1
|
Nowacka-Kozak E, Gajda A, Gbylik-Sikorska M. Simultaneous determination of 68 antimicrobial compounds in pigs oral fluid by ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2024; 1729:465053. [PMID: 38852267 DOI: 10.1016/j.chroma.2024.465053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Improper use of antimicrobials in veterinary medicine can lead to residues in food of animal origin. Post-mortem monitoring of antibiotics in animal products is carried out as part of official EU programmes on food safety and consumer health. Oral fluid testing is a promising surveillance method to monitor appropriate treatment in pigs and to avoid residues in edible tissues. Oral fluid analysis can be implemented in an antibiotic residue control programme, thus preventing economic losses due to meat disposal as a result of drug detection in tissues after the withdrawal period. An analytical method was developed for the analysis of 68 compounds from 12 groups (penicillins, cephalosporins, sulfonamides, macrolides, fluoroquinolones, tetracyclines, aminoglycosides, pleuromutilins, diaminopyrimidines, lincosamides, polypeptides and sulfones) in pig oral fluid. Extraction of antibacterials was performed with 0.5 % formic acid. Analyses were carried out by ultra-high performance liquid chromatography with triple quadrupole mass spectrometry (UHPLC-MS/MS) detection. The chromatographic separation was achieved on a Zorbax analytical column (2.1 × 50 mm) with a mobile phase consisting of acetonitrile and heptafluorobutyric acid (HFBA). The total run time was 7 min. The method was validated as a confirmatory method according to the Commission Implementing Regulation (EU) 2021/808. The reliability of the method was verified by testing real samples from pig farms.
Collapse
Affiliation(s)
- Ewelina Nowacka-Kozak
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Partyzantów 57, 24-100 Puławy, Poland.
| | - Anna Gajda
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Partyzantów 57, 24-100 Puławy, Poland
| | - Małgorzata Gbylik-Sikorska
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Partyzantów 57, 24-100 Puławy, Poland
| |
Collapse
|
2
|
Llamas-Amor E, Goyena E, González-Bulnes A, García Manzanilla E, Cerón JJ, Martínez-Subiela S, López-Martínez MJ, Muñoz-Prieto A. Cystatin C, Ammonia, and Bicarbonate Measurements in the Saliva of Pigs: Analytical Validation and Changes in S. suis Infection. Animals (Basel) 2024; 14:1580. [PMID: 38891627 PMCID: PMC11171149 DOI: 10.3390/ani14111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Cystatin C, ammonia, and bicarbonate have been described to be biomarkers of sepsis and inflammation in humans. The saliva of pigs can be used to detect a wide range of pathogens but also many biomarkers that can be analyzed to evaluate different conditions such as stress (i.e., cortisol and alpha amylase), immune system (i.e., ADA, S100 proteins), inflammation (i.e., acute phase proteins), redox status (i.e., various antioxidants and oxidants), and general metabolism or the status of different organs and tissues. However, there is a lack of assays for the possible measurement and use of cystatin C, ammonia, and bicarbonate in saliva as biomarkers of sepsis or inflammation in pigs. The objective of this study was to validate commercially available automated assays for the measurement of cystatin C, ammonia, and bicarbonate in the saliva of pigs, having the advantage of using a noninvasive sample that is easy to collect. The assays were precise and accurate, and the recommended storage condition for the saliva samples was -80 °C. In addition, cystatin and ammonia showed significant increases in the saliva of pigs with S. suis infection, whereas bicarbonate decreased. Further studies would be recommended to increase knowledge about the possible potential applications of the measurements of these three analytes in the saliva of pigs as biomarkers to evaluate the animals' health and welfare.
Collapse
Affiliation(s)
- Eva Llamas-Amor
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; (E.L.-A.); (J.J.C.); (S.M.-S.); (A.M.-P.)
| | - Elena Goyena
- Department of Animal Health, Faculty of Veterinary Medicine, University of Murcia, 30100 Murcia, Spain;
| | - Antonio González-Bulnes
- Departamento de Producción y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc, 7, 46115 Alfara del Patriarca, Spain;
- Cuarte S.L. Grupo Jorge, Ctra. De Logroño, Km 9.2, Monzalbarba, 50120 Zaragoza, Spain
| | - Edgar García Manzanilla
- Pig Development Department, The Irish Food and Agriculture Authority, Teagasc, P61 C996 Cork, Ireland;
- School of Veterinary Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; (E.L.-A.); (J.J.C.); (S.M.-S.); (A.M.-P.)
| | - Silvia Martínez-Subiela
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; (E.L.-A.); (J.J.C.); (S.M.-S.); (A.M.-P.)
| | - María José López-Martínez
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; (E.L.-A.); (J.J.C.); (S.M.-S.); (A.M.-P.)
| | - Alberto Muñoz-Prieto
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; (E.L.-A.); (J.J.C.); (S.M.-S.); (A.M.-P.)
| |
Collapse
|
3
|
Dürlinger S, Kreutzmann H, Unterweger C, Martin V, Hamar F, Knecht C, Auer A, Dimmel K, Rümenapf T, Griessler A, Voglmayr T, Maurer R, Oppeneder A, Ladinig A. Detection of PRRSV-1 in tongue fluids under experimental and field conditions and comparison of different sampling material for PRRSV sow herd monitoring. Porcine Health Manag 2024; 10:18. [PMID: 38764057 PMCID: PMC11104003 DOI: 10.1186/s40813-024-00370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Infection with porcine reproductive and respiratory syndrome virus (PRRSV) leads to significant economic losses worldwide. One of the initial measures following an outbreak is to stabilise the herd and to prevent vertical transmission of PRRSV. The objective of this study was to detect PRRSV in different sampling material, both in an experimental model and on a commercial piglet producing farm, with a focus on evaluating the suitability of tongue fluid samples. RESULTS In the experimental model, PRRSV negative pregnant gilts were infected with PRRSV-1 AUT15-33 on gestation day 85 and necropsy of gilts and foetuses was performed three weeks later. 38.3% of individual foetal serum and 39.4% of individual foetal thymus samples were considered PRRSV RT-qPCR positive. Tongue fluids from individual foetuses showed a 33.0% positivity rate. PRRSV RNA was detected in all but one sample of litter-wise pooled processing fluids and tongue fluids. In the field study, the investigated farm remained PRRSV positive and unstable for five consecutive farrowing groups after the start of the sampling process. Tongue fluid samples pooled by litter in the first investigated farrowing group had a 54.5% positivity rate, with the overall highest viral load obtained in the field study. In this farrowing group, 33.3% of investigated litter-wise pooled processing fluid samples and all investigated serum samples (pools of 4-6 individuals, two piglets per litter) were considered positive. Across all investigated farrowing groups, tongue fluid samples consistently showed the highest viral load. Moreover, tongue fluid samples contained the virus in moderate amounts for the longest time compared to the other investigated sampling material. CONCLUSION It can be concluded that the viral load in individual foetuses is higher in serum or thymus compared to tongue fluid samples. However, litter-wise pooled tongue fluid samples are well-suited for detecting vertical transmission within the herd, even when the suspected prevalence of vertical transmission events is low.
Collapse
Affiliation(s)
- Sophie Dürlinger
- Clinical Department for Farm Animals and Food System Science, Clinical Centre for Population Medicine in Fish, Pig and Poultry, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Heinrich Kreutzmann
- Clinical Department for Farm Animals and Food System Science, Clinical Centre for Population Medicine in Fish, Pig and Poultry, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria.
- GD Animal Health Service, P.O. Box 9, 7400 AA, Deventer, The Netherlands.
| | - Christine Unterweger
- Clinical Department for Farm Animals and Food System Science, Clinical Centre for Population Medicine in Fish, Pig and Poultry, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Vera Martin
- Clinical Department for Farm Animals and Food System Science, Clinical Centre for Population Medicine in Fish, Pig and Poultry, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Flora Hamar
- Clinical Department for Farm Animals and Food System Science, Clinical Centre for Population Medicine in Fish, Pig and Poultry, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Christian Knecht
- Clinical Department for Farm Animals and Food System Science, Clinical Centre for Population Medicine in Fish, Pig and Poultry, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Angelika Auer
- Department of Biological Sciences and Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Katharina Dimmel
- Department of Biological Sciences and Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Till Rümenapf
- Department of Biological Sciences and Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Alfred Griessler
- Traunkreis Vet Clinic GmbH, Grossendorf 3, 4551, Ried im Traunkreis, Austria
| | - Thomas Voglmayr
- Traunkreis Vet Clinic GmbH, Grossendorf 3, 4551, Ried im Traunkreis, Austria
| | - Roland Maurer
- Traunkreis Vet Clinic GmbH, Grossendorf 3, 4551, Ried im Traunkreis, Austria
| | - Alexander Oppeneder
- Traunkreis Vet Clinic GmbH, Grossendorf 3, 4551, Ried im Traunkreis, Austria
| | - Andrea Ladinig
- Clinical Department for Farm Animals and Food System Science, Clinical Centre for Population Medicine in Fish, Pig and Poultry, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| |
Collapse
|
4
|
Dias AS, Baker ALV, Baker RB, Zhang J, Zeller MA, Kitikoon P, Gauger PC. Detection and Characterization of Influenza A Virus Endemic Circulation in Suckling and Nursery Pigs Originating from Vaccinated Farms in the Same Production System. Viruses 2024; 16:626. [PMID: 38675967 PMCID: PMC11054297 DOI: 10.3390/v16040626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Inactivated influenza A virus (IAV) vaccines help reduce clinical disease in suckling piglets, although endemic infections still exist. The objective of this study was to evaluate the detection of IAV in suckling and nursery piglets from IAV-vaccinated sows from farms with endemic IAV infections. Eight nasal swab collections were obtained from 135 two-week-old suckling piglets from four farms every other week from March to September 2013. Oral fluid samples were collected from the same group of nursery piglets. IAV RNA was detected in 1.64% and 31.01% of individual nasal swabs and oral fluids, respectively. H1N2 was detected most often, with sporadic detection of H1N1 and H3N2. Whole-genome sequences of IAV isolated from suckling piglets revealed an H1 hemagglutinin (HA) from the 1B.2.2.2 clade and N2 neuraminidase (NA) from the 2002A clade. The internal gene constellation of the endemic H1N2 was TTTTPT with a pandemic lineage matrix. The HA gene had 97.59% and 97.52% nucleotide and amino acid identities, respectively, to the H1 1B.2.2.2 used in the farm-specific vaccine. A similar H1 1B.2.2.2 was detected in the downstream nursery. These data demonstrate the low frequency of IAV detection in suckling piglets and downstream nurseries from farms with endemic infections in spite of using farm-specific IAV vaccines in sows.
Collapse
MESH Headings
- Animals
- Swine
- Swine Diseases/virology
- Swine Diseases/epidemiology
- Swine Diseases/prevention & control
- Orthomyxoviridae Infections/veterinary
- Orthomyxoviridae Infections/virology
- Orthomyxoviridae Infections/epidemiology
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza A virus/isolation & purification
- Influenza A virus/classification
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Phylogeny
- Farms
- Animals, Suckling
- Vaccination/veterinary
- Endemic Diseases/veterinary
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/isolation & purification
- RNA, Viral/genetics
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/isolation & purification
- Influenza A Virus, H1N2 Subtype/genetics
- Influenza A Virus, H1N2 Subtype/isolation & purification
- Influenza A Virus, H1N2 Subtype/immunology
- Genome, Viral
Collapse
Affiliation(s)
- Alessandra Silva Dias
- Department of Preventive Veterinary Medicine, Minas Gerais State University, 6627 Antonio Carlos Avenue, Belo Horizonte 31620-295, MG, Brazil;
| | - Amy L. Vincent Baker
- Virus and Prion Research Unit, United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service, 1920 Dayton Avenue, Ames, IA 50010, USA; (A.L.V.B.); (P.K.)
| | - Rodney B. Baker
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA; (R.B.B.); (J.Z.); (M.A.Z.)
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA; (R.B.B.); (J.Z.); (M.A.Z.)
| | - Michael A. Zeller
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA; (R.B.B.); (J.Z.); (M.A.Z.)
| | - Pravina Kitikoon
- Virus and Prion Research Unit, United States Department of Agriculture, National Animal Disease Center, Agricultural Research Service, 1920 Dayton Avenue, Ames, IA 50010, USA; (A.L.V.B.); (P.K.)
| | - Phillip C. Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA; (R.B.B.); (J.Z.); (M.A.Z.)
- Phillip Gauger of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA
| |
Collapse
|
5
|
Magtoto PD, Arruda BL, Magtoto RL, Mora-Díaz JC, Opulencia RB, Baum DH, Zimmerman JJ, Giménez-Lirola LG. Dynamics of antibody response and bacterial shedding of Mycoplasma hyorhinis and M. hyosynoviae in oral fluids from experimentally inoculated pigs. Vet Microbiol 2024; 290:109999. [PMID: 38280306 DOI: 10.1016/j.vetmic.2024.109999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/29/2024]
Abstract
Mycoplasma hyorhinis (Mhr) and M. hyosynoviae (Mhs) are commensal organisms of the upper respiratory tract and tonsils but may also cause arthritis in pigs. In this study, 8-week-old cesarean-derived colostrum-deprived (CDCD) pigs (n = 30; 3 groups, 10 pigs per group, 2 pigs per pen) were inoculated with Mhr, Mhs, or mock-inoculated with culture medium and then pen-based oral fluids were collected at different time points over the 56 days of the experimental study. Oral fluids tested by Mhr and Mhs quantitative real-time PCRs revealed Mhr DNA between day post inoculation (DPI) 5-52 and Mhs DNA between DPI 5-15. Oral fluids were likewise tested for antibody using isotype-specific (IgG, IgA, IgM) indirect ELISAs based on a recombinant chimeric polypeptide of variable lipoproteins (A-G) for Mhr and Tween 20-extracted surface proteins for Mhs. Mhr IgA was detected at DPI 7 and, relative to the control group, significant (p < 0.05) antibody responses were detected in the Mhr group between DPI 12-15 for IgM and DPI 36-56 for both IgA and IgG. In the Mhs group, IgM was detected at DPI 10 and significant (p < 0.05) IgG and IgA responses were detected at DPI 32-56 and DPI 44-56, respectively. This study demonstrated that oral fluid could serve as an effective and convenient antemortem sample for monitoring Mhr and Mhs in swine populations.
Collapse
Affiliation(s)
- Precy D Magtoto
- College of Veterinary Medicine, Pampanga State Agricultural University, Pampanga, the Philippines; College of Arts and Sciences, University of the Philippines Los Baños, Laguna, the Philippines
| | - Bailey L Arruda
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA; Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA
| | - Ronaldo L Magtoto
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Juan Carlos Mora-Díaz
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Rina B Opulencia
- College of Arts and Sciences, University of the Philippines Los Baños, Laguna, the Philippines
| | - David H Baum
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Jeff J Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Luis G Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA.
| |
Collapse
|
6
|
Tarasiuk G, Remmenga MD, O'Hara KC, Talbert MK, Rotolo ML, Zaabel P, Zhang D, Giménez-Lirola LG, Zimmerman JJ. Pen-Based Swine Oral Fluid Samples Contain Both Environmental and Pig-Derived Targets. Animals (Basel) 2024; 14:766. [PMID: 38473151 DOI: 10.3390/ani14050766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Laboratory methods for detecting specific pathogens in oral fluids are widely reported, but there is little research on the oral fluid sampling process itself. In this study, a fluorescent tracer (diluted red food coloring) was used to test the transfer of a target directly from pigs or indirectly from the environment to pen-based oral fluid samples. Pens of ~30, ~60, and ~125 14-week-old pigs (32 pens/size) on commercial swine farms received one of two treatments: (1) pig exposure, i.e., ~3.5 mL of tracer solution sprayed into the mouth of 10% of the pigs in the pen; (2) environmental exposure, i.e., 20 mL of tracer solution was poured on the floor in the center of the pen. Oral fluids collected one day prior to treatment (baseline fluorescence control) and immediately after treatment were tested for fluorescence. Data were evaluated by receiver operating characteristic (ROC) analysis, with Youden's J statistic used to set a threshold. Pretreatment oral fluid samples with fluorescence responses above the ROC threshold were removed from further analysis (7 of 96 samples). Based on the ROC analyses, oral fluid samples from 78 of 89 pens (87.6%), contained red food coloring, including 43 of 47 (91.5%) pens receiving pig exposure and 35 of 42 (83.3%) pens receiving environmental exposure. Thus, oral fluid samples contain both pig-derived and environmental targets. This methodology provides a safe and quantifiable method to evaluate oral fluid sampling vis-à-vis pen behavior, pen size, sampling protocol, and target distribution in the pen.
Collapse
Affiliation(s)
- Grzegorz Tarasiuk
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Marta D Remmenga
- USDA: VS: Strategy and Policy, Center for Epidemiology and Animal Health, Fort Collins, CO 80526, USA
| | - Kathleen C O'Hara
- USDA: VS: Strategy and Policy, Center for Epidemiology and Animal Health, Fort Collins, CO 80526, USA
| | - Marian K Talbert
- USDA: VS: Strategy and Policy, Center for Epidemiology and Animal Health, Fort Collins, CO 80526, USA
| | | | - Pam Zaabel
- National Pork Board, Des Moines, IA 50325, USA
| | - Danyang Zhang
- Department of Statistics, College of Liberal Arts and Sciences, Iowa State University, Ames, IA 50010, USA
| | - Luis G Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Jeffrey J Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
7
|
Buiatte V, Fonseca A, Alonso Madureira P, Nakashima Vaz AC, Tizioto PC, Centola Vidal AM, Ganda E, de Azevedo Ruiz VL. A comparative study of the bacterial diversity and composition of nursery piglets' oral fluid, feces, and housing environment. Sci Rep 2024; 14:4119. [PMID: 38374338 PMCID: PMC10876639 DOI: 10.1038/s41598-024-54269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/10/2024] [Indexed: 02/21/2024] Open
Abstract
The oral cavity is the portal of entry for many microorganisms that affect swine, and the swine oral fluid has been used as a specimen for the diagnosis of several infectious diseases. The oral microbiota has been shown to play important roles in humans, such as protection against non-indigenous bacteria. In swine, studies that have investigated the microbial composition of the oral cavity of pigs are scarce. This study aimed to characterize the oral fluid microbiota of weaned pigs from five commercial farms in Brazil and compare it to their respective fecal and environmental microbiotas. Bacterial compositions were determined by 16S rRNA gene sequencing and analyzed in R Studio. Oral fluid samples were significantly less diverse (alpha diversity) than pen floor and fecal samples (P < 0.01). Alpha diversity changed among farms in oral fluid and pen floor samples, but no differences were observed in fecal samples. Permutational ANOVA revealed that beta diversity was significantly different among sample types (P = 0.001) and farms (P = 0.001), with separation of sample types (feces, pen floor, and oral fluid) on the principal coordinates analysis. Most counts obtained from oral fluid samples were classified as Firmicutes (80.4%) and Proteobacteria (7.7%). The genera Streptococcus, members of the Pasteurellaceae family, and Veillonella were differentially abundant in oral fluid samples when compared to fecal samples, in which Streptococcus was identified as a core genus that was strongly correlated (SparCC) with other taxa. Firmicutes and Bacteroidota were the most relatively abundant phyla identified in fecal and pen floor samples, and Prevotella_9 was the most classified genus. No differentially abundant taxa were identified when comparing fecal samples and pen floor samples. We concluded that under the conditions of our study, the oral fluid microbiota of weaned piglets is different (beta diversity) and less diverse (alpha diversity) than the fecal and environmental microbiotas. Several differentially abundant taxa were identified in the oral fluid samples, and some have been described as important colonizers of the oral cavity in human microbiome studies. Further understanding of the relationship between the oral fluid microbiota and swine is necessary and would create opportunities for the development of innovative solutions that target the microbiota to improve swine health and production.
Collapse
Affiliation(s)
- Vinicius Buiatte
- Department of Animal Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ana Fonseca
- Department of Animal Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Paloma Alonso Madureira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, Universidade de São Paulo, Pirassununga, SP, Brazil
| | - Andréia Cristina Nakashima Vaz
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, Universidade de São Paulo, Pirassununga, SP, Brazil
| | | | - Ana Maria Centola Vidal
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, Universidade de São Paulo, Pirassununga, SP, Brazil
| | - Erika Ganda
- Department of Animal Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Vera Letticie de Azevedo Ruiz
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, Universidade de São Paulo, Pirassununga, SP, Brazil.
| |
Collapse
|
8
|
Hu Z, Tian X, Lai R, Wang X, Li X. Current detection methods of African swine fever virus. Front Vet Sci 2023; 10:1289676. [PMID: 38144466 PMCID: PMC10739333 DOI: 10.3389/fvets.2023.1289676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
African swine fever (ASF), caused by the African swine fever virus (ASFV), is a highly contagious and notifiable animal disease in domestic pigs and wild boars, as designated by the World Organization for Animal Health (WOAH). The effective diagnosis of ASF holds great importance in promptly controlling its spread due to its increasing prevalence and the continuous emergence of variant strains. This paper offers a comprehensive review of the most common and up-to-date methods established for various genes/proteins associated with ASFV. The discussed methods primarily focus on the detection of viral genomes or particles, as well as the detection of ASFV associated antibodies. It is anticipated that this paper will serve as a reference for choosing appropriate diagnostic methods in diverse application scenarios, while also provide direction for the development of innovative technologies in the future.
Collapse
Affiliation(s)
- Zhiqiang Hu
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
- Shandong New Hope Liuhe Co., Ltd., Qingdao, China
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd., (NHLH Academy of Swine Research), Dezhou, China
- China Agriculture Research System-Yangling Comprehensive Test Station, Xianyang, China
| | - Xiaogang Tian
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
- Shandong New Hope Liuhe Co., Ltd., Qingdao, China
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd., (NHLH Academy of Swine Research), Dezhou, China
| | - Ranran Lai
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
- Shandong New Hope Liuhe Co., Ltd., Qingdao, China
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd., (NHLH Academy of Swine Research), Dezhou, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Xiaowen Li
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
- Shandong New Hope Liuhe Co., Ltd., Qingdao, China
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd., (NHLH Academy of Swine Research), Dezhou, China
- China Agriculture Research System-Yangling Comprehensive Test Station, Xianyang, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Feed and Livestock and Poultry Products Quality and Safety Control, Ministry of Agriculture and Rural Affairs, New Hope Liuhe Co., Ltd., Chengdu, China
| |
Collapse
|
9
|
Sponheim A, Alvarez J, Fano E, Rovira A, McDowell E, Toohill E, Dalquist L, Pieters M. A diagnostic approach to confirm Mycoplasma hyopneumoniae "Day zero" for pathogen eradication. Prev Vet Med 2023; 221:106057. [PMID: 37931354 DOI: 10.1016/j.prevetmed.2023.106057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
Breeding herds in the US are trending toward eradication of Mycoplasma hyopneumoniae (M. hyopneumoniae) due to the positive impact on welfare and downstream production. In an eradication program, "Day 0″ is the time point when the last replacement gilts to enter the herd were exposed to M. hyopneumoniae and marks the beginning of a herd closure. However, no specific diagnostic protocols are available for confirmation of successful exposure to define Day 0. Therefore, the objective of this study was to develop diagnostic guidelines, including sample collection approaches, for two common gilt exposure methods to confirm an entire population has been infected with M. hyopneumoniae following purposeful exposure. Forty gilts, age 21-56 days, were ear-tagged for longitudinal sample collection at five commercial gilt developer units (GDUs) and were exposed to M. hyopneumoniae by natural contact or aerosolization. Study gilts originated from sources known to be negative to major swine pathogens, including M. hyopneumoniae, and were sampled prior to exposure to confirm negative status, then every two weeks. Blood samples were collected for antibody detection, while laryngeal and deep tracheal secretions and pen based oral fluids were collected for PCR, and sampling continued until at least 85% of samples were positive by PCR. Detection of M. hyopneumoniae varied greatly based on sample type. Oral fluids showed the lowest detection in groups of gilts detected positive by other sample types. Detection by PCR in deep tracheal secretions was higher than in laryngeal secretions. Seroconversion to and PCR detection of M. hyopneumoniae on oral fluids were delayed compared to PCR detection at the individual level. By two weeks post-exposure, at least 85% of study gilts in three GDUs exposed by aerosolization were PCR positive in deep tracheal secretions. Natural contact exposure resulted in 22.5% of study gilts becoming PCR positive by two weeks post-initial exposure, 61.5% at four weeks, and 100% at six weeks on deep tracheal secretions. Deep tracheal secretions required the lowest number of gilts to sample for the earliest detection compared to all other samples evaluated. As observed in one of the GDUs using aerosolization, demonstration of failure to expose gilts to M. hyopneumoniae allowed for early intervention in the exposure protocol and delay of Day 0, for accurate timing of the eradication protocol. Sampling guidelines proposed in this study can be used for verification of M. hyopneumoniae infection of gilts following exposure to determine Day 0 of herd closure.
Collapse
Affiliation(s)
- Amanda Sponheim
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA; Boehringer Ingelheim Animal Health Inc., 3239 Satellite Blvd NW, Duluth, GA 30096, USA
| | - Julio Alvarez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA
| | - Eduardo Fano
- Boehringer Ingelheim Animal Health Inc., 3239 Satellite Blvd NW, Duluth, GA 30096, USA
| | - Albert Rovira
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA; Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA
| | - Emily McDowell
- Pipestone Veterinary Services, 1300 S Highway 75, Pipestone, MN 56164, USA
| | - Elise Toohill
- The Maschhoffs, 6996 State Route 127, Carlyle, IL 62231, USA
| | - Laura Dalquist
- Swine Vet Center, 1608 S Minnesota Ave., St. Peter, MN 56082, USA
| | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA; Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA; Swine Disease Eradication Center, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
10
|
Berger PI, Hermanns S, Kerner K, Schmelz F, Schüler V, Ewers C, Bauerfeind R, Doherr MG. Cross-sectional study: prevalence of oedema disease Escherichia coli (EDEC) in weaned piglets in Germany at pen and farm levels. Porcine Health Manag 2023; 9:49. [PMID: 37885038 PMCID: PMC10601234 DOI: 10.1186/s40813-023-00343-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Escherichia coli bacteria capable of producing the toxin Stx2e and possessing F18-fimbriae (edema disease E. coli, EDEC) are considered causative agents of porcine oedema disease. This disease, which usually occurs in piglets shortly after weaning, has a high lethality in affected animals and can lead to high economic losses in piglet rearing. The aim of this cross-sectional field study was to determine the prevalence of EDEC in weaned piglets in Germany at pen and farm levels. RESULTS Ninety-nine farms with unknown history of infections with shigatoxin-producing E. coli (STEC) and oedema disease were sampled. On each farm, up to five pens were selected for sampling (n = 481). The piglets in these pens were at an age 1-3 weeks after weaning. Single faecal samples (n = 2405) and boot swabs (n = 479) were collected from the floor. On 50 farms, cotton ropes were additionally used to collect oral fluid samples (n = 185) and rope wash out samples (n = 231) from the selected pens. All samples were analyzed by bacterial culture combined with a duplex PCR for the presence of the corresponding genes stx2e and fedA (major subunit protein of F18 fimbriae). In addition, whole DNA specimens extracted from boot swabs, oral fluid samples, and rope wash out samples were directly examined by duplex PCR for DNA of stx2e and fedA. A pen was classified as positive if at least one of the samples, regardless of the technique, yielded a positive result in the PCR, and farms were considered positive if at least one pen was classified as positive. Overall, genes stx2e and fedA were found simultaneously in 24.9% (95% CI 22.1-29.1%) of sampled pens and in 37.4% (95% CI 27.9-47.7%) of sampled farms. Regardless of the presence of F18-fimbriae, Escherichia coli encoding for Stx2e (STEC-2e) were found in 35.1% (95% CI 31.0-39.1%) of the pens and 53.5% (95% CI 44.4-63.6%) of the farms sampled. CONCLUSIONS Escherichia coli strains considered capable to cause oedema disease in swine (EDEC) are highly prevalent in the surveyed pig producing farms in Germany. Due to intermittent shedding of EDEC and a potentially low within-farm prevalence, we recommend a combination of different sampling techniques for EDEC monitoring at pen and farm levels. Further studies are needed to understand which STEC-2e strains really pose the risk of causing severe porcine disease.
Collapse
Affiliation(s)
- Pia I Berger
- Institute of Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Berlin, Germany.
| | - Steffen Hermanns
- Institute for Hygiene and Infectious Diseases of Animals, Justus Liebig University, Giessen, Germany
| | - Katharina Kerner
- Institute for Hygiene and Infectious Diseases of Animals, Justus Liebig University, Giessen, Germany
| | | | | | - Christa Ewers
- Institute for Hygiene and Infectious Diseases of Animals, Justus Liebig University, Giessen, Germany
| | - Rolf Bauerfeind
- Institute for Hygiene and Infectious Diseases of Animals, Justus Liebig University, Giessen, Germany
| | - Marcus G Doherr
- Institute of Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
11
|
Athanasiou LV, Katsogiannou EG, Tyrnenopoulou P, Gougoulis D, Apostolidis KN, Papadakis SM, Kokkinaki KCG, Papatsiros VG, Tsokana CN. Evidence of Horse Exposure to Anaplasma phagocytophilum, Borrelia burgdorferi, and Leishmania infantum in Greece through the Detection of IgG Antibodies in Serum and in an Alternative Diagnostic Sample-The Saliva. Biomolecules 2023; 13:1374. [PMID: 37759774 PMCID: PMC10526806 DOI: 10.3390/biom13091374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Among the various zoonotic pathogens that infect horses, Anaplasma phagocytophilum, Borrelia spp. and Leishmania spp. have gained scientific interest, and relevant molecular and serological studies in horses have been conducted worldwide. Moreover, human and veterinary medicine have extensively applied alternatives to serum diagnostic samples-such as saliva-for detecting pathogens or antibodies. In this study, we investigated the exposure of horses in Greece to A. phagocytophilum, B. burgdorferi, and L. infantum, and we assessed the diagnostic accuracy of saliva compared to serum in detecting IgG antibodies against the abovementioned pathogens. Paired saliva and serum samples were collected from 317 horses from different regions in Greece. The paired samples were examined using the indirect fluorescent antibody test (IFAT) for detecting IgG antibodies against A. phagocytophilum, B. burgdorferi, and L. infantum. Sensitivity, specificity, positive likelihood ratio (PLR), and negative likelihood ratio (NLR) were determined to assess the validity of saliva as an alternative to serum. The receiver operating characteristic (ROC) curve revealed that the optimal cut-off value for detecting antibodies against all the examined pathogens in saliva was 1/10. Higher seropositivity rates were found for B. burgdorferi (15.14%) and A. phagocytophilum (14.19%) compared to L. infantum (1.26%). The detection of IgG antibodies using IFAT in saliva samples had a good test performance compared to serum. The two sample types had a substantial to almost perfect agreement. Although the sensitivity was moderate (70.83-75.56%) in all cases, the specificity was almost perfect to perfect (99.63-100%). This study provides the first evidence that horses in Greece are exposed to A. phagocytophilum and B. burgdorferi and confirms that the seroprevalence of L. infantum in horses in Greece remains low. Our findings suggest that saliva sampling coupled with IFAT could be successfully applied for detecting IgG antibodies against these important zoonotic pathogens in large-scale epidemiological studies in horses, at the population level, as an alternative to serum.
Collapse
Affiliation(s)
- Labrini V. Athanasiou
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (E.G.K.); (P.T.); (D.G.); (K.N.A.); (S.M.P.); (K.C.G.K.); (V.G.P.)
| | | | | | | | | | | | | | | | - Constantina N. Tsokana
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (E.G.K.); (P.T.); (D.G.); (K.N.A.); (S.M.P.); (K.C.G.K.); (V.G.P.)
| |
Collapse
|
12
|
Ornelas MAS, López-Martínez MJ, Franco-Martínez L, Cerón JJ, Ortín-Bustillo A, Rubio CP, Manzanilla EG. Analysing biomarkers in oral fluid from pigs: influence of collection strategy and age of the pig. Porcine Health Manag 2023; 9:39. [PMID: 37649074 PMCID: PMC10466680 DOI: 10.1186/s40813-023-00333-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Oral fluid (OF) is an easy-to-collect, inexpensive, fast and non-invasive sample to characterize health and welfare status of the pig. However, further standardisation of the collection methods is needed in order to use it regularly in veterinary practice. Cotton ropes are routinely used to collect OF for pathogen detection but they may not be optimal for biomarker analysis due to sample contamination. This study compared two methods (cotton ropes and sponges) to collect porcine OF for biomarker analysis. A panel of 11 biomarkers of stress, inflammation, sepsis, immunity, redox status and general homeostasis was studied. MATERIALS AND METHODS Eighteen farrow-to-finish pig farms were included in the study. In each farm, three (for sponges) or four pens of pigs (for ropes) were sampled at four age categories: the week after weaning (5 weeks), before (11-12 weeks) and after (12-13 weeks) moving to finisher facility and the week before slaughter (22-25 weeks). In total, 288 OF samples were collected with cotton ropes and 216 with sponges and analysed for the biomarkers: cortisol, alpha-amylase, oxytocin (stress), haptoglobin (inflammation), procalcitonin (sepsis), adenosine deaminase, immunoglobulin G (immune system), ferric reducing antioxidant power (redox status), and creatine kinase, lactate dehydrogenase and total protein (general homeostasis). Samples were also scored visually for dirtiness using a score from 1 (clean) to 5 (very dirty). RESULTS Rope-collected OF had higher levels of dirtiness (3.7 ± 0.04) compared to sponge-collected OF (2.7 ± 0.15) and had higher values than sponges for cortisol, procalcitonin, oxytocin, haptoglobin, total protein, lactate dehydrogenase and ferric reducing antioxidant power. All biomarkers decreased in value with age. Immunoglobulin G did not perform well for any of the two collection methods. DISCUSSION AND CONCLUSION The results showed a clear effect of age on the biomarkers in OF collected with both, sponges or ropes. Sponges provided a cleaner sample than cotton ropes for biomarker analysis. Both methods are easy to apply under the commercial conditions in pig farms although sponges may take more time in early weaner stages. From a practical point of view, sampling with sponges achieved the best combination of reduced sampling time and low contamination.
Collapse
Affiliation(s)
- Mario Andre S Ornelas
- Pig Development Department, Teagasc Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland.
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland.
| | - María José López-Martínez
- Interdisciplinary Laboratory of Clinical Analysis, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia (Interlab-UMU), University of Murcia, Campus de Espinardo s/n, Murcia, 30100, Spain
| | - Lorena Franco-Martínez
- Pig Development Department, Teagasc Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
- Interdisciplinary Laboratory of Clinical Analysis, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia (Interlab-UMU), University of Murcia, Campus de Espinardo s/n, Murcia, 30100, Spain
| | - José J Cerón
- Interdisciplinary Laboratory of Clinical Analysis, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia (Interlab-UMU), University of Murcia, Campus de Espinardo s/n, Murcia, 30100, Spain
| | - Alba Ortín-Bustillo
- Interdisciplinary Laboratory of Clinical Analysis, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia (Interlab-UMU), University of Murcia, Campus de Espinardo s/n, Murcia, 30100, Spain
| | - Camila Peres Rubio
- Interdisciplinary Laboratory of Clinical Analysis, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia (Interlab-UMU), University of Murcia, Campus de Espinardo s/n, Murcia, 30100, Spain
| | - Edgar Garcia Manzanilla
- Pig Development Department, Teagasc Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
13
|
Gou H, Lin Q, Shen H, Jia K, Liang Y, Peng J, Zhang C, Qu X, Li Y, Lin J, Zhang J, Liao M. A novel linear displacement isothermal amplification with strand displacement probes (LDIA-SD) in a pocket-size device for point-of-care testing of infectious diseases. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 379:133244. [PMID: 36589905 PMCID: PMC9789534 DOI: 10.1016/j.snb.2022.133244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Nucleic acid amplification is crucial for disease diagnosis, especially lethal infectious diseases such as COVID-19. Compared with PCR, isothermal amplification methods are advantageous for point-of-care testing (POCT). However, complicated primer design limits their application in detecting some short targets or sequences with abnormal GC content. Herein, we developed a novel linear displacement isothermal amplification (LDIA) method using two pairs of conventional primers and Bacillus stearothermophilus (Bst) DNA polymerase, and reactions could be accelerated by adding an extra primer. Pseudorabies virus gE (high GC content) and Salmonella fimW (low GC content) genes were used to evaluate the LDIA assay. Using strand displacement (SD) probes, a LDIA-SD method was developed to realize probe-based specific detection. Additionally, we incorporated a nucleic acid-free extraction step and a pocket-sized device to realize POCT applications of the LDIA-SD method. The LDIA-SD method has advantages including facile primer design, high sensitivity and specificity, and applicability for POCT, especially for amplification of complex sequences and detection of infectious diseases.
Collapse
Affiliation(s)
- Hongchao Gou
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Qijie Lin
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Haiyan Shen
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Kaiyuan Jia
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yucen Liang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Junhao Peng
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Chunhong Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Xiaoyun Qu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jianhan Lin
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Jianmin Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ming Liao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
- Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
14
|
DAS MONTI, DE ANKAN, BEHERA PARTHASARATHI, ALI MOHAMMADAYUB, SUBUDHI PRASANTKUMAR, KALITA GIRIN, KAYINA ASHULIKHOZHIIO, GALI JAGANMOHANARAO. Porcine salivary proteome analysis identifies potential early pregnancy-specific protein biomarkers. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2023. [DOI: 10.56093/ijans.v93i2.119316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Early diagnosis of pregnancy is of utmost importance to optimize profit in pig husbandry. Identifying candidate protein biomarkers for early diagnosis of pregnancy in a non-invasive sample such as saliva may produce a colossallead to accomplish the purpose. Therefore, in this study, comparative salivary proteome profile of day 12 of gestation, representing elongation of blastocysts stage and non-pregnant sows was explored by label-free quantitation (LFQ) based mass spectrometry approach to identify early pregnancy biomarkers. A total of 115 proteins were identified as differentially expressed proteins (DEPs) with significant difference between non-pregnant and early pregnancy groups. Among the DEPs, majority of the proteins (82 out of 115 DEPs) were found to be down-regulated in early pregnancy group (fold change >2) compared to non-pregnant control. Functional classification and pathway analysis of the DEPs revealed involvement of most of the proteins in integrin signalling pathways, blood coagulation, carbohydrate metabolism, oxidative stress response and regulation of protein folding. Few DEPs with higher fold change during early pregnancy such as thioredoxin, heat shock 70 kDa protein 1A, alpha 1-S haptoglobin, and glutathione S-transferase pi 1 may have potential as biomarkers for early pregnancy diagnosis in pigs based on their recognized role in different pregnancy related activities. Overall, our results provide a set of salivary proteins which can be used as potential biomarkers for early pregnancy diagnosis after large scale validation.
Collapse
|
15
|
Immune status of piglets during the first week of life: Current knowledge, significance and assessment. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2022-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
The immune system of neonate piglets differs from adult pigs in structure and competence. Although piglets are born immunocompetent, they are genuinely immunologically defenceless. To survive in the environment, piglets need passive protection provided by sow’s colostrum and milk when constantly exposed to numerous pathogens. Early assessment of piglets’ immune status may enable rapid intervention in case of detection of any deficiencies or disorders. Moreover, awareness of the piglets’ immunocompetence and the level of maternally-derived antibodies (MDA) may allow the creation of a proper vaccine schedule. Hence, extending knowledge of prenatal ontogeny of the porcine immune system, the immune status of neonate piglets’ and the immunological components of porcine colostrum is crucial. Since animal welfare has become a more critical element of animal production, new, non-invasive sampling methodologies are highly desirable for the evaluation of piglets’ immune status.
Collapse
|
16
|
Kauter J, Damek F, Schares G, Blaga R, Schott F, Deplazes P, Sidler X, Basso W. Detection of Toxoplasma gondii-specific antibodies in pigs using an oral fluid-based commercial ELISA: Advantages and limitations. Int J Parasitol 2022:S0020-7519(22)00183-7. [PMID: 36587725 DOI: 10.1016/j.ijpara.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 12/30/2022]
Abstract
Toxoplasma gondii is a major food-borne parasite and undercooked meat of infected pigs represents an important source of infection for humans. Since infections in pigs are mostly subclinical, adequate diagnostic tests for use at the farm level are pursued. Oral fluid (OF) was shown to be a promising matrix for direct and indirect detection of infections with various pathogens in pigs. The objective of this study was to assess whether T. gondii infections in pigs could be diagnosed using an indirect ELISA kit adapted for OF samples (OF-ELISA). Routine serology and OF-immunoblot (IB) were used as standards for the comparison. For this, serial OF samples from sows (n = 8) and fatteners (n = 3) experimentally inoculated with T. gondii oocysts, individual field samples from potentially exposed sows (n = 9) and pooled OF samples from potentially exposed group-housed fatteners (n = 195 pig groups, including 2,248 animals) were analysed for antibodies against T. gondii by ELISA. For individual animals, OF-ELISA exhibited a relative diagnostic specificity of 97.3% and a relative diagnostic sensitivity of 78.8%. In experimentally infected animals, positive OF-ELISA results were observed from 1.5 weeks post inoculation (pi) until the end of the experimental setup (8 to 30 weeks pi); however, values below the estimated cut-off were occasionally observed in some animals despite constant seropositivity. In potentially exposed individual animals, OF- and serum-ELISA results showed 100% agreement. In group-housed fatteners, antibodies against T. gondii could be reliably detected by OF-ELISA in groups in which at least 25% of the animals were seropositive. This OF-ELISA, based on a commercially available serum-ELISA, may represent an interesting non-invasive screening tool for detecting pig groups with a high exposure to T. gondii at the farm level. The OF-ELISA may need further adjustments to consistently detect individual infected pigs, probably due to variations in OF antibody concentration over time.
Collapse
Affiliation(s)
- Johanna Kauter
- Institute of Parasitology, Vetsuisse-Faculty, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland
| | - Filip Damek
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Laboratoire de Santé Animale, BIPAR, Maisons-Alfort F-94700, France
| | - Gereon Schares
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald‑Insel Riems, Germany
| | - Radu Blaga
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Laboratoire de Santé Animale, BIPAR, Maisons-Alfort F-94700, France
| | - Franziska Schott
- Department of Farm Animals, Division of Swine Medicine, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland
| | - Peter Deplazes
- Institute of Parasitology, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 266a, CH-8057 Zurich, Switzerland
| | - Xaver Sidler
- Department of Farm Animals, Division of Swine Medicine, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland
| | - Walter Basso
- Institute of Parasitology, Vetsuisse-Faculty, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland.
| |
Collapse
|
17
|
Kleinmans M, Fiebig K, Tabeling R, Swam H, Duivelshof-Crienen A, Ritzmann M, Eddicks M. Explorative Field Study on the Use of Oral Fluids for the Surveillance of Actinobacillus pleuropneumoniae Infections in Fattening Farms by an Apx-Real-Time PCR. Vet Sci 2022; 9:vetsci9100552. [PMID: 36288165 PMCID: PMC9607612 DOI: 10.3390/vetsci9100552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022] Open
Abstract
Simple Summary Oral fluid sampling (OFS) is an animal friendly and easy way for surveillance purposes in domestic swine populations, especially concerning respiratory diseases. In case of Actinobacillus (A.) pleuropneumoniae surveillance, measures are usually combined with burdensome sampling for animals and humans. In the present study, we evaluated the suitability of oral fluids (OFs) for surveillance purposes of A. pleuropneumoniae infections in fattening pigs using an Apx-toxin real-time PCR. We were able to demonstrate that the examination of OFs by an Apx-toxin real-time PCR is suitable for A. pleuropneumoniae surveillance in the field in an animal friendly and easy way. These results might contribute to an increased compliance of laboratory diagnostic measures on pig farms and thereby to increased animal welfare due to less burdensome sampling and improved animal health. Abstract Oral fluids (OFs) represent a cost effective and reliable tool for surveillance purposes, mostly regarding viruses. In the present study, we evaluated the suitability of OFs for surveillance purposes concerning Actinobacillus (A.) pleuropneumoniae infections in fattening pigs under field conditions. OFs were examined with an Apx-toxin real-time PCR that detects the genes encoding for Apx I-, Apx III-, and Apx IV-toxin. For this purpose, we conducted a pen-wise collection of OFs over one fattening period from fattening pigs of two farms (farm A and B) with a known history of A. pleuropneumoniae infection. Lung lesions were determined at slaughter to estimate the extend of pulmonary lesions and pleural affection. Apx III- and Apx IV-toxin DNA were present in the OFs of both farms whereas Apx I-toxin DNA was present on farm A only. We were able to detect Apx I-, Apx III-, and Apx IV-toxin DNA in different patterns directly after introduction of the new pigs in the farms and over the entire study period. In summary, or results indicate the suitability of OFS for the early detection and surveillance of A. pleuropneumoniae in fattening farms.
Collapse
Affiliation(s)
| | - Kerstin Fiebig
- Intervet Deutschland GmbH, MSD Animal Health, 85716 Unterschleissheim, Germany
| | - Robert Tabeling
- Intervet Deutschland GmbH, MSD Animal Health, 85716 Unterschleissheim, Germany
| | - Hanny Swam
- Intervet International B.V., 5831 AK Boxmeer, The Netherlands
| | | | - Mathias Ritzmann
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
| | - Matthias Eddicks
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
- Correspondence:
| |
Collapse
|
18
|
Xu Q, Sun Y, Yang J, Ma F, Wang Y, Zhang S, Li X, Qu X, Bai Y, Jia R, Wang L, Zhang E, Zhang G. An Improved Immunochromatographic Strip Based on Plant-Derived E2 for Detection of Antibodies against Classical Swine Fever Virus. Microbiol Spectr 2022; 10:e0105022. [PMID: 35862968 PMCID: PMC9431618 DOI: 10.1128/spectrum.01050-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Vaccination is an effective method to control the spread of classical swine fever virus (CSFV), which is a major cause of economic losses to the swine industry. Although serological detection assays are commonly used to assess immune status, current methods for monitoring of antibodies (Abs) are time-consuming, expensive, and require cell culture and virus manipulation. To address these problems, the E2 protein of CSFV was expressed in transgenic rice seeds as a labeled antigen for the development of an immunochromatographic test strip (ICTS) for rapid, precise, and cost-effective detection of Abs. The ICTS has a reasonable sensitivity of 1:128,000 for detection of serum Abs against CSFV and no cross-reactivity with Abs of other porcine viruses. The similarity of the results between the proposed ICTS and a commercial enzyme-linked immunosorbent assay was 94.1% (128/136) for detection of serum Abs from immunized animals and 92.3% (72/78) for detection of maternally derived Abs. The proposed assay was successfully used to monitor Abs against E2 of both pigs and rabbits immunized with a live attenuated vaccine or an E2 subunit vaccine. The results confirmed that the ICTS can be applied to detect Ab levels in animals with different immunological backgrounds. The ICTS based on plant-derived E2 is a relatively inexpensive, rapid, and accurate assay for detection of Abs against CSFV and avoids the risk of contamination by animal products. IMPORTANCE The E2 protein of classical swine fever virus (CSFV) was expressed in transgenic rice endosperms as a diagnostic antigen for use with a rapid colloidal gold assay for the detection of antibodies (Abs) against CSFV. This improved test was used to monitor Abs against the E2 protein in both pigs and rabbits immunized with a live attenuated vaccine or E2 subunit vaccine. The assay successfully detected Ab levels in serum samples from piglets with different immunological backgrounds. In contrast to current E2 protein-based diagnostic methods using Escherichia coli or insect cells as expression systems, plant-derived E2 avoids the limitations of low immunogenicity of eukaryotic expression systems and potential contamination of fetal bovine serum with bovine viral diarrhea virus in cell culture.
Collapse
Affiliation(s)
- Qianru Xu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agriculture University,Zhengzhou, China
- School of basic medical sciences, Henan University, Kaifeng, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yaning Sun
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jifei Yang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Fanshu Ma
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Yanan Wang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shenli Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agriculture University,Zhengzhou, China
| | - Xueyang Li
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agriculture University,Zhengzhou, China
| | - Xiaotian Qu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agriculture University,Zhengzhou, China
| | - Yilin Bai
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Rui Jia
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Li Wang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Erqin Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agriculture University,Zhengzhou, China
| | - Gaiping Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agriculture University,Zhengzhou, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
19
|
Effect of pooling family oral fluids on the probability of PRRSV RNA detection by RT-rtPCR. Prev Vet Med 2022; 206:105701. [DOI: 10.1016/j.prevetmed.2022.105701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/18/2022] [Accepted: 06/26/2022] [Indexed: 11/20/2022]
|
20
|
Identification of Estrus in Sows Based on Salivary Proteomics. Animals (Basel) 2022; 12:ani12131656. [PMID: 35804555 PMCID: PMC9264986 DOI: 10.3390/ani12131656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
The estrus cycle of multiparous Large White sows was divided into three stages to solve the problems of heavy workload and low accuracy of the traditional estrus identification method in pig production. Saliva protein was extracted from the oral saliva of multiparous sows. Label-free quantitative proteomics was used to detect salivary proteome, and MaxQuant software was used for quality control. Results showed that 246 proteins were identified in the three stages, where 40 proteins were significantly different (p < 0.05). The total proteins identified were enriched by STEM software and the protein function was annotated by using the ClueGO plug-in in the Cytoscape software. The results were enriched to eight different trends. The annotated items were related to protein synthesis and processing and estrogen response. Gene ontology and the Kyoto Encyclopedia of Genes and Genomes enrichment analysis of differential proteins involved in the pathways and entries included oocyte meiosis, response to estradiol, and oogenesis. Further interaction analysis showed that an interaction occurred between P00355, F1SHL9, P28491, F1SDR7, F2Z558, F1RYY6, and F2Z5G3 proteins. The findings served as a basis for revealing the changes in salivary protein content in the sow estrus cycle and provided a reference for the development of an estrus identification kit/test strip in the next step.
Collapse
|
21
|
UHPLC-MS/MS Analysis of Antibiotics Transfer and Concentrations in Porcine Oral Fluid after Intramuscular Application. Pharmaceuticals (Basel) 2022; 15:ph15020225. [PMID: 35215336 PMCID: PMC8879095 DOI: 10.3390/ph15020225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/28/2022] Open
Abstract
The monitoring of antibiotic use in animals is a crucial element to ensure food safety. The main goal of this study was to analyse the distribution of selected antibiotics to porcine oral fluid, as well as to demonstrate that an oral fluid is an alternative to other biological matrices used in the control of antibacterials. Therefore, an animal study with pigs treated using seven different antibiotics was performed. Sulfadoxine (SDX) with trimethoprim (TRMP), lincomycin (LIN), tiamulin (TIAM), tylosin (TYL), amoxicillin (AMX) and penicillin G (PEN G) were injected intramuscularly to pigs, and concentrations of these analytes in the oral fluid were assessed. Ultra-high-performance liquid chromatography coupled with mass spectrometry (UHPLC-MS/MS) was used to quantify the analytes. On the first day of medication, the highest concentrations for SDX and TRMP at the level of 22,300 µg/kg and 14,100 µg/kg were found, respectively. The concentrations of LIN (10,500 µg/kg) and TIAM (7600 µg/kg) were also relatively high. The peak of TYL was recorded on the second day of drug administration. Most of the analytes were present in oral fluid for 30 days, apart from TYL, which was detected for 27 days. It was found that AMX and PEN G were quantified only for 5 and 8 days, respectively, at very low concentrations. It was found that oral fluid can be used for the verification of antibiotics on pig farms.
Collapse
|
22
|
Point of care diagnostics and non-invasive sampling strategy: a review on major advances in veterinary diagnostics. ACTA VET BRNO 2022. [DOI: 10.2754/avb202291010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The use of point of care diagnostics (POCD) in animal diseases has steadily increased over the years since its introduction. Its potential application to diagnose infectious diseases in remote and resource limited settings have made it an ideal diagnostic in animal disease diagnosis and surveillance. The rapid increase in incidence of emerging infectious diseases requires urgent attention where POCD could be indispensable tools for immediate detection and early warning of a potential pathogen. The advantages of being rapid, easily affordable and the ability to diagnose an infectious disease on spot has driven an intense effort to refine and build on the existing technologies to generate advanced POCD with incremental improvements in analytical performance to diagnose a broad spectrum of animal diseases. The rural communities in developing countries are invariably affected by the burden of infectious animal diseases due to limited access to diagnostics and animal health personnel. Besides, the alarming trend of emerging and transboundary diseases with pathogen spill-overs at livestock-wildlife interfaces has been identified as a threat to the domestic population and wildlife conservation. Under such circumstances, POCD coupled with non-invasive sampling techniques could be successfully deployed at field level without the use of sophisticated laboratory infrastructures. This review illustrates the current and prospective POCD for existing and emerging animal diseases, the status of non-invasive sampling strategies for animal diseases, and the tremendous potential of POCD to uplift the status of global animal health care.
Collapse
|
23
|
The markers of stress in swine oral fluid. J Vet Res 2021; 65:487-495. [PMID: 35112004 PMCID: PMC8775724 DOI: 10.2478/jvetres-2021-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/22/2021] [Indexed: 11/20/2022] Open
Abstract
Introduction The study measured the hormonal and protein markers of acute stress, those of oxidative stress and total antioxidant capacity (TAC) in swine oral fluid, determined which of these parameters would be the most appropriate for future livestock welfare assessment and established the time when the samples should be taken. Material and Methods Stress was induced in 7 out of 14 castrated six-week-old Danbred×Duroc pigs by immobilisation on a nasal snare at 8 a.m., 1 p.m., and 6 p.m. and samples were taken both directly after the stressor was applied and 30 min later. The remaining pigs were the control group, which were not immobilised; their samples were taken at the same times. The concentrations of hormones and malondialdehyde (MDA) were measured using liquid chromatography with tandem mass spectrometry, while those of alpha-amylase and TAC were measured using spectrophotometry. Results The levels of cortisol and cortisone increased with statistical significance immediately after the acute stress response and 30 min later. A cut-off value set at 0.25 ng/mL cortisol concentration was capable of distinguishing between the stressed and control groups with 100% accuracy in evening samples and 95% accuracy overall. Prednisolone was not present, and the levels of testosterone and corticosterone were low and not distinctive. Alpha-amylase became significantly more concentrated during stress induction and 30 min later. The TAC and MDA levels rose after the stress but without statistical significance. Conclusion The most suitable markers of acute stress were cortisol, cortisone and alpha-amylase. Oral fluid is a reliable material for monitoring the level of pigs’ stress and should be collected in the evening.
Collapse
|
24
|
Insights into the Oral Bacterial Microbiota of Sows. Microorganisms 2021; 9:microorganisms9112314. [PMID: 34835441 PMCID: PMC8619539 DOI: 10.3390/microorganisms9112314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/25/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
The investigation of bacterial microbiota represents a developing research field in veterinary medicine intended to look for correlations between animal health and the balance within bacterial populations. The aim of the present work was to define the bacterial microbiota of the oral cavity of healthy sows, which had not been thoroughly described so far. In total, 22 samples of oral fluid were collected and analyzed by 16S-rRNA gene sequencing. CLC Genomics Workbench 20.0 (QIAGEN Digital Insights, Aarhus, Denmark) was then used to examine the results. The predominant orders were Lactobacillales, Clostridiales, and Corynebacteriales. Lactobacillaceae, Corynebacteriaceae, Moraxellaceae, Aerococcaceae, and Staphylococcaceae were the most represented families. As regards the most abundant genera, Lactobacillus, Corynebacterium, Acinetobacter, Staphylococcus, Rothia, Aerococcus, and Clostridium can be pointed out as the bacterial core microbiota. Sows were also divided into “gestating” and “lactating” groups, and mild differences were found between pregnant and lactating sows. The data herein described represent an original contribution to the knowledge of the porcine bacterial microbiota. Moreover, the choice of sows as experimental animals was strategic for identifying the adult microbial community. These data provide a basis for further studies on the oral bacterial microbiota of pigs.
Collapse
|
25
|
Ortega J, Infantes-Lorenzo JA, Bezos J, Roy Á, de Juan L, Romero B, Moreno I, Gómez-Buendía A, Agulló-Ros I, Domínguez L, Domínguez M. Evaluation of P22 ELISA for the Detection of Mycobacterium bovis-Specific Antibody in the Oral Fluid of Goats. Front Vet Sci 2021; 8:674636. [PMID: 34458351 PMCID: PMC8385241 DOI: 10.3389/fvets.2021.674636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
The ante-mortem diagnosis of tuberculosis (TB) in ruminants is based mainly on the intradermal tuberculin test and the IFN-γ assay. Antibody (Ab)-based tests have emerged as potential tools for the detection of TB infected animals using serum, plasma, or even milk samples. Oral fluids have also been evaluated as alternative samples with which to detect specific Abs against Mycobacterium bovis in pigs or wild boars, but not in ruminants. The objective of this study was, therefore, to evaluate the performance of an in house-ELISA for TB diagnosis (P22 ELISA) in goats as an experimental model for the diagnosis of TB using oral fluid samples. Oral fluid samples from 64 goats from a TB-infected herd (n = 197) and all the animals from a TB-free herd (n = 113) were analyzed using the P22 ELISA. The estimated sensitivity (Se) and specificity (Sp) were 34.4% (95% CI: 22.4–45.6) and 100% (95% CI: 97.4–100), respectively. The optimal cut-off point was set at 100% according to the ROC analysis. Those animals with a higher level of Abs in their oral fluid attained a higher lesion score (p = 0.018). In fact, when taking into account only the setting of the animals with severe lesions (n = 16), the ELISA showed a Se of 75% (95% CI: 53.7–96.2). Results of the present study suggest that the P22 ELISA is highly specific but has a limited value detecting infected animals in oral fluid samples. Nevertheless, its performance is significantly higher in the presence of severe lesions.
Collapse
Affiliation(s)
- Javier Ortega
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - José A Infantes-Lorenzo
- Unidad de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Investigación Carlos III, Madrid, Spain
| | - Javier Bezos
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Álvaro Roy
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Lucia de Juan
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Beatriz Romero
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Inmaculada Moreno
- Unidad de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Investigación Carlos III, Madrid, Spain
| | | | - Irene Agulló-Ros
- Grupo de Investigación en Sanidad Animal y Zoonosis, Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Mercedes Domínguez
- Unidad de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Investigación Carlos III, Madrid, Spain
| |
Collapse
|
26
|
De Lucia A, Cawthraw SA, Smith RP, Davies R, Bianco C, Ostanello F, Martelli F. Pilot Investigation of Anti- Salmonella Antibodies in Oral Fluids from Salmonella Typhimurium Vaccinated and Unvaccinated Swine Herds. Animals (Basel) 2021; 11:ani11082408. [PMID: 34438865 PMCID: PMC8388757 DOI: 10.3390/ani11082408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/01/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The consumption of pork meat is responsible for a significant number of outbreaks of salmonellosis in people. Surveillance in pig herds is constrained by the cost-effectiveness and efficiency of sampling methods. The last decade has seen significant advances in the routine use of pool samples, including oral fluids (OFs). This study aimed to investigate the OF collected passively via chewed sampling ropes as a potential sample type for assessing anti-Salmonella antibodies in two Salmonella-vaccinated (V) and two non-vaccinated (NV) farrow-to-finish pig farms, comparing the results with the Salmonella shedding of tested animals. Sows in the V farms were vaccinated prior to farrowing. Pooled faecal and OF samples were collected from sows and their offspring. Salmonella was isolated with direct bacteriological methods. A commercial ELISA assay was adapted to detect IgG and IgA antibodies in OF. Overall, a higher Salmonella prevalence was observed in the NV farm and in the offspring (76.3%) compared to sows (36.4%). The protocol used to test anti-Salmonella IgA in pig OF samples was found to lack sensitivity and specificity. At herd level, IgG is the most reliable isotype for monitoring Salmonella specific antibody via OF. Abstract Oral fluid (OF) can be a simple, cheap and non-invasive alternative to serum or meat juice for the diagnosis and surveillance of important pathogens in pigs. This study was conducted on four Salmonella Typhimurium-positive farrow-to-finish pig farms: two Salmonella-vaccinated (V) and two non-vaccinated (NV). Gilts and sows in the V farms were vaccinated with a live, attenuated vaccine prior to farrowing. Pooled faecal and OF samples were collected from the sows and their offspring. Salmonella was isolated according to ISO6579–1:2017. In parallel, IgG and IgA levels were assessed in OF samples using a commercial ELISA assay. Salmonella was detected in 90.9% of the pooled faecal samples from the NV farms and in 35.1% of the pooled faecal samples from the V farms. Overall, a higher prevalence was observed in the pooled faecal samples from the offspring (76.3%) compared to the sows (36.4%). IgG antibodies measured in V farms are likely to be related to vaccination, as well as exposure to Salmonella field strains. The detection of IgA antibodies in OF was unreliable with the method used. The results of this study show that IgG is the most reliable isotype for monitoring Salmonella-specific antibody immunity in vaccinated/infected animals via OF.
Collapse
Affiliation(s)
- Alessia De Lucia
- Department of Veterinary Medical Sciences, School of Agriculture and Veterinary Medicine, via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy;
| | - Shaun A. Cawthraw
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone KT15 3NB, UK; (S.A.C.); (R.P.S.); (R.D.); (F.M.)
| | - Richard Piers Smith
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone KT15 3NB, UK; (S.A.C.); (R.P.S.); (R.D.); (F.M.)
| | - Rob Davies
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone KT15 3NB, UK; (S.A.C.); (R.P.S.); (R.D.); (F.M.)
| | - Carlo Bianco
- Animal and Plant Health Agency Lasswade, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK;
| | - Fabio Ostanello
- Department of Veterinary Medical Sciences, School of Agriculture and Veterinary Medicine, via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy;
- Correspondence:
| | - Francesca Martelli
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone KT15 3NB, UK; (S.A.C.); (R.P.S.); (R.D.); (F.M.)
| |
Collapse
|
27
|
Trevisan G, Sharma A, Gauger P, Harmon KM, Zhang J, Main R, Zeller M, Linhares LCM, Linhares DCL. PRRSV2 genetic diversity defined by RFLP patterns in the United States from 2007 to 2019. J Vet Diagn Invest 2021; 33:920-931. [PMID: 34180734 DOI: 10.1177/10406387211027221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The genetic diversity of porcine reproductive and respiratory syndrome virus (PRRSV) increases over time. In 1998, restriction-fragment length polymorphism (RFLP) pattern analysis was introduced to differentiate PRRSV wild-type strains from VR2332, a reference strain from which a commercial vaccine (Ingelvac PRRS MLV) was derived. We have characterized here the PRRSV genetic diversity within selected RFLP families over time and U.S. geographic space, using available ISU-VDL data from 2007 to 2019. The 40,454 ORF5 sequences recovered corresponded to 228 distinct RFLPs. Four RFLPs [2-5-2 (21.2%), 1-7-4 (15.6%), 1-4-4 (11.8%), and 1-8-4 (9.9%)] represented 58.5% of all ORF5 sequences and were used for cluster analysis. Over time, there was increased detection of RFLPs 2-5-2, 1-7-4, 1-3-4, 1-3-2, and 1-12-4; decreased detection of 1-4-2, 1-18-4, 1-18-2, and 1-2-2; and different detection trends for 1-8-4, 1-4-4, 1-26-1, 1-22-2, and 1-2-4. An over-time cluster analysis revealed a single cluster for RFLP 2-5-2, supporting that sequences within RFLP 2-5-2 are still relatively conserved. For 1-7-4, 1-4-4, and 1-8-4, there were multiple clusters. State-wise cluster analysis demonstrated 4 main clusters for RFLP 1-7-4 and 1-8-4, and 6 for RFLP 1-4-4. For the other RFLPs, there was a significant genetic difference within them, particularly between states. RFLP typing is limited in its ability to discriminate among different strains of PRRSV. Understanding the magnitude of genetic divergence within RFLPs helps develop PRRSV regional control programs, placement, herd immunization strategies, and design of appropriate animal movements across borders to minimize the risk of PRRSV transmission.
Collapse
Affiliation(s)
- Giovani Trevisan
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Aditi Sharma
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Phillip Gauger
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Karen M Harmon
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Jianqiang Zhang
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Rodger Main
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Michael Zeller
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Leticia C M Linhares
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Daniel C L Linhares
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
28
|
Evaluation of colonization, variable lipoprotein-based serological response, and cellular immune response of Mycoplasma hyorhinis in experimentally infected swine. Vet Microbiol 2021; 260:109162. [PMID: 34217902 DOI: 10.1016/j.vetmic.2021.109162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/17/2021] [Indexed: 11/22/2022]
Abstract
Mycoplasma hyorhinis (Mhr) is a commensal of the upper respiratory tract that can be shed by nasal secretions and transmitted by direct contact in neonatal and nursery pigs. Lesions associated with Mhr infection include polyserositis and arthritis; however, systemic Mhr disease pathogenesis is not well characterized. This study aimed to investigate the immunopathogenesis and bacterial dissemination pattern of Mhr using single and multiple inoculation approaches in a caesarian-derived colostrum-deprived (CDCD) pig model. Animals in three treatment groups were inoculated once (Mhr 1; n = 12) or four (Mhr 2; n = 8) times with Mhr or sham-inoculated (NC group; n = 3) nasally and by tonsillar painting. Inoculum consisted of a triple cloned Mhr field isolate (4.5 × 107 CFU/mL) in Friis medium. Clinical signs were evaluated daily during the study. Serum and oral fluid antibody (IgA and IgG) response and cellular immune response were assessed using a recombinant chimeric VlpA-G-based indirect ELISA and by ELISpot, respectively. The presence of Mhr in oral fluids, nasal and oropharyngeal swabs were evaluated by qPCR. At 6 wpi, pigs were euthanized and evaluated for gross lesions consistent with Mhr and bacterial colonization in tonsils by qPCR. No clinical signs or gross lesions consistent with Mhr-associated disease were observed throughout the study. For Mhr 2 group, the presence of IgA and IgG in serum and oral fluids were detected at 2 and 4 weeks post-inoculation (wpi), respectively, while in Mhr 1, only IgA was detected in oral fluids at 6 wpi. The proportion of animals shedding Mhr in nasal secretions varied from 20 to 40 % in the Mhr 1 and 62.5-100% in the Mhr 2 group. However, the proportion of animals shedding Mhr in oropharyngeal swabs was consistent through the study (60 %) in Mhr 1 and fluctuated from 20 % to 87.5 % in Mhr 2 group. The lack of clinical signs and the presence of Mhr specific humoral response and bacterial colonization indicates that the multiple inoculation experimental model may mimic subclinical natural infection in the field. In addition, the humoral and transient cellular response did not result in bacterial clearance. Based on these results, animals would have to be exposed multiple times to mount a detectable immune response.
Collapse
|
29
|
Ricci S, Rivera-Chacon R, Petri RM, Sener-Aydemir A, Sharma S, Reisinger N, Zebeli Q, Castillo-Lopez E. Supplementation With Phytogenic Compounds Modulates Salivation and Salivary Physico-Chemical Composition in Cattle Fed a High-Concentrate Diet. Front Physiol 2021; 12:645529. [PMID: 34149443 PMCID: PMC8209472 DOI: 10.3389/fphys.2021.645529] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Saliva facilitates feed ingestion, nutrient circulation, and represents an important pH buffer for ruminants, especially for cattle fed high-concentrate diets that promote rumen acidification. This experiment evaluated the short-term effects of nine phytogenic compounds on salivation, saliva physico-chemical composition as well as ingested feed boli characteristics in cattle. A total of nine ruminally cannulated Holstein cows were used. Each compound was tested in four of these cows as part of a high-concentrate meal (2.5 kg of total mixed ration in dry matter basis for 4 h) in low or high dose, and was compared to a control meal without compound. Saliva was sampled orally (unstimulated saliva) for physico-chemical composition analysis. Composition of the ingested saliva (stimulated saliva), salivation and feed boli characteristics were assessed from ingesta collected at the cardia during the first 30 min of the meal. Analysis of unstimulated saliva showed that supplementation with capsaicin and thyme oil increased buffer capacity, while supplementation with thymol, L-menthol and gentian root decreased saliva pH. In addition, supplementing angelica root decreased saliva osmolality. Regression analysis on unstimulated saliva showed negative associations between mucins and bicarbonate as well as with phosphate when garlic oil, thyme oil or angelica root was supplemented. Analysis of stimulated saliva demonstrated that supplementation with garlic oil increased phosphate concentration, thyme oil tended to increase osmolality, capsaicin and thymol increased buffer capacity, and ginger increased phosphate content. Furthermore, salivation rate increased with ginger and thymol, and tended to increase with garlic oil, capsaicin, L-menthol and mint oil. Feed ensalivation increased with capsaicin. A positive association was found between feed bolus size and salivation rate when any of the phytogenic compounds was supplemented. Overall, our results demonstrate positive short-term effects of several phytogenic compounds on unstimulated and stimulated saliva physico-chemical properties, salivation or feed boli characteristics. Thus, the phytogenic compounds enhancing salivary physico-chemical composition have the potential to contribute to maintain or improve ruminal health in cattle fed concentrate-rich rations.
Collapse
Affiliation(s)
- Sara Ricci
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Raul Rivera-Chacon
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Renee M. Petri
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Arife Sener-Aydemir
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Suchitra Sharma
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | | | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Ezequias Castillo-Lopez
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| |
Collapse
|
30
|
Schott F, Hoffmann K, Sarno E, Bangerter PD, Stephan R, Overesch G, Haessig M, Sidler X, Graage R. Evaluation of oral fluids for surveillance of foodborne and zoonotic pathogens in pig farms. J Vet Diagn Invest 2021; 33:655-663. [PMID: 34075814 PMCID: PMC8225685 DOI: 10.1177/10406387211021599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The use of oral fluid (OF) to detect zoonotic pathogens in pigs has been only scarcely assessed. We evaluated OF as a potential specimen for detection by culture of methicillin-resistant Staphylococcus aureus (MRSA) and Yersinia enterocolitica, and the detection of antibodies against Salmonella spp. and hepatitis E virus (HEV) using commercial ELISAs. Samples from 33 pig farms were collected at the beginning and end of the fattening period. Results of the OF samples were compared with the results of serum samples and nasal swabs from individual pigs and pen floor fecal samples, using the Cohen kappa (κ) and the McNemar test. For Salmonella spp. antibodies, OF samples were negative, although the corresponding serum samples were positive. The detection of HEV antibodies in sera and OF had agreement at the first sampling, and poor and significant agreement at the second sampling (κ = 0.185, McNemar p = 0.238; κ = 0.088, McNemar p < 0.001). At both sampling times, the detection of MRSA in nasal swabs and OF showed agreement (κ = 0.466, McNemar p = 0.077; κ = 0.603, McNemar p = 1); agreement was seen for the detection of Y. enterocolitica in fecal and OF samples (κ = 0.012, McNemar p = 0.868; κ = 0.082, McNemar p = 0.061, respectively). According to the McNemar test, the use of pen-based OFs is more feasible for the detection of MRSA and Y. enterocolitica by culture than is detection of antibodies by commercial ELISA.
Collapse
Affiliation(s)
- Franziska Schott
- Department of Farm Animals, Division of Swine Medicine, University of Zurich, Zurich, Switzerland
| | - Karolin Hoffmann
- Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Eleonora Sarno
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Patrick D Bangerter
- Office for Consumer Protection Canton Aargau, Veterinary Service, Aarau, Switzerland (Bangerter)
| | - Roger Stephan
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Gudrun Overesch
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - Michael Haessig
- Administrative Department for Farm Animal Diagnostics, University of Zurich, Zurich, Switzerland
| | - Xaver Sidler
- Department of Farm Animals, Division of Swine Medicine, University of Zurich, Zurich, Switzerland
| | - Robert Graage
- Department of Farm Animals, Division of Swine Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Modernization of Control of Pathogenic Micro-Organisms in the Food-Chain Requires a Durable Role for Immunoaffinity-Based Detection Methodology-A Review. Foods 2021; 10:foods10040832. [PMID: 33920486 PMCID: PMC8069916 DOI: 10.3390/foods10040832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 01/03/2023] Open
Abstract
Food microbiology is deluged by a vastly growing plethora of analytical methods. This review endeavors to color the context into which methodology has to fit and underlines the importance of sampling and sample treatment. The context is that the highest risk of food contamination is through the animal and human fecal route with a majority of foodborne infections originating from sources in mass and domestic kitchens at the end of the food-chain. Containment requires easy-to-use, failsafe, single-use tests giving an overall risk score in situ. Conversely, progressive food-safety systems are relying increasingly on early assessment of batches and groups involving risk-based sampling, monitoring environment and herd/flock health status, and (historic) food-chain information. Accordingly, responsible field laboratories prefer specificity, multi-analyte, and high-throughput procedures. Under certain etiological and epidemiological circumstances, indirect antigen immunoaffinity assays outperform the diagnostic sensitivity and diagnostic specificity of e.g., nucleic acid sequence-based assays. The current bulk of testing involves therefore ante- and post-mortem probing of humoral response to several pathogens. In this review, the inclusion of immunoglobulins against additional invasive micro-organisms indicating the level of hygiene and ergo public health risks in tests is advocated. Immunomagnetic separation, immunochromatography, immunosensor, microsphere array, lab-on-a-chip/disc platforms increasingly in combination with nanotechnologies, are discussed. The heuristic development of portable and ambulant microfluidic devices is intriguing and promising. Tant pis, many new platforms seem unattainable as the industry standard. Comparability of results with those of reference methods hinders the implementation of new technologies. Whatever the scientific and technological excellence and incentives, the decision-maker determines this implementation after weighing mainly costs and business risks.
Collapse
|
32
|
Comparison of ZMAC and MARC-145 Cell Lines for Improving Porcine Reproductive and Respiratory Syndrome Virus Isolation from Clinical Samples. J Clin Microbiol 2021; 59:JCM.01757-20. [PMID: 33268540 DOI: 10.1128/jcm.01757-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/28/2020] [Indexed: 11/20/2022] Open
Abstract
The MARC-145 cell line is commonly used to isolate porcine reproductive and respiratory syndrome virus (PRRSV) for diagnostics, research, and vaccine production, but it yields frustratingly low success rates of virus isolation (VI). The ZMAC cell line, derived from porcine alveolar macrophages, has become available, but its utilization for PRRSV VI from clinical samples has not been evaluated. This study compared PRRSV VI results in ZMAC and MARC-145 cells from 375 clinical samples (including 104 lung, 140 serum, 90 oral fluid, and 41 processing fluid samples). The PRRSV VI success rate was very low in oral fluids and processing fluids regardless of whether ZMAC cells or MARC-145 cells were used. Success rates of PRRSV VI from lung and serum samples were significantly higher in ZMAC than in MARC-145 cells. Lung and serum samples with threshold cycle (CT ) values of <30 had better VI success. PRRSV-2 in genetic lineages 1 and 8 was isolated more successfully in ZMAC cells than in MARC-145 cells, whereas PRRSV-2 in genetic lineage 5 was isolated in the two cell lines with similar success rates. For samples with positive VI in both ZMAC and MARC-145 cells, 14 of 23 PRRSV-2 isolates had similar titers in the two cell lines. A total of 51 of 95 (53.7%) ZMAC-obtained PRRSV-2 or PRRSV-1 isolates grew in MARC-145 cells, and all 46 (100%) MARC-145-obtained isolates grew in ZMAC cells. In summary, ZMAC cells allow better isolation of a wide range of PRRSV field strains; however, not all of the ZMAC-obtained PRRSV isolates grow in MARC-145 cells. This report provides important guidelines to improve isolation of PRRSV from clinical samples for further characterization and/or for producing autogenous vaccines.
Collapse
|
33
|
Relationships among Fecal, Air, Oral, and Tracheal Microbial Communities in Pigs in a Respiratory Infection Disease Model. Microorganisms 2021; 9:microorganisms9020252. [PMID: 33513772 PMCID: PMC7912642 DOI: 10.3390/microorganisms9020252] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/13/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
The association of the lower respiratory tract microbiome in pigs with that of other tissues and environment is still unclear. This study aimed to describe the microbiome of tracheal and oral fluids, air, and feces in the late stage of Mycoplasma hyopneumoniae infection in pigs, and assess the association between the tracheal microbiome and those from air, feces, and oral fluids. Tracheal fluids (n = 73), feces (n = 71), oropharyngeal fluids (n = 8), and air (n = 12) were collected in seeder pigs (inoculated with M. hyopneumoniae) and contact pigs (113 days post exposure to seeder pigs). After DNA extraction, the V4 region from 16S rRNA gene was sequenced and reads were processed using Divisive Amplicon Denoising Algorithm (DADA2). Clostridium and Streptococcus were among the top five genera identified in all sample types. Mycoplasma hyopneumoniae in tracheal fluids was associated with a reduction of diversity and increment of M. hyorhinis, Glaesserella parasuis, and Pasteurella multocida in tracheal fluids, as well as a reduction of Ruminiclostridium, Barnesiella, and Lactobacillus in feces. Air contributed in a greater proportion to bacteria in the trachea compared with feces and oral fluids. In conclusion, evidence suggests the existence of complex interactions between bacterial communities from distant and distinct niches.
Collapse
|
34
|
Henao-Diaz A, Giménez-Lirola L, Baum DH, Zimmerman J. Guidelines for oral fluid-based surveillance of viral pathogens in swine. Porcine Health Manag 2020; 6:28. [PMID: 33082999 PMCID: PMC7569198 DOI: 10.1186/s40813-020-00168-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022] Open
Abstract
Recent decades have seen both rapid growth and extensive consolidation in swine production. As a collateral effect, these changes have exacerbated the circulation of viruses and challenged our ability to prevent, control, and/or eliminate impactful swine diseases. Recent pandemic events in human and animal health, e.g., SARS-CoV-2 and African swine fever virus, highlight the fact that clinical observations are too slow and inaccurate to form the basis for effective health management decisions: systematic processes that provide timely, reliable data are required. Oral fluid-based surveillance reflects the adaptation of conventional testing methods to an alternative diagnostic specimen. The routine use of oral fluids in commercial farms for PRRSV and PCV2 surveillance was first proposed in 2008 as an efficient and practical improvement on individual pig sampling. Subsequent research expanded on this initial report to include the detection of ≥23 swine viral pathogens and the implementation of oral fluid-based surveillance in large swine populations (> 12,000 pigs). Herein we compile the current information regarding oral fluid collection methods, testing, and surveillance applications in swine production.
Collapse
Affiliation(s)
- Alexandra Henao-Diaz
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Veterinary Medical Research Institute, Iowa State University, Ames, Iowa 50011 USA
| | - Luis Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Veterinary Medical Research Institute, Iowa State University, Ames, Iowa 50011 USA
| | - David H. Baum
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Veterinary Medical Research Institute, Iowa State University, Ames, Iowa 50011 USA
| | - Jeffrey Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Veterinary Medical Research Institute, Iowa State University, Ames, Iowa 50011 USA
| |
Collapse
|
35
|
Goecke NB, Kobberø M, Kusk TK, Hjulsager CK, Pedersen KS, Kristensen CS, Larsen LE. Objective pathogen monitoring in nursery and finisher pigs by monthly laboratory diagnostic testing. Porcine Health Manag 2020; 6:23. [PMID: 32922832 PMCID: PMC7476771 DOI: 10.1186/s40813-020-00161-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Background Infectious diseases are of great economic importance in commercial pig production, causing both clinical and subclinical disease, with influence on welfare, productivity, and antibiotic use. The causes of these diseases are often multifactorial and laboratory diagnostics are seldom routinely performed. The aim of the present study was to explore the benefits of monthly pathogen monitoring in nursery and finisher herds and to examine association between laboratory results and observed clinical signs, including coughing and diarrhoea. Three monthly samplings were conducted in three different age groups in six nursery and four finisher production units. For each unit, two pens were randomly selected in each age group and evaluated for coughing and diarrhoea events. Furthermore, faecal sock and oral fluid samples were collected in the selected pens and analysed for 18 respiratory and enteric viral and bacterial pathogens using the high-throughput real-time PCR BioMark HD platform (Fluidigm, South San Francisco, USA). Results In total, 174 pens were sampled in which eight coughing events and 77 diarrhoeic events were observed. The overall findings showed that swine influenza A virus, porcine circovirus 2, porcine cytomegalovirus, Brachyspira pilosicoli, Lawsonia intracellularis, Escherichia coli fimbria types F4 and F18 were found to be prevalent in several of the herds. Association between coughing events and the presence of swine influenza A virus, porcine cytomegalovirus (Cq ≤ 20) or a combination of these were found. Furthermore, an association between diarrhoeic events and the presence of L. intracellularis (Cq ≤ 24) or B. pilosicoli (Cq ≤ 26) was found. Conclusions The use of high-throughput real-time PCR analysis for continuous monitoring of pathogens and thereby dynamics of infections in a pig herd, provided the veterinarian and farmer with an objective knowledge on the distribution of pathogens in the herd. In addition, the use of a high-throughput method in combination with information about clinical signs, productivity, health status and antibiotic consumption, presents a new and innovative way of diagnosing and monitoring pig herds and even to a lower cost than the traditional method.
Collapse
Affiliation(s)
- Nicole B Goecke
- Centre for Diagnostics, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.,Present address: University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Maja Kobberø
- Centre for Diagnostics, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Thomas K Kusk
- Centre for Diagnostics, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Charlotte K Hjulsager
- Centre for Diagnostics, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.,Present address: Statens Serum Institut, 2300 Copenhagen S, Denmark
| | | | | | - Lars E Larsen
- Centre for Diagnostics, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.,Present address: University of Copenhagen, 1870 Frederiksberg C, Denmark
| |
Collapse
|
36
|
Natural transmission and detection of Mycoplasma hyopneumoniae in a naïve gilt population. Vet Microbiol 2020; 248:108819. [PMID: 32891949 DOI: 10.1016/j.vetmic.2020.108819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/01/2020] [Indexed: 11/21/2022]
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae) continues to be a prevalent and economically important swine respiratory pathogen. For M. hyopneumoniae surveillance, blood samples and/or oral fluids are commonly collected from incoming replacement gilts prior to entering sow farms. However, limitations to this approach exist, particularly due to low sensitivity during acute stages of natural infection, leading to diagnostic uncertainty. Therefore, the objective of this study was to evaluate the natural transmission and detection of M. hyopneumoniae based on the introduction of one infected gilt to a naïve population. Twenty-nine naïve gilts were housed with one M. hyopneumoniae naturally exposed gilt for 8 weeks. Deep tracheal catheters, laryngeal swabs, and blood samples were individually collected from each gilt at 0, 1, 2, 4, 6, and 8 weeks post-contact (wpc), along with one pen-based oral fluid sample. Blood samples were assayed by ELISA, while all other samples were tested by real-time PCR. The transmission rate of M. hyopneumoniae (ꞵ) was estimated using a Bayesian mixed-effects generalized linear model. At 8 wpc, 27 % (8/29) of the naïve gilts had become infected (ꞵ = 0.73 new infected gilts/gilt-week). Seroconversion was detected in 3% of contact gilts at 8 wpc. Oral fluids were negative for M. hyopneumoniae at all samplings. In this study, the natural transmission of M. hyopneumoniae was slow and detection varied based on sample type and timing. Thus, M. hyopneumoniae surveillance protocols should include lower respiratory tract samples that are tested by real-time PCR to avoid the introduction of potentially infected gilts into naïve sow farms.
Collapse
|
37
|
Dee SA, Niederwerder MC, Edler R, Hanson D, Singrey A, Cochrane R, Spronk G, Nelson E. An evaluation of additives for mitigating the risk of virus-contaminated feed using an ice-block challenge model. Transbound Emerg Dis 2020; 68:833-845. [PMID: 32706431 PMCID: PMC8247034 DOI: 10.1111/tbed.13749] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 11/29/2022]
Abstract
The role of animal feed as a vehicle for the transport and transmission of viral diseases was first identified during the porcine epidemic diarrhoea virus (PEDV) epidemic in North America. Since that time, various feed additives have been evaluated at the laboratory level to measure their effect on viral viability and infectivity in contaminated feed using bioassay piglet models. While a valid first step, the conditions of these studies were not representative of commercial swine production. Therefore, the purpose of this study was to evaluate the ability of feed additives to mitigate the risk of virus‐contaminated feed using a model based on real‐world conditions. This new model used an ‘ice‐block’ challenge, containing equal concentrations of porcine reproductive and respiratory syndrome virus (PRRSV), Senecavirus A (SVA) and PEDV, larger populations of pigs, representative commercial facilities and environments, along with realistic volumes of complete feed supplemented with selected additives. Following supplementation, the ice block was manually dropped into designated feed bins and pigs consumed feed by natural feeding behaviour. After challenge, samples were collected at the pen level (feed troughs, oral fluids) and at the animal level (clinical signs, viral infection, growth rate, and mortality) across five independent experiments involving 15 additives. In 14 of the additives tested, pigs on supplemented diets had significantly greater average daily gain (ADG), significantly lower clinical signs and infection levels, and numerically lower mortality rates compared to non‐supplemented controls. In conclusion, the majority of the additives evaluated mitigated the effects of PRRSV 174, PEDV and SVA in contaminated feed, resulting in improved health and performance.
Collapse
Affiliation(s)
- Scott A Dee
- Pipestone Applied Research, Pipestone Veterinary Services, Pipestone, Minnesota, USA
| | - Megan C Niederwerder
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Roy Edler
- Pipestone Applied Research, Pipestone Veterinary Services, Pipestone, Minnesota, USA
| | - Dan Hanson
- Pipestone Applied Research, Pipestone Veterinary Services, Pipestone, Minnesota, USA
| | - Aaron Singrey
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Roger Cochrane
- Pipestone Applied Research, Pipestone Veterinary Services, Pipestone, Minnesota, USA
| | - Gordon Spronk
- Pipestone Applied Research, Pipestone Veterinary Services, Pipestone, Minnesota, USA
| | - Eric Nelson
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
38
|
Petrovan V, Vrajmasu V, Bucur AC, Soare DS, Radu E, Dimon P, Zaulet M. Evaluation of Commercial qPCR Kits for Detection of SARS-CoV-2 in Pooled Samples. Diagnostics (Basel) 2020; 10:E472. [PMID: 32664511 PMCID: PMC7400658 DOI: 10.3390/diagnostics10070472] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 01/14/2023] Open
Abstract
Due to the current pandemic, a global shortage of reagents has drawn interest in developing alternatives to increase the number of coronavirus tests. One such alternative is sample pooling. We compared commercial kits that are used in COVID-19 diagnostics in terms of their sensitivity and feasibility for use in pooling. In this preliminary study, we showed that pooling of up to 80 samples did not affect the efficacy of the kits. Additionally, the RNA-dependent RNA polymerase (RdRp) gene is a more suitable target in pooled samples than the envelope (E) gene. This approach could provide an easy method of screening a large number of samples and help adjust different governmental regulations.
Collapse
Affiliation(s)
- Vlad Petrovan
- The Pirbright Institute, Woking, Surrey GU24 0NF, UK
| | | | - Ana Cristina Bucur
- Emergency Hospital Bucharest, Molecular Pathology Laboratory, 050098 Bucharest, Romania; (A.C.B.); (D.S.S.); (E.R.)
| | - Dan Sebastian Soare
- Emergency Hospital Bucharest, Molecular Pathology Laboratory, 050098 Bucharest, Romania; (A.C.B.); (D.S.S.); (E.R.)
| | - Eugen Radu
- Emergency Hospital Bucharest, Molecular Pathology Laboratory, 050098 Bucharest, Romania; (A.C.B.); (D.S.S.); (E.R.)
| | - Paula Dimon
- Personal Genetics, 010987 Bucharest, Romania;
| | - Mihaela Zaulet
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania;
| |
Collapse
|
39
|
Boulbria G, Normand V, Leblanc-Maridor M, Belloc C, Berton P, Bouchet F, Lebret A. Feasibility of pooled oral fluid collection from pre-weaning piglets using cotton ropes. Vet Anim Sci 2020; 9:100099. [PMID: 32734109 PMCID: PMC7386738 DOI: 10.1016/j.vas.2020.100099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 01/14/2023] Open
Abstract
Collection of pooled oral fluid (OF) by allowing pigs to chew on a cotton rope is an alternative to blood sampling. However, little is known about the applicability of this method to suckling piglets. The objectives of the present study were to describe the spontaneous interaction of suckling piglets with a rope and to investigate the influence of a rope pre-exposure on the success rate of sampling. We studied the interaction dynamics of 21 and 28 days-old suckling piglets with a cotton rope presented for 30 min. Ropes were manually wrung out inside plastic bags to release the oral fluid. A total of 49 litters were included. Percentages of success of pooled OF collection for 28-day-old, 21-day-old and 21-day-old pre-exposed litters were 82%, 62% and 100%, respectively. The mean volume collected did not differ between groups. Without pre-exposure, 84.7% and 95% of piglets interacted spontaneously with the rope at 21 and 28 days of age, respectively. The latency between rope presentation and interaction was highly variable between piglets within litters: from < 10 s to 30 min. Among piglets having interacted with the rope, the interaction lasted for at least 60 s for 90% and 91.4% of 21 and 28-day-old piglets, respectively. Pooled OF collection is achievable prior to weaning in piglets of at least 21 days of age. Pooled OF sampling is representative at litter level if collection is successful. In order to improve the success rate of collection, pre-exposing the piglets with a rope one day prior to sampling is effective.
Collapse
Affiliation(s)
- Gwenaël Boulbria
- Porc.Spective Swine Vet Practice, ZA de Gohélève, 56920 Noyal-Pontivy, France
| | - Valérie Normand
- Porc.Spective Swine Vet Practice, ZA de Gohélève, 56920 Noyal-Pontivy, France
| | | | - Catherine Belloc
- BIOEPAR, INRA, Oniris, Université Bretagne Loire, 44307 Nantes, France
| | - Pauline Berton
- Porc.Spective Swine Vet Practice, ZA de Gohélève, 56920 Noyal-Pontivy, France
| | - Franck Bouchet
- Porc.Spective Swine Vet Practice, ZA de Gohélève, 56920 Noyal-Pontivy, France
| | - Arnaud Lebret
- Porc.Spective Swine Vet Practice, ZA de Gohélève, 56920 Noyal-Pontivy, France
| |
Collapse
|
40
|
Plut J, Jamnikar-Ciglenecki U, Stukelj M. Molecular detection of porcine reproductive and respiratory syndrome virus, porcine circovirus 2 and hepatitis E virus in oral fluid compared to their detection in faeces and serum. BMC Vet Res 2020; 16:164. [PMID: 32460762 PMCID: PMC7251745 DOI: 10.1186/s12917-020-02378-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 05/14/2020] [Indexed: 02/08/2023] Open
Abstract
Background Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), Porcine Circovirus Type 2 (PCV2) and Hepatitis E virus (HEV) are common and economically important viral disease causative agents detected in pig oral fluid (OF), faeces and serum at some infection stages. The purpose of this study was to detect PRRSV, PCV2 and HEV on six pig farms to determine which of the three sample types, OF, faeces or serum is appropriate for the diagnosis of these viruses in different pig categories. The following pig categories were included: 5 weeks-old (w/o), 7 w/o, 9 w/o, 11 w/o weaners, fatteners and breeding sows. Pursuant to the preliminary detection of each pathogen at the selected farms, OF samples, faeces, serum pools and 10 individual sera were examined, using PCR, for each age category. If any of the viruses were found in pools of faeces and OF, then faeces and OF from positive farms were tested separately for each pig category. The viral nucleic acids were detected using RT-PCR, PCR and real-time RT-PCR, for PRRSV, PCV2 and HEV respectively. Results PRRSV and HEV were detected on one farm and PCV2 on three others, positive results being more often obtained from the OF than from the faeces of the same animals. Ten individual serum samples from pigs from the same group of animals were also tested. The viruses were detected in almost all individual sera and OF in the same pig category with some exceptions: PRRSV was detected in the OF of fatteners but was absent in their sera; on Farm 2, PCV2 was detected in sera of 11 w/o pigs and fatteners but absent in group samples of their OF and, vice versa, in case of 9 w/o animals; HEV was detected in the OF of the youngest, 5 w/o weaners and absent in sera of the same age group. Conclusions The primary finding of the study is that OF is a welfare-friendly, non-invasive and highly efficient matrix for pathogen detection, thus evidencing the usefulness of pig OF as a matrix in which each of the three viruses considered can be detected with the highest probability.
Collapse
Affiliation(s)
- Jan Plut
- Clinic for Ruminants and Pigs, Clinic for Reproduction and Farm Animals, Veterinary Faculty University of Ljubljana, Ljubljana, Slovenia.
| | - Urska Jamnikar-Ciglenecki
- Institute of Food Safety, Feed and Environment, Veterinary Faculty University of Ljubljana, Ljubljana, Slovenia
| | - Marina Stukelj
- Clinic for Ruminants and Pigs, Clinic for Reproduction and Farm Animals, Veterinary Faculty University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
41
|
Wide Range of the Prevalence and Viral Loads of Porcine Circovirus Type 3 (PCV3) in Different Clinical Materials from 21 Polish Pig Farms. Pathogens 2020; 9:pathogens9050411. [PMID: 32466099 PMCID: PMC7281387 DOI: 10.3390/pathogens9050411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/24/2022] Open
Abstract
Porcine circovirus type 3 (PCV3) was described in different clinical cases and healthy pigs. However, little is known about its circulation in pig farms. In order to assess PCV3 prevalence in 21 Polish farms, serum, feces, and oral fluid samples were examined by quantitative real-time PCR. In total, 1451 pairs of serum and feces from the same animals, as well as 327 samples of oral fluids were analyzed. The results showed that PCV3 is more commonly detected in oral fluids (37.3% positives) than in serum (9.7% positives) or feces (15.0% positives) samples. The viral loads detected in these materials ranged from 102.5–107.2 genome equivalent copies/mL. Although in most farms PCV3 was detected post weaning, in nine farms, the virus was also found in groups of suckling piglets, and in six of them viremia was detected. In four farms with reproductive failure, fetal materials were also obtained. PCV3 was detected in 36.0% of fetuses or stillborn piglets (9/25) with viral loads of 103.1–1010.4 genome equivalent copies/mL. In summary, the virus circulation may show different patterns, and congenital or early infection is not uncommon. Precise quantification of PCV3 loads in clinical materials seems to be necessary for the study and diagnosis of the infection.
Collapse
|
42
|
Detection of Antibodies against Mycobacterium bovis in Oral Fluid from Eurasian Wild Boar. Pathogens 2020; 9:pathogens9040242. [PMID: 32218183 PMCID: PMC7238047 DOI: 10.3390/pathogens9040242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 11/30/2022] Open
Abstract
The presence of Mycobacterium bovis and other members of the Mycobacterium tuberculosis complex (MTC) is a main concern in wildlife populations such as the Eurasian wild boar (Sus scrofa). Tests detecting antibodies against the MTC are valuable for tuberculosis (TB) monitoring and control and particularly useful in suids. The development of accurate, efficient, and non-invasive new tools to detect exposure to MTC would be highly beneficial for improving disease surveillance. This study aimed to determine if antibodies against MTC could be detected in oral fluid (OF) samples by a new ELISA test (IgG detection) from naturally TB-infected wild boar. For this, individual, paired serum and OF samples were collected from 148 live wild boar in two TB-status areas from Spain and quantitatively used to validate the new ELISA test. Antibodies against MTC were widely detected in OF samples, for which a significant positive correlation (r = 0.83) was found with the validated serology test. OF ELISA sensitivity and specificity were 67.3% and 100%, respectively. The results of this work suggest that OF samples have the potential to be used for MTC diagnosis as a further step in TB surveillance and control in suid populations. Based on our results, further research is warranted and could be performed using non-invasive new tools directly in field conditions to detect exposure to MTC.
Collapse
|
43
|
De Lucia A, Cawthraw S, Davies R, Smith RP, Bianco C, Ostanello F, Martelli F. Correlation of Anti- Salmonella Antibodies Between Serum and Saliva Samples Collected From Finisher Pigs. Front Vet Sci 2020; 6:489. [PMID: 31998766 PMCID: PMC6967412 DOI: 10.3389/fvets.2019.00489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/10/2019] [Indexed: 11/30/2022] Open
Abstract
Saliva samples obtained by using absorptive devices, can provide an alternative diagnostic matrix to serum for monitoring disease status in pigs. The aim of this study was to investigate the correlation of anti-Salmonella antibodies between serum and saliva samples collected from pigs. Twenty individual paired serum and saliva samples were collected from a single farm. Anti-Salmonella IgG was detected in individual serum samples using a commercial Salmonella ELISA kit, validated for sera. The same kit was used with a protocol modified by extending incubation time and increasing temperature to test individual saliva samples. Anti-Salmonella IgG antibodies in pig saliva were always detected at a lower level than in the matching serum samples. A correlation (rho = 0.66; p = 0.002) and a moderate agreement (K > 0.62 p = 0.003) was found between individual Salmonella IgG in serum and saliva samples. Both correlation and the agreement levels are moderate. The size of this investigation was small, and further studies are necessary to further confirm these findings. The results of this work provide some evidence that saliva samples have the potential to be used for the diagnosis of Salmonella infection in pig farms.
Collapse
Affiliation(s)
- Alessia De Lucia
- Department of Veterinary Medical Sciences, School of Agriculture and Veterinary Medicine, Bologna, Italy
- Animal and Plant Health Agency (APHA), Bacteriology Department, Addlestone, United Kingdom
| | - Shaun Cawthraw
- Animal and Plant Health Agency (APHA), Bacteriology Department, Addlestone, United Kingdom
| | - Rob Davies
- Animal and Plant Health Agency (APHA), Bacteriology Department, Addlestone, United Kingdom
| | - Richard P. Smith
- Animal and Plant Health Agency (APHA), Epidemiology Department, Addlestone, United Kingdom
| | - Carlo Bianco
- Animal and Plant Health Agency (APHA), Pathology Department, Addlestone, United Kingdom
| | - Fabio Ostanello
- Department of Veterinary Medical Sciences, School of Agriculture and Veterinary Medicine, Bologna, Italy
| | - Francesca Martelli
- Animal and Plant Health Agency (APHA), Bacteriology Department, Addlestone, United Kingdom
| |
Collapse
|
44
|
Campero LM, Schott F, Gottstein B, Deplazes P, Sidler X, Basso W. Detection of antibodies to Toxoplasma gondii in oral fluid from pigs. Int J Parasitol 2019; 50:349-355. [PMID: 31866312 DOI: 10.1016/j.ijpara.2019.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 11/19/2022]
Abstract
Toxoplasma gondii-infected pigs play a major role as a source of infection for humans and detection of high-risk herds is essential to implement control measures at the farm level. The aim of this study was to determine whether oral fluid (OF) could be used as a matrix to detect antibodies against T. gondii in infected pigs by immunoblot (IB). For this, OF from experimentally inoculated sows (n = 8) (serial samples) and naturally exposed group-housed fatteners (n = 42 groups, one sample/group) were analysed for IgG and IgA against T. gondii-SAG1 antigen by IB. Simultaneously, each animal was serologically tested for anti-T. gondii IgG by ELISA. Specific IgG was detected in the sera of all inoculated sows from 2 to 3 weeks post inoculation (pi) and in 3.4 to 92% of the pigs in 13 out of 42 groups. Experimentally inoculated sows showed positive OF-IB results for IgA (100%) and IgG (87.5%) at 1.5 weeks pi and continued yielding positive results for IgA (87.5-75%) and IgG (50%) until 4 weeks pi; however, from 8 weeks pi the frequency of detection of both isotypes was lower, despite constantly positive IgG values in serum-ELISA. Interestingly, consecutive daily samplings for 4 days at 13 and 30 weeks pi showed inconsistent results for some sows, showing that the antibody concentration in OF is prone to timely variations. Pooled OF from groups with 91 and 92% of seropositive pigs yielded positive IB results for IgG and IgA. Fattener groups with ≤13% of seropositive pigs gave negative IB results to both isotypes. Our results showed that antibodies to T. gondii can be detected in OF from infected pigs, and that IgA seems to be a more adequate target than IgG. Although OF does not seem to be a robust matrix to assess the serological status for T. gondii in individual animals, this diagnostic approach represents an interesting non-invasive, low-cost and animal welfare friendly option as a screening method at the farm level to determine high exposure to T. gondii in the herd.
Collapse
Affiliation(s)
- Lucía María Campero
- Institute of Parasitology, Vetsuisse-Faculty, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland; Immunoparasitology Laboratory, Faculty of Veterinary Sciences, National University of La Plata, 60 and 118 s/n, 1900 La Plata, Argentina; National Scientific and Technical Research Council (CONICET), Godoy Cruz, 2290, C1033AAJ Buenos Aires, Argentina
| | - Franziska Schott
- Department of Farm Animals, Division of Swine Medicine, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland
| | - Bruno Gottstein
- Institute of Parasitology, Vetsuisse-Faculty, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland
| | - Peter Deplazes
- Institute of Parasitology, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 266a, CH-8057 Zurich, Switzerland
| | - Xaver Sidler
- Department of Farm Animals, Division of Swine Medicine, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland
| | - Walter Basso
- Institute of Parasitology, Vetsuisse-Faculty, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland; Department of Farm Animals, Division of Swine Medicine, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland; Institute of Parasitology, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 266a, CH-8057 Zurich, Switzerland.
| |
Collapse
|
45
|
Atkinson BM, Bearson BL, Loving CL, Zimmerman JJ, Kich JD, Bearson SMD. Detection of Salmonella-specific antibody in swine oral fluids. Porcine Health Manag 2019; 5:29. [PMID: 31890253 PMCID: PMC6915926 DOI: 10.1186/s40813-019-0136-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/25/2019] [Indexed: 01/01/2023] Open
Abstract
Salmonella is a leading cause of bacterial foodborne-related illness and pork products are a food-associated source. With > 50% of U.S. swine herds testing positive for Salmonella, asymptomatic carrier pigs that shed Salmonella in their feces are a food safety and environmental contamination issue. Herd level surveillance of Salmonella shedding status is useful, but collection of feces and culture methods for Salmonella detection are laborious and time-consuming. Surveillance for Salmonella-exposure through detection of Salmonella-specific serum antibody is a reliable method, but presents labor and animal-welfare issues. Oral fluids are a reliable, antemortem sample with proven utility for surveillance in the swine industry. We tested oral fluid samples as a potential non-invasive, repeatable sample type for the presence of Salmonella-specific antibodies. An indirect enzyme-linked immunosorbent assay (ELISA) detected anti-Salmonella IgG, IgM, and predominantly IgA in oral fluids from Salmonella enterica serovar Typhimurium-exposed pigs. Furthermore, with minor modifications, a commercial ELISA-based kit also detected Salmonella-specific antibodies in oral fluids. Collectively, oral fluids may serve as a prospective surveillance tool for herd level monitoring of Salmonella exposure.
Collapse
Affiliation(s)
- Briony M Atkinson
- 1Food Safety and Enteric Pathogens Research Unit, USDA, ARS, National Animal Disease Center, 1920 Dayton Ave, Room 1403, Ames, IA 50010 United States
| | - Bradley L Bearson
- 2Agroecosystems Management Research Unit, USDA, ARS, National Laboratory for Agriculture and the Environment, Ames, IA United States
| | - Crystal L Loving
- 1Food Safety and Enteric Pathogens Research Unit, USDA, ARS, National Animal Disease Center, 1920 Dayton Ave, Room 1403, Ames, IA 50010 United States
| | - Jeffrey J Zimmerman
- 3College of Veterinary Medicine, Iowa State University, Ames, IA United States
| | - Jalusa D Kich
- 1Food Safety and Enteric Pathogens Research Unit, USDA, ARS, National Animal Disease Center, 1920 Dayton Ave, Room 1403, Ames, IA 50010 United States.,Embrapa Swine and Poultry, Concórdia, SC Brazil
| | - Shawn M D Bearson
- 1Food Safety and Enteric Pathogens Research Unit, USDA, ARS, National Animal Disease Center, 1920 Dayton Ave, Room 1403, Ames, IA 50010 United States
| |
Collapse
|
46
|
Real-Time PCR Detection Patterns of Porcine Circovirus Type 2 (PCV2) in Polish Farms with Different Statuses of Vaccination against PCV2. Viruses 2019; 11:v11121135. [PMID: 31817963 PMCID: PMC6949947 DOI: 10.3390/v11121135] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/01/2019] [Accepted: 12/05/2019] [Indexed: 01/15/2023] Open
Abstract
Porcine circovirus type 2 (PCV2) is a globally spread pathogen controlled with generally highly efficacious vaccination protocols. In order to compare PCV2 detection profiles in farms with different vaccination statuses, serum (359) and fecal pools (351) and oral fluids (209) from four farms that do not vaccinate against PCV2 (NON-VAC) and from 22 farms that do vaccinate (VAC) were tested with quantitative real-time PCR. Additionally, nucleotide sequences of ORF2 of the virus were obtained from selected samples. Three genotypes, PCV2a, PCV2b, and PCV2d, were detected. Significant differences (p < 0.05) in PCV2 prevalence and quantities between the VAC and NON-VAC farms were evident. In five VAC farms, no viremia or shedding in feces was detected. On the other hand, in four VAC farms, the results were very similar to those from NON-VAC farms. No significant difference in PCV2 prevalence in oral fluids was observed between VAC and NON-VAC farms. An examination of viremia can be recommended for the detection of vaccination efficacy issues. The median of the PCV2 viral loads >6.0 log10 copies/mL in pooled sera from the vaccinated population should be considered a very strong indication that the vaccination protocol needs revision.
Collapse
|
47
|
Detection of Mycoplasma hyorhinis and Mycoplasma hyosynoviae in oral fluids and correlation with pig lameness scores. Vet Microbiol 2019; 239:108448. [PMID: 31767090 DOI: 10.1016/j.vetmic.2019.108448] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/03/2019] [Accepted: 10/05/2019] [Indexed: 11/20/2022]
Abstract
This study was designed to detect Mycoplasma hyorhinis and M. hyosynoviae in oral fluids and determine their correlation with lameness scores in pigs. Thirty-seven nursery and/or finisher herds were included in this study. Oral fluids were collected by pen. Using species specific real-time PCR M. hyorhinis was detected in 97% of sampled herds, whereas 70% were positive for M. hyosynoviae. Lameness scores were determined for all pigs in each pen where oral fluids were collected. Lameness was identified in 3.9% of pigs across all sampled pens. No correlation was observed between lameness in pigs in a pen and detection of M. hyorhinis in oral fluid samples (p > 0.05), whereas a significant correlation was observed between M. hyosynoviae detection in oral fluids and lameness (p < 0.05). A negative correlation was observed between the proportion of lame pigs in the pen and Ct values for M. hyosynoviae in oral fluids (p < 0.05; r = -0.27). An age-related effect was observed with M. hyosynoviae detection in oral fluids, indicating an increased prevalence of the bacterium in finishers compared to nursery pigs. Under the conditions of this study, M. hyorhinis was frequently detected in oral fluids from nursery and finisher pigs regardless of the clinical presentation of lameness, whereas the detection of M. hyosynoviae varied depending on the age of sample pigs. Our results suggest that oral fluids may not be an informative diagnostic sample for M. hyorhinis associated lameness. However, the association of lameness and M. hyosynoviae detection in oral fluids warrants prospective population-based diagnostic studies.
Collapse
|
48
|
Beemer O, Remmenga M, Gustafson L, Johnson K, Hsi D, Antognoli MC. Assessing the value of PCR assays in oral fluid samples for detecting African swine fever, classical swine fever, and foot-and-mouth disease in U.S. swine. PLoS One 2019; 14:e0219532. [PMID: 31310643 PMCID: PMC6634402 DOI: 10.1371/journal.pone.0219532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/27/2019] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Oral fluid sampling and testing offers a convenient, unobtrusive mechanism for evaluating the health status of swine, especially grower and finisher swine. This assessment evaluates the potential testing of oral fluid samples with real-time reverse-transcriptase polymerase chain reaction (rRT-PCR) to detect African swine fever, classical swine fever, or foot-and-mouth disease for surveillance during a disease outbreak and early detection in a disease-free setting. METHODS We used a series of logical arguments, informed assumptions, and a range of parameter values from literature and industry practices to examine the cost and value of information provided by oral fluid sampling and rRT-PCR testing for the swine foreign animal disease surveillance objectives outlined above. RESULTS Based on the evaluation, oral fluid testing demonstrated value for both settings evaluated. The greatest value was in an outbreak scenario, where using oral fluids would minimize disruption of animal and farm activities, reduce sample sizes by 23%-40%, and decrease resource requirements relative to current individual animal sampling plans. For an early detection system, sampling every 3 days met the designed prevalence detection threshold with 0.95 probability, but was quite costly. LIMITATIONS Implementation of oral fluid testing for African swine fever, classical swine fever, or foot-and-mouth disease surveillance is not yet possible due to several limitations and information gaps. The gaps include validation of PCR diagnostic protocols and kits for African swine fever, classical swine fever, or foot-and-mouth disease on swine oral fluid samples; minimal information on test performance in a field setting; detection windows with low virulence strains of some foreign animal disease viruses; and the need for confirmatory testing protocol development.
Collapse
Affiliation(s)
- Oriana Beemer
- Surveillance Design and Analysis Unit, Center for Epidemiology and Animal Health, Veterinary Services, Strategy and Policy, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, United States of America
| | - Marta Remmenga
- Surveillance Design and Analysis Unit, Center for Epidemiology and Animal Health, Veterinary Services, Strategy and Policy, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, United States of America
| | - Lori Gustafson
- Surveillance Design and Analysis Unit, Center for Epidemiology and Animal Health, Veterinary Services, Strategy and Policy, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, United States of America
| | - Kamina Johnson
- Surveillance Design and Analysis Unit, Center for Epidemiology and Animal Health, Veterinary Services, Strategy and Policy, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, United States of America
| | - David Hsi
- Surveillance Design and Analysis Unit, Center for Epidemiology and Animal Health, Veterinary Services, Strategy and Policy, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, United States of America
| | - Maria Celia Antognoli
- Surveillance Design and Analysis Unit, Center for Epidemiology and Animal Health, Veterinary Services, Strategy and Policy, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, United States of America
| |
Collapse
|
49
|
Cerón JJ. Acute phase proteins, saliva and education in laboratory science: an update and some reflections. BMC Vet Res 2019; 15:197. [PMID: 31189466 PMCID: PMC6560908 DOI: 10.1186/s12917-019-1931-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/23/2019] [Indexed: 12/16/2022] Open
Abstract
This manuscript provides updated knowledge and some ideas and reflections about three areas which are currently of interest in the field of the animal laboratory science. These areas are the study of acute phase proteins (APPs) as biomarkers of inflammation, the use of saliva as a non-invasive sample for analyte measurements, and the development of education in the field of laboratory medicine. In the APPs, a seven-point plan for their interpretation in all veterinary species containing updated knowledge and future perspectives is described. Regarding the saliva, general concepts, examples of practical applications and the limitations and points to improve for the use of this fluid are explained. Finally, the recent evolution, current situation and possible ideas for future development of education in this field are commented. In addition to review the knowledge in these three specific areas, this report can help to provide a wide vision of the potential and future perspectives in veterinary laboratory science.
Collapse
Affiliation(s)
- José J Cerón
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), University of Murcia, Campus of Espinardo s/n, 30100, Murcia, Spain.
| |
Collapse
|
50
|
Miłek D, Woźniak A, Guzowska M, Stadejek T. Detection Patterns of Porcine Parvovirus (PPV) and Novel Porcine Parvoviruses 2 through 6 (PPV2-PPV6) in Polish Swine Farms. Viruses 2019; 11:v11050474. [PMID: 31137628 PMCID: PMC6563502 DOI: 10.3390/v11050474] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022] Open
Abstract
Porcine parvovirus (PPV) is a major causative agent in reproductive failure, but in the last two decades many novel porcine parvoviruses were described and designated as porcine parvovirus 2 through 6 (PPV2–PPV6). However, their role for pig health is largely unknown. The aim of this study was to better understand the on-farm prevalence of PPVs in different age groups of pigs, and to assess the diagnostic applicability of testing different diagnostic materials. In total, 271 oral fluids, 1244 serum samples, and 1238 fecal samples were collected from 3–21-week-old pigs from 19 farms, and after pooling by 4–6, tested by real-time PCR. The results showed that PPVs are widely spread in Poland and that the highest detection rates were obtained for oral fluids (ranging from 10.7% (PPV1) to 48.7% (PPV2)). Fattening pigs were the age group with the most frequent detection of PPVs (ranging from 8.6% (PPV1) to 49.1% (PPV2)). Porcine parvoviruses were detected mostly in growing-finishing pigs and the infection persisted until the late fattening period, which may suggest the chronic character of the infection (especially for PPV2, which was found to commonly infect animals of all ages). Particularly low Ct values detected for PPV2, PPV3, PPV5, and PPV6 in serum pools from some farms suggested that these viruses may cause high levels of viremia in one or more individuals included in these pools. Further studies are needed to quantify the levels of PPVs viremia and to assess the impact in co-infections with other, often endemic pig viruses, such as porcine circovirus type 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV).
Collapse
Affiliation(s)
- Dagmara Miłek
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776 Warsaw, Poland.
| | - Aleksandra Woźniak
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776 Warsaw, Poland.
| | - Magdalena Guzowska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Tomasz Stadejek
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776 Warsaw, Poland.
| |
Collapse
|