide Institute for Sleep Health, Flinders University, Adelaide, SA, Australia
| | - Sarah L Appleton
- Flinders Health and Medical Research Institute, Adelaide Institute for Sleep Health, Flinders University, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Robert J Adams
- Flinders Health and Medical Research Institute, Adelaide Institute for Sleep Health, Flinders University, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Respiratory and Sleep Services, Southern Adelaide Local Health Network, Adelaide, SA, Australia
| |
Collapse
|
37
|
Kong SDX, Gordon CJ, Hoyos CM, Wassing R, D’Rozario A, Mowszowski L, Ireland C, Palmer JR, Grunstein RR, Shine JM, McKinnon AC, Naismith SL. Heart rate variability during slow wave sleep is linked to functional connectivity in the central autonomic network. Brain Commun 2023; 5:fcad129. [PMID: 37234683 PMCID: PMC10208252 DOI: 10.1093/braincomms/fcad129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/20/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Reduced heart rate variability can be an early sign of autonomic dysfunction in neurodegenerative diseases and may be related to brain dysfunction in the central autonomic network. As yet, such autonomic dysfunction has not been examined during sleep-which is an ideal physiological state to study brain-heart interaction as both the central and peripheral nervous systems behave differently compared to during wakefulness. Therefore, the primary aim of the current study was to examine whether heart rate variability during nocturnal sleep, specifically slow wave (deep) sleep, is associated with central autonomic network functional connectivity in older adults 'at-risk' of dementia. Older adults (n = 78; age range = 50-88 years; 64% female) attending a memory clinic for cognitive concerns underwent resting-state functional magnetic resonance imaging and an overnight polysomnography. From these, central autonomic network functional connectivity strength and heart rate variability data during sleep were derived, respectively. High-frequency heart rate variability was extracted to index parasympathetic activity during distinct periods of sleep, including slow wave sleep as well as secondary outcomes of non-rapid eye movement sleep, wake after sleep onset, and rapid eye movement sleep. General linear models were used to examine associations between central autonomic network functional connectivity and high-frequency heart rate variability. Analyses revealed that increased high-frequency heart rate variability during slow wave sleep was associated with stronger functional connectivity (F = 3.98, P = 0.022) in two core brain regions within the central autonomic network, the right anterior insular and posterior midcingulate cortex, as well as stronger functional connectivity (F = 6.21, P = 0.005) between broader central autonomic network brain regions-the right amygdala with three sub-nuclei of the thalamus. There were no significant associations between high-frequency heart rate variability and central autonomic network connectivity during wake after sleep onset or rapid eye movement sleep. These findings show that in older adults 'at-risk' of dementia, parasympathetic regulation during slow wave sleep is uniquely linked to differential functional connectivity within both core and broader central autonomic network brain regions. It is possible that dysfunctional brain-heart interactions manifest primarily during this specific period of sleep known for its role in memory and metabolic clearance. Further studies elucidating the pathophysiology and directionality of this relationship should be conducted to determine if heart rate variability drives neurodegeneration, or if brain degeneration within the central autonomic network promotes aberrant heart rate variability.
Collapse
Affiliation(s)
- Shawn D X Kong
- Correspondence to: Shawn Dexiao KongHealthy Brain Ageing ProgramBrain and Mind Centre, University of Sydney100 Mallett St, Camperdown, NSW 2050, Australia E-mail:
| | - Christopher J Gordon
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Glebe, NSW 2037, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
| | - Camilla M Hoyos
- Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW 2050, Australia
- School of Psychology, Faculty of Science, University of Sydney, Camperdown, NSW 2050, Australia
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Glebe, NSW 2037, Australia
| | - Rick Wassing
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Glebe, NSW 2037, Australia
| | - Angela D’Rozario
- Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050, Australia
- School of Psychology, Faculty of Science, University of Sydney, Camperdown, NSW 2050, Australia
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Glebe, NSW 2037, Australia
| | - Loren Mowszowski
- Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW 2050, Australia
- School of Psychology, Faculty of Science, University of Sydney, Camperdown, NSW 2050, Australia
| | - Catriona Ireland
- Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050, Australia
| | - Jake R Palmer
- Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050, Australia
| | - Ronald R Grunstein
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Glebe, NSW 2037, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
- Royal Prince Alfred Hospital, University of Sydney, Camperdown, NSW 2050, Australia
| | - James M Shine
- Royal Prince Alfred Hospital, University of Sydney, Camperdown, NSW 2050, Australia
| | | | | |
Collapse
|
38
|
Lin YR, Chi CH, Chang YL. Differential decay of gist and detail memory in older adults with amnestic mild cognitive impairment. Cortex 2023; 164:112-128. [PMID: 37207409 DOI: 10.1016/j.cortex.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/19/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023]
Abstract
Amnestic mild cognitive impairment (aMCI) has been identified as a risk factor for dementia due to Alzheimer's disease. The medial temporal structures, which are crucial for memory processing, are the earliest affected regions in the brains of patients with aMCI, and episodic memory performance has been identified as a reliable way to discriminate between patients with aMCI and cognitively normal older adults. However, whether the detail and gist memory of patients with aMCI and cognitively normal older adults decay differently remains unclear. In this study, we hypothesized that detail and gist memory would be retrieved differentially, with a larger group performance gap in detail memory than in gist memory. In addition, we explored whether an increasing group performance gap between detail memory and gist memory groups would be observed over a 14-day period. Furthermore, we hypothesized that unisensory (audio-only) and multisensory (audiovisual) encoding would lead to differences in retrievals, with the multisensory condition reducing between and within-group performance gaps observed under the unisensory condition. The analyses conducted were analyses of covariance controlling for age, sex, and education and correlational analyses to examine behavioral performance and the association between behavioral data and brain variables. Compared with cognitively normal older adults, the patients with aMCI performed poorly on both detail and gist memory tests, and this performance gap persisted over time. Moreover, the memory performance of the patients with aMCI was enhanced by the provision of multisensory information, and bimodal input was significantly associated with medial temporal structure variables. Overall, our findings suggest that detail and gist memory decay differently, with a longer lasting group gap in gist memory than in detail memory. Multisensory encoding effectively reduced or overcame the between- and within-group gaps between time intervals, especially for gist memory, compared with unisensory encoding.
Collapse
Affiliation(s)
- Yu-Ruei Lin
- Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan
| | - Chia-Hsing Chi
- Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Ling Chang
- Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan; Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan; Center for Artificial Intelligence and Advanced Robotics, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
39
|
Khosroazad S, Gilbert CF, Aronis JB, Daigle KM, Esfahani M, Almaghasilah A, Ahmed FS, Elias MF, Meuser TM, Kaye LW, Singer CM, Abedi A, Hayes MJ. Sleep movements and respiratory coupling as a biobehavioral metric for early Alzheimer's disease in independently dwelling adults. BMC Geriatr 2023; 23:252. [PMID: 37106470 PMCID: PMC10141904 DOI: 10.1186/s12877-023-03983-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
INTRODUCTION Sleep disorder is often the first symptom of age-related cognitive decline associated with Alzheimer's disease (AD) observed in primary care. The relationship between sleep and early AD was examined using a patented sleep mattress designed to record respiration and high frequency movement arousals. A machine learning algorithm was developed to classify sleep features associated with early AD. METHOD Community-dwelling older adults (N = 95; 62-90 years) were recruited in a 3-h catchment area. Study participants were tested on the mattress device in the home bed for 2 days, wore a wrist actigraph for 7 days, and provided sleep diary and sleep disorder self-reports during the 1-week study period. Neurocognitive testing was completed in the home within 30-days of the sleep study. Participant performance on executive and memory tasks, health history and demographics were reviewed by a geriatric clinical team yielding Normal Cognition (n = 45) and amnestic MCI-Consensus (n = 33) groups. A diagnosed MCI group (n = 17) was recruited from a hospital memory clinic following diagnostic series of neuroimaging biomarker assessment and cognitive criteria for AD. RESULTS In cohort analyses, sleep fragmentation and wake after sleep onset duration predicted poorer executive function, particularly memory performance. Group analyses showed increased sleep fragmentation and total sleep time in the diagnosed MCI group compared to the Normal Cognition group. Machine learning algorithm showed that the time latency between movement arousals and coupled respiratory upregulation could be used as a classifier of diagnosed MCI vs. Normal Cognition cases. ROC diagnostics identified MCI with 87% sensitivity; 89% specificity; and 88% positive predictive value. DISCUSSION AD sleep phenotype was detected with a novel sleep biometric, time latency, associated with the tight gap between sleep movements and respiratory coupling, which is proposed as a corollary of sleep quality/loss that affects the autonomic regulation of respiration during sleep. Diagnosed MCI was associated with sleep fragmentation and arousal intrusion.
Collapse
Affiliation(s)
- Somayeh Khosroazad
- Electrical and Computer Engineering, University of Maine, 5708 Barrows Hall, Orono, ME, 04469, USA
- Activas Diagnostics, LLC, 20 Godfrey Dr., Orono, ME, 04473, USA
| | - Christopher F Gilbert
- Activas Diagnostics, LLC, 20 Godfrey Dr., Orono, ME, 04473, USA
- Psychology Department, University of Maine, 5740 Beryl Warner Williams Hall, Orono, ME, 5740-04469, USA
| | - Jessica B Aronis
- Activas Diagnostics, LLC, 20 Godfrey Dr., Orono, ME, 04473, USA
- Psychology Department, University of Maine, 5740 Beryl Warner Williams Hall, Orono, ME, 5740-04469, USA
| | - Katrina M Daigle
- Psychology Department, Suffolk University, 73 Tremont St., Boston, MA, 02108, USA
| | | | - Ahmed Almaghasilah
- Electrical and Computer Engineering, University of Maine, 5708 Barrows Hall, Orono, ME, 04469, USA
- Graduate School of Biomedical Science & Engineering, University of Maine, 5775 Stodder Hall, Orono, ME, 04469, USA
| | - Fayeza S Ahmed
- Psychology Department, University of Maine, 5740 Beryl Warner Williams Hall, Orono, ME, 5740-04469, USA
| | - Merrill F Elias
- Psychology Department, University of Maine, 5740 Beryl Warner Williams Hall, Orono, ME, 5740-04469, USA
| | - Thomas M Meuser
- Center for Excellence On Aging, University of New England, 11 Hills Beach Rd., Biddeford, ME, 04005, USA
| | - Leonard W Kaye
- Center On Aging, University of Maine, 327 Camden Hall, Orono, ME, 04469, USA
| | - Clifford M Singer
- Psychology Department, University of Maine, 5740 Beryl Warner Williams Hall, Orono, ME, 5740-04469, USA
- Mood and Memory Clinic, Northern Light Health, 269 Stillwater Ave., Bangor, ME, 04402, USA
| | - Ali Abedi
- Electrical and Computer Engineering, University of Maine, 5708 Barrows Hall, Orono, ME, 04469, USA
- Activas Diagnostics, LLC, 20 Godfrey Dr., Orono, ME, 04473, USA
| | - Marie J Hayes
- Activas Diagnostics, LLC, 20 Godfrey Dr., Orono, ME, 04473, USA.
- Psychology Department, University of Maine, 5740 Beryl Warner Williams Hall, Orono, ME, 5740-04469, USA.
- Graduate School of Biomedical Science & Engineering, University of Maine, 5775 Stodder Hall, Orono, ME, 04469, USA.
| |
Collapse
|
40
|
Lee YF, Russ AN, Zhao Q, Maci M, Miller MR, Hou SS, Algamal M, Zhao Z, Li H, Gelwan N, Gomperts SN, Araque A, Galea E, Bacskai BJ, Kastanenka KV. Optogenetic Targeting of Astrocytes Restores Slow Brain Rhythm Function and Slows Alzheimer's Disease Pathology. RESEARCH SQUARE 2023:rs.3.rs-2813056. [PMID: 37163040 PMCID: PMC10168443 DOI: 10.21203/rs.3.rs-2813056/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Patients with Alzheimer's disease (AD) exhibit non-rapid eye movement (NREM) sleep disturbances in addition to memory deficits. Disruption of NREM slow waves occurs early in the disease progression and is recapitulated in transgenic mouse models of beta-amyloidosis. However, the mechanisms underlying slow-wave disruptions remain unknown. Because astrocytes contribute to slow-wave activity, we used multiphoton microscopy and optogenetics to investigate whether they contribute to slow-wave disruptions in APP mice. The power but not the frequency of astrocytic calcium transients was reduced in APP mice compared to nontransgenic controls. Optogenetic activation of astrocytes at the endogenous frequency of slow waves restored slow-wave power, reduced amyloid deposition, prevented neuronal calcium elevations, and improved memory performance. Our findings revealed malfunction of the astrocytic network driving slow-wave disruptions. Thus, targeting astrocytes to restore circuit activity underlying sleep and memory disruptions in AD could ameliorate disease progression.
Collapse
Affiliation(s)
| | - Alyssa N Russ
- Massachusetts General Hospital, Harvard Medical School
| | - Qiuchen Zhao
- Massachusetts General Hospital, Harvard Medical School
| | - Megi Maci
- Massachusetts General Hospital, Harvard Medical School
| | | | - Steven S Hou
- Massachusetts General Hospital, Harvard Medical School
| | | | - Zhuoyang Zhao
- Massachusetts General Hospital, Harvard Medical School
| | - Hanyan Li
- Massachusetts General Hospital, Harvard Medical School
| | - Noah Gelwan
- Massachusetts General Hospital, Harvard Medical School
| | | | | | - Elena Galea
- Massachusetts General Hospital, Harvard Medical School
| | | | | |
Collapse
|
41
|
Ye EM, Sun H, Krishnamurthy PV, Adra N, Ganglberger W, Thomas RJ, Lam AD, Westover MB. Dementia detection from brain activity during sleep. Sleep 2023; 46:zsac286. [PMID: 36448766 PMCID: PMC9995788 DOI: 10.1093/sleep/zsac286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
STUDY OBJECTIVES Dementia is a growing cause of disability and loss of independence in the elderly, yet remains largely underdiagnosed. Early detection and classification of dementia can help close this diagnostic gap and improve management of disease progression. Altered oscillations in brain activity during sleep are an early feature of neurodegenerative diseases and be used to identify those on the verge of cognitive decline. METHODS Our observational cross-sectional study used a clinical dataset of 10 784 polysomnography from 8044 participants. Sleep macro- and micro-structural features were extracted from the electroencephalogram (EEG). Microstructural features were engineered from spectral band powers, EEG coherence, spindle, and slow oscillations. Participants were classified as dementia (DEM), mild cognitive impairment (MCI), or cognitively normal (CN) based on clinical diagnosis, Montreal Cognitive Assessment, Mini-Mental State Exam scores, clinical dementia rating, and prescribed medications. We trained logistic regression, support vector machine, and random forest models to classify patients into DEM, MCI, and CN groups. RESULTS For discriminating DEM versus CN, the best model achieved an area under receiver operating characteristic curve (AUROC) of 0.78 and area under precision-recall curve (AUPRC) of 0.22. For discriminating MCI versus CN, the best model achieved an AUROC of 0.73 and AUPRC of 0.18. For discriminating DEM or MCI versus CN, the best model achieved an AUROC of 0.76 and AUPRC of 0.32. CONCLUSIONS Our dementia classification algorithms show promise for incorporating dementia screening techniques using routine sleep EEG. The findings strengthen the concept of sleep as a window into neurodegenerative diseases.
Collapse
Affiliation(s)
- Elissa M Ye
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Clinical Data Animation Center (CDAC), Boston, MA, USA
| | - Haoqi Sun
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Clinical Data Animation Center (CDAC), Boston, MA, USA
| | - Parimala V Krishnamurthy
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Clinical Data Animation Center (CDAC), Boston, MA, USA
| | - Noor Adra
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Clinical Data Animation Center (CDAC), Boston, MA, USA
| | - Wolfgang Ganglberger
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Clinical Data Animation Center (CDAC), Boston, MA, USA
| | - Robert J Thomas
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Alice D Lam
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - M Brandon Westover
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Clinical Data Animation Center (CDAC), Boston, MA, USA
| |
Collapse
|
42
|
De Felice M, Germelli L, Piccarducci R, Da Pozzo E, Giacomelli C, Baccaglini-Frank A, Martini C. Intermittent hypoxia treatments cause cellular priming in human microglia. J Cell Mol Med 2023; 27:819-830. [PMID: 36824025 PMCID: PMC10002911 DOI: 10.1111/jcmm.17682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 12/11/2022] [Accepted: 01/06/2023] [Indexed: 02/25/2023] Open
Abstract
Obstructive sleep apnoea syndrome (OSAS) is a sleep-disordered breathing characterized by nocturnal collapses of the upper airway resulting in cycles of blood oxygen partial pressure oscillations, which lead to tissue and cell damage due to intermittent hypoxia (IH) episodes. Since OSAS-derived IH may lead to cognitive impairment through not fully cleared mechanisms, herein we developed a new in vitro model mimicking IH conditions to shed light on its molecular effects on microglial cells, with particular attention to the inflammatory response. The in vitro model was set-up and validated by measuring the hypoxic state, HIF-1α levels, oxidative stress by ROS production and mitochondrial activity by MTS assay. Then, the mRNA and protein levels of certain inflammatory markers (NF-κB and interleukin 6 (IL-6)) after different IH treatment protocols were investigated. The IH treatments followed by a normoxic period were not able to produce a high inflammatory state in human microglial cells. Nevertheless, microglia appeared to be in a state characterized by increased expression of NF-κB and markers related to a primed phenotype. The microglia exposed to IH cycles and stimulated with exogenous IL-1β resulted in an exaggerated inflammatory response with increased NF-κB and IL-6 expression, suggesting a role for primed microglia in OSAS-driven neuroinflammation.
Collapse
|
43
|
Brain Waste Removal System and Sleep: Photobiomodulation as an Innovative Strategy for Night Therapy of Brain Diseases. Int J Mol Sci 2023; 24:ijms24043221. [PMID: 36834631 PMCID: PMC9965491 DOI: 10.3390/ijms24043221] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Emerging evidence suggests that an important function of the sleeping brain is the removal of wastes and toxins from the central nervous system (CNS) due to the activation of the brain waste removal system (BWRS). The meningeal lymphatic vessels (MLVs) are an important part of the BWRS. A decrease in MLV function is associated with Alzheimer's and Parkinson's diseases, intracranial hemorrhages, brain tumors and trauma. Since the BWRS is activated during sleep, a new idea is now being actively discussed in the scientific community: night stimulation of the BWRS might be an innovative and promising strategy for neurorehabilitation medicine. This review highlights new trends in photobiomodulation of the BWRS/MLVs during deep sleep as a breakthrough technology for the effective removal of wastes and unnecessary compounds from the brain in order to increase the neuroprotection of the CNS as well as to prevent or delay various brain diseases.
Collapse
|
44
|
Associations between objectively measured sleep parameters and cognition in healthy older adults: A meta-analysis. Sleep Med Rev 2023; 67:101734. [PMID: 36577339 DOI: 10.1016/j.smrv.2022.101734] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/03/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Multiple studies have examined associations between sleep and cognition in older adults, but a majority of these depend on self-reports on sleep and utilize cognitive tests that assess overall cognitive function. The current meta-analysis involved 72 independent studies and sought to quantify associations between objectively measured sleep parameters and cognitive performance in healthy older adults. Both sleep macrostructure (e.g., sleep duration, continuity, and stages) and microstructure (e.g., slow wave activity and spindle activity) were evaluated. For macrostructure, lower restlessness at night was associated with better memory performance (r = 0.43, p = 0.02), while lower sleep onset latency was associated with better executive functioning (r = 0.28, p = 0.03). Greater relative amount of N2 and REM sleep, but not N3, positively correlated with cognitive performance. The association between microstructure and cognition in older adults was marginally significant. This relationship was moderated by age (z = 0.07, p < 0.01), education (z = 0.26, p = 0.03), and percentage of female participants (z = 0.01, p < 0.01). The current meta-analysis emphasizes the importance of considering objective sleep measures to understand the relationship between sleep and cognition in healthy older adults. These results also form a base from which researchers using wearable sleep technology and measuring behavior through computerized testing tools can evaluate their findings.
Collapse
|
45
|
André C, Champetier P, Rehel S, Kuhn E, Touron E, Ourry V, Landeau B, Le Du G, Mézenge F, Segobin S, de la Sayette V, Vivien D, Chételat G, Rauchs G, Allais F, Asselineau J, Lugo SB, Batchelor M, Beaugonin A, Bejanin A, Chocat A, Collette F, Dautricourt S, Ferrand‐Devouge E, De Flores R, Delamillieure P, Delarue M, Deza‐Araujo YI, Esperou H, Felisatti F, Frison E, Gheysen F, Gonneaud J, Heidmann M, Tran (Dolma) T(TH, Klimecki O, Lefranc V, Lutz A, Marchant N, Molinuevo J, Moulinet I, Palix C, Paly L, Poisnel G, Requier F, Salmon E, Schimmer C, Sherif S, Vanhoutte M, Vuilleumier P, Ware C, Wirth M. Rapid Eye Movement Sleep, Neurodegeneration, and Amyloid Deposition in Aging. Ann Neurol 2023; 93:979-990. [PMID: 36641644 DOI: 10.1002/ana.26604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Rapid eye movement (REM) sleep is markedly altered in Alzheimer's disease (AD), and its reduction in older populations is associated with AD risk. However, little is known about the underlying brain mechanisms. Our objective was to investigate the relationships between REM sleep integrity and amyloid deposition, gray matter volume, and perfusion in aging. METHODS We included 121 cognitively unimpaired older adults (76 women, mean age 68.96 ± 3.82 years), who underwent a polysomnography, T1-weighted magnetic resonance imaging, early and late Florbetapir positron emission tomography scans to evaluate gray matter volume, perfusion, and amyloid deposition. We computed indices reflecting REM sleep macro- and microstructural integrity (ie, normalized electroencephalographic spectral power values). Voxel-wise multiple regression analyses were conducted between REM sleep indices and neuroimaging data, controlling for age, sex, education, the apnea-hypopnea index, and the apolipoprotein E ε4 status. RESULTS Lower perfusion in frontal, anterior and posterior cingulate, and precuneus areas was associated with decreased delta power and electroencephalographic slowing (slow/fast frequencies ratio), and increased alpha and beta power. To a lower extent, similar results were obtained between gray matter volume and delta, alpha, and beta power. In addition, lower REM sleep theta power was more marginally associated with greater diffuse amyloid deposition and lower gray matter volume in fronto-temporal and parieto-occipital areas. INTERPRETATION These results suggest that alterations of REM sleep microstructure are associated with greater neurodegeneration and neocortical amyloid deposition in older adults. Further studies are warranted to replicate these findings, and determine whether older adults exhibiting REM sleep alterations are more at risk of cognitive decline and belonging to the Alzheimer's continuum. ANN NEUROL 2023.
Collapse
Affiliation(s)
- Claire André
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, GIP Cyceron, Caen, France.,Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, Caen University Hospital, GIP Cyceron, NIMH, Caen, France
| | - Pierre Champetier
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, GIP Cyceron, Caen, France.,Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, Caen University Hospital, GIP Cyceron, NIMH, Caen, France
| | - Stéphane Rehel
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, GIP Cyceron, Caen, France.,Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, Caen University Hospital, GIP Cyceron, NIMH, Caen, France
| | - Elizabeth Kuhn
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, GIP Cyceron, Caen, France
| | - Edelweiss Touron
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, GIP Cyceron, Caen, France
| | - Valentin Ourry
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, GIP Cyceron, Caen, France.,Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, Caen University Hospital, GIP Cyceron, NIMH, Caen, France
| | - Brigitte Landeau
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, GIP Cyceron, Caen, France
| | - Gwendoline Le Du
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, GIP Cyceron, Caen, France
| | - Florence Mézenge
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, GIP Cyceron, Caen, France
| | - Shailendra Segobin
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, Caen University Hospital, GIP Cyceron, NIMH, Caen, France
| | - Vincent de la Sayette
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, Caen University Hospital, GIP Cyceron, NIMH, Caen, France.,Neurology Department, Caen University Hospital, Caen, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, GIP Cyceron, Caen, France.,Clinical Research Department, Caen University Hospital, Caen, France
| | - Gaël Chételat
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, GIP Cyceron, Caen, France
| | - Géraldine Rauchs
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, GIP Cyceron, Caen, France.,Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, Caen University Hospital, GIP Cyceron, NIMH, Caen, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zeller CJ, Züst MA, Wunderlin M, Nissen C, Klöppel S. The promise of portable remote auditory stimulation tools to enhance slow-wave sleep and prevent cognitive decline. J Sleep Res 2023:e13818. [PMID: 36631001 DOI: 10.1111/jsr.13818] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 01/13/2023]
Abstract
Dementia is the seventh leading cause of mortality, and a major source of disability and dependency in older individuals globally. Cognitive decline (and, to a lesser extent, normal ageing) are associated with sleep fragmentation and loss of slow-wave sleep. Evidence suggests a bidirectional causal link between these losses. Phase-locked auditory stimulation has emerged as a promising non-invasive tool to enhance slow-wave sleep, potentially ameliorating cognitive decline. In laboratory settings, auditory stimulation is usually supervised by trained experts. Different algorithms (simple amplitude thresholds, topographic correlation, sine-wave fitting, phase-locked loop, and phase vocoder) are used to precisely target auditory stimulation to a desired phase of the slow wave. While all algorithms work well in younger adults, the altered sleep physiology of older adults and particularly those with neurodegenerative disorders requires a tailored approach that can adapt to older adults' fragmented sleep and reduced amplitudes of slow waves. Moreover, older adults might require a continuous intervention that is not feasible in laboratory settings. Recently, several auditory stimulation-capable portable devices ('Dreem®', 'SmartSleep®' and 'SleepLoop®') have been developed. We discuss these three devices regarding their potential as tools for science, and as clinical remote-intervention tools to combat cognitive decline. Currently, SleepLoop® shows the most promise for scientific research in older adults due to high transparency and customizability but is not commercially available. Studies evaluating down-stream effects on cognitive abilities, especially in patient populations, are required before a portable auditory stimulation device can be recommended as a clinical preventative remote-intervention tool.
Collapse
Affiliation(s)
- Céline J Zeller
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Marc A Züst
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Marina Wunderlin
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Christoph Nissen
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.,Division of Psychiatric Specialties, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Stefan Klöppel
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
47
|
Lafrenière A, Lina JM, Hernandez J, Bouchard M, Gosselin N, Carrier J. Sleep slow waves' negative-to-positive-phase transition: a marker of cognitive and apneic status in aging. Sleep 2023; 46:zsac246. [PMID: 36219687 PMCID: PMC9832517 DOI: 10.1093/sleep/zsac246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/12/2022] [Indexed: 11/07/2022] Open
Abstract
The sleep slow-wave (SW) transition between negative and positive phases is thought to mirror synaptic strength and likely depends on brain health. This transition shows significant age-related changes but has not been investigated in pathological aging. The present study aimed at comparing the transition speed and other characteristics of SW between older adults with amnestic mild cognitive impairment (aMCI) and cognitively normal (CN) controls with and without obstructive sleep apnea (OSA). We also examined the association of SW characteristics with the longitudinal changes of episodic memory and executive functions and the degree of subjective cognitive complaints. aMCI (no/mild OSA = 17; OSA = 15) and CN (no/mild OSA = 20; OSA = 17) participants underwent a night of polysomnography and a neuropsychological evaluation at baseline and 18 months later. Participants with aMCI had a significantly slower SW negative-to-positive-phase transition speed and a higher proportion of SW that are "slow-switchers" than CN participants. These SW measures in the frontal region were significantly correlated with memory decline and cognitive complaints in aMCI and cognitive improvements in CN participants. The transition speed of the SW that are "fast-switchers" was significantly slower in OSA compared to no or mild obstructive sleep apnea participants. The SW transition-related metrics showed opposite correlations with the longitudinal episodic memory changes depending on the participants' cognitive status. These relationships were particularly strong in participants with aMCI. As the changes of the SW transition-related metrics in pathological aging might reflect synaptic alterations, future studies should investigate whether these new metrics covary with biomarker levels of synaptic integrity in this population.
Collapse
Affiliation(s)
- Alexandre Lafrenière
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal, Montreal, Canada
- Department of Psychology, Université de Montréal, Montreal, Canada
| | - Jean-Marc Lina
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal, Montreal, Canada
- Department of Electrical Engineering, École de Technologie Supérieure, Montreal, Canada
- Centre de Recherches Mathématiques, Université de Montréal, Montreal, Canada
| | - Jimmy Hernandez
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal, Montreal, Canada
- Department of Neurosciences, Université de Montréal, Montreal, Canada
| | - Maude Bouchard
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal, Montreal, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal, Montreal, Canada
- Department of Psychology, Université de Montréal, Montreal, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal, Montreal, Canada
- Department of Psychology, Université de Montréal, Montreal, Canada
| |
Collapse
|
48
|
Rosales-Lagarde A, Cubero-Rego L, Menéndez-Conde F, Rodríguez-Torres EE, Itzá-Ortiz B, Martínez-Alcalá C, Vázquez-Tagle G, Vázquez-Mendoza E, Eraña Díaz ML. Dissociation of Arousal Index Between REM and NREM Sleep in Elderly Adults with Cognitive Impairment, No Dementia: A Pilot Study. J Alzheimers Dis 2023; 95:477-491. [PMID: 37574730 DOI: 10.3233/jad-230101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
BACKGROUND Sleep disruption in elderly has been associated with an increased risk of cognitive impairment and its transition into Alzheimer's disease (AD). High arousal indices (AIs) during sleep may serve as an early-stage biomarker of cognitive impairment non-dementia (CIND). OBJECTIVE Using full-night polysomnography (PSG), we investigated whether CIND is related to different AIs between NREM and REM sleep stages. METHODS Fourteen older adults voluntarily participated in this population-based study that included Mini-Mental State Examination, Neuropsi battery, Katz Index of Independence in Activities of Daily Living, and single-night PSG. Subjects were divided into two groups (n = 7 each) according to their results in Neuropsi memory and attention subtests: cognitively unimpaired (CU), with normal results; and CIND, with -2.5 standard deviations in memory and/or attention subtests. AIs per hour of sleep during N1, N2, N3, and REM stages were obtained and correlated with Neuropsi total score (NTS). RESULTS AI (REM) was significantly higher in CU group than in CIND group. For the total sample, a positive correlation between AI (REM) and NTS was found (r = 0.68, p = 0.006), which remained significant when controlling for the effect of age and education. In CIND group, the AI (N2) was significantly higher than the AI (REM) . CONCLUSION In CIND older adults, this attenuation of normal arousal mechanisms in REM sleep are dissociated from the relative excess of arousals observed in stage N2. We propose as probable etiology an early hypoactivity at the locus coeruleus noradrenergic system, associated to its early pathological damage, present in the AD continuum.
Collapse
Affiliation(s)
- Alejandra Rosales-Lagarde
- CONACyT Chairs, National Council of Science and Technology, Mexico
- National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico
| | - Lourdes Cubero-Rego
- Neurodevelopmental Research Unit, Institute of Neurobiology, National Autonomous University of Mexico, Campus Juriquilla-Queretaro, Querétaro, México
| | | | | | - Benjamín Itzá-Ortiz
- Mathematics Research Center, Autonomous University of the State of Hidalgo, Mexico
| | - Claudia Martínez-Alcalá
- CONACyT Chairs, National Council of Science and Technology, Mexico
- Institute of Health Sciences, Autonomous University of the State of Hidalgo, Mexico
| | | | | | - Marta L Eraña Díaz
- Center for Research in Engineering and Applied Sciences, Autonomous University of the State of Morelos, Mexico
| |
Collapse
|
49
|
Abulafia C, Vidal MF, Olivar N, Odzak A, Brusco I, Guinjoan SM, Cardinali DP, Vigo DE. An Exploratory Study of Sleep-Wake Differences of Autonomic Activity in Patients with Mild Cognitive Impairment: The Role of Melatonin as a Modulating Factor. Clin Interv Aging 2023; 18:771-781. [PMID: 37200894 PMCID: PMC10187579 DOI: 10.2147/cia.s394749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 05/08/2023] [Indexed: 05/20/2023] Open
Abstract
Purpose The objective of the present study was to assess sleep-wake differences of autonomic activity in patients with mild cognitive impairment (MCI) compared to control subjects. As a post-hoc objective, we sought to evaluate the mediating effect of melatonin on this association. Patients and Methods A total of 22 MCI patients (13 under melatonin treatment) and 12 control subjects were included in this study. Sleep-wake periods were identified by actigraphy and 24hr-heart rate variability measures were obtained to study sleep-wake autonomic activity. Results MCI patients did not show any significant differences in sleep-wake autonomic activity when compared to control subjects. Post-hoc analyses revealed that MCI patients not taking melatonin displayed lower parasympathetic sleep-wake amplitude than controls not taking melatonin (RMSSD -7 ± 1 vs 4 ± 4, p = 0.004). In addition, we observed that melatonin treatment was associated with greater parasympathetic activity during sleep (VLF 15.5 ± 0.1 vs 15.1 ± 0.1, p = 0.010) and in sleep-wake differences in MCI patients (VLF 0.5 ± 0.1 vs 0.2 ± 0.0, p = 0.004). Conclusion These preliminary findings hint at a possible sleep-related parasympathetic vulnerability in patients at prodromal stages of dementia as well as a potential protective effect of exogenous melatonin in this population.
Collapse
Affiliation(s)
- Carolina Abulafia
- Laboratory of Chronophysiology, Institute for Biomedical Research (BIOMED), Pontifical Catholic University of Argentina (UCA) and CONICET, Buenos Aires, Argentina
- Facultad de Psicología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María F Vidal
- Servicio de Psiquiatría, Departamento de Neurología, Fleni, Buenos Aires, Argentina
| | - Natividad Olivar
- Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrea Odzak
- Servicio de Clínica Médica, Hospital Argerich, Buenos Aires, Argentina
| | - Ignacio Brusco
- Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Buenos Aires, Argentina
- Servicio de Clínica Médica, Hospital Argerich, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | | | - Daniel P Cardinali
- Facultad de Ciencias Médicas, Universidad Católica Argentina, Buenos Aires, Argentina
| | - Daniel E Vigo
- Laboratory of Chronophysiology, Institute for Biomedical Research (BIOMED), Pontifical Catholic University of Argentina (UCA) and CONICET, Buenos Aires, Argentina
- Faculty of Psychology and Educational Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
- Correspondence: Daniel E Vigo, Instituto de Investigaciones Biomédicas, Pontificia Universidad Católica Argentina, Alicia Moreau de Justo 1500, 4° piso, Buenos Aires, C1107AAZ, Argentina, Tel +54 0810-2200-822 ext 1152, Email ;
| |
Collapse
|
50
|
Wunderlin M, Koenig T, Zeller C, Nissen C, Züst MA. Automatized online prediction of slow-wave peaks during non-rapid eye movement sleep in young and old individuals: Why we should not always rely on amplitude thresholds. J Sleep Res 2022; 31:e13584. [PMID: 35274389 PMCID: PMC9787564 DOI: 10.1111/jsr.13584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/02/2022] [Accepted: 02/25/2022] [Indexed: 12/30/2022]
Abstract
Brain-state-dependent stimulation during slow-wave sleep is a promising tool for the treatment of psychiatric and neurodegenerative diseases. A widely used slow-wave prediction algorithm required for brain-state-dependent stimulation is based on a specific amplitude threshold in the electroencephalogram. However, due to decreased slow-wave amplitudes in aging and psychiatric conditions, this approach might miss many slow-waves because they do not fulfill the amplitude criterion. Here, we compared slow-wave peaks predicted via an amplitude-based versus a multidimensional approach using a topographical template of slow-wave peaks in 21 young and 21 older healthy adults. We validate predictions against the gold-standard of offline detected peaks. Multidimensionally predicted peaks resemble the gold-standard regarding spatiotemporal dynamics but exhibit lower peak amplitudes. Amplitude-based prediction, by contrast, is less sensitive, less precise and - especially in the older group - predicts peaks that differ from the gold-standard regarding spatiotemporal dynamics. Our results suggest that amplitude-based slow-wave peak prediction might not always be the ideal choice. This is particularly the case in populations with reduced slow-wave amplitudes, like older adults or psychiatric patients. We recommend the use of multidimensional prediction, especially in studies targeted at populations other than young and healthy individuals.
Collapse
Affiliation(s)
- Marina Wunderlin
- University Hospital of Old Age Psychiatry and PsychotherapyUniversity of BernBernSwitzerland
| | - Thomas Koenig
- University Hospital of Psychiatry and PsychotherapyUniversity of BernBernSwitzerland,Interfaculty Research Cooperation ‐ Decoding SleepUniversity of BernBernSwitzerland
| | - Céline Zeller
- University Hospital of Old Age Psychiatry and PsychotherapyUniversity of BernBernSwitzerland
| | - Christoph Nissen
- University Hospital of Psychiatry and PsychotherapyUniversity of BernBernSwitzerland,Interfaculty Research Cooperation ‐ Decoding SleepUniversity of BernBernSwitzerland
| | - Marc Alain Züst
- University Hospital of Old Age Psychiatry and PsychotherapyUniversity of BernBernSwitzerland
| |
Collapse
|