1
|
Brown KA, Gugger MK, Roberts DS, Moreno D, Chae PS, Ge Y, Jin S. Synthesis, Self-Assembly Properties, and Degradation Characterization of a Nonionic Photocleavable Azo-Sulfide Surfactant Family. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1465-1473. [PMID: 36638323 PMCID: PMC10164600 DOI: 10.1021/acs.langmuir.2c02820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We report the synthesis and characterization of a new family of maltose-derived nonionic surfactants that contain a photocleavable azo-sulfide linker (mAzo). The self-assembly properties of these surfactants were investigated using surface tension measurements to determine the critical micelle concentration (CMC), dynamic light scattering (DLS) to reveal the hydrodynamic radius of their self-assemblies, and transmission electron microscopy (TEM) to elucidate the micelle morphology. Ultraviolet-visible (UV-visible) spectroscopy confirmed the rapid photodegradation of these surfactants, but surface tension measurements of the surfactant solutions before and after degradation showed unusual degradation products. The photodegradation process was further studied using online liquid chromatography coupled with mass spectrometry (LC-MS),which revealed that these surfactants can form another photo-stable surfactant post-degradation. Finally, traditionally challenging proteins from heart tissue were solubilized using the mAzo surfactants to demonstrate their potential in biological applications.
Collapse
Affiliation(s)
- Kyle A. Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Morgan K. Gugger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - David S. Roberts
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - David Moreno
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Pil Seok Chae
- Department of Bionano Engineering, Hanyang University, Ansan, 15588, South Korea
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| |
Collapse
|
2
|
Chauhan D, Kumar A, Warkar SG. Modified polymeric hydrogels for the detection of Zn 2+ in E. coli bacterial cells and Zn 2+, Cd 2+ and Hg 2+ in industrial effluents. ENVIRONMENTAL TECHNOLOGY 2022; 43:3600-3607. [PMID: 33977856 DOI: 10.1080/09593330.2021.1928294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
The article focusses on exploring the real-time application of meta-benziporphodimethene (m-BPDM) embedded polyacrylamide/carboxymethylguargum (PAM/CMG) hydrogel. The hydrogel-based sensor is highly selective for Zn2+, Cd2+ and Hg2+ with no significant response to other competitive cations including Na+, K+, Ca2+, Cr3+, Pb2+, Mg2+, Mn2+, Co2+, Cu2+ in aqueous medium. Initially, the stability of the hydrogel has been examined at different pH conditions. The sensitivity of the hydrogel was found to be 0.5, 1, and 2 ppm in 1, 2 and 3 h for Hg2+, Zn2+, and Cd2+, respectively, at pH 6. The sensor exhibits colour change from red to bluish-green with Zn2+, Cd2+ and Hg2+ in water over other ions. The modified hydrogel matrix displayed a unique naked eye turn-on colorimetric sensor selectivity for Zn2+, Cd2+ and Hg2+ ions in the aqueous solutions of Escherichia coli (E. coli) bacterial cells and industrial effluents. During the detection process, the zinc metal ions released because of cell lysis bind with hydrogel, in the former. The binding of Zn2+ causes the change in the colour of hydrogel from red to bluish-green, which was visually detected. The m-BPDM does not leach out and is stable in the hydrogel matrix. The sensing of Zn2+, Cd2+ and Hg2+ was achieved by directly adding hydrogel into industrial effluent without any pretreatment of effluent. The quantitative determination of Zn2+, Cd2+ and Hg2+ in industrial effluent was performed by the atomic absorption spectroscopy technique just to confirm the results obtained with the hydrogel.
Collapse
Affiliation(s)
- Deepti Chauhan
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Anil Kumar
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Sudhir G Warkar
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| |
Collapse
|
3
|
Kruse ARS, Spraggins JM. Uncovering Molecular Heterogeneity in the Kidney With Spatially Targeted Mass Spectrometry. Front Physiol 2022; 13:837773. [PMID: 35222094 PMCID: PMC8874197 DOI: 10.3389/fphys.2022.837773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
The kidney functions through the coordination of approximately one million multifunctional nephrons in 3-dimensional space. Molecular understanding of the kidney has relied on transcriptomic, proteomic, and metabolomic analyses of kidney homogenate, but these approaches do not resolve cellular identity and spatial context. Mass spectrometry analysis of isolated cells retains cellular identity but not information regarding its cellular neighborhood and extracellular matrix. Spatially targeted mass spectrometry is uniquely suited to molecularly characterize kidney tissue while retaining in situ cellular context. This review summarizes advances in methodology and technology for spatially targeted mass spectrometry analysis of kidney tissue. Profiling technologies such as laser capture microdissection (LCM) coupled to liquid chromatography tandem mass spectrometry provide deep molecular coverage of specific tissue regions, while imaging technologies such as matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) molecularly profile regularly spaced tissue regions with greater spatial resolution. These technologies individually have furthered our understanding of heterogeneity in nephron regions such as glomeruli and proximal tubules, and their combination is expected to profoundly expand our knowledge of the kidney in health and disease.
Collapse
Affiliation(s)
- Angela R. S. Kruse
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| | - Jeffrey M. Spraggins
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- *Correspondence: Jeffrey M. Spraggins,
| |
Collapse
|
4
|
Advances in sample preparation for membrane proteome quantification. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 39:23-29. [PMID: 34906323 DOI: 10.1016/j.ddtec.2021.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 12/21/2022]
Abstract
Membrane proteins mediate various biological processes. Most drugs commercially available target proteins on the cell surface. Therefore, proteomics of plasma membrane proteins provides useful information for drug discovery. However, membrane proteins are one of the most difficult biological groups to quantify by proteomics because of their hydrophobicity and low protein content. To obtain unbiased quantitative membrane proteomics data, specific strategies should be followed during sample preparation. This review explores the most recent advances in sample preparation for the quantitative analysis of the membrane proteome, including enrichment by subcellular fractionation and trypsin digestion.
Collapse
|
5
|
Liu L, Zhu Z, Zhou F, Xue D, Hu T, Luo W, Qiu Y, Wu D, Zhao F, Le Z, Tao H. Catalytically Cleavable Detergent for Membrane Protein Studies. ACS OMEGA 2021; 6:21087-21093. [PMID: 34423216 PMCID: PMC8375090 DOI: 10.1021/acsomega.1c02894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/26/2021] [Indexed: 05/04/2023]
Abstract
Throughout the in vitro studies of membrane proteins (MPs), proper detergents are essential for the preparation of stable aqueous samples. To date, universally applicable detergents have not yet been reported to accommodate the distinct requirements for the highly diversified MPs and at the different stages of MP manipulation. Detergent exchange often has to be performed. We report herein the catalytically cleavable detergents (CatCDs) that can be efficiently removed to facilitate a complete exchange. To this end, functional groups, like propargyl and allyl, are introduced as branched chains or built in the hydrophobic chain close to the hydrophilic head. The representative CatCDs can be used as usual detergents in the extraction and purification of MPs and later be removed upon the addition of catalytic palladium. Mediated by CatCD-1, reconstitution of a transporter protein MsbA into a series of detergents was achieved. The extension of these designs could facilitate the future optimization of other biophysics studies.
Collapse
Affiliation(s)
- Lu Liu
- Department
of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Zhihao Zhu
- Department
of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Fang Zhou
- iHuman
Institute, ShanghaiTech University, Y Building, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Dongxiang Xue
- iHuman
Institute, ShanghaiTech University, Y Building, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Tao Hu
- iHuman
Institute, ShanghaiTech University, Y Building, 393 Middle Huaxia Road, Shanghai 201210, China
- School
of Life Science and Technology, ShanghaiTech
University, L Building,
393 Middle Huaxia Road, Shanghai 201210, China
| | - Weiling Luo
- iHuman
Institute, ShanghaiTech University, Y Building, 393 Middle Huaxia Road, Shanghai 201210, China
- School
of Life Science and Technology, ShanghaiTech
University, L Building,
393 Middle Huaxia Road, Shanghai 201210, China
| | - Yanli Qiu
- iHuman
Institute, ShanghaiTech University, Y Building, 393 Middle Huaxia Road, Shanghai 201210, China
- School
of Life Science and Technology, ShanghaiTech
University, L Building,
393 Middle Huaxia Road, Shanghai 201210, China
| | - Dong Wu
- iHuman
Institute, ShanghaiTech University, Y Building, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Fei Zhao
- iHuman
Institute, ShanghaiTech University, Y Building, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Zhiping Le
- Department
of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Houchao Tao
- iHuman
Institute, ShanghaiTech University, Y Building, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
6
|
Smolikova G, Gorbach D, Lukasheva E, Mavropolo-Stolyarenko G, Bilova T, Soboleva A, Tsarev A, Romanovskaya E, Podolskaya E, Zhukov V, Tikhonovich I, Medvedev S, Hoehenwarter W, Frolov A. Bringing New Methods to the Seed Proteomics Platform: Challenges and Perspectives. Int J Mol Sci 2020; 21:E9162. [PMID: 33271881 PMCID: PMC7729594 DOI: 10.3390/ijms21239162] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
For centuries, crop plants have represented the basis of the daily human diet. Among them, cereals and legumes, accumulating oils, proteins, and carbohydrates in their seeds, distinctly dominate modern agriculture, thus play an essential role in food industry and fuel production. Therefore, seeds of crop plants are intensively studied by food chemists, biologists, biochemists, and nutritional physiologists. Accordingly, seed development and germination as well as age- and stress-related alterations in seed vigor, longevity, nutritional value, and safety can be addressed by a broad panel of analytical, biochemical, and physiological methods. Currently, functional genomics is one of the most powerful tools, giving direct access to characteristic metabolic changes accompanying plant development, senescence, and response to biotic or abiotic stress. Among individual post-genomic methodological platforms, proteomics represents one of the most effective ones, giving access to cellular metabolism at the level of proteins. During the recent decades, multiple methodological advances were introduced in different branches of life science, although only some of them were established in seed proteomics so far. Therefore, here we discuss main methodological approaches already employed in seed proteomics, as well as those still waiting for implementation in this field of plant research, with a special emphasis on sample preparation, data acquisition, processing, and post-processing. Thereby, the overall goal of this review is to bring new methodologies emerging in different areas of proteomics research (clinical, food, ecological, microbial, and plant proteomics) to the broad society of seed biologists.
Collapse
Affiliation(s)
- Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
| | - Daria Gorbach
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Elena Lukasheva
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Gregory Mavropolo-Stolyarenko
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Tatiana Bilova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Alena Soboleva
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Alexander Tsarev
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Ekaterina Romanovskaya
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Ekaterina Podolskaya
- Institute of Analytical Instrumentation, Russian Academy of Science; 190103 St. Petersburg, Russia;
- Institute of Toxicology, Russian Federal Medical Agency; 192019 St. Petersburg, Russia
| | - Vladimir Zhukov
- All-Russia Research Institute for Agricultural Microbiology; 196608 St. Petersburg, Russia; (V.Z.); (I.T.)
| | - Igor Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology; 196608 St. Petersburg, Russia; (V.Z.); (I.T.)
- Department of Genetics and Biotechnology, St. Petersburg State University; 199034 St. Petersburg, Russia
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
| | - Wolfgang Hoehenwarter
- Proteome Analytics Research Group, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany;
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| |
Collapse
|
7
|
Huo Y, Liu K, Lou X. Strong additive and synergistic effects of polyoxyethylene nonionic surfactant-assisted protein MALDI imaging mass spectrometry. Talanta 2020; 222:121524. [PMID: 33167234 DOI: 10.1016/j.talanta.2020.121524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
Abstract
Protein MALDI imaging mass spectrometry (MALDI-IMS) holds a great promise to acquire spatial distribution information of proteins on biological tissue, but it suffers from the small number of proteins detected by direct MALDI-IMS detection. Ionic surfactants have been extensively used for protein extraction to improve the number of proteins detected in tissue samples by LC-MS analysis, but seldom by direct MALDI-IMS detection. Nonionic surfactants are milder than ionic surfactants and protein native structures are remained after extraction, which favors the spatial resolution of direct MALDI-IMS. However, nonionic surfactants are less effective than ionic surfactants. In this report, we utilized polyoxyethylene nonionic surfactants (PNS) to pre-incubate the tissue section, followed by the on-tissue trypsin digestion and then direct MALDI detection of in-situ formed peptides. For the first time, we observed that the additive effect of PNS and the synergistic effect of the mixed PNS in improving the number of peptides detected. Specifically, the peptides detected were 73.0-90.7% distinct when the different PNS (Tween 80 or Triton X-100 alone or their mixture) was used. Taking advantage of this additive effect, the 96 proteins including 12 transmembrane proteins were detected, corresponding to a ~10-fold improvement compared to MALDI-IMS without surfactant. When the mixed surfactants were used to replace Tween 80 and Triton X-100 alone, the optimized surfactant concentration decreased 20-100-fold and the number of peptides detected with m/z > 2500 Da was improved 15-fold. The additive and synergistic effects of PNS suggested that the interaction mode between each PNS and proteins is highly variable. Benefiting from the strong additive effect and diversity of PNS, further improvement of the number of proteins detected by MALDI-IMS is clearly feasible.
Collapse
Affiliation(s)
- Yumeng Huo
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Kehui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xinhui Lou
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
8
|
Wang X, Shen S, Rasam SS, Qu J. MS1 ion current-based quantitative proteomics: A promising solution for reliable analysis of large biological cohorts. MASS SPECTROMETRY REVIEWS 2019; 38:461-482. [PMID: 30920002 PMCID: PMC6849792 DOI: 10.1002/mas.21595] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/28/2019] [Indexed: 05/04/2023]
Abstract
The rapidly-advancing field of pharmaceutical and clinical research calls for systematic, molecular-level characterization of complex biological systems. To this end, quantitative proteomics represents a powerful tool but an optimal solution for reliable large-cohort proteomics analysis, as frequently involved in pharmaceutical/clinical investigations, is urgently needed. Large-cohort analysis remains challenging owing to the deteriorating quantitative quality and snowballing missing data and false-positive discovery of altered proteins when sample size increases. MS1 ion current-based methods, which have become an important class of label-free quantification techniques during the past decade, show considerable potential to achieve reproducible protein measurements in large cohorts with high quantitative accuracy/precision. Nonetheless, in order to fully unleash this potential, several critical prerequisites should be met. Here we provide an overview of the rationale of MS1-based strategies and then important considerations for experimental and data processing techniques, with the emphasis on (i) efficient and reproducible sample preparation and LC separation; (ii) sensitive, selective and high-resolution MS detection; iii)accurate chromatographic alignment; (iv) sensitive and selective generation of quantitative features; and (v) optimal post-feature-generation data quality control. Prominent technical developments in these aspects are discussed. Finally, we reviewed applications of MS1-based strategy in disease mechanism studies, biomarker discovery, and pharmaceutical investigations.
Collapse
Affiliation(s)
- Xue Wang
- Department of Cell Stress BiologyRoswell Park Cancer InstituteBuffaloNew York
| | - Shichen Shen
- Department of Pharmaceutical SciencesUniversity at BuffaloState University of New YorkNew YorkNew York
| | - Sailee Suryakant Rasam
- Department of Biochemistry, University at BuffaloState University of New YorkNew YorkNew York
| | - Jun Qu
- Department of Cell Stress BiologyRoswell Park Cancer InstituteBuffaloNew York
- Department of Pharmaceutical SciencesUniversity at BuffaloState University of New YorkNew YorkNew York
- Department of Biochemistry, University at BuffaloState University of New YorkNew YorkNew York
| |
Collapse
|
9
|
Dapic I, Baljeu-Neuman L, Uwugiaren N, Kers J, Goodlett DR, Corthals GL. Proteome analysis of tissues by mass spectrometry. MASS SPECTROMETRY REVIEWS 2019; 38:403-441. [PMID: 31390493 DOI: 10.1002/mas.21598] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/17/2019] [Indexed: 06/10/2023]
Abstract
Tissues and biofluids are important sources of information used for the detection of diseases and decisions on patient therapies. There are several accepted methods for preservation of tissues, among which the most popular are fresh-frozen and formalin-fixed paraffin embedded methods. Depending on the preservation method and the amount of sample available, various specific protocols are available for tissue processing for subsequent proteomic analysis. Protocols are tailored to answer various biological questions, and as such vary in lysis and digestion conditions, as well as duration. The existence of diverse tissue-sample protocols has led to confusion in how to choose the best protocol for a given tissue and made it difficult to compare results across sample types. Here, we summarize procedures used for tissue processing for subsequent bottom-up proteomic analysis. Furthermore, we compare protocols for their variations in the composition of lysis buffers, digestion procedures, and purification steps. For example, reports have shown that lysis buffer composition plays an important role in the profile of extracted proteins: the most common are tris(hydroxymethyl)aminomethane, radioimmunoprecipitation assay, and ammonium bicarbonate buffers. Although, trypsin is the most commonly used enzyme for proteolysis, in some protocols it is supplemented with Lys-C and/or chymotrypsin, which will often lead to an increase in proteome coverage. Data show that the selection of the lysis procedure might need to be tissue-specific to produce distinct protocols for individual tissue types. Finally, selection of the procedures is also influenced by the amount of sample available, which range from biopsies or the size of a few dozen of mm2 obtained with laser capture microdissection to much larger amounts that weight several milligrams.
Collapse
Affiliation(s)
- Irena Dapic
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | | | - Naomi Uwugiaren
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Jesper Kers
- Department of Pathology, Amsterdam Infection & Immunity Institute (AI&II), Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| | - David R Goodlett
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- University of Maryland, 20N. Pine Street, Baltimore, MD 21201
| | - Garry L Corthals
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Vit O, Petrak J. Integral membrane proteins in proteomics. How to break open the black box? J Proteomics 2016; 153:8-20. [PMID: 27530594 DOI: 10.1016/j.jprot.2016.08.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/30/2016] [Accepted: 08/09/2016] [Indexed: 12/22/2022]
Abstract
Integral membrane proteins (IMPs) are coded by 20-30% of human genes and execute important functions - transmembrane transport, signal transduction, cell-cell communication, cell adhesion to the extracellular matrix, and many other processes. Due to their hydrophobicity, low expression and lack of trypsin cleavage sites in their transmembrane segments, IMPs have been generally under-represented in routine proteomic analyses. However, the field of membrane proteomics has changed markedly in the past decade, namely due to the introduction of filter assisted sample preparation (FASP), the establishment of cell surface capture (CSC) protocols, and the development of methods that enable analysis of the hydrophobic transmembrane segments. This review will summarize the recent developments in the field and outline the most successful strategies for the analysis of integral membrane proteins. SIGNIFICANCE Integral membrane proteins (IMPs) are attractive therapeutic targets mostly due to their many important functions. However, our knowledge of the membrane proteome is severely limited to effectively exploit their potential. This is mostly due to the lack of appropriate techniques or methods compatible with the typical features of IMPs, namely hydrophobicity, low expression and lack of trypsin cleavage sites. This review summarizes the most recent development in membrane proteomics and outlines the most successful strategies for their large-scale analysis.
Collapse
Affiliation(s)
- O Vit
- BIOCEV, First Faculty of Medicine, Charles University in Prague, Czech Republic.
| | - J Petrak
- BIOCEV, First Faculty of Medicine, Charles University in Prague, Czech Republic
| |
Collapse
|
11
|
Orwick‐Rydmark M, Arnold T, Linke D. The Use of Detergents to Purify Membrane Proteins. ACTA ACUST UNITED AC 2016; 84:4.8.1-4.8.35. [DOI: 10.1002/0471140864.ps0408s84] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | - Thomas Arnold
- Boehringer‐Ingelheim Veterinary Research Center Hannover Germany
| | - Dirk Linke
- University of Oslo, Department of Biosciences Oslo Norway
| |
Collapse
|
12
|
Lin Y, Wang K, Liu Z, Lin H, Yu L. Enhanced SDC-assisted digestion coupled with lipid chromatography-tandem mass spectrometry for shotgun analysis of membrane proteome. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1002:144-51. [PMID: 26319803 DOI: 10.1016/j.jchromb.2015.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 07/07/2015] [Accepted: 08/14/2015] [Indexed: 01/09/2023]
Abstract
Despite the biological importance of membrane proteins, their analysis has lagged behind that of soluble proteins and still presents a great challenge mainly because of their highly hydrophobic nature and low abundance. Sodium deoxycholate (SDC)-assisted digestion strategy has been introduced in our previous papers, which cleverly circumvents many of the challenges in shotgun membrane proteomics. However, it is associated with significant sample loss due to the slightly weaker extraction/solubilization ability of 1% SDC. In this study, an enhanced SDC-assisted digestion method (ESDC method) was developed that incorporates the almost strongest ability of SDC with a high concentration (5%) to lyse membrane and extract/solubilize hydrophobic membrane proteins, and then dilution to 1% for more efficient digestion. The comparative study using rat liver membrane-enriched sample showed that, compared with previous SDC-assisted method and the "universal" filter-aided sample preparation (FASP) method, the ESDC method not only increased the identified number of total proteins, membrane proteins, hydrophobic proteins, integral membrane proteins (IMPs) and IMPs with more than 5 transmembrane domains (TMDs) by an average of 10.8%, 13.2%, 17.8%, 17.9% and 52.9%, respectively, but also enhanced the identified number of total peptides and hydrophobic peptides by averagely 12.5% and 14.2%. These results demonstrated that the ESDC method provides a substantial improvement in the recovery and identification of membrane proteins, especially those with high hydrophobicity and multiple TMDs, and thereby displaying more potential for shotgun membrane proteomics.
Collapse
Affiliation(s)
- Yong Lin
- National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, College of Horticulture and Landscape, Hunan Agricultural University, Changsha 410128, PR China; Hunan Collaborative Innovation Center for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, PR China.
| | - Kunbo Wang
- National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, College of Horticulture and Landscape, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory of Tea Science of Ministry of Education, College of Horticulture and Landscape, Hunan Agricultural University, Changsha 410128, PR China
| | - Zhonghua Liu
- National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, College of Horticulture and Landscape, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory of Tea Science of Ministry of Education, College of Horticulture and Landscape, Hunan Agricultural University, Changsha 410128, PR China; Hunan Collaborative Innovation Center for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, PR China.
| | - Haiyan Lin
- National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, College of Horticulture and Landscape, Hunan Agricultural University, Changsha 410128, PR China
| | - Lijun Yu
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture and Landscape, Hunan Agricultural University, Changsha 410128, PR China
| |
Collapse
|
13
|
Alfonso-Garrido J, Garcia-Calvo E, Luque-Garcia JL. Sample preparation strategies for improving the identification of membrane proteins by mass spectrometry. Anal Bioanal Chem 2015; 407:4893-905. [PMID: 25967148 DOI: 10.1007/s00216-015-8732-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/15/2015] [Accepted: 04/22/2015] [Indexed: 12/31/2022]
Abstract
Despite enormous advances in the mass spectrometry and proteomics fields during the last two decades, the analysis of membrane proteins still remains a challenge for the proteomic community. Membrane proteins play a wide number of key roles in several cellular events, making them relevant target molecules to study in a significant variety of investigations (e.g., cellular signaling, immune surveillance, drug targets, vaccine candidates, etc.). Here, we critically review the several attempts that have been carried out on the different steps of the sample preparation procedure to improve and modify existing conventional proteomic strategies in order to make them suitable for the study of membrane proteins. We also revise novel techniques that have been designed to tackle the difficult but relevant task of identifying and characterizing membrane proteins.
Collapse
Affiliation(s)
- Javier Alfonso-Garrido
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Av. Complutense s/n, 28004, Madrid, Spain
| | | | | |
Collapse
|
14
|
Shevchenko G, Konzer A, Musunuri S, Bergquist J. Neuroproteomics tools in clinical practice. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:705-17. [PMID: 25680928 DOI: 10.1016/j.bbapap.2015.01.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/30/2015] [Indexed: 12/13/2022]
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) are characterized by neuronal impairment that leads to disease-specific changes in the neuronal proteins. The early diagnosis of these disorders is difficult, thus, the need for identifying, developing and using valid clinically applicable biomarkers that meet the criteria of precision, specificity and repeatability is very vital. The application of rapidly emerging technology such as mass spectrometry (MS) in proteomics has opened new avenues to accelerate biomarker discovery, both for diagnostic as well as for prognostic purposes. This review summarizes the most recent advances in the mass spectrometry-based neuroproteomics and analyses the current and future directions in the biomarker discovery for the neurodegenerative diseases. This article is part of a Special Issue entitled: Neuroproteomics: Applications in Neuroscience and Neurology.
Collapse
Affiliation(s)
- Ganna Shevchenko
- Analytical Chemistry, Department of Chemistry-BMC and SciLife Lab, Uppsala University, 75124 Uppsala, Sweden
| | - Anne Konzer
- Analytical Chemistry, Department of Chemistry-BMC and SciLife Lab, Uppsala University, 75124 Uppsala, Sweden
| | - Sravani Musunuri
- Analytical Chemistry, Department of Chemistry-BMC and SciLife Lab, Uppsala University, 75124 Uppsala, Sweden
| | - Jonas Bergquist
- Analytical Chemistry, Department of Chemistry-BMC and SciLife Lab, Uppsala University, 75124 Uppsala, Sweden.
| |
Collapse
|
15
|
Lin Y, Lin H, Liu Z, Wang K, Yan Y. Improvement of a sample preparation method assisted by sodium deoxycholate for mass-spectrometry-based shotgun membrane proteomics†. J Sep Sci 2014; 37:3321-9. [DOI: 10.1002/jssc.201400569] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/18/2014] [Accepted: 08/24/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Yong Lin
- National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients; College of Horticulture and Landscape; Hunan Agricultural University; Changsha P.R. China
- Key Laboratory of Tea Science of Ministry of Education; College of Horticulture and Landscape; Hunan Agricultural University; Changsha P.R. China
| | - Haiyan Lin
- National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients; College of Horticulture and Landscape; Hunan Agricultural University; Changsha P.R. China
| | - Zhonghua Liu
- National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients; College of Horticulture and Landscape; Hunan Agricultural University; Changsha P.R. China
- Key Laboratory of Tea Science of Ministry of Education; College of Horticulture and Landscape; Hunan Agricultural University; Changsha P.R. China
| | - Kunbo Wang
- National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients; College of Horticulture and Landscape; Hunan Agricultural University; Changsha P.R. China
| | - Yujun Yan
- Key Laboratory of Tea Science of Ministry of Education; College of Horticulture and Landscape; Hunan Agricultural University; Changsha P.R. China
| |
Collapse
|
16
|
A mass spectrometry view of stable and transient protein interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:263-82. [PMID: 24952186 DOI: 10.1007/978-3-319-06068-2_11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Through an impressive range of dynamic interactions, proteins succeed to carry out the majority of functions in a cell. These temporally and spatially regulated interactions provide the means through which one single protein can perform diverse functions and modulate different cellular pathways. Understanding the identity and nature of these interactions is therefore critical for defining protein functions and their contribution to health and disease processes. Here, we provide an overview of workflows that incorporate immunoaffinity purifications and quantitative mass spectrometry (frequently abbreviated as IP-MS or AP-MS) for characterizing protein-protein interactions. We discuss experimental aspects that should be considered when optimizing the isolation of a protein complex. As the presence of nonspecific associations is a concern in these experiments, we discuss the common sources of nonspecific interactions and present label-free and metabolic labeling mass spectrometry-based methods that can help determine the specificity of interactions. The effective regulation of cellular pathways and the rapid reaction to various environmental stresses rely on the formation of stable, transient, and fast-exchanging protein-protein interactions. While determining the exact nature of an interaction remains challenging, we review cross-linking and metabolic labeling approaches that can help address this important aspect of characterizing protein interactions and macromolecular assemblies.
Collapse
|
17
|
Lin Y, Wang K, Yan Y, Lin H, Peng B, Liu Z. Evaluation of the combinative application of SDS and sodium deoxycholate to the LC-MS-based shotgun analysis of membrane proteomes. J Sep Sci 2013; 36:3026-34. [DOI: 10.1002/jssc.201300413] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 06/06/2013] [Accepted: 06/21/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Yong Lin
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Hunan Agricultural University; Changsha P. R. China
- Key Laboratory of Tea Science of Ministry of Education; College of Horticulture and Landscape; Hunan Agricultural University; Changsha P. R. China
| | - Kunbo Wang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Hunan Agricultural University; Changsha P. R. China
- Key Laboratory of Tea Science of Ministry of Education; College of Horticulture and Landscape; Hunan Agricultural University; Changsha P. R. China
| | - Yujun Yan
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Hunan Agricultural University; Changsha P. R. China
| | - Haiyan Lin
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Hunan Agricultural University; Changsha P. R. China
- Key Laboratory of Tea Science of Ministry of Education; College of Horticulture and Landscape; Hunan Agricultural University; Changsha P. R. China
| | - Bin Peng
- Key Laboratory of Tea Science of Ministry of Education; College of Horticulture and Landscape; Hunan Agricultural University; Changsha P. R. China
| | - Zhonghua Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Hunan Agricultural University; Changsha P. R. China
- Key Laboratory of Tea Science of Ministry of Education; College of Horticulture and Landscape; Hunan Agricultural University; Changsha P. R. China
| |
Collapse
|
18
|
Zhu Y, Fang Q. Analytical detection techniques for droplet microfluidics—A review. Anal Chim Acta 2013; 787:24-35. [DOI: 10.1016/j.aca.2013.04.064] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/27/2013] [Accepted: 04/30/2013] [Indexed: 01/26/2023]
|
19
|
Norris JL, Caprioli RM. Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem Rev 2013; 113:2309-42. [PMID: 23394164 PMCID: PMC3624074 DOI: 10.1021/cr3004295] [Citation(s) in RCA: 515] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jeremy L. Norris
- National Research Resource for Imaging Mass Spectrometry, Mass Spectrometry Research Center, and Department of Biochemistry, Vanderbilt University School of Medicine, 9160 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8575
| | - Richard M. Caprioli
- National Research Resource for Imaging Mass Spectrometry, Mass Spectrometry Research Center, and Department of Biochemistry, Vanderbilt University School of Medicine, 9160 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8575
| |
Collapse
|
20
|
Miteva YV, Budayeva HG, Cristea IM. Proteomics-based methods for discovery, quantification, and validation of protein-protein interactions. Anal Chem 2013; 85:749-68. [PMID: 23157382 PMCID: PMC3666915 DOI: 10.1021/ac3033257] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Ileana M. Cristea
- Corresponding author: Ileana M. Cristea 210 Lewis Thomas Laboratory Department of Molecular Biology Princeton University Princeton, NJ 08544 Tel: 6092589417 Fax: 6092584575
| |
Collapse
|
21
|
Saveliev SV, Woodroofe CC, Sabat G, Adams CM, Klaubert D, Wood K, Urh M. Mass Spectrometry Compatible Surfactant for Optimized In-Gel Protein Digestion. Anal Chem 2013; 85:907-14. [DOI: 10.1021/ac302423t] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sergei V. Saveliev
- Promega Corporation, 2800 Woods Hollow Road, Madison, Wisconsin 53711, United States
| | - Carolyn C. Woodroofe
- Promega Corporation, 2800 Woods Hollow Road, Madison, Wisconsin 53711, United States
| | - Grzegorz Sabat
- University of Wisconsin-Madison Biotechnology Center, 425 Henry Mall, Madison, Wisconsin
53706, United States
| | - Christopher M. Adams
- Stanford University Mass Spectrometry, 333 Campus Drive, Stanford, California
94305, United States
| | - Dieter Klaubert
- Promega Corporation, 2800 Woods Hollow Road, Madison, Wisconsin 53711, United States
| | - Keith Wood
- Promega Corporation, 2800 Woods Hollow Road, Madison, Wisconsin 53711, United States
| | - Marjeta Urh
- Promega Corporation, 2800 Woods Hollow Road, Madison, Wisconsin 53711, United States
| |
Collapse
|
22
|
Alzahrani E, Welham K. Fabrication of an octadecylated silica monolith inside a glass microchip for protein enrichment. Analyst 2012; 137:4751-9. [DOI: 10.1039/c2an16018h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Wu F, Sun D, Wang N, Gong Y, Li L. Comparison of surfactant-assisted shotgun methods using acid-labile surfactants and sodium dodecyl sulfate for membrane proteome analysis. Anal Chim Acta 2011; 698:36-43. [DOI: 10.1016/j.aca.2011.04.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 04/13/2011] [Accepted: 04/18/2011] [Indexed: 01/11/2023]
|
24
|
Mbeunkui F, Goshe MB. Investigation of solubilization and digestion methods for microsomal membrane proteome analysis using data-independent LC-MSE. Proteomics 2011; 11:898-911. [DOI: 10.1002/pmic.200900698] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 11/11/2010] [Accepted: 12/01/2010] [Indexed: 01/09/2023]
|
25
|
Sui P, Miliotis T, Davidson M, Karlsson R, Karlsson A. Membrane protein digestion - comparison of LPI HexaLane with traditional techniques. Methods Mol Biol 2011; 753:129-142. [PMID: 21604120 DOI: 10.1007/978-1-61779-148-2_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Membrane protein profiling and characterization is of immense importance for the understanding of vital processes taking place across cellular membranes. Traditional techniques used for soluble proteins, such as 2D gel electrophoresis, are sometimes not entirely applicable to membrane protein targets, due to their low abundance and hydrophobic character. New tools have been developed that will accelerate research on membrane protein targets. Lipid-based protein immobilization (LPI) is the core technology in a new approach that enables immobilization and digestion of native membrane proteins inside a flow cell format. The presented method is described in the context of comparing the method to traditional approaches where the sample amount that is digested and analyzed is the same.
Collapse
Affiliation(s)
- Ping Sui
- AstraZeneca R&D, Mölndal, Sweden
| | | | | | | | | |
Collapse
|
26
|
Abstract
Here, we describe the novel use of a volatile surfactant, perfluorooctanoic acid (PFOA), for shotgun proteomics. PFOA was found to solubilize membrane proteins as effectively as sodium dodecyl sulfate (SDS). PFOA concentrations up to 0.5% (w/v) did not significantly inhibit trypsin activity. The unique features of PFOA allowed us to develop a single-tube shotgun proteomics method that used all volatile chemicals that could easily be removed by evaporation prior to mass spectrometry analysis. The experimental procedures involved: 1) extraction of proteins in 2% PFOA; 2) reduction of cystine residues with triethyl phosphine and their S-alkylation with iodoethanol; 3) trypsin digestion of proteins in 0.5% PFOA; 4) removal of PFOA by evaporation; and 5) LC-MS/MS analysis of the resulting peptides. The general applicability of the method was demonstrated with the membrane preparation of photoreceptor outer segments. We identified 75 proteins from 1 µg of the tryptic peptides in a single, 1-hour, LC-MS/MS run. About 67% of the proteins identified were classified as membrane proteins. We also demonstrate that a proteolytic 18O labeling procedure can be incorporated after the PFOA removal step for quantitative proteomic experiments. The present method does not require sample clean-up devices such as solid-phase extractions and membrane filters, so no proteins/peptides are lost in any experimental steps. Thus, this single-tube shotgun proteomics method overcomes the major drawbacks of surfactant use in proteomic experiments.
Collapse
|
27
|
Protein- versus peptide fractionation in the first dimension of two-dimensional high-performance liquid chromatography-matrix-assisted laser desorption/ionization tandem mass spectrometry for qualitative proteome analysis of tissue samples. J Chromatogr A 2010; 1217:6159-68. [PMID: 20810122 DOI: 10.1016/j.chroma.2010.07.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 07/08/2010] [Accepted: 07/14/2010] [Indexed: 11/21/2022]
Abstract
The availability of robust and highly efficient separation methods represents a major requirement for proteome analysis. This study investigated the characteristics of two different gel-free proteomic approaches to the fractionation of proteolytic peptides and intact proteins, respectively, in a first separation dimension. Separation and mass spectrometric detection by matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS) were performed at the peptide level in both methods. Bottom-up analysis (BU) was carried out employing well established peptide fractionation in the first separation dimension by strong cation-exchange chromatography (SCX), followed by ion-pair reversed-phase chromatography (IP-RPC) in the second dimension. In the semi-top-down approach (STD), which involved intact protein fractionation in the first dimension, the separation mode in both dimensions was IP-RPC utilizing monolithic columns. Application of the two approaches to the proteome analysis of proteins extracted from a tumor tissue revealed that the BU method identified more proteins (1245 in BU versus 920 in STD) while STD analysis offered higher sequence coverage (14.8% in BU versus 17.5% in STD on average). The identification of more basic and larger proteins was slightly favored in the BU approach, most probably due to higher losses of these proteins during intact protein handling and separation in the STD method. A significant degree of complementarity was revealed by an approximately 33% overlap between one BU and STD replicate, while 33% each of the protein identifications were unique to both methods. In the STD method, peptides obtained upon digestion of the proteins contained in fractions of the first separation dimension covered a broad elution window in the second-dimension separation, which demonstrates a high degree of "pseudo-orthogonality" of protein and peptide separation by IP-RPC in both separation dimensions.
Collapse
|
28
|
Affiliation(s)
- Kamila Chughtai
- FOM-Institute for Atomic and Molecular Physics, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Ron M.A. Heeren
- FOM-Institute for Atomic and Molecular Physics, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
29
|
Abstract
Increasing numbers of studies are reporting the modification of prokaryotic proteins with novel glycans. These proteins are often associated with virulence factors of medically important pathogens. Herein, we describe the steps required to characterize prokaryotic glycoproteins by mass spectrometry, using flagellin isolated from Clostridium botulinum strain Langeland as an example. Both "top-down" and "bottom-up" approaches will be described for characterizing the purified glycoprotein at the whole protein and peptide levels. The preliminary steps toward structural characterization of novel prokaryotic glycans by mass spectrometry and NMR are also described.
Collapse
Affiliation(s)
- Susan M Twine
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
30
|
Ye X, Johann DJ, Hakami RM, Xiao Z, Meng Z, Ulrich RG, Issaq HJ, Veenstra TD, Blonder J. Optimization of protein solubilization for the analysis of the CD14 human monocyte membrane proteome using LC-MS/MS. J Proteomics 2009; 73:112-22. [PMID: 19709643 PMCID: PMC3159575 DOI: 10.1016/j.jprot.2009.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 08/17/2009] [Accepted: 08/18/2009] [Indexed: 12/24/2022]
Abstract
Proteomic profiling of membrane proteins is of vital importance in the search for disease biomarkers and drug development. However, the slow pace in this field has resulted mainly from the difficulty to analyze membrane proteins by mass spectrometry (MS). The objective of this investigation was to explore and optimize solubilization of membrane proteins for shotgun membrane proteomics of the CD14 human monocytes by examining different systems that rely on: i) an organic solvent (methanol) ii) an acid-labile detergent 3-[3-(1,1-bisalkyloxyethyl)pyridin-1-yl]propane-1-sulfonate (PPS), iii) a combination of both agents (methanol+PPS). Solubilization efficiency of different buffers was first compared using bacteriorhodopsin as a model membrane protein. Selected approaches were then applied on a membrane subproteome isolated from a highly enriched human monocyte population that was approximately 98% positive for CD14 expression as determined by FACS analysis. A methanol-based buffer yielded 194 proteins of which 93 (48%) were mapped as integral membrane proteins. The combination of methanol and acid-cleavable detergent gave similar results; 203 identified proteins of which 93 (46%) were mapped integral membrane proteins. However, employing PPS 216 proteins were identified of which 75 (35%) were mapped as integral membrane proteins. These results indicate that methanol alone or in combination with PPS yielded significantly higher membrane protein identification/enrichment than the PPS alone.
Collapse
Affiliation(s)
- Xiaoying Ye
- Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, SAIC-Frederick, Inc., NCI at Frederick, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Technological developments make mass spectrometry (MS)-based proteomics a central pillar of biochemical research. MS has been very successful in cell culture systems, where sample amounts are not limiting. To extend its capabilities to extremely small, physiologically distinct cell types isolated from tissue, we developed a high sensitivity chromatographic system that measures nanogram protein mixtures for 8 h with very high resolution. This technology is based on splitting gradient effluents into a capture capillary and provides an inherent technical replicate. In a single analysis, this allowed us to characterize kidney glomeruli isolated by laser capture microdissection to a depth of more than 2,400 proteins. From pooled pancreatic islets of Langerhans, another type of "miniorgan," we obtained an in-depth proteome of 6,873 proteins, many of them involved in diabetes. We quantitatively compared the proteome of single islets, containing 2,000-4,000 cells, treated with high or low glucose levels, and covered most of the characteristic functions of beta cells. Our ultrasensitive analysis recapitulated known hyperglycemic changes but we also find components up-regulated such as the mitochondrial stress regulator Park7. Direct proteomic analysis of functionally distinct cellular structures opens up perspectives in physiology and pathology.
Collapse
|
32
|
Masuda T, Saito N, Tomita M, Ishihama Y. Unbiased quantitation of Escherichia coli membrane proteome using phase transfer surfactants. Mol Cell Proteomics 2009; 8:2770-7. [PMID: 19767571 DOI: 10.1074/mcp.m900240-mcp200] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We developed a sample preparation protocol for rapid and unbiased analysis of the membrane proteome using an alimentary canal-mimicking system in which proteases are activated in the presence of bile salts. In this rapid and unbiased protocol, immobilized trypsin is used in the presence of deoxycholate and lauroylsarcosine to increase digestion efficiency as well as to increase the solubility of the membrane proteins. Using 22.5 microg of Escherichia coli whole cell lysate, we quantitatively demonstrated that membrane proteins were extracted and digested at the same level as soluble proteins without any solubility-related bias. The recovery of membrane proteins was independent of the number of transmembrane domains per protein. In the analysis of the membrane-enriched fraction from 22.5 microg of E. coli cell lysate, the abundance distribution of the membrane proteins was in agreement with that of the membrane protein-coding genes when this protocol, coupled with strong cation exchange prefractionation prior to nano-LC-MS/MS analysis, was used. Because this protocol allows unbiased sample preparation, protein abundance estimation based on the number of observed peptides per protein was applied to both soluble and membrane proteins simultaneously, and the copy numbers per cell for 1,453 E. coli proteins, including 545 membrane proteins, were successfully obtained. Finally, this protocol was applied to quantitative analysis of guanosine tetra- and pentaphosphate-dependent signaling in E. coli wild-type and relA knock-out strains.
Collapse
Affiliation(s)
- Takeshi Masuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | | | | | | |
Collapse
|
33
|
|
34
|
Abstract
Although two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) has been used as the standard proteomic approach for separating proteins in a complex mixture, this technique has many drawbacks. These include a limited molecular mass range, poor separation of highly acidic or basic proteins, and exclusion of the majority of membrane proteins from analysis. Considering the important functions of many membrane proteins, such as receptors, ion transporters, signal transducers, and cell adhesion proteins, it is increasingly important that these proteins are not excluded during the global proteomic analysis of cellular systems. Multidimensional Protein Identification Technology (MudPIT) offers a gel-free alternative to 2D-PAGE for the analysis of both membrane and soluble proteins.The goal of this chapter is to provide detailed methods for using MudPIT to profile both membrane and soluble proteins in complex unfractionated samples. Methods discussed will include tissue homogenization, sample preparation, MudPIT, data analysis, and an application for the analysis of unfractionated total tissue homogenate from human heart.
Collapse
Affiliation(s)
- Kelli G. Kline
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO
| | - Christine C. Wu
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO
- Address Correspondence to: Christine C. Wu, Ph.D., Department of Pharmacology, University of Colorado School of Medicine, Fitzsimons RC1 South L18-6117, P.O. Box 6511, Mail Stop 8303, Aurora, CO 80045, Phone: 303-724-3351,
| |
Collapse
|
35
|
Leinweber BD, Tsaprailis G, Monks TJ, Lau SS. Improved MALDI-TOF imaging yields increased protein signals at high molecular mass. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:89-95. [PMID: 18926723 PMCID: PMC2671225 DOI: 10.1016/j.jasms.2008.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 07/31/2008] [Accepted: 09/08/2008] [Indexed: 05/02/2023]
Abstract
Matrix assisted laser desorption ionization (MALDI) mass spectrum images are created from an array of mass spectra collected over a tissue surface. We have increased the mass range of proteins that can be detected in tissue sections from kidneys, heart, lung and brain of different rodent species by a modification of the sandwich technique, which involves co-crystallizing matrix with analyte. A tissue section is placed upon a drop of sinapinic acid matrix dissolved in 90% ethanol and 0.5% Triton X-100. Once the matrix has dried, a seed layer of sinapinic crystals is added as a dispersion in xylene. Additional layers of sinapinic acid are added as solutions in 90% ethanol followed by 50% acetonitrile. Numerous peaks with signal to noise ratio of four or greater are observed between 25 kDa to 50 kDa. This represents approximately 10 times as many peaks as are detected using traditional matrix spotting and spraying.
Collapse
Affiliation(s)
| | | | | | - Serrine S. Lau
- All correspondence should be addressed: Dr. Serrine S. Lau, Southwest Environmental Health Sciences Center, Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703, E. Mabel Street, Tucson, AZ 85721-0207, TEL: (520) 626-0460, FAX: (520) 626-6944, E-mail:
| |
Collapse
|
36
|
Washburn MP. Sample preparation and in-solution protease digestion of proteins for chromatography-based proteomic analysis. ACTA ACUST UNITED AC 2008; Chapter 23:23.6.1-23.6.11. [PMID: 18729049 DOI: 10.1002/0471140864.ps2306s53] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The adoption of chromatography-based proteomics approaches has resulted in the development of new methods for optimal use of these technologies. One such technology, named multidimensional protein identification technology (MudPIT), directly couples liquid chromatography with tandem mass spectrometry. In the MudPIT approach, digested protein samples are directly loaded onto a microcapillary column packed sequentially with reversed-phase and strong cation exchange resins. Once digested protein samples are loaded onto the column, the column is placed in-line between a high-performance liquid chromatography system and an electrospray ionization tandem mass spectrometer (ESI-MS/MS). The digested protein samples for MudPIT analysis must be directly compatible with ESI-MS/MS, so the sample preparation and digestion protocols must be optimized for this purpose. The primary objective of all of the protocols in this unit is to yield a final digested protein mixture of less than 300 microl that can then be directly loaded onto a MudPIT column.
Collapse
|
37
|
Weiner JH, Li L. Proteome of the Escherichia coli envelope and technological challenges in membrane proteome analysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1698-713. [PMID: 17904518 DOI: 10.1016/j.bbamem.2007.07.020] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 07/19/2007] [Accepted: 07/23/2007] [Indexed: 11/28/2022]
Abstract
The envelope of Escherichia coli is a complex organelle composed of the outer membrane, periplasm-peptidoglycan layer and cytoplasmic membrane. Each compartment has a unique complement of proteins, the proteome. Determining the proteome of the envelope is essential for developing an in silico bacterial model, for determining cellular responses to environmental alterations, for determining the function of proteins encoded by genes of unknown function and for development and testing of new experimental technologies such as mass spectrometric methods for identifying and quantifying hydrophobic proteins. The availability of complete genomic information has led several groups to develop computer algorithms to predict the proteome of each part of the envelope by searching the genome for leader sequences, beta-sheet motifs and stretches of alpha-helical hydrophobic amino acids. In addition, published experimental data has been mined directly and by machine learning approaches. In this review we examine the somewhat confusing available literature and relate published experimental data to the most recent gene annotation of E. coli to describe the predicted and experimental proteome of each compartment. The problem of characterizing integral versus membrane-associated proteins is discussed. The E. coli envelope proteome provides an excellent test bed for developing mass spectrometric techniques for identifying hydrophobic proteins that have generally been refractory to analysis. We describe the gel based and solution based proteome analysis approaches along with protein cleavage and proteolysis methods that investigators are taking to tackle this difficult problem.
Collapse
Affiliation(s)
- Joel H Weiner
- Membrane Protein Research Group and The Institute for Biomolecular Design, University of Alberta, Canada.
| | | |
Collapse
|
38
|
Arnold T, Linke D. The Use of Detergents to Purify Membrane Proteins. ACTA ACUST UNITED AC 2008; Chapter 4:4.8.1-4.8.30. [DOI: 10.1002/0471140864.ps0408s53] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Thomas Arnold
- Max Planck Institute for Developmental Biology Tübingen Germany
| | - Dirk Linke
- Max Planck Institute for Developmental Biology Tübingen Germany
| |
Collapse
|
39
|
Schaiberger AM, Moss JA. Optimized sample preparation for MALDI mass spectrometry analysis of protected synthetic peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:614-9. [PMID: 18295503 DOI: 10.1016/j.jasms.2008.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2007] [Revised: 01/17/2008] [Accepted: 01/18/2008] [Indexed: 05/03/2023]
Abstract
The recent development and commercialization of Fuzeon (enfuvirtide) demonstrated that a convergent strategy comprised of both solid- and solution-phase synthetic methodologies presents a viable route for peptide manufacturing on a multi-ton scale. In this strategy, the target sequence is prepared by stepwise solid-phase synthesis of protected peptide fragments, which are then coupled together in the solution-phase to give the full-length sequence. These synthetic methodologies pose a unique challenge for mass spectrometry (MS), as protected peptide intermediates are often marked by poor solubility, structural lability, and low ionization potential. Matrix-assisted laser desorption/ionization (MALDI) MS is uniquely suited to such analytes; however, generalized protocols for MALDI analysis of protected peptides have yet to be demonstrated. Herein, we report an operationally simple sample preparation method for MALDI analysis of protected peptides, which greatly facilitates the collection and interpretation of MS data. In this method, the difficulty in MS analysis of protected peptides has been greatly diminished by use of dithranol as a matrix and CsCl as an additive, giving rise to intentionally-formed Cs(+) adducts. With greatly reduced fragmentation, better crystalline morphology, and easier data interpretation, we anticipate that these findings will find utility in peptide process development and manufacturing settings for reaction monitoring, troubleshooting, and quality control.
Collapse
|
40
|
Zhang X, Scalf M, Westphall MS, Smith LM. Membrane Protein Separation and Analysis by Supercritical Fluid Chromatography−Mass Spectrometry. Anal Chem 2008; 80:2590-8. [DOI: 10.1021/ac702319u] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xu Zhang
- Department of Chemistry, University of WisconsinMadison, 1101 University Avenue, Madison, Wisconsin 53706
| | - Mark Scalf
- Department of Chemistry, University of WisconsinMadison, 1101 University Avenue, Madison, Wisconsin 53706
| | - Michael S. Westphall
- Department of Chemistry, University of WisconsinMadison, 1101 University Avenue, Madison, Wisconsin 53706
| | - Lloyd M. Smith
- Department of Chemistry, University of WisconsinMadison, 1101 University Avenue, Madison, Wisconsin 53706
| |
Collapse
|
41
|
Masuda T, Tomita M, Ishihama Y. Phase Transfer Surfactant-Aided Trypsin Digestion for Membrane Proteome Analysis. J Proteome Res 2008; 7:731-40. [DOI: 10.1021/pr700658q] [Citation(s) in RCA: 439] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Takeshi Masuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan, and PRESTO, Japan Science and Technology Agency, Sanbancho Building, 5-Sanbancho, Chiyodaku, Tokyo 102-0075, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan, and PRESTO, Japan Science and Technology Agency, Sanbancho Building, 5-Sanbancho, Chiyodaku, Tokyo 102-0075, Japan
| | - Yasushi Ishihama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan, and PRESTO, Japan Science and Technology Agency, Sanbancho Building, 5-Sanbancho, Chiyodaku, Tokyo 102-0075, Japan
| |
Collapse
|
42
|
Beyer NH, Schou C, Houen G, Heegaard NHH. Extraction and identification of electroimmunoprecipitated proteins from agarose gels. J Immunol Methods 2007; 330:24-33. [PMID: 18048052 DOI: 10.1016/j.jim.2007.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 09/18/2007] [Accepted: 10/24/2007] [Indexed: 10/22/2022]
Abstract
A method for the identification of protein antigens captured in electroimmunoprecipitates was developed. Different antigen-antibody precipitates were generated by agarose gel immunoelectrophoresis. The immunoprecipitates were excised and various methods for extracting and dissociating the precipitates were systematically studied by analyzing for protein components of the extracts using peptide mass fingerprinting after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The optimal recovery of antigen was obtained by 24-h extraction at 37 degrees C using a minimal volume of 0.06 M Tris-HCl, 10% SDS (pH 7). This simple and robust method is useful for the characterization of antibody specificity. It can also be used to identify antigens generating unknown precipitates in crossed immunoelectrophoresis with polyspecific antisera, including human IgG-antigen complexes electroimmunoprecipitated by secondary antibodies. Thus, the method may prove useful as an additional technique in biomarker discovery.
Collapse
Affiliation(s)
- Natascha Helena Beyer
- Department of Autoimmunology, Statens Serum Institut, Artillerivej 5, Copenhagen S, Denmark.
| | | | | | | |
Collapse
|
43
|
Abstract
Two shotgun tandem MS proteomics approaches, multidimensional protein identification technology (MudPIT) and 1-D gel-LC-MS/MS, were used to identify Arabidopsis thaliana leaf proteins. These methods utilize different protein/peptide separation strategies. Detergents not compatible with MudPIT were used with 1-D gel-LC-MS/MS to help enrich for the detection of membrane-spanning and hydrophobic proteins. By combining the data from all MudPIT and 1-D gel-LC-MS/MS experiments, 2342 nonredundant proteins spanning a broad range of molecular weights and pI values were detected. With the exception of unknown proteins, the distribution of gene ontology (GO) classifications for the detected proteins was similar to that encoded by the genome, which shows that these extraction and separation procedures are useful for a broad proteomic survey of plant cells. Unknown proteins will likely have to be targeted by using additional methods, some of which should be compatible with separation strategies taken here.
Collapse
Affiliation(s)
- Joohyun Lee
- USDA-ARS, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA.
| | | | | |
Collapse
|
44
|
Affiliation(s)
- Anna E Speers
- Department of Pharmacology, University of Colorado School of Medicine, P.O. Box 6511, MS 8303, Aurora, Colorado 80045, USA
| | | |
Collapse
|
45
|
Norris JL, Porter NA, Caprioli RM. Combination detergent/MALDI matrix: functional cleavable detergents for mass spectrometry. Anal Chem 2007; 77:5036-40. [PMID: 16053319 DOI: 10.1021/ac050460g] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study reports the synthesis of the first functional cleavable detergent designed specifically for applications in mass spectrometry. Upon cleavage, two inert compounds and the MALDI matrix are formed, eliminating sources of potential interference originating from traditional cleavable detergents. Analysis of peptides demonstrates that MALDI matrix generated in situ results in MALDI spectra equivalent to those prepared using established protocols. Analysis of the membrane protein diacylglycerol kinase was accomplished using the combination detergent/MALDI matrix. Applications of the functional cleavable detergents to the profiling of whole cell lysates results in increased signal-to-noise ratios of many ions and the detection of additional proteins previously not observed.
Collapse
Affiliation(s)
- Jeremy L Norris
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232-8575, USA
| | | | | |
Collapse
|
46
|
Långström B, Andrén PE, Lindhe O, Svedberg M, Hall H. In Vitro Imaging Techniques in Neurodegenerative Diseases. Mol Imaging Biol 2007; 9:161-75. [PMID: 17318669 DOI: 10.1007/s11307-007-0088-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neurodegeneration induces various changes in the brain, changes that may be investigated using neuroimaging techniques. The in vivo techniques are useful for the visualization of major changes, and the progressing abnormalities may also be followed longitudinally. However, to study and quantify minor abnormalities, neuroimaging of postmortem brain tissue is used. These in vitro methods are complementary to the in vivo techniques and contribute to the knowledge of pathophysiology and etiology of the neurodegenerative diseases. In vitro radioligand autoradiography has given great insight in the involvement of different neuronal receptor systems in these diseases. Data on the dopamine and cholinergic systems in neurodegeneration are discussed in this review. Also, the amyloid plaques are studied using in vitro radioligand autoradiography. Using one of the newer methods, imaging matrix-assisted laser desorption ionization mass spectrometry, the distribution of a large number of peptides and proteins may be detected in vitro on brain cryosections. In this overview, we describe in vitro imaging techniques in the neurodegenerative diseases as a complement to in vivo positron emission tomography and single photon emission computed tomography imaging.
Collapse
Affiliation(s)
- Bengt Långström
- Department of Biochemistry and Organic Chemistry, Uppsala University, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
47
|
Chaurand P, Norris JL, Cornett DS, Mobley JA, Caprioli RM. New developments in profiling and imaging of proteins from tissue sections by MALDI mass spectrometry. J Proteome Res 2007; 5:2889-900. [PMID: 17081040 DOI: 10.1021/pr060346u] [Citation(s) in RCA: 227] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Molecular imaging of tissue by MALDI mass spectrometry is a powerful tool for visualizing the spatial distribution of constituent analytes with high molecular specificity. Although the technique is relatively young, it has already contributed to the understanding of many diverse areas of human health. In recent years, a great many advances in the practice of imaging mass spectrometry have taken place, making the technique more sensitive, robust, and ultimately useful. The purpose of this review is to highlight some of the more recent technological advances that have improved the efficiency of imaging mass spectrometry for clinical applications. Advances in the way MALDI mass spectrometry is integrated with histology, improved methods for automation, and better tools for data analysis are outlined in this review. Refined top-down strategies for the identification and validation of candidate biomarkers found in tissue sections are discussed. A clinical example highlighting the application of these methods to a cohort of clinical samples is described.
Collapse
Affiliation(s)
- Pierre Chaurand
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University Medical Center, Nashville Tennessee 37232-8575, USA
| | | | | | | | | |
Collapse
|
48
|
Klammer AA, MacCoss MJ. Effects of modified digestion schemes on the identification of proteins from complex mixtures. J Proteome Res 2006; 5:695-700. [PMID: 16512685 PMCID: PMC2535816 DOI: 10.1021/pr050315j] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In shotgun proteomics, a complex protein mixture is digested to peptides, separated, and identified by microcapillary liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). In this technology, complete protein digestion is often assumed. We show that, to the contrary, modifications to a standard digestion protocol demonstrate large, reproducible improvements in protein identification, a result consistent with digestion being a limiting factor in the efficiency of protein identification.
Collapse
Affiliation(s)
- Aaron A Klammer
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
49
|
Rawel HM, Rohn S, Kroll J, Schweigert FJ. Surface enhanced laser desorptions ionization-time of flight-mass spectrometry analysis in complex food and biological systems. Mol Nutr Food Res 2005; 49:1104-11. [PMID: 16270379 DOI: 10.1002/mnfr.200500047] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Harshadrai M Rawel
- Department of Physiology and Pathophysiology, Institute of Nutritional Science, University of Potsdam, D-14469 Potsdam, Germany.
| | | | | | | |
Collapse
|
50
|
Norris JL, Hangauer MJ, Porter NA, Caprioli RM. Nonacid cleavable detergents applied to MALDI mass spectrometry profiling of whole cells. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:1319-26. [PMID: 16220468 DOI: 10.1002/jms.914] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Although cleavable detergents were first synthesized a number of years ago, they have only recently been successfully applied to problems involving biological molecules. Recent reports have demonstrated that these compounds are useful for applications involving both 2D PAGE and mass spectrometry. However, most cleavable surfactants have utilized acid-labile functional groups to affect cleavage. In applications where extreme pH is required, acid cleavable detergents have limited usefulness. We report the synthesis of fluoride cleavable silane compounds and photolabile cinnamate esters as cleavable detergents having alternative cleavage chemistries than previously reported cleavable detergents. These compounds were applied to whole cell analysis using MALDI mass spectrometry, and it was demonstrated that their use results in an increase in the number of proteins analyzed by increasing protein solubility.
Collapse
Affiliation(s)
- Jeremy L Norris
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232-8575, USA
| | | | | | | |
Collapse
|