1
|
Somaida A, Abdelsalam AM, Khedr SM, Mohamed AM, Tariq I, Almohsen N, Ashraf O, Osman SK, Al-Sawahli MM, Engelhardt K, Bakowsky U. Improved oral bioavailability of paclitaxel through folate-engineered zein nanoparticles: Evaluation in intestinal organoid and in vivo models. Int J Biol Macromol 2025:145117. [PMID: 40516742 DOI: 10.1016/j.ijbiomac.2025.145117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 05/26/2025] [Accepted: 06/07/2025] [Indexed: 06/16/2025]
Abstract
Oral administration remains the most accessible route for drug delivery. Paclitaxel is a natural lipophilic agent with significant antineoplastic efficacy against various malignancies. However, its clinical application is limited by low solubility, systemic toxicity, and poor bioavailability. In this study, we engineered modified zein nanoparticles for oral delivery by using PEGylated zein as a biocompatible nanocarrier, combined with folate receptor targeting on intestinal epithelial cells. The conjugation of folic acid was confirmed via FT-IR and 1HNMR analyses. Atomic force microscopy (AFM) revealed that the nanoparticles were spherical, had a diameter under 200 nm, and maintained stability under gastrointestinal pH conditions. Furthermore, uptake assessments in multicellular spheroids and intestinal organoid models showed greater accumulation and penetration of conjugated zein nanocarriers compared to non-targeted particles. The in vivo assessment of nanoparticle biodistribution via oral administration showed extended retention of folate-modified zein nanoparticles in the rat gastrointestinal tract for up to 24 h. Pharmacokinetic analysis in vivo demonstrated that targeted nanoparticles increased paclitaxel plasma concentrations in rabbits to over seven times that of the unformulated drug. These findings highlight the novelty of folate-modified zein nanoparticles platform in improving the oral bioavailability of poorly soluble drugs, demonstrating their promise for advanced drug delivery.
Collapse
Affiliation(s)
- Ahmed Somaida
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch Strasse 4, 35037 Marburg, Germany
| | - Ahmed M Abdelsalam
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch Strasse 4, 35037 Marburg, Germany; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Shaimaa M Khedr
- Pharmaceutical and Fermentation Industries Development Center (PFIDC), City of Scientific Research and Technology Applications (SRTA-City), New Borg El Arab, Alexandria 21111, Egypt
| | - Ahmed M Mohamed
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Imran Tariq
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch Strasse 4, 35037 Marburg, Germany; Punjab University College of Pharmacy, University of the Punjab, 54000 Lahore, Pakistan
| | - Noor Almohsen
- Department of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 10, 35032 Marburg, Germany
| | - Orchid Ashraf
- Department of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 10, 35032 Marburg, Germany
| | - Shaaban K Osman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Majid M Al-Sawahli
- Department of Pharmaceutics, College of Pharmacy, The Islamic University, Najaf, Iraq
| | - Konrad Engelhardt
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch Strasse 4, 35037 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch Strasse 4, 35037 Marburg, Germany
| |
Collapse
|
2
|
Yuan Y, Chen L. Transporters in vitamin uptake and cellular metabolism: impacts on health and disease. LIFE METABOLISM 2025; 4:loaf008. [PMID: 40444179 PMCID: PMC12121362 DOI: 10.1093/lifemeta/loaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/20/2025] [Accepted: 03/01/2025] [Indexed: 06/02/2025]
Abstract
Vitamins are vital nutrients essential for metabolism, functioning as coenzymes, antioxidants, and regulators of gene expression. Their absorption and metabolism rely on specialized transport proteins that ensure bioavailability and cellular utilization. Water-soluble vitamins, including B-complex and vitamin C, are transported by solute carrier (SLC) family proteins and ATP-binding cassette (ABC) transporters for efficient uptake and cellular distribution. Fat-soluble vitamins (A, D, E, and K) rely on lipid-mediated pathways through proteins like scavenger receptor class B type I (SR-BI), CD36, and Niemann-Pick C1-like 1 (NPC1L1), integrating their absorption with lipid metabolism. Defective vitamin transporters are associated with diverse metabolic disorders, including neurological, hematological, and mitochondrial diseases. Advances in structural and functional studies of vitamin transporters highlight their tissue-specific roles and regulatory mechanisms, shedding light on their impact on health and disease. This review emphasizes the significance of vitamin transporters and their potential as therapeutic targets for deficiencies and related chronic conditions.
Collapse
Affiliation(s)
- Yaxuan Yuan
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
- State Key Laboratory of Metabolic Dysregulation & Prevention and Treatment of Esophageal Cancer, Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical sciences, Zhengzhou University, Zhengzhou, Henan, China, 450001
| | - Ligong Chen
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
- State Key Laboratory of Metabolic Dysregulation & Prevention and Treatment of Esophageal Cancer, Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical sciences, Zhengzhou University, Zhengzhou, Henan, China, 450001
| |
Collapse
|
3
|
Huang C, Luo Y, Liu Y, Liu J, Chen Y, Zeng B, Liao X, Liu Y, Wang X. DNA hypermethylation-induced suppression of ALKBH5 is required for folic acid to alleviate hepatic lipid deposition by enhancing autophagy in an ATG12-dependent manner. J Nutr Biochem 2025; 140:109870. [PMID: 39993647 DOI: 10.1016/j.jnutbio.2025.109870] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 12/08/2024] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) occurs when too much fat builds up in the liver. As a growing worldwide epidemic, NAFLD is strongly linked with multiple metabolic diseases including obesity, insulin resistance, and dyslipidemia. However, very few effective treatments are currently available. Folate, an essential B-group vitamin with important biological functions including DNA and RNA methylation regulation, has been shown to have a protective effect against NAFLD with its underlying mechanism remains largely unclear. Here, we show that administration of folic acid significantly improves glucose tolerance, insulin sensitivity, and dyslipidemia in high-fat diet (HFD) fed mice. Moreover, folic acid treatment significantly inhibits lipid deposition in hepatocytes both in vivo and in vitro. Mechanically, folic acid reduces the expression of m6A demethylase AlkB homolog 5 (ALKHB5) via promoter DNA hypermethylation. Decreased ALKBH5 causes increased m6A modification and increased expression of ATG12 in a demethylase activity-dependent manner, thereby promoting autophagy and preventing hepatic steatosis. Inhibition of ATG12 induced by overexpression of ALKBH5 could impair autophagy and the inhibitory effect of folic acid on lipid accumulation in hepatocytes. Together, these findings provide novel insights into understanding the protective role of folic acid in the treatment of NAFLD and suggest that folic acid may be a potential agent for combating NAFLD.
Collapse
Affiliation(s)
- Chaoqun Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Zhejiang, PR China
| | - Yaojun Luo
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Zhejiang, PR China
| | - Youhua Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Zhejiang, PR China
| | - Jiaqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Zhejiang, PR China
| | - Yushi Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Zhejiang, PR China
| | - Botao Zeng
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Zhejiang, PR China
| | - Xing Liao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Zhejiang, PR China
| | - Yuxi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Zhejiang, PR China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, PR China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Zhejiang, PR China.
| |
Collapse
|
4
|
Sahane P, Puri N, Khairnar P, Phatale V, Shukla S, Priyadarshinee A, Srivastava S. Harnessing Folate Receptors: A Comprehensive Review on the Applications of Folate-Adorned Nanocarriers for the Management of Melanoma. ACS APPLIED BIO MATERIALS 2025; 8:3623-3656. [PMID: 40275606 DOI: 10.1021/acsabm.5c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
The advancement in exclusively tailored therapeutic delivery systems has escalated a great deal of interest in targeted delivery to augment therapeutic efficacy and to lessen adverse effects. The targeted delivery approach promisingly helps to surmount the unmet clinical needs of conventional therapies, including chemoresistance, limited penetration, and side effects. In the case of melanoma, various receptors were overexpressed on the tumor site, among which folate receptor (FR) targeting is considered to be a progressive approach for managing melanoma. FRs are the macromolecules of the glycosyl phosphatidylinositol-attached protein that possess globular assembly with a greater affinity toward specific ligands. So, the functional ligands can be utilized to design targeted nanocarriers (NCs) that can effectively bind to overexpressed FRs. Hence, folate-adorned NCs (FNCs) offer various benefits such as site-specific targeting, cargo protection, and minimizing toxicity. This review focuses on the insights and implications of FRs, targeting FRs, and mechanisms, challenges, and advantages of FNCs. Further, the applications of various FNCs, such as liposomes, polymeric NCs, albumin nanoparticles, inorganic NCs, liquid crystalline nanoparticles, and nanogels, have been elaborated for melanoma therapy. Likewise, the potential of FNCs in immunotherapy, photodynamic therapy, chemotherapy, gene therapy, photothermal therapy, and tumor imaging has been exhaustively discussed. Furthermore, translational hurdles and potential solutions are discussed in detail. The present review is expected to give thoughtful ideas to researchers, industry stakeholders, and formulation scientists for the efficacious development of FNCs.
Collapse
Affiliation(s)
- Prajakta Sahane
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Niharika Puri
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Pooja Khairnar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Vivek Phatale
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Shalini Shukla
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Abhipsa Priyadarshinee
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| |
Collapse
|
5
|
Anton-Fernandez A, Domene-Serrano I, Cuadros R, Peinado-Cahuchola R, Sanchez-Pece M, Hernandez F, Avila J. Peptide Family Promotes Brain Cell Rejuvenation and Improved Cognition through Peripheral Delivery. ACS OMEGA 2025; 10:13236-13250. [PMID: 40224410 PMCID: PMC11983169 DOI: 10.1021/acsomega.4c10849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 04/15/2025]
Abstract
Ligands targeting folate receptor α (FRα), a protein predominantly expressed in neural cells, have the potential to reprogram (rejuvenate) brain cells and enhance cognitive function in aged mice. In this study, we present a family of FRα-binding peptides identified through AlphaFold modeling. These peptides induce a structural change in the receptor upon binding, which facilitates its internalization and transport to the cell nucleus. Once in the nucleus, FRα functions as a transcription factor, promoting the expression of genes associated with a youthful phenotype and improved cognition. Notably, these peptides demonstrate permeability across the blood-brain barrier, enabling their administration not only through intracranial injection but also via peripheral delivery methods such as intraperitoneal injection or gastric gavage. This property enhances their potential for use in future therapeutic applications.
Collapse
Affiliation(s)
| | | | - Raquel Cuadros
- Centro
de Biologia Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
- Center
for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | | | - Felix Hernandez
- Centro
de Biologia Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - Jesus Avila
- Centro
de Biologia Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
- Center
for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
6
|
Stukan I, Żuk A, Pukacka K, Mierzejewska J, Pawłowski J, Kowalski B, Dąbkowska M. Wolf in Sheep's Clothing: Taming Cancer's Resistance with Human Serum Albumin? Int J Nanomedicine 2025; 20:3493-3525. [PMID: 40125439 PMCID: PMC11930253 DOI: 10.2147/ijn.s500997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/26/2025] [Indexed: 03/25/2025] Open
Abstract
Human serum albumin (HSA) has emerged as a promising carrier for nanodrug delivery, offering unique structural properties that can be engineered to overcome key challenges in cancer treatment, especially resistance to chemotherapy. This review focuses on the cellular uptake of albumin-based nanoparticles and the modifications that enhance their ability to bypass resistance mechanisms, particularly multidrug resistance type 1 (MDR1), by improving targeting to cancer cells. In our unique approach, we integrate the chemical properties of albumin, its interactions with cancer cells, and surface modifications of albumin-based delivery systems that enable to bypass resistance mechanisms, particularly those related to MDR1, and precisely target receptors on cancer cells to improve treatment efficacy. We discuss that while well-established albumin receptors such as gp60 and gp18/30 are crucial for cellular uptake and transcytosis, their biology remains underexplored, limiting their translational potential. Additionally, we explore the potential of emerging targets, such as cluster of differentiation 44 (CD44), cluster of differentiation (CD36) and transferrin receptor TfR1, as well as the advantages of using dimeric forms of albumin (dHSA) to further enhance delivery to resistant cancer cells. Drawing from clinical examples, including the success of albumin-bound paclitaxel (Abraxane) and new formulations like Pazenir and Fyarro (for Sirolimus), we identify gaps in current knowledge and propose strategies to optimize albumin-based systems. In conclusion, albumin-based nanoparticles, when tailored with appropriate modifications, have the potential to bypass multidrug resistance and improve the targeting of cancer cells. By enhancing albumin's ability to efficiently deliver therapeutic agents, these carriers represent a promising approach to addressing one of oncology's most persistent challenges, with substantial potential to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Iga Stukan
- Department of General Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Anna Żuk
- Independent Laboratory of Community Pharmacy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Kamila Pukacka
- Department of Pharmaceutical Technology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Julia Mierzejewska
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jakub Pawłowski
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Bogusław Kowalski
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Maria Dąbkowska
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
7
|
Siatka T, Mát'uš M, Moravcová M, Harčárová P, Lomozová Z, Matoušová K, Suwanvecho C, Krčmová LK, Mladěnka P. Biological, dietetic and pharmacological properties of vitamin B 9. NPJ Sci Food 2025; 9:30. [PMID: 40075081 PMCID: PMC11904035 DOI: 10.1038/s41538-025-00396-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Humans must obtain vitamin B9 (folate) from plant-based diet. The sources as well as the effect of food processing are discussed in detail. Industrial production, fortification and biofortification, kinetics, and physiological role in humans are described. As folate deficiency leads to several pathological states, current opinions toward prevention through fortification are discussed. Claimed risks of increased folate intake are mentioned as well as analytical ways for measurement of folate.
Collapse
Affiliation(s)
- Tomáš Siatka
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Marek Mát'uš
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232, Bratislava, Slovak Republic
| | - Monika Moravcová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Patrícia Harčárová
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Zuzana Lomozová
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05, Hradec Králové, Czech Republic
| | - Chaweewan Suwanvecho
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05, Hradec Králové, Czech Republic
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Lenka Kujovská Krčmová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05, Hradec Králové, Czech Republic
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic.
| |
Collapse
|
8
|
Sarkaria IS, Biro TG, Singhal S, Reddy RM, Martin LW, Rice DC, Lopez AS, Stevens G, Barret T, Murthy SC. Intraoperative Molecular Imaging With Pafolacianine: Histologic Characteristics of Identified Nodules. Clin Lung Cancer 2025; 26:104-115. [PMID: 39706717 DOI: 10.1016/j.cllc.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND With increased early detection efforts, surgery for early-stage lung cancer is expected to rise. Pafolacianine is the first FDA approved targeted optical imaging agent indicated as an adjunct for intraoperative identification of malignant and nonmalignant pulmonary lesions in adult patients with known or suspected cancer in the lung. METHODS This is a retrospective review of the malignant and nonmalignant lesions identified by pafolacianine with intraoperative molecular imaging (IMI) in the multi-center Phase 2 and Phase 3 ELUCIDATE clinical trials. All lesions meeting the intent to treat criteria from the combined studies were included. Histopathology for malignant and nonmalignant lesions and immunohistochemistry (ICH) for folate receptor alpha (FRα) and folate receptor beta (FRβ), which pafolacianine binds to, were assessed. RESULTS A total of 273 lesions resected from 191 patients were analyzed. The identification of primary and occult malignant lesions with pafolacianine in combination with standard practice was improved (P < .001) when compared to standard practice alone. A range of histologies were demonstrated including adenocarcinoma (primary and metastatic), squamous cell carcinoma, adenoid cystic carcinoma, chordoma, lymphoma, and papillary thyroid cancer. Ninety-two percent (205 of 223) of lesions tested for folate expression were positive for FRα or FRβ expression. CONCLUSIONS While initially intended to identify adenocarcinoma, IMI with pafolacianine targets a broad histological cross-section of malignant and nonmalignant primary and metastatic lesions in the lung. As real-world use expands, additional insight will continue to inform utility of pafolacianine in clinical practice and may broaden clinical applicability.
Collapse
Affiliation(s)
| | | | - Sunil Singhal
- Penn Medicine Perelman Center for Advanced Medicine, Philadelphia, PA
| | - Rishindra M Reddy
- Department of Surgery, Michigan Medicine, Section of Thoracic Surgery, Ann Arbor, MI
| | - Linda W Martin
- University of Virginia Medical School, Charlottesville, VA
| | - David C Rice
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | - Tina Barret
- On Target Laboratories, Inc., West Lafayette, IN
| | - Sudish C Murthy
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH.
| |
Collapse
|
9
|
Pan Y, Liu Z, Wu C. Pan-Cancer Characterization Identifies SLC19A1 as an Unfavorable Prognostic Marker and Associates It with Tumor Infiltration Features. Biomedicines 2025; 13:571. [PMID: 40149548 PMCID: PMC11940280 DOI: 10.3390/biomedicines13030571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/16/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Recent studies have identified solute carrier family 19 member 1 (SLC19A1) as a second messenger transporter that regulates massive immune-related signaling cascades, but current studies provide limited information. This study aims to evaluate its role and the potential mechanisms across various cancers. Methods: We analyzed multi-omics data from a pan-cancer cohort to evaluate SLC19A1 expression and its association with multiple features, including prognosis, tumor stemness, genome instability, and immune infiltration. Immunofluorescence staining was performed to validate SLC19A1 expression in tumor tissues and its relationship M2 macrophages. In addition, we used web tools such as ROCplotter to evaluate the association between SLC19A1 and response to chemotherapy and immunotherapy. Results: SLC19A1 was found to be overexpressed in multiple cancer types compared to normal tissues, correlating with poor prognosis. High SLC19A1 levels were associated with increased genomic instability and immune suppression. In addition, SLC19A1 was negatively correlated with CD8+ T-cell infiltration and positively correlated with M2 macrophage infiltration. The association of SLC19A1 with M2 macrophages was confirmed in multiple immunofluorescence staining. Finally, SLC19A1 was associated with the response to chemotherapy and immunotherapy in a variety of tumors. Conclusions: Our findings position SLC19A1 as a novel unfavorable prognostic marker in cancer, closely linked to immune suppression and genomic instability. This study highlights the need for further exploration of SLC19A1 as a therapeutic target and its implications in cancer treatment strategies.
Collapse
Affiliation(s)
- Yimin Pan
- Department of Neurosurgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha 410008, China
| | - Zhichen Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha 410008, China
| | - Changwu Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
10
|
Kaidi D, Odin E, Wettergren Y, Bexe Lindskog E. Prognostic value of folate-associated gene expression in stage II colon cancer. J Cancer Res Clin Oncol 2025; 151:92. [PMID: 39998667 PMCID: PMC11861115 DOI: 10.1007/s00432-025-06141-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
PURPOSE Prognostic variability in stage II colon cancer underscores the need for better risk stratification. Analyzing folate-associated gene expression in stage II colon cancer could provide researchers and clinicians with deeper insights into tumor biology and potentially aid in identifying early prognostic and/or predictive biomarkers. METHODS Patients with stage II colon cancer and recurrence (n = 48) were matched to patients with a 5 year recurrence-free follow-up (n = 133). Gene expression of ABCC3, AMT, FPGS, GGH, MFT, PCFT, RFC-1, and TYMS was analyzed in tumor tissue and matching colon mucosa using qPCR and evaluated in relation to time to recurrence (TTR), as well as to demographic and clinicopathological variables. RESULTS Independent of other covariates, TYMS expression in tumors, pT4 stage, and emergency surgery were associated with TTR. There were significant differences in expression levels of all examined genes between tumor and mucosa. ABCC3, GGH, and RFC-1 expression levels differed in mucosa between microsatellite instability-high (MSI-H) compared to microsatellite stable/microsatellite instability-low (MSS/MSI-L) tumors, whereas tumoral expression of AMT, GGH, and TYMS differed between MSI-H and MSS/MSI-L tumors. Depending on tumor location, the expression of ABCC3, AMT, GGH, and RFC-1 in mucosa, as well as the tumoral expression of AMT, GGH, PCFT and RFC-1 differed. CONCLUSION Low tumoral expression of TYMS was associated with worse TTR, independent of MSI status, pT stage, and emergency surgery. The indication of a better outcome for patients with MSI-H status and high tumoral TYMS expression might be of particular interest in the stratification of patients for immunotherapy.
Collapse
Affiliation(s)
- Donia Kaidi
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Region Västra Götaland, Sahlgrenska University Hospital, Östra, 416 85, Gothenburg, Sweden
| | - Elisabeth Odin
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yvonne Wettergren
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Region Västra Götaland, Sahlgrenska University Hospital, Östra, 416 85, Gothenburg, Sweden
| | - Elinor Bexe Lindskog
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Surgery, Region Västra Götaland, Sahlgrenska University Hospital, Östra, 416 85, Gothenburg, Sweden.
| |
Collapse
|
11
|
He Q, Wei Y, Zhu H, Song Y, Chen P, Dong Q, Ma H, Wang B, Zhang Y, Li J, Huo Y, Shi H, Dong Y. Association of Reduced Folate Carrier G80A Polymorphism With Lung Cancer Susceptibility in a Hypertensive Population: A Nested Case-Control Study. J Nutr 2025; 155:422-430. [PMID: 39740751 DOI: 10.1016/j.tjnut.2024.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Polymorphisms of the folate-associated one-carbon metabolism (OCM) pathway genes may regulate certain susceptibilities to cancer. G80A, a polymorphism in the reduced folate carrier (RFC) gene, may be associated with cancer risk, although the results obtained from previous studies have been inconsistent. OBJECTIVES This study aimed to evaluate the association of G80A with lung cancer among a Chinese population and to examine the potential effect modifiers. METHODS A nested, case-control study was performed in a population from the China H-type Hypertension Registry Study (CHHRS), in which 492 cases of lung cancer incidence and 1:1 matched controls were enrolled. RFC G80A variants were genotyped, and a series of metabolites in the OCM metabolic pathway were detected. Conditional logistic regression was used to model the association between this variant and lung cancer. RESULTS After adjusting for potential confounders, compared with GG carriers, AG carriers showed a trend of increased lung cancer risk [adjusted odds ratio (OR): 1.37; 95% CI: 0.97, 1.94], and AA carriers showed a significantly increased risk (adjusted OR: 1.86; 95% CI: 1.16, 2.97; P = 0.010; P-trend = 0.009). In subsequent stratification analyses, a significant interaction effect from the pronounced risk-enhancing effect of the 80AA/GG genotypes was observed in participants with lower baseline serum methionine concentrations (<4.6 μg/mL-adjusted OR: 2.63; 95% CI: 1.40, 4.96; compared with ≥4.6 μg/mL-adjusted OR: 1.17; 95% CI: 0.82, 1.66; P-interaction = 0.030). CONCLUSIONS Taken together, these findings suggest that RFC G80A may influence the susceptibility of lung cancer and may also be a potential biomarker for lung cancer prevention.
Collapse
Affiliation(s)
- Qiangqiang He
- Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Nanshan District, Shenzhen, Guangdong, China; Shenzhen Evergreen Medical Institute, Nanshan District, Shenzhen, Guangdong, China
| | - Yaping Wei
- College of Public Health, Shanghai University of Medicine and Health Sciences, Pudong New District, Shanghai, China
| | - Hehao Zhu
- School of Science, China Pharmaceutical University, Jiangning District, Nanjing, Jiangsu, China
| | - Yun Song
- Shenzhen Evergreen Medical Institute, Nanshan District, Shenzhen, Guangdong, China
| | - Ping Chen
- College of Pharmacy, Jinan University, Panyu District, Guangzhou, Guangdong, China; Inspection and Testing Center, Key Laboratory of Cancer FSMP for State Market Regulation, Nanshan District, Shenzhen, Guangdong, China
| | - Qing Dong
- Lianyungang Health Committee, Lianyungang, Jiangsu, China
| | - Hai Ma
- Health and Family Planning Commission, Rongcheng, Shandong, China
| | - Binyan Wang
- Shenzhen Evergreen Medical Institute, Nanshan District, Shenzhen, Guangdong, China; Institute of Biomedicine, Anhui Medical University, Shushan District, Hefei, Anhui, China
| | - Yan Zhang
- Department of Cardiology, Peking University First Hospital, Xicheng District, Beijing, China
| | - Jianping Li
- Department of Cardiology, Peking University First Hospital, Xicheng District, Beijing, China
| | - Yong Huo
- Department of Cardiology, Peking University First Hospital, Xicheng District, Beijing, China
| | - Hanping Shi
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China; Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Haidian District, Beijing, China; Key Laboratory of Cancer FSMP for State Market Regulation, Haidian District, Beijing, China.
| | - Yuhan Dong
- Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Nanshan District, Shenzhen, Guangdong, China.
| |
Collapse
|
12
|
Qi Y, Mao C, Zhou Y, Xie Z, Wu C, Lin S. In vivo determination of the bioavailability of folic acid through the utilization of the PBPK model in conjunction with UPLC. Food Chem 2024; 458:140290. [PMID: 38996489 DOI: 10.1016/j.foodchem.2024.140290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/03/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
This paper employed a physiologically based pharmacokinetic model (PBPK) to investigate the transformations of folic acid and its metabolites in vivo. Additionally, an ultra-performance liquid chromatography (UPLC) method was developed to accurately measure the body's retention rate and conversion rate of folic acid, tetrahydrofolate, and 5-methyltetrahydrofolate. Furthermore, the bioavailability of folic acid in the body was assessed by combining this method with an evaluation technique for animal models. The study found that the gastric metabolism time was 2 h, while the small intestinal metabolism duration was 4 h. The maximum conversion rate was observed in plasma and liver after 6 h, and in the brain after 8 h. This serves as a framework for creating a model to assess the bioavailability of folic acid in living organisms, to enhance the safety and efficacy of folic acid intake.
Collapse
Affiliation(s)
- Yan Qi
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Engineering Research Center of Special Dietary Food of Liaoning Province, Food Engineering Technology Research Center of Liaoning Province, Dalian 116034, PR China
| | - Chuwen Mao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Engineering Research Center of Special Dietary Food of Liaoning Province, Food Engineering Technology Research Center of Liaoning Province, Dalian 116034, PR China
| | - Yanru Zhou
- Jiangxi Guanglai Health Industry Company Limited Co. Ltd., Zhangshu 331208, PR China
| | - Zuohua Xie
- Jiangxi Guanglai Health Industry Company Limited Co. Ltd., Zhangshu 331208, PR China
| | - Chao Wu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Engineering Research Center of Special Dietary Food of Liaoning Province, Food Engineering Technology Research Center of Liaoning Province, Dalian 116034, PR China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Engineering Research Center of Special Dietary Food of Liaoning Province, Food Engineering Technology Research Center of Liaoning Province, Dalian 116034, PR China.
| |
Collapse
|
13
|
Fleming JM, Rosa G, Bland V, Kauwell GPA, Malysheva OV, Wettstein A, Hausman DB, Bailey LB, Park HJ. Response of One-Carbon Biomarkers in Maternal and Cord Blood to Folic Acid Dose During Pregnancy. Nutrients 2024; 16:3703. [PMID: 39519534 PMCID: PMC11547940 DOI: 10.3390/nu16213703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES The folate Recommended Daily Allowance (RDA) for pregnant women is 600 μg/day dietary folate equivalents, which is equivalent to approximately 400 μg folic acid. Many prenatal supplements contain much higher doses of folic acid. The body's ability to reduce synthetic folic acid to the metabolically active form may be exceeded with high levels of supplementation. The objective of this double-blinded randomized controlled intervention trial was to determine changes in unmetabolized folic acid and other biomarkers of folate and one-carbon metabolism in maternal and cord blood in response to a folic acid dose commonly found in prenatal supplements (800 μg/day) compared to the dose equivalent of the RDA (400 μg/day). METHODS Healthy pregnant women were randomized and provided supplements from their first prenatal visit (<12 weeks gestation) through delivery. Maternal blood was collected at baseline and delivery. Umbilical cord blood from the mothers was collected at delivery. RESULTS A repeated measures analysis of variance revealed that there was a significant group supplemental dose effect (p = 0.0225) on serum unmetabolized folic acid concentration in mothers but no difference in cord blood unmetabolized folic acid concentrations between groups. Mixed effects analysis found a significant overall effect of pre-pregnancy BMI (p = 0.0360) and length of previous folic acid supplementation (p = 0.0281) on serum folate concentrations. No treatment effect was seen in RBC folate concentrations. Choline concentrations were higher in cord blood from the 800 μg/day group compared to the 400 μg/day group, but there was no group effect in maternal choline concentrations. CONCLUSIONS The results indicate that folic acid dose during pregnancy affects certain folate and one-carbon biomarkers, and these effects are not consistent between maternal and cord blood. Potential long-term effects of these results on both mothers and offspring are unknown and merit further investigation.
Collapse
Affiliation(s)
- Jennifer M. Fleming
- Department of Nutritional Sciences, University of Georgia, Athens, GA 30602, USA
| | - Gisselle Rosa
- Department of Nutritional Sciences, University of Georgia, Athens, GA 30602, USA
| | - Victoria Bland
- Department of Nutritional Sciences, University of Georgia, Athens, GA 30602, USA
| | - Gail P. A. Kauwell
- Department of Health Sciences, University of Central Florida, Orlando, FL 32816, USA
| | - Olga V. Malysheva
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Alleigh Wettstein
- Department of Nutritional Sciences, University of Georgia, Athens, GA 30602, USA
| | - Dorothy B. Hausman
- Department of Nutritional Sciences, University of Georgia, Athens, GA 30602, USA
| | - Lynn B. Bailey
- Department of Nutritional Sciences, University of Georgia, Athens, GA 30602, USA
| | - Hea Jin Park
- Department of Nutritional Sciences, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
14
|
van de Meeberg MM, Sundaresan J, Lin M, Jansen G, Struys EA, Fidder HH, Oldenburg B, Mares WGN, Mahmmod N, van Asseldonk DP, Rietdijk ST, Nissen LHC, de Boer NKH, Bouma G, Ćalasan MB, de Jonge R. Methotrexate accumulation in target intestinal mucosa and white blood cells differs from non-target red blood cells of patients with Crohn's disease. Basic Clin Pharmacol Toxicol 2024; 135:308-320. [PMID: 38973551 DOI: 10.1111/bcpt.14047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND Intracellular methotrexate polyglutamates (MTX-PGs) concentrations are measurable in red blood cells (RBCs) during MTX treatment. MTX-PG3 concentrations correlate with efficacy in patients with Crohn's disease (CD). Since RBCs are not involved in pathogenesis of CD and lack extended MTX metabolism, we determined MTX-PGs accumulation in peripheral blood mononuclear cells (PBMCs: effector cells) and intestinal mucosa (target cells) and compared those with RBCs as a potential more precise biomarker. METHODS In a multicentre prospective cohort study, blood samples of patients with CD were collected during the first year of MTX therapy. Mucosal biopsies were obtained from non-inflamed rectum and/or inflamed intestine. MTX-PGs concentrations in mucosa, PBMCs and RBCs were measured by liquid chromatography-tandem mass spectrometry. RESULTS From 80 patients with CD, a total of 27 mucosal biopsies, 9 PBMC and 212 RBC samples were collected. From 12 weeks of MTX therapy onwards, MTX-PG3 was the most predominant species (33%) in RBCs. In PBMCs, the distribution was skewed towards MTX-PG1 (48%), which accounted for an 18 times higher concentration than in RBCs. Long-chain MTX-PGs were highly present in mucosa: 21% of MTX-PGtotal was MTX-PG5. MTX-PG6 was measurable in all biopsies. CONCLUSIONS MTX-PG patterns differ between mucosa, PBMCs and RBCs of patients with CD.
Collapse
Affiliation(s)
- Maartje M van de Meeberg
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam University Medical Centre, VU University Amsterdam, Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Janani Sundaresan
- Department of Clinical Chemistry, Amsterdam UMC, Amsterdam, The Netherlands
| | - Marry Lin
- Department of Clinical Chemistry, Amsterdam UMC, Amsterdam, The Netherlands
| | - Gerrit Jansen
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Centre, VU University Amsterdam, Amsterdam, The Netherlands
| | - Eduard A Struys
- Department of Clinical Chemistry, Amsterdam UMC, Amsterdam, The Netherlands
| | - Herma H Fidder
- Department of Gastroenterology and Hepatology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Bas Oldenburg
- Department of Gastroenterology and Hepatology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Wout G N Mares
- Department of Gastroenterology and Hepatology, Gelderse Vallei Hospital, Ede, The Netherlands
| | - Nofel Mahmmod
- Department of Gastroenterology and Hepatology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Dirk P van Asseldonk
- Department of Gastroenterology and Hepatology, NWZ Alkmaar, Alkmaar, The Netherlands
| | - Svend T Rietdijk
- Department of Gastroenterology and Hepatology, OLVG, Amsterdam, The Netherlands
| | - Loes H C Nissen
- Department of Gastroenterology and Hepatology, Jeroen Bosch Hospital, 's-Hertogenbosch, The Netherlands
| | - Nanne K H de Boer
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam University Medical Centre, VU University Amsterdam, Amsterdam, The Netherlands
| | - Gerd Bouma
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam University Medical Centre, VU University Amsterdam, Amsterdam, The Netherlands
| | - Maja Bulatović Ćalasan
- Department of Clinical Chemistry, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Robert de Jonge
- Department of Clinical Chemistry, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Peters GJ, Kathmann I, Giovannetti E, Smid K, Assaraf YG, Jansen G. The role of l-leucovorin uptake and metabolism in the modulation of 5-fluorouracil efficacy and antifolate toxicity. Front Pharmacol 2024; 15:1450418. [PMID: 39234107 PMCID: PMC11371747 DOI: 10.3389/fphar.2024.1450418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND L-Leucovorin (l-LV; 5-formyltetrahydrofolate, folinic acid) is a precursor for 5,10-methylenetetrahydrofolate (5,10-CH2-THF), which is important for the potentiation of the antitumor activity of 5-fluorouracil (5FU). LV is also used to rescue antifolate toxicity. LV is commonly administered as a racemic mixture of its l-LV and d-LV stereoisomers. We compared dl-LV with l-LV and investigated whether d-LV would interfere with the activity of l-LV. METHODS Using radioactive substrates, we characterized the transport properties of l-LV and d-LV, and compared the efficacy of l-LV with d-LV to potentiate 5FU-mediated thymidylate synthase (TS) inhibition. Using proliferation assays, we investigated their potential to protect cancer cells from cytotoxicity of the antifolates methotrexate, pemetrexed (Alimta), raltitrexed (Tomudex) and pralatrexate (Folotyn). RESULTS l-LV displayed an 8-fold and 3.5-fold higher substrate affinity than d-LV for the reduced folate carrier (RFC/SLC19A1) and proton coupled folate transporter (PCFT/SLC46A1), respectively. In selected colon cancer cell lines, the greatest enhanced efficacy of 5FU was observed for l-LV (2-fold) followed by the racemic mixture, whereas d-LV was ineffective. The cytotoxicity of antifolates in lymphoma and various solid tumor cell lines could be protected very efficiently by l-LV but not by d-LV. This protective effect of l-LV was dependent on cellular RFC expression as corroborated in RFC/PCFT-knockout and RFC/PCFT-transfected cells. Assessment of TS activity in situ showed that TS inhibition by 5FU could be enhanced by l-LV and dl-LV and only partially by d-LV. However, protection from inhibition by various antifolates was solely achieved by l-LV and dl-LV. CONCLUSION In general l-LV acts similar to the dl-LV formulations, however disparate effects were observed when d-LV and l-LV were used in combination, conceivably by d-LV affecting (anti)folate transport and intracellular metabolism.
Collapse
Affiliation(s)
- Godefridus J. Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Ietje Kathmann
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Kees Smid
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Yehuda G. Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Faculty of Biology, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Gerrit Jansen
- Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
16
|
Caracausi M, Ramacieri G, Catapano F, Cicilloni M, Lajin B, Pelleri MC, Piovesan A, Vitale L, Locatelli C, Pirazzoli GL, Strippoli P, Antonaros F, Vione B. The functional roles of S-adenosyl-methionine and S-adenosyl-homocysteine and their involvement in trisomy 21. Biofactors 2024; 50:709-724. [PMID: 38353465 DOI: 10.1002/biof.2044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 08/09/2024]
Abstract
The one-carbon metabolism pathway is involved in critical human cellular functions such as cell proliferation, mitochondrial respiration, and epigenetic regulation. In the homocysteine-methionine cycle S-adenosyl-methionine (SAM) and S-adenosyl-homocysteine (SAH) are synthetized, and their levels are finely regulated to ensure proper functioning of key enzymes which control cellular growth and differentiation. Here we review the main biological mechanisms involving SAM and SAH and the known related human diseases. It was recently demonstrated that SAM and SAH levels are altered in plasma of subjects with trisomy 21 (T21) but how this metabolic dysregulation influences the clinical manifestation of T21 phenotype has not been previously described. This review aims at providing an overview of the biological mechanisms which are altered in response to changes in the levels of SAM and SAH observed in DS.
Collapse
Affiliation(s)
- Maria Caracausi
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Giuseppe Ramacieri
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Speciality School of Child Neuropsychiatry-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Francesca Catapano
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Michela Cicilloni
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Bassam Lajin
- Institute of Chemistry, ChromICP, University of Graz, Graz, Austria
| | - Maria Chiara Pelleri
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Allison Piovesan
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Lorenza Vitale
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Chiara Locatelli
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Bologna, Italy
| | | | - Pierluigi Strippoli
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Francesca Antonaros
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Beatrice Vione
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
17
|
Wallace-Povirk A, O'Connor C, Dekhne AS, Bao X, Nayeen MJ, Schneider M, Katinas JM, Wong-Roushar J, Kim S, Polin L, Li J, Back JB, Dann CE, Gangjee A, Hou Z, Matherly LH. Mitochondrial and Cytosolic One-Carbon Metabolism Is a Targetable Metabolic Vulnerability in Cisplatin-Resistant Ovarian Cancer. Mol Cancer Ther 2024; 23:809-822. [PMID: 38377173 PMCID: PMC11150100 DOI: 10.1158/1535-7163.mct-23-0550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
One-carbon (C1) metabolism is compartmentalized between the cytosol and mitochondria with the mitochondrial C1 pathway as the major source of glycine and C1 units for cellular biosynthesis. Expression of mitochondrial C1 genes including SLC25A32, serine hydroxymethyl transferase (SHMT) 2, 5,10-methylene tetrahydrofolate dehydrogenase 2, and 5,10-methylene tetrahydrofolate dehydrogenase 1-like was significantly elevated in primary epithelial ovarian cancer (EOC) specimens compared with normal ovaries. 5-Substituted pyrrolo[3,2-d]pyrimidine antifolates (AGF347, AGF359, AGF362) inhibited proliferation of cisplatin-sensitive (A2780, CaOV3, IGROV1) and cisplatin-resistant (A2780-E80, SKOV3) EOC cells. In SKOV3 and A2780-E80 cells, colony formation was inhibited. AGF347 induced apoptosis in SKOV3 cells. In IGROV1 cells, AGF347 was transported by folate receptor (FR) α. AGF347 was also transported into IGROV1 and SKOV3 cells by the proton-coupled folate transporter (SLC46A1) and the reduced folate carrier (SLC19A1). AGF347 accumulated to high levels in the cytosol and mitochondria of SKOV3 cells. By targeted metabolomics with [2,3,3-2H]L-serine, AGF347, AGF359, and AGF362 inhibited SHMT2 in the mitochondria. In the cytosol, SHMT1 and de novo purine biosynthesis (i.e., glycinamide ribonucleotide formyltransferase, 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase) were targeted; AGF359 also inhibited thymidylate synthase. Antifolate treatments of SKOV3 cells depleted cellular glycine, mitochondrial NADH and glutathione, and showed synergistic in vitro inhibition toward SKOV3 and A2780-E80 cells when combined with cisplatin. In vivo studies with subcutaneous SKOV3 EOC xenografts in SCID mice confirmed significant antitumor efficacy of AGF347. Collectively, our studies demonstrate a unique metabolic vulnerability in EOC involving mitochondrial and cytosolic C1 metabolism, which offers a promising new platform for therapy.
Collapse
Affiliation(s)
- Adrianne Wallace-Povirk
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Carrie O'Connor
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Aamod S. Dekhne
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Xun Bao
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Md. Junayed Nayeen
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282
| | - Mathew Schneider
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Jade M. Katinas
- Department of Chemistry, Indiana University, Bloomington, IN 47405
| | | | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Jing Li
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Jessica B. Back
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Charles E. Dann
- Department of Chemistry, Indiana University, Bloomington, IN 47405
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282
| | - Zhanjun Hou
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Larry H. Matherly
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| |
Collapse
|
18
|
Sarli SL, Fakih HH, Kelly K, Devi G, Rembetsy-Brown J, McEachern H, Ferguson C, Echeverria D, Lee J, Sousa J, Sleiman H, Khvorova A, Watts J. Quantifying the activity profile of ASO and siRNA conjugates in glioblastoma xenograft tumors in vivo. Nucleic Acids Res 2024; 52:4799-4817. [PMID: 38613388 PMCID: PMC11109979 DOI: 10.1093/nar/gkae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/06/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Glioblastoma multiforme is a universally lethal brain tumor that largely resists current surgical and drug interventions. Despite important advancements in understanding GBM biology, the invasiveness and heterogeneity of these tumors has made it challenging to develop effective therapies. Therapeutic oligonucleotides-antisense oligonucleotides and small-interfering RNAs-are chemically modified nucleic acids that can silence gene expression in the brain. However, activity of these oligonucleotides in brain tumors remains inadequately characterized. In this study, we developed a quantitative method to differentiate oligonucleotide-induced gene silencing in orthotopic GBM xenografts from gene silencing in normal brain tissue, and used this method to test the differential silencing activity of a chemically diverse panel of oligonucleotides. We show that oligonucleotides chemically optimized for pharmacological activity in normal brain tissue do not show consistent activity in GBM xenografts. We then survey multiple advanced oligonucleotide chemistries for their activity in GBM xenografts. Attaching lipid conjugates to oligonucleotides improves silencing in GBM cells across several different lipid classes. Highly hydrophobic lipid conjugates cholesterol and docosanoic acid enhance silencing but at the cost of higher neurotoxicity. Moderately hydrophobic, unsaturated fatty acid and amphiphilic lipid conjugates still improve activity without compromising safety. These oligonucleotide conjugates show promise for treating glioblastoma.
Collapse
Affiliation(s)
- Samantha L Sarli
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hassan H Fakih
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Karen Kelly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Gitali Devi
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Julia M Rembetsy-Brown
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Holly R McEachern
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Chantal M Ferguson
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jonathan Lee
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jacquelyn Sousa
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hanadi F Sleiman
- Department of Chemistry, McGill University, Montréal, Québec, Canada
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jonathan K Watts
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
19
|
Liang S, Zhang H, Jiao L, Shao R, Lan Y, Liao X, Mai K, Ai Q, Wan M. Vitamin D promotes the folate transport and metabolism in zebrafish ( Danio rerio). Am J Physiol Endocrinol Metab 2024; 326:E482-E492. [PMID: 38324257 DOI: 10.1152/ajpendo.00380.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
Vitamin D (VD) is a fat-soluble sterol that possesses a wide range of physiological functions. The present study aimed to evaluate the effects of VD on folate metabolism in zebrafish and further investigated the underlying mechanism. Wild-type (WT) zebrafish were fed with a diet containing 0 IU/kg VD3 or 800 IU/kg VD3 for 3 wk. Meanwhile, cyp2r1 mutant zebrafish with impaired VD metabolism was used as another model of VD deficiency. Our results showed that VD deficiency in zebrafish suppressed the gene expression of folate transporters, including reduced folate carrier (RFC) and proton-coupled folate transporter (PCFT) in the intestine. Moreover, VD influenced the gene expression of several enzymes related to cellular folate metabolism in the intestine and liver of zebrafish. Importantly, VD-deficient zebrafish contained a remarkably lower level of folate content in the liver. Notably, VD was incapable of altering folate metabolism in zebrafish when gut microbiota was depleted by antibiotic treatment. Further studies proved that gut commensals from VD-deficient fish displayed a lower capacity to produce folate than those from WT fish. Our study revealed the potential correlation between VD and folate metabolism in zebrafish, and gut microbiota played a key role in VD-regulated folate metabolism in zebrafish.NEW & NOTEWORTHY Our study has identified that VD influences intestinal uptake and transport of folate in zebrafish while also altering hepatic folate metabolism and storage. Interestingly, the regulatory effects of VD on folate transport and metabolism diminished after the gut flora was interrupted by antibiotic treatment, suggesting that the regulatory effects of VD on folate metabolism in zebrafish are most likely dependent on the intestinal flora.
Collapse
Affiliation(s)
- Shufei Liang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, People's Republic of China
| | - Hui Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, People's Republic of China
| | - Lin Jiao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, People's Republic of China
| | - Rui Shao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, People's Republic of China
| | - Yawen Lan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, People's Republic of China
| | - Xinmeng Liao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, People's Republic of China
| | - Min Wan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, People's Republic of China
| |
Collapse
|
20
|
Kharve K, Engley AS, Paine MF, Sprowl JA. Impact of Drug-Mediated Inhibition of Intestinal Transporters on Nutrient and Endogenous Substrate Disposition…an Afterthought? Pharmaceutics 2024; 16:447. [PMID: 38675109 PMCID: PMC11053474 DOI: 10.3390/pharmaceutics16040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
A large percentage (~60%) of prescription drugs and new molecular entities are designed for oral delivery, which requires passage through a semi-impervious membrane bilayer in the gastrointestinal wall. Passage through this bilayer can be dependent on membrane transporters that regulate the absorption of nutrients or endogenous substrates. Several investigations have provided links between nutrient, endogenous substrate, or drug absorption and the activity of certain membrane transporters. This knowledge has been key in the development of new therapeutics that can alleviate various symptoms of select diseases, such as cholestasis and diabetes. Despite this progress, recent studies revealed potential clinical dangers of unintended altered nutrient or endogenous substrate disposition due to the drug-mediated disruption of intestinal transport activity. This review outlines reports of glucose, folate, thiamine, lactate, and bile acid (re)absorption changes and consequent adverse events as examples. Finally, the need to comprehensively expand research on intestinal transporter-mediated drug interactions to avoid the unwanted disruption of homeostasis and diminish therapeutic adverse events is highlighted.
Collapse
Affiliation(s)
- Kshitee Kharve
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA;
| | - Andrew S. Engley
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA; (A.S.E.); (M.F.P.)
| | - Mary F. Paine
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA; (A.S.E.); (M.F.P.)
| | - Jason A. Sprowl
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA;
| |
Collapse
|
21
|
Dreha-Kulaczewski S, Sahoo P, Preusse M, Gkalimani I, Dechent P, Helms G, Hofer S, Steinfeld R, Gärtner J. Folate receptor α deficiency - Myelin-sensitive MRI as a reliable biomarker to monitor the efficacy and long-term outcome of a new therapeutic approach. J Inherit Metab Dis 2024; 47:387-403. [PMID: 38200656 DOI: 10.1002/jimd.12713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/23/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Cerebral folate transport deficiency, caused by a genetic defect in folate receptor α, is a devastating neurometabolic disorder that, if untreated, leads to epileptic encephalopathy, psychomotor decline and hypomyelination. Currently, there are limited data on effective dosage and duration of treatment, though early diagnosis and therapy with folinic acid appears critical. The aim of this long-term study was to identify new therapeutic approaches and novel biomarkers for assessing efficacy, focusing on myelin-sensitive MRI. Clinical, biochemical, structural and quantitative MRI parameters of seven patients with genetically confirmed folate receptor α deficiency were acquired over 13 years. Multimodal MRI approaches comprised MR-spectroscopy (MRS), magnetization transfer (MTI) and diffusion tensor imaging (DTI) sequences. Patients started oral treatment immediately following diagnosis or in an interval of up to 2.5 years. Escalation to intravenous and intrathecal administration was performed in the absence of effects. Five patients improved, one with a presymptomatic start of therapy remained symptom-free, and one with inconsistent treatment deteriorated. While CSF 5-methyltetrahydrofolate and MRS parameters normalized immediately after therapy initiation, myelin-sensitive MTI and DTI measures correlated with gradual clinical improvement and ongoing myelination under therapy. Early initiation of treatment at sufficient doses, considering early intrathecal applications, is critical for favorable outcome. The majority of patients showed clinical improvements that correlated best with MTI parameters, allowing individualized monitoring of myelination recovery. Presymptomatic therapy seems to ensure normal development and warrants newborn screening. Furthermore, the quantitative parameters of myelin-sensitive MRI for therapy assessments can now be used for hypomyelination disorders in general.
Collapse
Affiliation(s)
- Steffi Dreha-Kulaczewski
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Prativa Sahoo
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Matthias Preusse
- Kinderkrankenhaus Amsterdamer Strasse, Klinik für Kinder- und Jugendmedizin, Köln, Germany
| | - Irini Gkalimani
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Peter Dechent
- MR-Research in Neuroscience, Department of Cognitive Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Gunther Helms
- Medical Radiation Physics, Lund University, Lund, Sweden
| | - Sabine Hofer
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Robert Steinfeld
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Jutta Gärtner
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
22
|
Qi Y, Xu X, Mao C, Chen H, Tang Y, Lin S. Evaluation of In Vivo Folic Acid Bioavailability in Different Mouse Strains Using Enzymatic Digestion Combined with Ultra Performance Liquid Chromatography. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2229-2239. [PMID: 38230629 DOI: 10.1021/acs.jafc.3c08632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
By analyzing the folic acid content of various mouse strains through the use of in vivo studies, this study sought to determine whether folic acid bioavailability varies between hosts. In order to examine the stability of folic acid in the gastrointestinal tract, the rate at which it enters the blood, its retention in the organs, and its entry into the brain, folic acid was gavaged for 10 days into male and female mice of the following four strains: C57BL/6, BALB/c, ICR, and Kunming. Folic acid was extracted from eight groups of mice via solid phase extraction and triple enzyme extraction; the folic acid was subsequently quantified by ultraperformance liquid chromatography. In contrast to the other groups, female C57BL/6 mice exhibited substantially greater bioavailability as well as variations in organ retention and blood entry rates, as indicated by the experimental findings. This finding indicated that using female C57BL/6 mice to evaluate the bioavailability of folic acid is more effective.
Collapse
Affiliation(s)
- Yan Qi
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Xiaomeng Xu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Special Dietary Food, The Education Department of Liaoning Province, Dalian 116034, P. R. China
| | - Chuwen Mao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Hunan Chen
- Ganzhou Quanbiao Biological Technology Co. Ltd., Ganzhou 341100, P. R. China
| | - Yue Tang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Special Dietary Food, The Education Department of Liaoning Province, Dalian 116034, P. R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Special Dietary Food, The Education Department of Liaoning Province, Dalian 116034, P. R. China
- Ganzhou Quanbiao Biological Technology Co. Ltd., Ganzhou 341100, P. R. China
| |
Collapse
|
23
|
Shrestha B, Tallila M, Matilainen O. Folate receptor overexpression induces toxicity in a diet-dependent manner in C. elegans. Sci Rep 2024; 14:1066. [PMID: 38212621 PMCID: PMC10784478 DOI: 10.1038/s41598-024-51700-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024] Open
Abstract
Folate receptor (FR) alpha (FOLR1) and beta (FOLR2) are membrane-anchored folate transporters that are expressed at low levels in normal tissues, while their expression is strongly increased in several cancers. Intriguingly, although the function of these receptors in, for example, development and cancer has been studied intensively, their role in aging is still unknown. To address this, we utilized Caenorhabditis elegans, in which FOLR-1 is the sole ortholog of folate receptors. We found that the loss of FOLR-1 does not affect reproduction, physical condition, proteostasis or lifespan, indicating that it is not required for folate transport to maintain health. Interestingly, we found that FOLR-1 is detectably expressed only in uterine-vulval cells, and that the histone-binding protein LIN-53 inhibits its expression in other tissues. Furthermore, whereas knockdown of lin-53 is known to shorten lifespan, we found that the loss of FOLR-1 partially rescues this phenotype, suggesting that elevated folr-1 expression is detrimental for health. Indeed, our data demonstrate that overexpression of folr-1 is toxic, and that this phenotype is dependent on diet. Altogether, this work could serve as a basis for further studies to elucidate the organismal effects of abnormal FR expression in diseases such as cancer.
Collapse
Affiliation(s)
- Bideep Shrestha
- The Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Milla Tallila
- The Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Olli Matilainen
- The Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
24
|
Ledet Iii LF, Plaisance CJ, Daniel CP, Wagner MJ, Alvarez I, Burroughs CR, Rieger R, Siddaiah H, Ahmadzadeh S, Shekoohi S, Kaye AD, Varrassi G. Spina Bifida Prevention: A Narrative Review of Folic Acid Supplements for Childbearing Age Women. Cureus 2024; 16:e53008. [PMID: 38406082 PMCID: PMC10894015 DOI: 10.7759/cureus.53008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/26/2024] [Indexed: 02/27/2024] Open
Abstract
Neural tube defects (NTDs) are malformations that occur during embryonic development, and they account for most central nervous system birth anomalies. Genetic and environmental factors have been shown to play a role in the etiology of NTDs. The different types of NTDs are classified according to anatomic location and severity of the defect, with most of the neural axis anomalies occurring in the caudal spinal or cranial areas. Spina bifida is a type of NTD that is characterized by an opening in the vertebral arch, and the level of severity is determined by the extent to which the neural tissue protrudes through the opened arch(es). Prevention of NTDs by administration of folic acid has been studied and described in the literature, yet there are approximately 300,000 cases of NTDs that occur annually, with 88,000 deaths occurring per year worldwide. A daily intake of at least 400 μg of folic acid is recommended especially for women of childbearing age. To provide the benefits of folic acid, prenatal vitamins are recommended in pregnancy, and many countries have been fortifying foods such as cereal grain products with folic acid; however, not all countries have instituted folic acid fortification programs. The present investigation includes a description of the pharmacology of folic acid, neural tube formation, defects such as spina bifida, and the relevance of folic acid to developing spina bifida. Women's knowledge and awareness of folic acid regarding its importance in the prevention of spina bifida is a major factor in reducing incidence worldwide.
Collapse
Affiliation(s)
- Lloyd F Ledet Iii
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Connor J Plaisance
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Charles P Daniel
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Maxwell J Wagner
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Ivan Alvarez
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Caroline R Burroughs
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Ross Rieger
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Harish Siddaiah
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Shahab Ahmadzadeh
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | | |
Collapse
|
25
|
Han X, Cao X, Cabrera RM, Ramirez PAP, Lin YL, Wlodarczyk BJ, Zhang C, Finnell RH, Lei Y. Folate regulation of planar cell polarity pathway and F-actin through folate receptor alpha. FASEB J 2024; 38:e23346. [PMID: 38095297 PMCID: PMC10754249 DOI: 10.1096/fj.202300202r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 10/18/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
Folate deficiency contribute to neural tube defects (NTDs) which could be rescued by folate supplementation. However, the underlying mechanisms are still not fully understood. Besides, there is considerable controversy concerning the forms of folate used for supplementation. To address this controversy, we prepared culture medium with different forms of folate, folic acid (FA), and 5-methyltetrahydrofolate (5mTHF), at concentrations of 5 μM, 500 nM, 50 nM, and folate free, respectively. Mouse embryonic fibroblasts (MEFs) were treated with different folates continuously for three passages, and cell proliferation and F-actin were monitored. We determined that compared to 5mTHF, FA showed stronger effects on promoting cell proliferation and F-actin formation. We also found that FOLR1 protein level was positively regulated by folate concentration and the non-canonical Wnt/planar cell polarity (PCP) pathway signaling was significantly enriched among different folate conditions in RNA-sequencing analyses. We demonstrated for the first time that FOLR1 could promote the transcription of Vangl2, one of PCP core genes. The transcription of Vangl2 was down-regulated under folate-deficient condition, which resulted in a decrease in PCP activity and F-actin formation. In summary, we identified a distinct advantage of FA in cell proliferation and F-actin formation over 5mTHF, as well as demonstrating that FOLR1 could promote transcription of Vangl2 and provide a new mechanism by which folate deficiency can contribute to the etiology of NTDs.
Collapse
Affiliation(s)
- Xiao Han
- Department of Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xuanye Cao
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robert M. Cabrera
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paula Andrea Pimienta Ramirez
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ying Linda Lin
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bogdan J. Wlodarczyk
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cuilian Zhang
- Department of Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Richard H. Finnell
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yunping Lei
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
26
|
Kaku K, Ravindra MP, Tong N, Choudhary S, Li X, Yu J, Karim M, Brzezinski M, O’Connor C, Hou Z, Matherly LH, Gangjee A. Discovery of Tumor-Targeted 6-Methyl Substituted Pemetrexed and Related Antifolates with Selective Loss of RFC Transport. ACS Med Chem Lett 2023; 14:1682-1691. [PMID: 38116433 PMCID: PMC10726441 DOI: 10.1021/acsmedchemlett.3c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023] Open
Abstract
Pemetrexed and related 5-substituted pyrrolo[2,3-d]pyrimidine antifolates are substrates for the ubiquitously expressed reduced folate carrier (RFC), and the proton-coupled folate transporter (PCFT) and folate receptors (FRs) which are more tumor-selective. A long-standing goal has been to discover tumor-targeted therapeutics that draw from one-carbon metabolic vulnerabilities of cancer cells and are selective for transport by FRs and PCFT over RFC. We discovered that a methyl group at the 6-position of the pyrrole ring in the bicyclic scaffold of 5-substituted 2-amino-4-oxo-pyrrolo[2,3-d]pyrimidine antifolates 1-4 (including pemetrexed) abolished transport by RFC with modest impacts on FRs or PCFT. From molecular modeling, loss of RFC transport involves steric repulsion in the scaffold binding site due to the 6-methyl moiety. 6-Methyl substitution preserved antiproliferative activities toward human tumor cells (KB, IGROV3) with selectivity over IOSE 7576 normal ovary cells and inhibition of de novo purine biosynthesis. Thus, adding a 6-methyl moiety to 5-substituted pyrrolo[2,3-d]pyrimidine antifolates affords tumor transport selectivity while preserving antitumor efficacy.
Collapse
Affiliation(s)
- Krishna Kaku
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Manasa P. Ravindra
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Nian Tong
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Shruti Choudhary
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Xinxin Li
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Jianming Yu
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Mohammad Karim
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Madelyn Brzezinski
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Carrie O’Connor
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Zhanjun Hou
- Molecular
Therapeutics Program, Barbara Ann Karmanos
Cancer Institute, 4100 John R, Detroit, Michigan 48201, United States
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Larry H. Matherly
- Molecular
Therapeutics Program, Barbara Ann Karmanos
Cancer Institute, 4100 John R, Detroit, Michigan 48201, United States
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
- Department
of Pharmacology, Wayne State University
School of Medicine, Detroit, Michigan 48201, United States
| | - Aleem Gangjee
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
27
|
Abstract
Folate, a pteroylglutamic acid derivative, participates in fundamental cellular metabolism. Homocysteine, an amino acid, serves as an intermediate of the methionine cycle and can be converted back to methionine. Hyperhomocysteinemia is a recognized risk factor for atherosclerotic and cardiovascular diseases. In recent decades, elevated plasma homocysteine levels and low folate status have been observed in many patients with retinal vascular diseases, such as retinal vascular occlusions, diabetic retinopathy, and age-related degeneration. Homocysteine-induced toxicity toward vascular endothelial cells might participate in the formation of retinal vascular diseases. Folate is an important dietary determinant of homocysteine. Folate deficiency is the most common cause of hyperhomocysteinemia. Folate supplementation can eliminate excess homocysteine in plasma. In in vitro experiments, folic acid had a protective effect on vascular endothelial cells against high glucose. Many studies have explored the relationship between folate and various retinal vascular diseases. This review summarizes the most important findings that lead to the conclusion that folic acid supplementation might be a protective treatment in patients with retinal vascular diseases with high homocysteine or glucose status. More research is still needed to validate the effect of folate and its supplementation in retinal vascular diseases.
Collapse
Affiliation(s)
- Jinyue Gu
- Department of Ophthalmology, West China Hospital, Sichuan University, 610041, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Chunyan Lei
- Department of Ophthalmology, West China Hospital, Sichuan University, 610041, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Meixia Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, 610041, Chengdu, China.
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
28
|
Zhang Y, Zhang X, Chen J, Jiang S, Han Y, Du H. Maternal Folic Acid Supplementation Improves the Intestinal Health of Offspring Porcine by Promoting the Proliferation and Differentiation of Intestinal Stem Cells. Animals (Basel) 2023; 13:3092. [PMID: 37835698 PMCID: PMC10571947 DOI: 10.3390/ani13193092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Maternal folic acid intake has important effects on offspring growth and development. The mechanism involved in the renewal of intestinal epithelial cells remains unclear. Thus, this study aimed to investigate the potential effect of maternal folic acid supplementation during gestation and lactation on the structural and functional development of the small intestine in piglet offspring. Twenty-four Duroc sows were assigned to a control group (CON) and a folic-acid-supplemented group (CON + FA, supplemented with 15 mg/kg of folic acid). The results showed that maternal folic acid supplementation throughout gestation and lactation significantly increased the body weight, serum folate level, and intestinal folate metabolism in piglets. It also improved the villus length, villus height-to-crypt depth ratio, and transcript levels of nutrient transporters (GLUT4, SNAT2, FABP2, and SLC7A5) in piglets' duodenum and jejunum. In addition, maternal folic acid supplementation increased Ki67-positive cells and the expression of proliferation-related marker genes (C-Myc, CyclinD1, and PCNA) in piglets' intestinal stem cells. It also boosted the expression of genes associated with mature secreted cells (ChrA, Muc2, Lyz, Vil1), indicating enhanced proliferation and differentiation of intestinal stem cells. These findings demonstrate that maternal folic acid supplementation enhances growth performance and gut health in piglet offspring by promoting epithelial cell renewal equilibrium.
Collapse
Affiliation(s)
- Yuhui Zhang
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaofeng Zhang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310004, China
| | - Jianjun Chen
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shouchuan Jiang
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Han
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huahua Du
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
29
|
Movendane Y, Sipalo MG, Chan LCZ. Advances in Folic Acid Biosensors and Their Significance in Maternal, Perinatal, and Paediatric Preventive Medicine. BIOSENSORS 2023; 13:912. [PMID: 37887105 PMCID: PMC10605181 DOI: 10.3390/bios13100912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023]
Abstract
Auxotrophic primates like human beings rely on exogenous dietary vitamin B9 supplementation to meet their metabolic demands. Folates play a crucial role in nucleotide synthesis and DNA methylation. Maternal folate deficiency causes several pregnancy-related complications, perinatal defects, and early childhood cognitive impairments. New evidence suggests excess FA is a potential risk factor resulting in unfavourable genomic and epigenomic alterations. Thus, it is essential to revisit the need to consistently monitor maternal folate levels during pregnancy. Yet, to date, no point-of-care folate-monitoring biosensor is commercially available. Here, we critically appraise the advances in folate biosensors to understand the translational gaps in biosensor design. Further, our review sheds light on the potential role of folate biosensors in strengthening maternal, perinatal, and child healthcare.
Collapse
Affiliation(s)
- Yogesh Movendane
- Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-04, Singapore 138634, Singapore;
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Mbozu G. Sipalo
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK;
| | - Leon C. Z. Chan
- Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-04, Singapore 138634, Singapore;
| |
Collapse
|
30
|
Baril SA, Gose T, Schuetz JD. How Cryo-EM Has Expanded Our Understanding of Membrane Transporters. Drug Metab Dispos 2023; 51:904-922. [PMID: 37438132 PMCID: PMC10353158 DOI: 10.1124/dmd.122.001004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 07/14/2023] Open
Abstract
Over the past two decades, technological advances in membrane protein structural biology have provided insight into the molecular mechanisms that transporters use to move diverse substrates across the membrane. However, the plasticity of these proteins' ligand binding pockets, which allows them to bind a range of substrates, also poses a challenge for drug development. Here we highlight the structure, function, and transport mechanism of ATP-binding cassette/solute carrier transporters that are related to several diseases and multidrug resistance: ABCB1, ABCC1, ABCG2, SLC19A1, and SLC29A1. SIGNIFICANCE STATEMENT: ATP-binding cassette transporters and solute carriers play vital roles in clinical chemotherapeutic outcomes. This paper describes the current understanding of the structure of five pharmacologically relevant transporters and how they interact with their ligands.
Collapse
Affiliation(s)
- Stefanie A Baril
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tomoka Gose
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John D Schuetz
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
31
|
Gonzalez-Ochoa E, Veneziani AC, Oza AM. Mirvetuximab Soravtansine in Platinum-Resistant Ovarian Cancer. Clin Med Insights Oncol 2023; 17:11795549231187264. [PMID: 37528890 PMCID: PMC10387675 DOI: 10.1177/11795549231187264] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/25/2023] [Indexed: 08/03/2023] Open
Abstract
Ovarian cancer is the second leading cause of death from gynecologic malignancies worldwide. Management of platinum-resistant disease is challenging and clinical outcomes with standard chemotherapy are poor. Over the past decades, significant efforts have been made to understand drug resistance and develop strategies to overcome treatment failure. Antibody drug conjugates (ADCs) are a rapidly growing class of oncologic therapeutics, which combine the ability to target tumor-specific antigens with the cytotoxic effects of chemotherapy. Mirvetuximab soravtansine is an ADC comprising an IgG1 monoclonal antibody against the folate receptor alpha (FRα) conjugated to the cytotoxic maytansinoid effector molecule DM4 that has shown promising clinical activity in patients with FR-α-positive ovarian cancer. This review summarizes current evidence of mirvetuximab soravtansine in platinum-resistant ovarian cancer, focusing on clinical activity, toxicity, and future directions.
Collapse
Affiliation(s)
- Eduardo Gonzalez-Ochoa
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ana C Veneziani
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Amit M Oza
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
32
|
Cochrane KM, Elango R, Devlin AM, Hutcheon JA, Karakochuk CD. Human milk unmetabolized folic acid is increased following supplementation with synthetic folic acid as compared to (6S)-5-methyltetrahydrofolic acid. Sci Rep 2023; 13:11298. [PMID: 37438496 DOI: 10.1038/s41598-023-38224-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023] Open
Abstract
Folic acid supplementation is recommended perinatally, but may increase unmetabolized folic acid (UMFA) in human milk; this is concerning as it is an inactive form which may be less bioavailable for the infant. "Natural" (6S)-5-methyltetrahydrofolic acid [(6S)-5-MTHF] is available as an alternative to folic acid, and may prevent the accumulation of UMFA in human milk. Pregnant women (n = 60) were enrolled at 8-21 weeks of gestation and randomized to 0.6 mg/day folic acid or (6S)-5-MTHF. At ~ 1-week postpartum, participants provided a human milk specimen. Total human milk folate (nmol/L) and concentrations of UMFA (nmol/L) were quantified via LC-MS/MS. Differences between groups were evaluated using multivariable quantile/linear regression, adjusting for dietary folate, weeks supplementing, and milk collection methods. No significant difference in total milk folate was found; however, the median milk UMFA concentration was 11 nmol/L higher in those receiving folic acid versus (6S)-5-MTHF (95% CI = 6.4-17 nmol/L), with UMFA representing 28% and 2% of total milk folate. In conclusion, the form of supplemental folate had markedly differential effects on the human milk folate profile, with folic acid increasing the mean proportion of milk UMFA by ~ 14-fold. Investigation of whether increased UMFA impacts folate-related metabolism and infant health outcomes is required.
Collapse
Affiliation(s)
- Kelsey M Cochrane
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC, V6T 1Z4, Canada
- BC Children's Hospital Research Institute, Healthy Starts, Vancouver, Canada
| | - Rajavel Elango
- BC Children's Hospital Research Institute, Healthy Starts, Vancouver, Canada
- Department of Paediatrics, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
- Population and Public Health, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - Angela M Devlin
- BC Children's Hospital Research Institute, Healthy Starts, Vancouver, Canada
- Department of Paediatrics, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - Jennifer A Hutcheon
- BC Children's Hospital Research Institute, Healthy Starts, Vancouver, Canada
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - Crystal D Karakochuk
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC, V6T 1Z4, Canada.
- BC Children's Hospital Research Institute, Healthy Starts, Vancouver, Canada.
| |
Collapse
|
33
|
He Q, Li J. The evolution of folate supplementation - from one size for all to personalized, precision, poly-paths. J Transl Int Med 2023; 11:128-137. [PMID: 37408570 PMCID: PMC10318921 DOI: 10.2478/jtim-2023-0087] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
Folate is a crucial nutrient that supports physiological functions. Low folate levels is a risk factor for several diseases, including cardiovascular diseases and neural tube defects. The most used folate supplement is folic acid, a synthetic oxidative form, and folic acid grain fortification is a success story of public health. However, the metabolic conversion of folic acid to bioactive tetrahydrofolate requires several enzymes and cofactors. Therefore, these factors influence its bioavailability and efficacy. In contrast, 5-methyltetrahydrofolate is used directly and participates in one-carbon metabolism, and the use of 5-methyltetrahydrofolate as an alternative folate supplement has increased. The metabolism of 5-methyltetrahydrofolate is primarily dependent on the transmembrane transporter, reduced folate carrier (RFC), and the RFC gene SLC19A1 variant is a functional polymorphism that affects folate status indexes. Recent studies demonstrated that the expression of RFC and cystathionine β-synthase, another enzyme required for homocysteine clearance, increases significantly by supplementation with calcitriol (vitamin D3), suggesting that calcitriol intake promotes the bioavailability of folate and has synergistic effects in homocysteine clearance. The advancements in biomedical and cohort studies and clinical trials have enhanced our understanding of the critical roles of folate and the regulation of one-carbon metabolism. We anticipate that the field of folate supplementation is poised to evolve from one size for all to personalized, precision, poly-paths (3Ps), which is a critical measure to meet individual needs, maximize health benefits, and minimize side effects.
Collapse
Affiliation(s)
- Qiangqiang He
- Graduate School at Shenzhen, Tsinghua University, Shenzhen518055, Guangdong Province, China
- Shenzhen Evergreen Medical Institute, Shenzhen518057, Guangdong Province, China
| | - Jianping Li
- Department of Cardiology, Peking University First Hospital, Beijing100871, China
| |
Collapse
|
34
|
Muller IB, Lin M, de Jonge R, Will N, López-Navarro B, van der Laken C, Struys EA, Oudejans CBM, Assaraf YG, Cloos J, Puig-Kröger A, Jansen G. Methotrexate Provokes Disparate Folate Metabolism Gene Expression and Alternative Splicing in Ex Vivo Monocytes and GM-CSF- and M-CSF-Polarized Macrophages. Int J Mol Sci 2023; 24:9641. [PMID: 37298590 PMCID: PMC10253671 DOI: 10.3390/ijms24119641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Macrophages constitute important immune cell targets of the antifolate methotrexate (MTX) in autoimmune diseases, including rheumatoid arthritis. Regulation of folate/MTX metabolism remains poorly understood upon pro-inflammatory (M1-type/GM-CSF-polarized) and anti-inflammatory (M2-type/M-CSF-polarized) macrophages. MTX activity strictly relies on the folylpolyglutamate synthetase (FPGS) dependent intracellular conversion and hence retention to MTX-polyglutamate (MTX-PG) forms. Here, we determined FPGS pre-mRNA splicing, FPGS enzyme activity and MTX-polyglutamylation in human monocyte-derived M1- and M2-macrophages exposed to 50 nmol/L MTX ex vivo. Moreover, RNA-sequencing analysis was used to investigate global splicing profiles and differential gene expression in monocytic and MTX-exposed macrophages. Monocytes displayed six-eight-fold higher ratios of alternatively-spliced/wild type FPGS transcripts than M1- and M2-macrophages. These ratios were inversely associated with a six-ten-fold increase in FPGS activity in M1- and M2-macrophages versus monocytes. Total MTX-PG accumulation was four-fold higher in M1- versus M2-macrophages. Differential splicing after MTX-exposure was particularly apparent in M2-macrophages for histone methylation/modification genes. MTX predominantly induced differential gene expression in M1-macrophages, involving folate metabolic pathway genes, signaling pathways, chemokines/cytokines and energy metabolism. Collectively, macrophage polarization-related differences in folate/MTX metabolism and downstream pathways at the level of pre-mRNA splicing and gene expression may account for variable accumulation of MTX-PGs, hence possibly impacting MTX treatment efficacy.
Collapse
Affiliation(s)
- Ittai B. Muller
- Department of Laboratory Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (I.B.M.); (M.L.); (R.d.J.); (E.A.S.); (C.B.M.O.)
| | - Marry Lin
- Department of Laboratory Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (I.B.M.); (M.L.); (R.d.J.); (E.A.S.); (C.B.M.O.)
| | - Robert de Jonge
- Department of Laboratory Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (I.B.M.); (M.L.); (R.d.J.); (E.A.S.); (C.B.M.O.)
| | - Nico Will
- Facility for Environment and Natural Science, Brandenburg Technical University Cottbus-Senftenberg, 01968 Senftenberg, Germany;
| | - Baltasar López-Navarro
- Laboratorio de Inmuno-Metabolismo e Inflamación, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital Gregorio Marañón, 28007 Madrid, Spain; (B.L.-N.); (A.P.-K.)
| | - Conny van der Laken
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center–location VUmc, 1081 HV Amsterdam, The Netherlands;
| | - Eduard A. Struys
- Department of Laboratory Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (I.B.M.); (M.L.); (R.d.J.); (E.A.S.); (C.B.M.O.)
| | - Cees B. M. Oudejans
- Department of Laboratory Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (I.B.M.); (M.L.); (R.d.J.); (E.A.S.); (C.B.M.O.)
| | - Yehuda G. Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel;
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam University Medical Center–location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Amaya Puig-Kröger
- Laboratorio de Inmuno-Metabolismo e Inflamación, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital Gregorio Marañón, 28007 Madrid, Spain; (B.L.-N.); (A.P.-K.)
| | - Gerrit Jansen
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center–location VUmc, 1081 HV Amsterdam, The Netherlands;
| |
Collapse
|
35
|
Zhu H, Wang J, Zhang Q, Pan X, Zhang J. Novel strategies and promising opportunities for targeted protein degradation: An innovative therapeutic approach to overcome cancer resistance. Pharmacol Ther 2023; 244:108371. [PMID: 36871783 DOI: 10.1016/j.pharmthera.2023.108371] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Targeted Protein Degradation is an emerging and rapidly developing technique for designing and treating new drugs. With the emergence of a promising class of pharmaceutical molecules, Heterobifunctional Proteolysis-targeting chimeras (PROTACs), TPD has become a powerful tool to completely tackle pathogenic proteins with traditional small molecule inhibitors. However, the conventional PROTACs have gradually exposed potential disadvantages of poor oral bioavailability and pharmacokinetic (PK) and absorption, distribution, metabolism, excretion, and toxicity (ADMET) characteristics due to their larger molecular weight and more complex structure than the conventional small-molecule inhibitors. Therefore, 20 years after the concept of PROTAC was proposed, more and more scientists are committed to developing new TPD technology to overcome its defects. And several new technologies and means have been explored based on "PROTAC" to target "undruggable proteins". Here, we aim to comprehensively summarize and profoundly analyze the research progress of targeted protein degradation based on PROTAC targeting the degradation of "undruggable" targets. In order to clarify the significance of emerging and highly effective strategies based PROTACs in the treatment of various diseases especially in overcoming drug resistance in cancer, we will focus on the molecular structure, action mechanism, design concepts, development advantages and challenges of these emerging methods(e.g., aptamer-PROTAC conjugates, antibody-PROTACs and folate-PROTACs).
Collapse
Affiliation(s)
- Huanjie Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Qingqing Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
36
|
Functionalization of Nanosystems in Cancer Treatment. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
37
|
Increasing Dosage of Leucovorin Results in Pharmacokinetic and Gene Expression Differences When Administered as Two-Hour Infusion or Bolus Injection to Patients with Colon Cancer. Cancers (Basel) 2022; 15:cancers15010258. [PMID: 36612253 PMCID: PMC9818718 DOI: 10.3390/cancers15010258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
The combination of 5-fluorouracil (5-FU) and leucovorin (LV) forms the chemotherapy backbone for patients with colorectal cancer. However, the LV administration is often standardized and not based on robust scientific data. To address these issues, a randomized pharmacokinetics study was performed in patients with colon cancer. Thirty patients were enrolled, receiving 60, 200 or 500 mg/m2 LV as a single two-hour infusion. Blood, tumor, mucosa, and resection margin biopsies were collected. Folate concentrations were analyzed with LC-MS/MS and gene expression with qPCR. Data from a previous study where patients received LV as bolus injections were used as comparison. Saturation of methylenetetrahydrofolate (MeTHF) and tetrahydrofolate (THF) levels was seen after two-hour infusion and polyglutamated MeTHF + THF levels in tumors decreased with increasing LV dosage. The decrease was associated with decreased FPGS and increased GGH expression, which was not observed after LV bolus injection. In the bolus group, results indicate activation of a metabolic switch possibly promoting TYMS inhibition in response to 5-FU. Different metabolic mechanisms appear to be induced when LV is administered as infusion and bolus injection. Since maximal inhibition of TYMS by the 5-FU metabolite 5-fluoro-2'-deoxyuridine 5'-monophosphate (FdUMP) requires excess polyglutamated MeTHF, the results point in favor of the bolus regimen.
Collapse
|
38
|
Potrykus M, Czaja-Stolc S, Małgorzewicz S, Proczko-Stepaniak M, Dębska-Ślizień A. Diet Management of Patients with Chronic Kidney Disease in Bariatric Surgery. Nutrients 2022; 15:nu15010165. [PMID: 36615822 PMCID: PMC9824280 DOI: 10.3390/nu15010165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Morbid obesity is considered a civilization disease of the 21st century. Not only does obesity increase mortality, but it is also the most important cause of the shortening life expectancy in the modern world. Obesity is associated with many metabolic abnormalities: dyslipidemia, hyperglycemia, cardiovascular diseases, and others. An increasing number of patients diagnosed with chronic kidney disease (CKD) are obese. Numerous additional disorders associated with impaired kidney function make it difficult to conduct slimming therapy and may also be associated with a greater number of complications than in people with normal kidney function. Currently available treatments for obesity include lifestyle modification, pharmacotherapy, and bariatric surgery (BS). There are no precise recommendations on how to reduce excess body weight in patients with CKD treated conservatively, undergoing chronic dialysis, or after kidney transplantation. The aim of this study was to analyze studies on the bariatric treatment of obesity in this group of people, as well as to compare the recommendations typical for bariatrics and CKD.
Collapse
Affiliation(s)
- Marta Potrykus
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdansk, 80-211 Gdańsk, Poland
| | - Sylwia Czaja-Stolc
- Department of Clinical Nutrition, Medical University of Gdansk, 80-211 Gdańsk, Poland
- Correspondence: ; Tel.: +48-(58)-349-27-24
| | - Sylwia Małgorzewicz
- Department of Clinical Nutrition, Medical University of Gdansk, 80-211 Gdańsk, Poland
| | - Monika Proczko-Stepaniak
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdansk, 80-211 Gdańsk, Poland
| | - Alicja Dębska-Ślizień
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdansk, 80-952 Gdańsk, Poland
| |
Collapse
|
39
|
Dang Y, Zhou D, Du X, Zhao H, Lee CH, Yang J, Wang Y, Qin C, Guo Z, Zhang Z. Molecular mechanism of substrate recognition by folate transporter SLC19A1. Cell Discov 2022; 8:141. [PMID: 36575193 PMCID: PMC9794768 DOI: 10.1038/s41421-022-00508-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/09/2022] [Indexed: 12/29/2022] Open
Abstract
Folate (vitamin B9) is the coenzyme involved in one-carbon transfer biochemical reactions essential for cell survival and proliferation, with its inadequacy causing developmental defects or severe diseases. Notably, mammalian cells lack the ability to de novo synthesize folate but instead rely on its intake from extracellular sources via specific transporters or receptors, among which SLC19A1 is the ubiquitously expressed one in tissues. However, the mechanism of substrate recognition by SLC19A1 remains unclear. Here we report the cryo-EM structures of human SLC19A1 and its complex with 5-methyltetrahydrofolate at 3.5-3.6 Å resolution and elucidate the critical residues for substrate recognition. In particular, we reveal that two variant residues among SLC19 subfamily members designate the specificity for folate. Moreover, we identify intracellular thiamine pyrophosphate as the favorite coupled substrate for folate transport by SLC19A1. Together, this work establishes the molecular basis of substrate recognition by this central folate transporter.
Collapse
Affiliation(s)
- Yu Dang
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Dong Zhou
- grid.11135.370000 0001 2256 9319Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiaojuan Du
- grid.11135.370000 0001 2256 9319School of Life Sciences, Peking University, Beijing, China ,grid.411472.50000 0004 1764 1621Present Address: Peking University First Hospital, Peking University Health Science Center, Beijing, China
| | - Hongtu Zhao
- grid.240871.80000 0001 0224 711XDepartment of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Chia-Hsueh Lee
- grid.240871.80000 0001 0224 711XDepartment of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Jing Yang
- grid.11135.370000 0001 2256 9319School of Life Sciences, Peking University, Beijing, China
| | - Yijie Wang
- grid.11135.370000 0001 2256 9319School of Life Sciences, Peking University, Beijing, China
| | - Changdong Qin
- grid.11135.370000 0001 2256 9319Cryo-EM Platform, School of Life Sciences, Peking University, Beijing, China
| | - Zhenxi Guo
- grid.11135.370000 0001 2256 9319Cryo-EM Platform, School of Life Sciences, Peking University, Beijing, China
| | - Zhe Zhang
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China ,grid.11135.370000 0001 2256 9319Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China ,grid.11135.370000 0001 2256 9319School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
40
|
Recognition of cyclic dinucleotides and folates by human SLC19A1. Nature 2022; 612:170-176. [PMID: 36265513 DOI: 10.1038/s41586-022-05452-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/17/2022] [Indexed: 12/15/2022]
Abstract
Cyclic dinucleotides (CDNs) are ubiquitous signalling molecules in all domains of life1,2. Mammalian cells produce one CDN, 2'3'-cGAMP, through cyclic GMP-AMP synthase after detecting cytosolic DNA signals3-7. 2'3'-cGAMP, as well as bacterial and synthetic CDN analogues, can act as second messengers to activate stimulator of interferon genes (STING) and elicit broad downstream responses8-21. Extracellular CDNs must traverse the cell membrane to activate STING, a process that is dependent on the solute carrier SLC19A122,23. Moreover, SLC19A1 represents the major transporter for folate nutrients and antifolate therapeutics24,25, thereby placing SLC19A1 as a key factor in multiple physiological and pathological processes. How SLC19A1 recognizes and transports CDNs, folate and antifolate is unclear. Here we report cryo-electron microscopy structures of human SLC19A1 (hSLC19A1) in a substrate-free state and in complexes with multiple CDNs from different sources, a predominant natural folate and a new-generation antifolate drug. The structural and mutagenesis results demonstrate that hSLC19A1 uses unique yet divergent mechanisms to recognize CDN- and folate-type substrates. Two CDN molecules bind within the hSLC19A1 cavity as a compact dual-molecule unit, whereas folate and antifolate bind as a monomer and occupy a distinct pocket of the cavity. Moreover, the structures enable accurate mapping and potential mechanistic interpretation of hSLC19A1 with loss-of-activity and disease-related mutations. Our research provides a framework for understanding the mechanism of SLC19-family transporters and is a foundation for the development of potential therapeutics.
Collapse
|
41
|
Masoudifar R, Pouyanfar N, Liu D, Ahmadi M, Landi B, Akbari M, Moayeri-Jolandan S, Ghorbani-Bidkorpeh F, Asadian E, Shahbazi MA. Surface engineered metal-organic frameworks as active targeting nanomedicines for mono- and multi-therapy. APPLIED MATERIALS TODAY 2022; 29:101646. [DOI: 10.1016/j.apmt.2022.101646] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
42
|
Matherly LH, Schneider M, Gangjee A, Hou Z. Biology and therapeutic applications of the proton-coupled folate transporter. Expert Opin Drug Metab Toxicol 2022; 18:695-706. [PMID: 36239195 PMCID: PMC9637735 DOI: 10.1080/17425255.2022.2136071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/11/2022] [Indexed: 01/19/2023]
Abstract
INTRODUCTION The proton-coupled folate transporter (PCFT; SLC46A1) was discovered in 2006 as the principal mechanism by which folates are absorbed in the intestine and the causal basis for hereditary folate malabsorption (HFM). In 2011, it was found that PCFT is highly expressed in many tumors. This stimulated interest in using PCFT for cytotoxic drug targeting, taking advantage of the substantial levels of PCFT transport and acidic pH conditions commonly associated with tumors. AREAS COVERED We summarize the literature from 2006 to 2022 that explores the role of PCFT in the intestinal absorption of dietary folates and its role in HFM and as a transporter of folates and antifolates such as pemetrexed (Alimta) in relation to cancer. We provide the rationale for the discovery of a new generation of targeted pyrrolo[2,3-d]pyrimidine antifolates with selective PCFT transport and inhibitory activity toward de novo purine biosynthesis in solid tumors. We summarize the benefits of this approach to cancer therapy and exciting new developments in the structural biology of PCFT and its potential to foster refinement of active structures of PCFT-targeted anti-cancer drugs. EXPERT OPINION We summarize the promising future and potential challenges of implementing PCFT-targeted therapeutics for HFM and a variety of cancers.
Collapse
Affiliation(s)
- Larry H. Matherly
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Mathew Schneider
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Zhanjun Hou
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| |
Collapse
|
43
|
Gori SS, Thomas AG, Pal A, Wiseman R, Ferraris DV, Gao RD, Wu Y, Alt J, Tsukamoto T, Slusher BS, Rais R. D-DOPA Is a Potent, Orally Bioavailable, Allosteric Inhibitor of Glutamate Carboxypeptidase II. Pharmaceutics 2022; 14:pharmaceutics14102018. [PMID: 36297453 PMCID: PMC9608075 DOI: 10.3390/pharmaceutics14102018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 12/02/2022] Open
Abstract
Glutamate carboxypeptidase-II (GCPII) is a zinc-dependent metalloenzyme implicated in numerous neurological disorders. The pharmacophoric requirements of active-site GCPII inhibitors makes them highly charged, manifesting poor pharmacokinetic (PK) properties. Herein, we describe the discovery and characterization of catechol-based inhibitors including L-DOPA, D-DOPA, and caffeic acid, with sub-micromolar potencies. Of these, D-DOPA emerged as the most promising compound, with good metabolic stability, and excellent PK properties. Orally administered D-DOPA yielded high plasma exposures (AUCplasma = 72.7 nmol·h/mL) and an absolute oral bioavailability of 47.7%. Unfortunately, D-DOPA brain exposures were low with AUCbrain = 2.42 nmol/g and AUCbrain/plasma ratio of 0.03. Given reports of isomeric inversion of D-DOPA to L-DOPA via D-amino acid oxidase (DAAO), we evaluated D-DOPA PK in combination with the DAAO inhibitor sodium benzoate and observed a >200% enhancement in both plasma and brain exposures (AUCplasma = 185 nmol·h/mL; AUCbrain = 5.48 nmol·h/g). Further, we demonstrated GCPII target engagement; orally administered D-DOPA with or without sodium benzoate caused significant inhibition of GCPII activity. Lastly, mode of inhibition studies revealed D-DOPA to be a noncompetitive, allosteric inhibitor of GCPII. To our knowledge, this is the first report of D-DOPA as a distinct scaffold for GCPII inhibition, laying the groundwork for future optimization to obtain clinically viable candidates.
Collapse
Affiliation(s)
- Sadakatali S. Gori
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ajit G. Thomas
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Arindom Pal
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Robyn Wiseman
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Dana V. Ferraris
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Run-duo Gao
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ying Wu
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Jesse Alt
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Takashi Tsukamoto
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Barbara S. Slusher
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Correspondence: (B.S.S.); (R.R.)
| | - Rana Rais
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Correspondence: (B.S.S.); (R.R.)
| |
Collapse
|
44
|
Crider KS, Qi YP, Yeung LF, Mai CT, Head Zauche L, Wang A, Daniels K, Williams JL. Folic Acid and the Prevention of Birth Defects: 30 Years of Opportunity and Controversies. Annu Rev Nutr 2022; 42:423-452. [PMID: 35995050 PMCID: PMC9875360 DOI: 10.1146/annurev-nutr-043020-091647] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
For three decades, the US Public Health Service has recommended that all persons capable of becoming pregnant consume 400 μg/day of folic acid (FA) to prevent neural tube defects (NTDs). The neural tube forms by 28 days after conception. Fortification can be an effective NTD prevention strategy in populations with limited access to folic acid foods and/or supplements. This review describes the status of mandatory FA fortification among countries that fortify (n = 71) and the research describing the impact of those programs on NTD rates (up to 78% reduction), blood folate concentrations [red blood cell folate concentrations increased ∼1.47-fold (95% CI, 1.27, 1.70) following fortification], and other health outcomes. Across settings, high-quality studies such as those with randomized exposures (e.g., randomized controlled trials, Mendelian randomization studies) are needed to elucidate interactions of FA with vitamin B12 as well as expanded biomarker testing.
Collapse
Affiliation(s)
- Krista S Crider
- Neural Tube Defects Surveillance and Prevention Team, Infant Outcomes Monitoring, Research, and Prevention Branch, Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA;
| | - Yan Ping Qi
- Neural Tube Defects Surveillance and Prevention Team, Infant Outcomes Monitoring, Research, and Prevention Branch, Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA;
| | - Lorraine F Yeung
- Neural Tube Defects Surveillance and Prevention Team, Infant Outcomes Monitoring, Research, and Prevention Branch, Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA;
| | - Cara T Mai
- Neural Tube Defects Surveillance and Prevention Team, Infant Outcomes Monitoring, Research, and Prevention Branch, Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA;
| | - Lauren Head Zauche
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Arick Wang
- Neural Tube Defects Surveillance and Prevention Team, Infant Outcomes Monitoring, Research, and Prevention Branch, Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA;
| | | | - Jennifer L Williams
- Neural Tube Defects Surveillance and Prevention Team, Infant Outcomes Monitoring, Research, and Prevention Branch, Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA;
| |
Collapse
|
45
|
Bobrowski-Khoury N, Sequeira JM, Arning E, Bottiglieri T, Quadros EV. Absorption and Tissue Distribution of Folate Forms in Rats: Indications for Specific Folate Form Supplementation during Pregnancy. Nutrients 2022; 14:nu14122397. [PMID: 35745126 PMCID: PMC9228663 DOI: 10.3390/nu14122397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 01/27/2023] Open
Abstract
Food fortification and folic acid supplementation during pregnancy have been implemented as strategies to prevent fetal malformations during pregnancy. However, with the emergence of conditions where folate metabolism and transport are disrupted, such as folate receptor alpha autoantibody (FRαAb)-induced folate deficiency, it is critical to find a folate form that is effective and safe for pharmacologic dosing for prolonged periods. Therefore, in this study, we explored the absorption and tissue distribution of folic acid (PGA), 5-methyl-tetrahydrofolate (MTHF), l-folinic acid (levofolinate), and d,l-folinic acid (Leucovorin) in adult rats. During absorption, all forms are converted to MTHF while some unconverted folate form is transported into the blood, especially PGA. The study confirms the rapid distribution of absorbed folate to the placenta and fetus. FRαAb administered, also accumulates rapidly in the placenta and blocks folate transport to the fetus and high folate concentrations are needed to circumvent or overcome the blocking of FRα. In the presence of FRαAb, both Leucovorin and levofolinate are absorbed and distributed to tissues better than the other forms. However, only 50% of the leucovorin is metabolically active whereas levofolinate is fully active and generates higher tetrahydrofolate (THF). Because levofolinate can readily incorporate into the folate cycle without needing methylenetetrahydrofolate reductase (MTHFR) and methionine synthase (MS) in the first pass and is relatively stable, it should be the folate form of choice during pregnancy, other disorders where large daily doses of folate are needed, and food fortification.
Collapse
Affiliation(s)
- Natasha Bobrowski-Khoury
- The School of Graduate Studies, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA;
| | - Jeffrey M. Sequeira
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA;
| | - Erland Arning
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX 75204, USA; (E.A.); (T.B.)
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX 75204, USA; (E.A.); (T.B.)
| | - Edward V. Quadros
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA;
- Correspondence:
| |
Collapse
|
46
|
Jin T, Park EY, Kim B, Oh JK. Non-Linear Association between Serum Folate Concentration and Dyslipidemia: Korea National Health and Nutrition Examination Survey (KNHANES) 2016-2018. Epidemiol Health 2022; 44:e2022046. [PMID: 35577068 DOI: 10.4178/epih.e2022046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/15/2022] [Indexed: 11/09/2022] Open
Abstract
Objectives We aimed to evaluate the association between serum folate concentration and prevalence of dyslipidemia. Methods A total of 4,477 adults (2,019 men and 2,458 women) enrolled in the Korea National Health and Nutrition Examination Survey (KNHANES) 2016-2018 were included. Serum samples were used to access folate concentration and total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL)-cholesterol, and high-density lipoprotein (HDL)-cholesterol levels. Multivariate logistic regression with a sampling weight was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs). Results Elevated TC, TG, LDL-cholesterol and HDL-cholesterol were observed in 506 (11.3%), 646 (14.4%), 434 (9.7%), and 767 (17.1%) participants, respectively. We found non-linear trends between serum folate concentration and prevalence of hypercholesterolemia and hyper-LDL cholesterolemia from the restricted cubic smoothing spline. A higher prevalence of hypercholesterolemia was observed among participants in the 1st tertile serum folate concentration group (OR [95% CI] = 1.38 [1.05-1.79]) compared to those in the 2nd tertile group. On the other hand, a higher prevalence of hyper-LDL cholesterolemia was identified for both the 1st and 3rd serum folate concentration tertile groups (OR [95% CI]: 1.49 [1.08-2.05] and 1.63 [1.20-2.20], respectively); furthermore, in these tertiles, the prevalence of hyper-LDL cholesterolemia was more pronounced among obese participants. Conclusion Non-linear associations may exist between serum folate concentration and the prevalence of hypercholesterolemia and hyper-LDL cholesterolemia in adults. The findings suggest that more accurate recommendations about folate intake and folic acid fortification and supplementation should be provided.
Collapse
Affiliation(s)
- Taiyue Jin
- Division of Cancer Prevention, National Cancer Control Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Korea
| | - Eun Young Park
- Division of Cancer Prevention, National Cancer Control Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Korea
| | - Byungmi Kim
- Division of Cancer Prevention, National Cancer Control Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Korea
| | - Jin-Kyoung Oh
- Division of Cancer Prevention, National Cancer Control Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Korea.,Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, Korea
| |
Collapse
|
47
|
Zamek-Gliszczynski MJ, Sangha V, Shen H, Feng B, Wittwer MB, Varma MVS, Liang X, Sugiyama Y, Zhang L, Bendayan R. Transporters in drug development: International transporter consortium update on emerging transporters of clinical importance. Clin Pharmacol Ther 2022; 112:485-500. [PMID: 35561119 DOI: 10.1002/cpt.2644] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/08/2022] [Indexed: 11/07/2022]
Abstract
During its 4th transporter workshop in 2021, the International Transporter Consortium (ITC) provided updates on emerging clinically relevant transporters for drug development. Previously highlighted and new transporters were considered based on up-to-date clinical evidence of their importance in drug-drug interactions and potential for altered drug efficacy and safety, including drug-nutrient interactions leading to nutrient deficiencies. For the first time, folate transport pathways (PCFT, RFC, and FRα) were examined in-depth as a potential mechanism of drug-induced folate deficiency and related toxicities (e.g., neural tube defects, megaloblastic anemia). However, routine toxicology studies conducted in support of drug development appear sufficient to flag such folate deficiency toxicities, while prospective prediction from in vitro folate metabolism and transport inhibition is not well enough established to inform drug development. Previous suggestion of retrospective study of intestinal OATP2B1 inhibition to explain unexpected decreases in drug exposure were updated. Furthermore, when the absorption of a new molecular entity is more rapid and extensive than can be explained by passive permeability, evaluation of OATP2B1 transport may be considered. Emerging research on hepatic and renal OAT2 is summarized, but current understanding of the importance of OAT2 was deemed insufficient to justify specific consideration for drug development. Hepatic, renal, and intestinal MRPs (MRP2, MRP3, MRP4) were revisited. MRPs may be considered when they are suspected to be the major determinant of drug disposition (e.g., direct glucuronide conjugates); MRP2 inhibition as a mechanistic explanation for drug-induced hyperbilirubinemia remains justified. There were no major changes in recommendations from previous ITC whitepapers.
Collapse
Affiliation(s)
| | - Vishal Sangha
- Department of Pharmaceutical Sciences, University of Toronto, Leslie Dan Faculty of Pharmacy, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Hong Shen
- Drug Metabolism and PK, Bristol Myers Squibb Company, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - Bo Feng
- Drug Metabolism and PK, Vertex Pharmaceuticals, Inc, 50 Northern Avenue, Boston, MA, 02210, USA
| | - Matthias B Wittwer
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Manthena V S Varma
- PK, Dynamics and Metabolism, Medicine Design, Pfizer Inc, Worldwide R&D, Groton, CT, 06340, USA
| | - Xiaomin Liang
- Drug Metabolism, Gilead Sciences, Inc, 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Yuichi Sugiyama
- Laboratory of Quantitative System PK/Pharmacodynamics, School of Pharmacy, Josai International University, Kioicho Campus, Tokyo, 102-0093, Japan
| | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, University of Toronto, Leslie Dan Faculty of Pharmacy, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | | |
Collapse
|
48
|
Zhang F, Pei X, Peng X, Gou D, Fan X, Zheng X, Song C, Zhou Y, Cui S. Dual crosslinking of folic acid-modified pectin nanoparticles for enhanced oral insulin delivery. BIOMATERIALS ADVANCES 2022; 135:212746. [PMID: 35929218 DOI: 10.1016/j.bioadv.2022.212746] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/18/2022] [Accepted: 03/02/2022] [Indexed: 06/15/2023]
Abstract
Pectin-based drug delivery systems hold great potential for oral insulin delivery, since they possess excellent gelling property, good mucoadhesion and high stability in the gastrointestinal (GI) tract. However, lack of enterocyte targeting ability and premature drug release in the upper GI tract of the susceptible ionic-crosslinked pectin matrices are two major problems to be solved. To address these issues, we developed folic acid (FA)-modified pectin nanoparticles (INS/DFAN) as insulin delivery vehicles by a dual-crosslinking method using calcium ions and adipic dihydrazide (ADH) as crosslinkers. In vitro studies indicated insulin release behaviors of INS/DFAN depended on COOH/ADH molar ratio in the dual-crosslinking process. INS/DFAN effectively prevented premature insulin release in simulated GI fluids compared to ionic-crosslinked nanoparticles (INS/FAN). At an optimized COOH/ADH molar ratio, INS/DFAN with FA graft ratio of 18.2% exhibited a relatively small particle size, high encapsulation efficiency and excellent stability. Cellular uptake of INS/DFAN was FA graft ratio dependent when it was at/below 18.2%. Uptake mechanism and intestinal distribution studies demonstrated the enhanced insulin transepithelial transport by INS/DFAN via FA carrier-mediated transport pathway. In vivo studies revealed that orally-administered INS/DFAN produced a significant reduction in blood glucose levels and further improved insulin bioavailability in type I diabetic rats compared to INS/FAN. Taken together, the combination of dual crosslinking and FA modification is an effective strategy to develop pectin nano-vehicles for enhanced oral insulin delivery.
Collapse
Affiliation(s)
- Fenglei Zhang
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xuejing Pei
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xiaoxia Peng
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Dongxia Gou
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xiao Fan
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xuefei Zheng
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Chengcheng Song
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Sisi Cui
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
49
|
Steinz MM, Ezdoglian A, Khodadust F, Molthoff CFM, Srinivasarao M, Low PS, Zwezerijnen GJC, Yaqub M, Beaino W, Windhorst AD, Tas SW, Jansen G, van der Laken CJ. Folate Receptor Beta for Macrophage Imaging in Rheumatoid Arthritis. Front Immunol 2022; 13:819163. [PMID: 35185910 PMCID: PMC8849105 DOI: 10.3389/fimmu.2022.819163] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/11/2022] [Indexed: 12/30/2022] Open
Abstract
Non-invasive imaging modalities constitute an increasingly important tool in diagnostic and therapy response monitoring of patients with autoimmune diseases, including rheumatoid arthritis (RA). In particular, macrophage imaging with positron emission tomography (PET) using novel radiotracers based on differential expression of plasma membrane proteins and functioning of cellular processes may be suited for this. Over the past decade, selective expression of folate receptor β (FRβ), a glycosylphosphatidylinositol-anchored plasma membrane protein, on myeloid cells has emerged as an attractive target for macrophage imaging by exploiting the high binding affinity of folate-based PET tracers. This work discusses molecular, biochemical and functional properties of FRβ, describes the preclinical development of a folate-PET tracer and the evaluation of this tracer in a translational model of arthritis for diagnostics and therapy-response monitoring, and finally the first clinical application of the folate-PET tracer in RA patients with active disease. Consequently, folate-based PET tracers hold great promise for macrophage imaging in a variety of (chronic) inflammatory (autoimmune) diseases beyond RA.
Collapse
Affiliation(s)
- Maarten M Steinz
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, VU University Medical Center (VUmc), Amsterdam, Netherlands
| | - Aiarpi Ezdoglian
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, VU University Medical Center (VUmc), Amsterdam, Netherlands
| | - Fatemeh Khodadust
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, VU University Medical Center (VUmc), Amsterdam, Netherlands
| | - Carla F M Molthoff
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Center, VU, Amsterdam, Netherlands
| | | | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, IN, United States
| | - Gerben J C Zwezerijnen
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Center, VU, Amsterdam, Netherlands
| | - Maqsood Yaqub
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Center, VU, Amsterdam, Netherlands
| | - Wissam Beaino
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Center, VU, Amsterdam, Netherlands
| | - Albert D Windhorst
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Center, VU, Amsterdam, Netherlands
| | - Sander W Tas
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, AMC, Amsterdam, Netherlands
| | - Gerrit Jansen
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, VU University Medical Center (VUmc), Amsterdam, Netherlands
| | - Conny J van der Laken
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, VU University Medical Center (VUmc), Amsterdam, Netherlands
| |
Collapse
|
50
|
Wang A, Yeung LF, Ríos Burrows N, Rose CE, Fazili Z, Pfeiffer CM, Crider KS. Reduced Kidney Function Is Associated with Increasing Red Blood Cell Folate Concentration and Changes in Folate Form Distributions (NHANES 2011-2018). Nutrients 2022; 14:1054. [PMID: 35268029 PMCID: PMC8912286 DOI: 10.3390/nu14051054] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Background: Current studies examining the effects of high concentrations of red blood cell (RBC) or serum folates assume that high folate concentrations are an indicator of high folic acid intakes, often ignoring the contributions of other homeostatic and biological processes, such as kidney function. Objective: The current study examined the relative contributions of declining kidney function, as measured by the risk of chronic kidney disease (CKD), and usual total folic acid intake on the concentrations of RBC folate and serum folate (total as well as individual folate forms). Design: Cross-sectional data from the National Health and Nutrition Examination Survey (NHANES) collected in 2-year cycles were combined from 2011 to 2018. A total of 18,127 participants aged ≥16 years with available folate measures, kidney biomarker data (operationalized as a categorical CKD risk variable describing the risk of progression), and reliable dietary recall data were analyzed. Results: RBC folate concentrations increased as CKD risk increased: low risk, 1089 (95% CI: 1069, 1110) nmol/L; moderate risk, 1189 (95% CI: 1158, 1220) nmol/L; high risk, 1488 (95% CI: 1419, 1561) nmol/L; and highest risk, 1443 (95% CI: 1302, 1598) nmol/L (p < 0.0001). Similarly, serum total folate concentrations increased as CKD risk increased: low risk: 37.1 (95% CI: 26.3, 38.0) nmol/L; moderate risk: 40.2 (95% CI: 38.8, 41.7) nmol/L; high risk: 48.0 (95% CI: 44.3, 52.1) nmol/L; the highest Risk: 42.8 (95% CI: 37.8, 48.4) nmol/L (p < 0.0001). The modeled usual intake of folic acid showed no difference among CKD risk groups, with a population median of 225 (interquartile range: 108−390) µg/day. Conclusion: Both RBC and serum folate concentrations increased with declining kidney function without increased folic acid intake. When analyzing associations between folate concentrations and disease outcomes, researchers may want to consider the confounding role of kidney function.
Collapse
Affiliation(s)
- Arick Wang
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA; (L.F.Y.); (C.E.R.); (K.S.C.)
| | - Lorraine F. Yeung
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA; (L.F.Y.); (C.E.R.); (K.S.C.)
| | - Nilka Ríos Burrows
- Division of Diabetes Translation, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA;
| | - Charles E. Rose
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA; (L.F.Y.); (C.E.R.); (K.S.C.)
| | - Zia Fazili
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA; (Z.F.); (C.M.P.)
| | - Christine M. Pfeiffer
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA; (Z.F.); (C.M.P.)
| | - Krista S. Crider
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA; (L.F.Y.); (C.E.R.); (K.S.C.)
| |
Collapse
|