1
|
Gamella M, Ballesteros MI, Ruiz-Valdepeñas Montiel V, Sánchiz A, Cuadrado C, Pingarrón JM, Linacero R, Campuzano S. Disposable amperometric biotool for peanut detection in processed foods by targeting a chloroplast DNA marker. Talanta 2024; 277:126350. [PMID: 38843772 DOI: 10.1016/j.talanta.2024.126350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 07/19/2024]
Abstract
This work reports the development and application of a disposable amperometric sensor built on magnetic microcarriers coupled to an Express PCR strategy to amplify a specific DNA fragment of the chloroplast trnH-psbA. The procedure involves the selective capture of a 68-mer synthetic target DNA (or unmodified PCR products) through sandwich hybridization with RNA capture probe-modified streptavidin MBs and RNA signaling probes, labeled using antibodies specific to the heteroduplexes and secondary antibodies tagged with horseradish peroxidase. Amperometric measurements were performed on screen-printed electrodes using the H2O2/hydroquinone system. Achieving a LOD of 3 pM for the synthetic target, it was possible to detect 2.5 pg of peanut DNA and around 10 mg kg-1 of peanut in binary mixtures (defatted peanut flours prepared in spelt wheat). However, the detectability decreased between 10 and 1000 times in processed samples depending on the treatment. The Express PCR-bioplatform was applied to the detection of peanut traces in foodstuff.
Collapse
Affiliation(s)
- Maria Gamella
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - María Isabel Ballesteros
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | | | - Africa Sánchiz
- Departamento de Tecnología de los Alimentos, CSIC-INIA, 28040, Madrid, Spain
| | - Carmen Cuadrado
- Departamento de Tecnología de los Alimentos, CSIC-INIA, 28040, Madrid, Spain
| | - José M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Rosario Linacero
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
2
|
El Aamri M, Baachaoui S, Mohammadi H, Raouafi N, Amine A. Smartphone-based device for rapid and single-step detection of piRNA-651 using anti-DNA:RNA hybrid antibody and enzymatic signal amplification. Anal Chim Acta 2024; 1305:342583. [PMID: 38677845 DOI: 10.1016/j.aca.2024.342583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024]
Abstract
P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs/piRs) are a class of small noncoding RNAs that play a crucial role in regulating various biological processes, including carcinogenesis. One specific piRNA, piR-651, has been reported to be overexpressed in both human blood serum and solid cancer tissues, that can be used a viable biomarker in cancer diagnosis. Early diagnosis of cancer can help reduce the burden of the disease and improve survival rates. In the present work, we report for the first time a smartphone-based colorimetric biosensor for highly sensitive and specific detection of piR-651 thanks to an enzymatic signal amplification, which yielded high colorimetric intensities. Indeed, a heteroduplex DNA:RNA was formed in the presence of piR-651 with the capture DNA probe immobilized on the magnetic beads for easy magnetic separation. Then, a HRP tethered to anti-DNA:RNA (S9.6) was used to reveal the DNA-RNA heteroduplex formed by catalyzing the oxidation of TMB substrate into colorimetric TMBox, which absorbs at 630 nm. The absorbance is positively proportional to the piR-651 concentrations. On the other hand, the colorimetric product of the assay can be photographed with a smartphone camera and analyzed using ImageJ software. Using a smartphone and under optimal conditions, the biosensor responded linearly to the logarithm of piRNA-651 from 8 fM to 100 pM with a detection limit of 2.3 fM and discriminates against other piRNAs. It was also successfully applied to the determination of piRNA-651 levels in spiked human serum.
Collapse
Affiliation(s)
- Maliana El Aamri
- Hassan II University of Casablanca, Faculty of Sciences and Techniques, Laboratory of Process Engineering and Environment, Chemical Analysis and Biosensors Group, P.A 146, Mohammedia, Morocco
| | - Sabrine Baachaoui
- University of Tunis El Manar, Faculty of Science, Chemistry Department, Analytical Chemistry and Electrochemistry Lab (LR99ES15), Sensors and Biosensors Group, Tunis El Manar, 2092, Tunisia
| | - Hasna Mohammadi
- Hassan II University of Casablanca, Faculty of Sciences and Techniques, Laboratory of Process Engineering and Environment, Chemical Analysis and Biosensors Group, P.A 146, Mohammedia, Morocco
| | - Noureddine Raouafi
- University of Tunis El Manar, Faculty of Science, Chemistry Department, Analytical Chemistry and Electrochemistry Lab (LR99ES15), Sensors and Biosensors Group, Tunis El Manar, 2092, Tunisia.
| | - Aziz Amine
- Hassan II University of Casablanca, Faculty of Sciences and Techniques, Laboratory of Process Engineering and Environment, Chemical Analysis and Biosensors Group, P.A 146, Mohammedia, Morocco.
| |
Collapse
|
3
|
Povedano E, Ruiz-Valdepeñas Montiel V, Sebuyoya R, Torrente-Rodríguez RM, Garranzo-Asensio M, Montero-Calle A, Pingarrón JM, Barderas R, Bartosik M, Campuzano S. Bringing to Light the Importance of the miRNA Methylome in Colorectal Cancer Prognosis Through Electrochemical Bioplatforms. Anal Chem 2024; 96:4580-4588. [PMID: 38348822 PMCID: PMC10955513 DOI: 10.1021/acs.analchem.3c05474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 03/20/2024]
Abstract
This work reports the first electrochemical bioplatforms developed for the determination of the total contents of either target miRNA or methylated target miRNA. The bioplatforms are based on the hybridization of the target miRNA with a synthetic biotinylated DNA probe, the capture of the formed DNA/miRNA heterohybrids on the surface of magnetic microcarriers, and their recognition with an antibody selective to these heterohybrids or to the N6-methyladenosine (m6A) epimark. The determination of the total or methylated target miRNA was accomplished by labeling such secondary antibodies with the horseradish peroxidase (HRP) enzyme. In both cases, amperometric transduction was performed on the surface of disposable electrodes after capturing the resulting HRP-tagged magnetic bioconjugates. Because of their increasing relevance in colorectal cancer (CRC) diagnosis and prognosis, miRNA let-7a and m6A methylation were selected. The proposed electrochemical bioplatforms showed attractive analytical and operational characteristics for the determination of the total and m6A-methylated target miRNA in less than 75 min. These bioplatforms, innovative in design and application, were applied to the analysis of total RNA samples extracted from cultured cancer cells with different metastatic profiles and from paired healthy and tumor tissues of patients diagnosed with CRC at different stages. The obtained results demonstrated, for the first time using electrochemical platforms, the potential of interrogating the target miRNA methylation level to discriminate the metastatic capacities of cancer cells and to identify tumor tissues and, in a pioneering way, the potential of the m6A methylation in miRNA let-7a to serve as a prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Eloy Povedano
- Departamento
de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid 28040, Spain
| | - Víctor Ruiz-Valdepeñas Montiel
- Departamento
de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid 28040, Spain
| | - Ravery Sebuyoya
- Research
Centre for Applied Molecular Oncology, Masaryk
Memorial Cancer Institute, Zluty kopec 7, Brno 656
53, Czech Republic
- National
Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Rebeca M. Torrente-Rodríguez
- Departamento
de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid 28040, Spain
| | - Maria Garranzo-Asensio
- Chronic
Disease Programme, UFIEC, Institute of Health
Carlos III, Majadahonda, Madrid 28220, Spain
| | - Ana Montero-Calle
- Chronic
Disease Programme, UFIEC, Institute of Health
Carlos III, Majadahonda, Madrid 28220, Spain
| | - José M. Pingarrón
- Departamento
de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid 28040, Spain
| | - Rodrigo Barderas
- Chronic
Disease Programme, UFIEC, Institute of Health
Carlos III, Majadahonda, Madrid 28220, Spain
| | - Martin Bartosik
- Research
Centre for Applied Molecular Oncology, Masaryk
Memorial Cancer Institute, Zluty kopec 7, Brno 656
53, Czech Republic
| | - Susana Campuzano
- Departamento
de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid 28040, Spain
| |
Collapse
|
4
|
Zhang Y, Whittington CS, Layouni R, Cotto AM, Arnold KP, Halimi SI, Weiss SM. Protein sensing using deep subwavelength-engineered photonic crystals. OPTICS LETTERS 2024; 49:395-398. [PMID: 38194577 DOI: 10.1364/ol.510541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
We demonstrate a higher sensitivity detection of proteins in a photonic crystal platform by including a deep subwavelength feature in the unit cell that locally increases the energy density of light. Through both simulations and experiments, the sensing capability of a deep subwavelength-engineered silicon antislot photonic crystal nanobeam (PhCNB) cavity is compared to that of a traditional PhCNB cavity. The redistribution and local enhancement of the energy density by the 50 nm antislot enable stronger light-molecule interaction at the surface of the antislot and lead to a larger resonance shift upon protein binding. This surface-based energy enhancement is confirmed by experiments demonstrating a nearly 50% larger resonance shift upon attachment of streptavidin molecules to biotin-functionalized antislot PhCNB cavities.
Collapse
|
5
|
Sun Y, Qu X, Qiu P, Mao C. A nanoparticle-based molecular beacon for directly detecting attomolar small RNA from plasma without purification. Talanta 2023; 260:124602. [PMID: 37148690 DOI: 10.1016/j.talanta.2023.124602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
Molecular beacons (MBs) are DNA-based probes that detect DNA or RNA fragments and hold promise for monitoring diseases and studying protein-nucleic acid interactions. MBs usually use fluorescent molecules as fluorophores for reporting the target detection event. However, the fluorescence of the traditional fluorescent molecules can bleach and even be interfered with the background autofluorescence, reducing the detection performance. Hence, we propose to develop a nanoparticle-based MB (NPMB) that uses upconversion nanoparticles (UCNPs) as a fluorophore, which can be excited by near-infrared light to avoid background autofluorescence and thus enables us to detect small RNA from complicated clinical samples such as plasma. Specifically, we employ a DNA hairpin structure, with one segment complementary to the target RNA, to position a quencher (gold nanoparticles, Au NPs) and the UCNP fluorophore in close proximity, leading to the quenching of the fluorescence of UCNPs in the absence of a target nucleic acid. Only when the hairpin structure is complementary with the detection target, will the hairpin structure be destroyed to separate Au NPs and UCNPs, resulting in the instant recovery of the fluorescence signal of UCNPs and the consequent ultrasensitive detection of the target concentrations. The NPMB has an ultra-low background signal because UCNPs can be excited with NIR light with a wavelength longer than the emitted visible light. We demonstrate that the NPMB can successfully detect a small (22-nt) RNA (using a microRNA cancer biomarker, miR-21, as an example) and a small single-stranded DNA (complementing the cDNA of miR-21) in aqueous solutions from 1 aM to 1 pM, with the linear detection range being 10 aM to 1 pM for the former and 1 aM to 100 fM for the latter. We further show that the NPMB can be used to detect unpurified small RNA (miR-21) in clinical samples such as plasma with the same detection region. Our work suggests that the NPMB is a promising label-free and purification-free method for detecting small nucleic acid biomarkers in clinical samples with a detection limit as low as the aM level.
Collapse
Affiliation(s)
- Yueyi Sun
- Department of Chemistry and Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, OK, 73019, USA
| | - Xuewei Qu
- Department of Chemistry and Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, OK, 73019, USA
| | - Penghe Qiu
- Department of Chemistry and Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, OK, 73019, USA
| | - Chuanbin Mao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China.
| |
Collapse
|
6
|
Gamella M, Laza A, Parrón-Ballesteros J, Bueno C, Ruiz-Valdepeñas Montiel V, Pedrero M, Bertolino FA, Pingarrón JM, Villalba M, Campuzano S. First PCR-free electrochemical bioplatform for the detection of mustard Sin a 1 protein as a potential "hidden" food allergen. Bioelectrochemistry 2023; 150:108357. [PMID: 36571998 DOI: 10.1016/j.bioelechem.2022.108357] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
A disposable electrochemical PCR-free biosensor for the selective detection of a fragment encoding the protein Sin a 1, a 2S albumin considered a diagnostic marker for sensitization to mustard, is reported. The methodology is based on the formation of DNA/RNA heterohybrids by sandwich hybridization of a specific fragment of the Sin a 1 allergen coding sequence with appropriately designed RNA probes. Labeling with commercial antibodies specific to the heteroduplexes and secondary antibodies conjugated with horseradish peroxidase (HRP) was carried out onto the surface of magnetic beads (MBs). Amperometric transduction was undertaken on screen-printed electrodes using H2O2 as enzyme substrate and hydroquinone (HQ) a redox mediator. The electrochemical biosensor allows the simple and fast detection (75 min) of Sin a 1 reaching a limit of detection of 3 pM. The bioplatform was successfully applied to the analysis of the targeted Sin a 1 gene specific region using just 50 ng of non-fragmented denatured genomic DNA extracted from yellow mustard seeds.
Collapse
Affiliation(s)
- Maria Gamella
- Analytical Chemistry Department, Chemistry Faculty, University Complutense of Madrid, E-28040 Madrid, Spain
| | - Anabel Laza
- Analytical Chemistry Department, Chemistry Faculty, University Complutense of Madrid, E-28040 Madrid, Spain; Institute of Chemistry of San Luis (INQUISAL, UNSL-CONICET), National University of San Luis, Laboratory of Bioanalytical, Chacabuco 917, D5700BWS San Luis, Argentina
| | - Jorge Parrón-Ballesteros
- Biochemistry and Molecular Biology Department, Chemistry Faculty, Complutense University, 28040 Madrid, Spain
| | - Cristina Bueno
- Biochemistry and Molecular Biology Department, Chemistry Faculty, Complutense University, 28040 Madrid, Spain
| | | | - María Pedrero
- Analytical Chemistry Department, Chemistry Faculty, University Complutense of Madrid, E-28040 Madrid, Spain
| | - Franco A Bertolino
- Institute of Chemistry of San Luis (INQUISAL, UNSL-CONICET), National University of San Luis, Laboratory of Bioanalytical, Chacabuco 917, D5700BWS San Luis, Argentina
| | - José M Pingarrón
- Analytical Chemistry Department, Chemistry Faculty, University Complutense of Madrid, E-28040 Madrid, Spain.
| | - Mayte Villalba
- Biochemistry and Molecular Biology Department, Chemistry Faculty, Complutense University, 28040 Madrid, Spain.
| | - Susana Campuzano
- Analytical Chemistry Department, Chemistry Faculty, University Complutense of Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
7
|
Fang M, Liu F, Fang D, Chen Y, Xiang Y, Zhang H, Huang M, Qin X, Pan LH, Yang F. Primer exchange reaction-amplified protein-nucleic acid interactions for ultrasensitive and specific microRNA detection. Biosens Bioelectron 2023; 230:115274. [PMID: 37004284 DOI: 10.1016/j.bios.2023.115274] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Protein-nucleic acid interactions are not only fundamental to genetic regulation and cellular metabolism, but molecular basis to artificial biosensors. However, such interactions are generally weak and dynamic, making their specific and sensitive quantitative detection challenging. By using primer exchange reaction (PER)-amplified protein-nucleic acid interactions, we here design a universal and ultrasensitive electrochemical sensor to quantify microRNAs (miRNAs) in blood. This PER-miR sensor leverages specific recognition between S9.6 antibodies and miRNA/DNA hybrids to couple with PER-derived multi-enzyme catalysis for ultrasensitive miRNA detection. Surface binding kinetic analysis shows a rational Kd (8.9 nM) between the miRNA/DNA heteroduplex and electrode-attached S9.6 antibody. Based on such a favorable affinity, the programmable PER amplification enables the sensor to detect target miRNAs with sensitivity up to 90.5 aM, three orders of magnitude higher than that without PER in routine design, and with specificity of single-base resolution. Furthermore, the PER-miR sensor allows detecting multiple miRNAs in parallel, measuring target miRNA in lysates across four types of cell lines, and differentiating tumor patients from healthy individuals by directly analyzing the human blood samples (n = 40). These advantages make the sensor a promising tool to enable quantitative sensing of biomolecular interactions and precision diagnostics.
Collapse
|
8
|
Bläsi J, Gerken M. Multiplex microdisk biosensor based on simultaneous intensity and phase detection. OPTICS EXPRESS 2023; 31:4319-4333. [PMID: 36785403 DOI: 10.1364/oe.477258] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
Future healthcare and precision medicine require multiplex and reliable biosensors. Here we present a compact photonic crystal based microdisk biosensor that is designed for simultaneous intensity and phase measurements of multiple biomarkers in parallel. The combination of two different measurement approaches has a range of advantages. Phase detection has higher signal to noise ratios, while intensity measurement helps to align the sensor to high phase sensitivities and increase the reliability. The performance of the microdisk biosensor system is examined by simulations and measurements. For proof of concept, parallel intensity and phase shifts are measured upon binding of human-alpha-thrombin and streptavidin.
Collapse
|
9
|
Puumala LS, Grist SM, Morales JM, Bickford JR, Chrostowski L, Shekhar S, Cheung KC. Biofunctionalization of Multiplexed Silicon Photonic Biosensors. BIOSENSORS 2022; 13:53. [PMID: 36671887 PMCID: PMC9855810 DOI: 10.3390/bios13010053] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/10/2022] [Accepted: 12/23/2022] [Indexed: 05/28/2023]
Abstract
Silicon photonic (SiP) sensors offer a promising platform for robust and low-cost decentralized diagnostics due to their high scalability, low limit of detection, and ability to integrate multiple sensors for multiplexed analyte detection. Their CMOS-compatible fabrication enables chip-scale miniaturization, high scalability, and low-cost mass production. Sensitive, specific detection with silicon photonic sensors is afforded through biofunctionalization of the sensor surface; consequently, this functionalization chemistry is inextricably linked to sensor performance. In this review, we first highlight the biofunctionalization needs for SiP biosensors, including sensitivity, specificity, cost, shelf-stability, and replicability and establish a set of performance criteria. We then benchmark biofunctionalization strategies for SiP biosensors against these criteria, organizing the review around three key aspects: bioreceptor selection, immobilization strategies, and patterning techniques. First, we evaluate bioreceptors, including antibodies, aptamers, nucleic acid probes, molecularly imprinted polymers, peptides, glycans, and lectins. We then compare adsorption, bioaffinity, and covalent chemistries for immobilizing bioreceptors on SiP surfaces. Finally, we compare biopatterning techniques for spatially controlling and multiplexing the biofunctionalization of SiP sensors, including microcontact printing, pin- and pipette-based spotting, microfluidic patterning in channels, inkjet printing, and microfluidic probes.
Collapse
Affiliation(s)
- Lauren S. Puumala
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Samantha M. Grist
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Dream Photonics Inc., Vancouver, BC V6T 0A7, Canada
| | - Jennifer M. Morales
- Army Research Laboratory, US Army Combat Capabilities Development Command, 2800 Powder Mill Rd., Adelphi, MD 20783, USA
| | - Justin R. Bickford
- Army Research Laboratory, US Army Combat Capabilities Development Command, 2800 Powder Mill Rd., Adelphi, MD 20783, USA
| | - Lukas Chrostowski
- Dream Photonics Inc., Vancouver, BC V6T 0A7, Canada
- Department of Electrical and Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, BC V6T 1Z4, Canada
- Stewart Blusson Quantum Matter Institute, University of British Columbia, 2355 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Sudip Shekhar
- Dream Photonics Inc., Vancouver, BC V6T 0A7, Canada
- Department of Electrical and Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Karen C. Cheung
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Department of Electrical and Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
10
|
Meserve K, Qavi AJ, Aman MJ, Vu H, Zeitlin L, Dye JM, Froude JW, Leung DW, Yang L, Holtsberg FW, Amarasinghe GK, Bailey RC. Detection of biomarkers for filoviral infection with a silicon photonic resonator platform. STAR Protoc 2022; 3:101719. [PMID: 36153732 PMCID: PMC9515683 DOI: 10.1016/j.xpro.2022.101719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/29/2022] [Accepted: 08/29/2022] [Indexed: 01/26/2023] Open
Abstract
This protocol describes the use of silicon photonic microring resonator sensors for detection of Ebola virus (EBOV) and Sudan virus (SUDV) soluble glycoprotein (sGP). This protocol encompasses biosensor functionalization of silicon microring resonator chips, detection of protein biomarkers in sera, preparing calibration standards for analytical validation, and quantification of the results from these experiments. This protocol is readily adaptable toward other analytes, including cytokines, chemokines, nucleic acids, and viruses. For complete details on the use and execution of this protocol, please refer to Qavi et al. (2022).
Collapse
Affiliation(s)
- Krista Meserve
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Abraham J Qavi
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - M Javad Aman
- Integrated BioTherapeutics, Rockville, MD 20850, USA
| | - Hong Vu
- Integrated BioTherapeutics, Rockville, MD 20850, USA
| | - Larry Zeitlin
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121, USA
| | - John M Dye
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Jeffrey W Froude
- United States Army Nuclear and Countering Weapons of Mass Destruction Agency, Fort Belvoir, VA 22060, USA
| | - Daisy W Leung
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63130, USA
| | - Lan Yang
- Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - Gaya K Amarasinghe
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA.
| | - Ryan C Bailey
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
11
|
Chu SS, Nguyen HA, Zhang J, Tabassum S, Cao H. Towards Multiplexed and Multimodal Biosensor Platforms in Real-Time Monitoring of Metabolic Disorders. SENSORS (BASEL, SWITZERLAND) 2022; 22:5200. [PMID: 35890880 PMCID: PMC9323394 DOI: 10.3390/s22145200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Metabolic syndrome (MS) is a cluster of conditions that increases the probability of heart disease, stroke, and diabetes, and is very common worldwide. While the exact cause of MS has yet to be understood, there is evidence indicating the relationship between MS and the dysregulation of the immune system. The resultant biomarkers that are expressed in the process are gaining relevance in the early detection of related MS. However, sensing only a single analyte has its limitations because one analyte can be involved with various conditions. Thus, for MS, which generally results from the co-existence of multiple complications, a multi-analyte sensing platform is necessary for precise diagnosis. In this review, we summarize various types of biomarkers related to MS and the non-invasively accessible biofluids that are available for sensing. Then two types of widely used sensing platform, the electrochemical and optical, are discussed in terms of multimodal biosensing, figure-of-merit (FOM), sensitivity, and specificity for early diagnosis of MS. This provides a thorough insight into the current status of the available platforms and how the electrochemical and optical modalities can complement each other for a more reliable sensing platform for MS.
Collapse
Affiliation(s)
- Sung Sik Chu
- Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California Irvine, Irvine, CA 92697, USA; (S.S.C.); (J.Z.)
| | - Hung Anh Nguyen
- Department of Electrical Engineering and Computer Science, Henry Samueli School of Engineering, University of California Irvine, Irvine, CA 92697, USA;
| | - Jimmy Zhang
- Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California Irvine, Irvine, CA 92697, USA; (S.S.C.); (J.Z.)
| | - Shawana Tabassum
- Department of Electrical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - Hung Cao
- Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California Irvine, Irvine, CA 92697, USA; (S.S.C.); (J.Z.)
- Department of Electrical Engineering and Computer Science, Henry Samueli School of Engineering, University of California Irvine, Irvine, CA 92697, USA;
| |
Collapse
|
12
|
Qavi AJ, Meserve K, Aman MJ, Vu H, Zeitlin L, Dye JM, Froude JW, Leung DW, Yang L, Holtsberg FW, Bailey RC, Amarasinghe GK. Rapid detection of an Ebola biomarker with optical microring resonators. CELL REPORTS METHODS 2022; 2:100234. [PMID: 35784644 PMCID: PMC9243524 DOI: 10.1016/j.crmeth.2022.100234] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/28/2022] [Accepted: 05/16/2022] [Indexed: 10/31/2022]
Abstract
Ebola virus (EBOV) is a highly infectious pathogen, with a case mortality rate as high as 89%. Rapid therapeutic treatments and supportive measures can drastically improve patient outcome; however, the symptoms of EBOV disease (EVD) lack specificity from other endemic diseases. Given the high mortality and significant symptom overlap, there is a critical need for sensitive, rapid diagnostics for EVD. Facile diagnosis of EVD remains a challenge. Here, we describe a rapid and sensitive diagnostic for EVD through microring resonator sensors in conjunction with a unique biomarker of EBOV infection, soluble glycoprotein (sGP). Microring resonator sensors detected sGP in under 40 min with a limit of detection (LOD) as low as 1.00 ng/mL in serum. Furthermore, we validated our assay with the detection of sGP in serum from EBOV-infected non-human primates. Our results demonstrate the utility of a high-sensitivity diagnostic platform for detection of sGP for diagnosis of EVD.
Collapse
Affiliation(s)
- Abraham J. Qavi
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Krista Meserve
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - M. Javad Aman
- Integrated Biotherapeutics, Rockville, MD 20850, USA
| | - Hong Vu
- Integrated Biotherapeutics, Rockville, MD 20850, USA
| | - Larry Zeitlin
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121, USA
| | - John M. Dye
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Jeffrey W. Froude
- United States Army Nuclear and Countering Weapons of Mass Destruction Agency, Fort Belvoir, VA 22060, USA
| | - Daisy W. Leung
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lan Yang
- Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - Ryan C. Bailey
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gaya K. Amarasinghe
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
13
|
Špringer T, Krejčík Z, Homola J. Detecting attomolar concentrations of microRNA related to myelodysplastic syndromes in blood plasma using a novel sandwich assay with nanoparticle release. Biosens Bioelectron 2021; 194:113613. [PMID: 34536749 DOI: 10.1016/j.bios.2021.113613] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 12/20/2022]
Abstract
Microribonucleic acids (miRNAs) are short noncoding ribonucleic acids that have been linked with a multitude of human diseases including lung, breast, and hematological cancers. In this work, we present a novel, extremely sensitive assay for the label-free optical biosensor-based detection of miRNAs, which is based on the oligonucleotide-triggered release of nanoparticles from a sensor surface. We combine this assay (herein referred to as the nanoparticle-release (NPR) assay) with a surface plasmon resonance biosensor and show that the assay is able to enhance the specific sensor response associated with the binding of target miRNA while suppressing the interfering effects caused by the non-specific binding. We apply the assay to the detection of miRNAs related to myelodysplastic syndromes (miR-125b, miR-16) in blood plasma and demonstrate that the assay enables detection of miR-125b with a limit of detection (LOD) of 349 aM (corresponding to the lowest detectable amounts of 419 zmol). The achieved LOD is better by a factor of ∼100 when compared to the conventional nanoparticle-enhanced sandwich assay. Moreover, we demonstrate that the NPR assay may be combined with time-division multiplexing for the multiplexed miRNA detection.
Collapse
Affiliation(s)
- Tomáš Špringer
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, 182 51 Prague, Czech Republic
| | - Zdeněk Krejčík
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 128 20 Prague, Czech Republic
| | - Jiří Homola
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, 182 51 Prague, Czech Republic.
| |
Collapse
|
14
|
Liu X, Wu W, Cui D, Chen X, Li W. Functional Micro-/Nanomaterials for Multiplexed Biodetection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004734. [PMID: 34137090 DOI: 10.1002/adma.202004734] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/08/2020] [Indexed: 05/24/2023]
Abstract
When analyzing biological phenomena and processes, multiplexed biodetection has many advantages over single-factor biodetection and is highly relevant to both human health issues and advancements in the life sciences. However, many key problems with current multiplexed biodetection strategies remain unresolved. Herein, the main issues are analyzed and summarized: 1) generating sufficient signal to label targets, 2) improving the signal-to-noise ratio to ensure total detection sensitivity, and 3) simplifying the detection process to reduce the time and labor costs of multiple target detection. Then, available solutions made possible by designing and controlling the properties of micro- and nanomaterials are introduced. The aim is to emphasize the role that micro-/nanomaterials can play in the improvement of multiplexed biodetection strategies. Through analyzing existing problems, introducing state-of-the-art developments regarding relevant materials, and discussing future directions of the field, it is hopeful to help promote necessary developments in multiplexed biodetection and associated scientific research.
Collapse
Affiliation(s)
- Xinyi Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Weijie Wu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
| | - Wanwan Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
15
|
Bläsi J, Gerken M. Multiplex optical biosensors based on multi-pinhole interferometry. BIOMEDICAL OPTICS EXPRESS 2021; 12:4265-4275. [PMID: 34457413 PMCID: PMC8367262 DOI: 10.1364/boe.426991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 05/10/2023]
Abstract
The application of new sensor technologies for frequent biomarker monitoring in combination with the leverage of artificial intelligence has great potential to improve the design and safety of health care. With current research efforts, the screening of tens of biomarkers at the point of care and immediate adjustment of therapy is coming within reach. Here we introduce an optical multiplexing approach based on multi-pinhole interference providing inherent differential referencing between a multitude of measurement fields on a surface. A theoretical study of an 11-plex and a 54-plex design is complemented with the experimental demonstration of the technique for a 3-field refractive index measurements and detection of human α-thrombin.
Collapse
|
16
|
Ravi Kumara GS, Pandith A, Seo YJ. Highly fluorescent morpholine naphthalimide deoxyuridine nucleotide for the detection of miRNA 24-3P through rolling circle amplification. Analyst 2021; 145:4777-4781. [PMID: 32478340 DOI: 10.1039/d0an00723d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this study we synthesized the nucleotide dUrkTP, a highly fluorescent naphthalimide deoxyuridine triphosphate that undergoes aggregation-induced emission (AIE). We incorporated and extended dUrkTP during the primer extension of DNA mediated by DNA polymerase, and also in the rolling circle amplification of DNA mediated by Phi29 polymerase. Accordingly, we could use this fluorescent nucleotide for the detection of microRNA 24-3P, a biomarker of porcine reproductive and respiratory syndrome virus. The direct labeling system obtained during rolling circle DNA amplification exhibited increased fluorescence, due to AIE of the dUrkTP residue upon gel formation, thereby allowing the detection of miRNA 24-3P. This direct labeling system facilitated the simple and inexpensive detection of miRNA 24-3P with high sensitivity (limit of detection: 3.58 fM) and selectivity.
Collapse
Affiliation(s)
| | - Anup Pandith
- Department of Chemistry, Jeonbuk National University, Jeonju 561-756, South Korea.
| | - Young Jun Seo
- Department of Chemistry, Jeonbuk National University, Jeonju 561-756, South Korea.
| |
Collapse
|
17
|
Tran HV, Piro B. Recent trends in application of nanomaterials for the development of electrochemical microRNA biosensors. Mikrochim Acta 2021; 188:128. [PMID: 33740140 DOI: 10.1007/s00604-021-04784-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/10/2021] [Indexed: 01/10/2023]
Abstract
The biology of the late twentieth century was marked by the discovery in 1993 of a new class of small non-coding ribonucleic acids (RNAs) which play major roles in regulating the translation and degradation of messenger RNAs. These small RNAs (18-25 nucleotides), called microRNAs (miRNAs), are implied in several biological processes such as differentiation, metabolic homeostasis, or cellular apoptosis and proliferation. The discovery in 2008 that the presence of miRNAs in body fluids could be correlated with cancer (prostate, breast, colon, lung, etc.) or other diseases (diabetes, heart diseases, etc.) has made them new key players as biomarkers. Therefore, miRNA detection is of considerable significance in both disease diagnosis and in the study of miRNA function. Until these days, more than 1200 miRNAs have been identified. However, traditional methods developed for conventional DNA does not apply satisfactorily for miRNA, in particular due to the low expression level of these miRNA in biofluids, and because they are very short strands. Electrochemical biosensors can provide this sensitivity and also offer the advantages of mass fabrication, low-cost, and potential decentralized analysis, which has wide application for microRNAs sensing, with many promising results already reported. The present review summarizes some newly developed electrochemical miRNA detection methods.
Collapse
Affiliation(s)
- Hoang Vinh Tran
- School of Chemical Engineering, Hanoi University of Science and Technology (HUST), 1st Dai Co Viet Road, Hanoi, Vietnam.
| | - Benoit Piro
- ITODYS, CNRS, Université de Paris, F-75006, Paris, France
| |
Collapse
|
18
|
Jet T, Gines G, Rondelez Y, Taly V. Advances in multiplexed techniques for the detection and quantification of microRNAs. Chem Soc Rev 2021; 50:4141-4161. [PMID: 33538706 DOI: 10.1039/d0cs00609b] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNA detection is currently a crucial analytical chemistry challenge: almost 2000 papers were referenced in PubMed in 2018 and 2019 for the keywords "miRNA detection method". MicroRNAs are potential biomarkers for multiple diseases including cancers, neurodegenerative and cardiovascular diseases. Since miRNAs are stably released in bodily fluids, they are of prime interest for the development of non-invasive diagnosis methods, such as liquid biopsies. Their detection is however challenging, as high levels of sensitivity, specificity and robustness are required. The analysis also needs to be quantitative, since the aim is to detect miRNA concentration changes. Moreover, a high multiplexing capability is also of crucial importance, since the clinical potential of miRNAs probably lays in our ability to perform parallel mapping of multiple miRNA concentrations and recognize typical disease signature from this profile. A plethora of biochemical innovative detection methods have been reported recently and some of them provide new solutions to the problem of sensitive multiplex detection. In this review, we propose to analyze in particular the new developments in multiplexed approaches to miRNA detection. The main aspects of these methods (including sensitivity and specificity) will be analyzed, with a particular focus on the demonstrated multiplexing capability and potential of each of these methods.
Collapse
Affiliation(s)
- Thomas Jet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, CNRS SNC5096, Equipe Labellisée Ligue Nationale Contre le Cancer, F-75006 Paris, France.
| | | | | | | |
Collapse
|
19
|
Al Sulaiman D, Shapiro SJ, Gomez-Marquez J, Doyle PS. High-Resolution Patterning of Hydrogel Sensing Motifs within Fibrous Substrates for Sensitive and Multiplexed Detection of Biomarkers. ACS Sens 2021; 6:203-211. [PMID: 33351603 DOI: 10.1021/acssensors.0c02121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There has been an increasing and urgent demand to develop nucleic acid bioassays which not only offer high analytical performance but which are also amenable with point-of-care testing. Hydrogels present a versatile class of materials with biocompatible antifouling properties and the ability to be engineered for a range of advanced sensing applications. Fibrous substrates like nitrocellulose offer low-cost and durable platforms to run complex bioassays while enabling portability and ease of handling. We demonstrate herein the ability to synergistically combine these two materials into a portable biosensing platform by leveraging projection lithography. We demonstrate the direct polymerization of hydrogel sensing motifs within a range of fibrous substrates with precise control over their shape, size, location, and functionality. Spatial encoding of the hydrogel motifs enables the multiplex detection of multiple biomarkers on the same test. As a proof-of-concept, we apply the platform to the detection of microRNA, an emerging class of circulating biomarkers with promising potential for early diagnosis and monitoring of cancer. The assay offers a large dynamic range (over three orders of magnitude), high sensitivity (limit of detection of 2.5 amol), as well as versatility and ease of handling. Finally, the bioassay is validated using real biological samples, namely, total RNA extracted from the sera of late-stage breast cancer patients, demonstrating its utility and compatibility with clinical biosensing applications.
Collapse
Affiliation(s)
- Dana Al Sulaiman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sarah J. Shapiro
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jose Gomez-Marquez
- Little Devices Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Patrick S. Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
20
|
Design of a rapid, multiplex, one-pot miRNA assay optimized by label-free analysis. Biosens Bioelectron 2021; 172:112751. [PMID: 33137609 DOI: 10.1016/j.bios.2020.112751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022]
Abstract
MicroRNAs are widely studied as circulating biomarkers for early stage diagnosis of several diseases. Detection and quantification of miRNAs is currently performed through complex and time consuming procedures. Herein we demonstrate a rapid, multiplex, one-pot detection method based on two-step amplification of the signal measured by Reflective Phantom Interface (RPI) label-free optical biosensor. We achieved sub-pM quantification of different miRNAs in about 1.5 h, through specific capture with surface DNA probes combined to a 35-fold mass amplification by an antibody targeting DNA-RNA hybrids and polyclonal secondary antibody, all performed without washing steps. The assay is the result of a modelling and optimization of the multi-step process that has been made possible by the RPI characterization of each individual interaction involved.
Collapse
|
21
|
Dell'Olio F, Su J, Huser T, Sottile V, Cortés-Hernández LE, Alix-Panabières C. Photonic technologies for liquid biopsies: recent advances and open research challenges. LASER & PHOTONICS REVIEWS 2021; 15:2000255. [PMID: 35360260 PMCID: PMC8966629 DOI: 10.1002/lpor.202000255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Indexed: 05/15/2023]
Abstract
The recent development of sophisticated techniques capable of detecting extremely low concentrations of circulating tumor biomarkers in accessible body fluids, such as blood or urine, could contribute to a paradigm shift in cancer diagnosis and treatment. By applying such techniques, clinicians can carry out liquid biopsies, providing information on tumor presence, evolution, and response to therapy. The implementation of biosensing platforms for liquid biopsies is particularly complex because this application domain demands high selectivity/specificity and challenging limit-of-detection (LoD) values. The interest in photonics as an enabling technology for liquid biopsies is growing owing to the well-known advantages of photonic biosensors over competing technologies in terms of compactness, immunity to external disturbance, and ultra-high spatial resolution. Some encouraging experimental results in the field of photonic devices and systems for liquid biopsy have already been achieved by using fluorescent labels and label-free techniques and by exploiting super-resolution microscopy, surface plasmon resonance, surface-enhanced Raman scattering, and whispering gallery mode resonators. This paper critically reviews the current state-of-the-art, starting from the requirements imposed by the detection of the most common circulating biomarkers. Open research challenges are considered together with competing technologies, and the most promising paths of improvement are discussed for future applications.
Collapse
Affiliation(s)
- Francesco Dell'Olio
- Department of Electrical and Information Engineering, Polytechnic University of Bari, 70125, Italy
| | - Judith Su
- Department of Biomedical Engineering, College of Optical Sciences, and BIO5 Institute, University of Arizona, 85721, USA
| | - Thomas Huser
- Biomolecular Photonics, Department of Physics, University of Bielefeld, 33615 Germany
| | - Virginie Sottile
- Department of Molecular Medicine, University of Pavia, 27100, Italy
| | | | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Center of Montpellier, 34093 CEDEX 5, France
| |
Collapse
|
22
|
Rapid lateral flow immunoassay for the fluorescence detection of SARS-CoV-2 RNA. Nat Biomed Eng 2020; 4:1150-1158. [PMID: 33273714 DOI: 10.1038/s41551-020-00655-z] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 11/03/2020] [Indexed: 11/08/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has highlighted the need for rapid and accurate nucleic acid detection at the point of care. Here, we report an amplification-free nucleic acid immunoassay, implemented on a lateral flow strip, for the fluorescence detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in less than one hour. The assay uses DNA probes that are designed to bind to the conserved open reading frame 1ab (ORF1ab), envelope protein (E) and the nucleocapsid (N) regions of the SARS-CoV-2 genome, and a fluorescent-nanoparticle-labelled monoclonal antibody that binds to double-stranded DNA-RNA hybrids. In a multi-hospital randomized double-blind trial involving 734 samples (593 throat swabs and 141 sputum) provided by 670 individuals, the assay achieved sensitivities of 100% and specificities of 99% for both types of sample (ground truth was determined using quantitative PCR with reverse transcription). The inexpensive amplification-free detection of SARS-CoV-2 RNA should facilitate the rapid diagnosis of COVID-19 at the point of care.
Collapse
|
23
|
Adamopoulos C, Gharia A, Niknejad A, Stojanović V, Anwar M. Microfluidic Packaging Integration with Electronic-Photonic Biosensors Using 3D Printed Transfer Molding. BIOSENSORS 2020; 10:bios10110177. [PMID: 33202594 PMCID: PMC7698318 DOI: 10.3390/bios10110177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 01/18/2023]
Abstract
Multiplexed sensing in integrated silicon electronic-photonic platforms requires microfluidics with both high density micro-scale channels and meso-scale features to accommodate for optical, electrical, and fluidic coupling in small, millimeter-scale areas. Three-dimensional (3D) printed transfer molding offers a facile and rapid method to create both micro and meso-scale features in complex multilayer microfluidics in order to integrate with monolithic electronic-photonic system-on-chips with multiplexed rows of 5 μm radius micro-ring resonators (MRRs), allowing for simultaneous optical, electrical, and microfluidic coupling on chip. Here, we demonstrate this microfluidic packaging strategy on an integrated silicon photonic biosensor, setting the basis for highly multiplexed molecular sensing on-chip.
Collapse
Affiliation(s)
- Christos Adamopoulos
- Department of Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, CA 94720, USA; (A.G.); (A.N.); (V.S.)
- Correspondence:
| | - Asmaysinh Gharia
- Department of Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, CA 94720, USA; (A.G.); (A.N.); (V.S.)
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94158, USA;
| | - Ali Niknejad
- Department of Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, CA 94720, USA; (A.G.); (A.N.); (V.S.)
| | - Vladimir Stojanović
- Department of Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, CA 94720, USA; (A.G.); (A.N.); (V.S.)
| | - Mekhail Anwar
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94158, USA;
| |
Collapse
|
24
|
Imas JJ, Ruiz Zamarreño C, Zubiate P, Sanchez-Martín L, Campión J, Matías IR. Optical Biosensors for the Detection of Rheumatoid Arthritis (RA) Biomarkers: A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6289. [PMID: 33158306 PMCID: PMC7663853 DOI: 10.3390/s20216289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
Abstract
A comprehensive review of optical biosensors for the detection of biomarkers associated with rheumatoid arthritis (RA) is presented here, including microRNAs (miRNAs), C-reactive protein (CRP), rheumatoid factor (RF), anti-citrullinated protein antibodies (ACPA), interleukin-6 (IL-6) and histidine, which are biomarkers that enable RA detection and/or monitoring. An overview of the different optical biosensors (based on fluorescence, plasmon resonances, interferometry, surface-enhanced Raman spectroscopy (SERS) among other optical techniques) used to detect these biomarkers is given, describing their performance and main characteristics (limit of detection (LOD) and dynamic range), as well as the connection between the respective biomarker and rheumatoid arthritis. It has been observed that the relationship between the corresponding biomarker and rheumatoid arthritis tends to be obviated most of the time when explaining the mechanism of the optical biosensor, which forces the researcher to look for further information about the biomarker. This review work attempts to establish a clear association between optical sensors and rheumatoid arthritis biomarkers as well as to be an easy-to-use tool for the researchers working in this field.
Collapse
Affiliation(s)
- José Javier Imas
- Electrical, Electronics and Communications Engineering Department, Public University of Navarra, 31006 Pamplona, Spain; (J.J.I.); (P.Z.); (I.R.M.)
- Institute of Smart Cities (ISC), Public University of Navarra, 31006 Pamplona, Spain
| | - Carlos Ruiz Zamarreño
- Electrical, Electronics and Communications Engineering Department, Public University of Navarra, 31006 Pamplona, Spain; (J.J.I.); (P.Z.); (I.R.M.)
- Institute of Smart Cities (ISC), Public University of Navarra, 31006 Pamplona, Spain
| | - Pablo Zubiate
- Electrical, Electronics and Communications Engineering Department, Public University of Navarra, 31006 Pamplona, Spain; (J.J.I.); (P.Z.); (I.R.M.)
| | | | - Javier Campión
- Making Genetics S.L., Plaza CEIN 5, 31110 Noáin, Spain; (L.S.-M.); (J.C.)
| | - Ignacio Raúl Matías
- Electrical, Electronics and Communications Engineering Department, Public University of Navarra, 31006 Pamplona, Spain; (J.J.I.); (P.Z.); (I.R.M.)
- Institute of Smart Cities (ISC), Public University of Navarra, 31006 Pamplona, Spain
| |
Collapse
|
25
|
Abstract
Optical whispering-gallery mode (WGM) microresonators, confining resonant photons in a microscale volume for long periods of time, strongly enhance light-matter interactions, making them an ideal platform for photonic sensors. One of the features of WGM sensors is their capability to respond to environmental perturbations that influence the optical mode distribution. The exceptional sensitivity of WGM devices, coupled with the diversity in their structures and the ease of integration with existing infrastructures, such as conventional chip-based technologies, has catalyzed the development of WGM sensors for a broad range of analytes. WGM sensors have been developed for multiplexed detection of clinically relevant biomolecules while also being adapted for the analysis of single-protein interactions. They have been used for the detection of materials in different phases and forms, including gases, liquids, and chemicals. Furthermore, WGM sensors have been used for a wide variety of field-based sensing applications, including electric field, magnetic field, force, pressure, and temperature. WGM sensors hold great potential for applications in life and environmental sciences. They are expected to meet the ever-increasing demand in sensor networks, the Internet of Things, and real-time health monitoring. Here we review the mechanisms, structures, parameters, and recent advances of WGM microsensors and discuss the future of this exciting research field.
Collapse
Affiliation(s)
- Xuefeng Jiang
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Abraham J. Qavi
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Steven H. Huang
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Lan Yang
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
26
|
Zhang H, Huang X, Liu J, Liu B. Simultaneous and ultrasensitive detection of multiple microRNAs by single-molecule fluorescence imaging. Chem Sci 2020; 11:3812-3819. [PMID: 34122849 PMCID: PMC8152581 DOI: 10.1039/d0sc00580k] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/23/2020] [Indexed: 11/24/2022] Open
Abstract
Cell status changes are typically accompanied by the simultaneous changes of multiple microRNA (miRNA) levels. Thus, simultaneous and ultrasensitive detection of multiple miRNA biomarkers shows great promise in early cancer diagnosis. Herein, a facile single-molecule fluorescence imaging assay was proposed for the simultaneous and ultrasensitive detection of multiple miRNAs using only one capture anti-DNA/RNA antibody (S9.6 antibody). Two complementary DNAs (cDNAs) designed to hybridize with miRNA-21 and miRNA-122 were labelled with Cy3 (cDNA1) and Cy5 (cDNA2) dyes at their 5'-ends, respectively. After hybridization, both miRNA-21/cDNA1 and miRNA-122/cDNA2 complexes were captured by S9.6 antibodies pre-modified on a coverslip surface. Subsequently, the Cy3 and Cy5 dyes on the coverslip surface were imaged by the single-molecule fluorescence setup. The amount of miRNA-21 and miRNA-122 was quantified by counting the image spots from the Cy3 and Cy5 dye molecules in the green and red channels, respectively. The proposed assay displayed high specificity and sensitivity for singlet miRNA detection both with a detection limit of 5 fM and for multiple miRNA detection both with a detection limit of 20 fM. Moreover, it was also demonstrated that the assay could be used to detect multiple miRNAs simultaneously in human hepatocellular cancer cells (HepG2 cells). The proposed assay provides a novel biosensing platform for the ultrasensitive and simple detection of multiple miRNA expressions and shows great prospects for early cancer diagnosis.
Collapse
Affiliation(s)
- Hongding Zhang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Institute of Biomedical Sciences, Fudan University Shanghai 200438 P. R. China
- College of Chemistry and Chemical Engineering, Xinyang Normal University Xinyang 464000 P. R. China
| | - Xuedong Huang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Institute of Biomedical Sciences, Fudan University Shanghai 200438 P. R. China
| | - Jianwei Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Institute of Biomedical Sciences, Fudan University Shanghai 200438 P. R. China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Institute of Biomedical Sciences, Fudan University Shanghai 200438 P. R. China
| |
Collapse
|
27
|
Single-molecule analysis of nucleic acid biomarkers - A review. Anal Chim Acta 2020; 1115:61-85. [PMID: 32370870 DOI: 10.1016/j.aca.2020.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022]
Abstract
Nucleic acids are important biomarkers for disease detection, monitoring, and treatment. Advances in technologies for nucleic acid analysis have enabled discovery and clinical implementation of nucleic acid biomarkers. However, challenges remain with technologies for nucleic acid analysis, thereby limiting the use of nucleic acid biomarkers in certain contexts. Here, we review single-molecule technologies for nucleic acid analysis that can be used to overcome these challenges. We first discuss the various types of nucleic acid biomarkers important for clinical applications and conventional technologies for nucleic acid analysis. We then discuss technologies for single-molecule in vitro and in situ analysis of nucleic acid biomarkers. Finally, we discuss other ultra-sensitive techniques for nucleic acid biomarker detection.
Collapse
|
28
|
Manipulating the hydrophobicity of DNA as a universal strategy for visual biosensing. Nat Protoc 2020; 15:316-337. [DOI: 10.1038/s41596-019-0235-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 08/27/2019] [Indexed: 02/07/2023]
|
29
|
Cacheux J, Bancaud A, Leichlé T, Cordelier P. Technological Challenges and Future Issues for the Detection of Circulating MicroRNAs in Patients With Cancer. Front Chem 2019; 7:815. [PMID: 31850308 PMCID: PMC6894013 DOI: 10.3389/fchem.2019.00815] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022] Open
Abstract
In the era of precision medicine, the success of clinical trials, notably for patients diagnosed with cancer, strongly relies on biomarkers with pristine clinical value but also on robust and versatile analytical technologies to ensure proper patients' stratification and treatment. In this review, we will first address whether plasmatic and salivary microRNAs can be considered as a reliable source of biomarkers for cancer diagnosis and prognosis. We will then discuss the pre-analytical steps preceding miRNA quantification (from isolation to purification), and how such process could be biased and time-consuming. Next, we will review the most recent tools derived from micro- and nano-technologies for microRNA detection available to date and how they may compete with current standards. This review will prioritize publications using relevant biological samples. The significance of various physical transduction schemes (mechanical, optical, electrical, etc.) for biological detection will be compared, and pros and cons of each method will be widely discussed. Finally, we will debate on how micro and nanotechnologies could widespread the use of biomarkers in modern medicine, to help manage patients with serious diseases such as cancer.
Collapse
Affiliation(s)
- Jean Cacheux
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France.,Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, CRCT, Toulouse, France
| | | | | | - Pierre Cordelier
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, CRCT, Toulouse, France
| |
Collapse
|
30
|
Label-Free MicroRNA Optical Biosensors. NANOMATERIALS 2019; 9:nano9111573. [PMID: 31698769 PMCID: PMC6915498 DOI: 10.3390/nano9111573] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) play crucial roles in regulating gene expression. Many studies show that miRNAs have been linked to almost all kinds of disease. In addition, miRNAs are well preserved in a variety of specimens, thereby making them ideal biomarkers for biosensing applications when compared to traditional protein biomarkers. Conventional biosensors for miRNA require fluorescent labeling, which is complicated, time-consuming, laborious, costly, and exhibits low sensitivity. The detection of miRNA remains a big challenge due to their intrinsic properties such as small sizes, low abundance, and high sequence similarity. A label-free biosensor can simplify the assay and enable the direct detection of miRNA. The optical approach for a label-free miRNA sensor is very promising and many assays have demonstrated ultra-sensitivity (aM) with a fast response time. Here, we review the most relevant label-free microRNA optical biosensors and the nanomaterials used to enhance the performance of the optical biosensors.
Collapse
|
31
|
Direct PCR-free electrochemical biosensing of plant-food derived nucleic acids in genomic DNA extracts. Application to the determination of the key allergen Sola l 7 in tomato seeds. Biosens Bioelectron 2019; 137:171-177. [DOI: 10.1016/j.bios.2019.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/02/2019] [Accepted: 05/04/2019] [Indexed: 12/14/2022]
|
32
|
Early sepsis diagnosis via protein and miRNA biomarkers using a novel point-of-care photonic biosensor. Anal Chim Acta 2019; 1077:232-242. [PMID: 31307714 DOI: 10.1016/j.aca.2019.05.038] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
Sepsis is a condition characterized by a severe stage of blood-infection often leading to tissue damage, organ failure and finally death. Fast diagnosis and identification of the sepsis stage (sepsis, severe sepsis or septic shock) is critical for the patient's evolution and could help in defining the most adequate treatment in order to reduce its mortality. The combined detection of several biomarkers in a timely, specific and simultaneous way could ensure a more accurate diagnosis. We have designed a new optical point-of-care (POC) device based on a phase-sensitive interferometric biosensor with a label-free microarray configuration for potential high-throughput evaluation of specific sepsis biomarkers. The sensor chip, which relies on the use of metallic nanostructures, provides versatility in terms of biofunctionalization, allowing the efficient immobilization of different kind of receptors such as antibodies or oligonucleotides. We have focused on two structurally different types of biomarkers: proteins, including C-reactive protein (CRP) and Interleukin 6 (IL6), and miRNAs, using miRNA-16 as an example. Limits of Detection (LoD) of 18 μg mL-1, 88 μg mL-1 and 1 μM (6 μg mL-1) have been respectively obtained for CRP, IL6 and miRNA-16 in individual assays, with high accuracy and reproducibility. The multiplexing capabilities have also been assessed with the simultaneous analysis of both protein biomarkers.
Collapse
|
33
|
Advanced methods for microRNA biosensing: a problem-solving perspective. Anal Bioanal Chem 2019; 411:4425-4444. [PMID: 30710205 DOI: 10.1007/s00216-019-01621-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/07/2019] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) present several features that make them more difficult to analyze than DNA and RNA. For this reason, efforts have been made in recent years to develop innovative platforms for the efficient detection of microRNAs. The aim of this review is to provide an overview of the sensing strategies able to deal with drawbacks and pitfalls related to microRNA detection. With a critical perspective of the field, we identify the main challenges to be overcome in microRNA sensing, and describe the areas where several innovative approaches are likely to come for managing those issues that put limits on improvement to the performances of the current methods. Then, in the following sections, we critically discuss the contribution of the most promising approaches based on the peculiar properties of nanomaterials or nanostructures and other hybrid strategies which are envisaged to support the adoption of these new methods useful for the detection of miRNA as biomarkers of practical clinical utility. Graphical abstract ᅟ.
Collapse
|
34
|
Optical Biosensors Based on Silicon-On-Insulator Ring Resonators: A Review. Molecules 2019; 24:molecules24030519. [PMID: 30709027 PMCID: PMC6384601 DOI: 10.3390/molecules24030519] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 11/30/2022] Open
Abstract
Recent developments in optical biosensors based on integrated photonic devices are reviewed with a special emphasis on silicon-on-insulator ring resonators. The review is mainly devoted to the following aspects: (1) Principles of sensing mechanism, (2) sensor design, (3) biofunctionalization procedures for specific molecule detection and (4) system integration and measurement set-ups. The inherent challenges of implementing photonics-based biosensors to meet specific requirements of applications in medicine, food analysis, and environmental monitoring are discussed.
Collapse
|
35
|
Liyanage T, Masterson AN, Oyem HH, Kaimakliotis H, Nguyen H, Sardar R. Plasmoelectronic-Based Ultrasensitive Assay of Tumor Suppressor microRNAs Directly in Patient Plasma: Design of Highly Specific Early Cancer Diagnostic Technology. Anal Chem 2019; 91:1894-1903. [DOI: 10.1021/acs.analchem.8b03768] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Thakshila Liyanage
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, United States
| | - Adrianna N. Masterson
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, United States
| | - Hector H. Oyem
- School of Chemistry, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Hristos Kaimakliotis
- Department of Urology, Indiana University School of Medicine, 535 N. Barnhill Dr., Indianapolis, Indiana 46202, United States
| | - Hang Nguyen
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, United States
| | - Rajesh Sardar
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, United States
- Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, United States
| |
Collapse
|
36
|
Campuzano S, Yáñez-Sedeño P, Pingarrón JM. Tailoring Sensitivity in Electrochemical Nucleic Acid Hybridization Biosensing: Role of Surface Chemistry and Labeling Strategies. ChemElectroChem 2018. [DOI: 10.1002/celc.201800667] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas; Universidad Complutense de Madrid; E-28040 Madrid Spain
| | - Paloma Yáñez-Sedeño
- Departamento de Química Analítica, Facultad de CC. Químicas; Universidad Complutense de Madrid; E-28040 Madrid Spain
| | - José Manuel Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas; Universidad Complutense de Madrid; E-28040 Madrid Spain
| |
Collapse
|
37
|
Adarakatti PS, Mahanthappa M, H E, Siddaramanna A. Fe2
V4
O13
Nanoparticles Based Electrochemical Sensor for the Simultaneous Determination of Guanine and Adenine at Nanomolar Concentration. ELECTROANAL 2018. [DOI: 10.1002/elan.201800124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Prashanth Shivappa Adarakatti
- Department of Chemistry; Central College, Bangalore University; Bengaluru- 560001 India
- Solid State and Structural Chemistry Unit; Indian Institute of Science; Bengaluru- 560012 India
| | | | - Eranjaneya H
- Department of Chemistry; Central College, Bangalore University; Bengaluru- 560001 India
| | - Ashoka Siddaramanna
- School of Engineering; Dayananda Sagar University; Kudlu Gate Bengaluru- 560068 India
| |
Collapse
|
38
|
Le BH, Seo YJ. Direct incorporation and extension of a fluorescent nucleotide through rolling circle DNA amplification for the detection of microRNA 24-3P. Bioorg Med Chem Lett 2018; 28:2035-2038. [PMID: 29709251 DOI: 10.1016/j.bmcl.2018.04.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/16/2018] [Accepted: 04/24/2018] [Indexed: 12/27/2022]
Abstract
We designed and synthesized several fluorescent nucleotides from thiophene, anthracene and pyrene, which have different sizes, and screened their incorporation and extension capability during the rolling circle amplification of DNA. The thiophene-based fluorescent nucleotide (dUthioTP) could highly incorporate and extended into the rolling circle DNA product, while other fluorescent nucleotides (dUanthTP, and dUpyrTP) could not. This dUthioTP fluorescent nucleotide could be used for the detection of miRNA 24-3P, which is related PRRSV. This direct labeling system during rolling circle DNA amplification exhibited an increased fluorescence signal showing gel formation for the detection of miRNA 24-3P. This direct labeling system is a very simple and cost-efficient method for the detection miRNA 24-3P and also exhibited highly sensitive and selective detection properties.
Collapse
Affiliation(s)
- Binh Huy Le
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials Chonbuk National University, Jeonju 561-756, South Korea
| | - Young Jun Seo
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials Chonbuk National University, Jeonju 561-756, South Korea; Department of Chemistry, Chonbuk National University, Jeonju 561-756, South Korea.
| |
Collapse
|
39
|
Graybill RM, Cardenosa-Rubio MC, Yang H, Johnson MD, Bailey RC. Multiplexed microRNA Expression Profiling by Combined Asymmetric PCR and Label-Free Detection using Silicon Photonic Sensor Arrays. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2018; 10:1618-1623. [PMID: 30275912 PMCID: PMC6162071 DOI: 10.1039/c8ay00190a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Analysis methods based upon the quantitative, real-time polymerase chain reaction are extremely powerful; however, they face intrinsic limitations in terms of target multiplexing. In contrast, silicon photonic microring resonators represent a modularly multiplexable sensor array technology that is well-suited to the analysis of targeted biomarker panels. In this manuscript we employ an asymmetric polymerase chain reaction approach to selectively amplify copies of cDNAs generated from targeted miRNAs before multiplexed, label-free quantitation through hybridization to microring resonator arrays pre-functionalized with capture sequences. This method, which shows applicability to low input amounts and a large dynamic range, was demonstrated for the simultaneous detection of eight microRNA targets from twenty primary brain tumor samples with expression profiles in good agreement with literature precedent.
Collapse
Affiliation(s)
- Richard M. Graybill
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Matthews Ave., Urbana, IL 61801, USA
| | - Maria C. Cardenosa-Rubio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Matthews Ave., Urbana, IL 61801, USA
- Department of Chemistry, University of Michigan, 930 N. University Ave. Ann Arbor, MI 48104, USA
| | - Hongwei Yang
- Department of Neurological Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02215, USA
- Department of Neurological Surgery, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Mark D. Johnson
- Department of Neurological Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02215, USA
- Department of Neurological Surgery, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Ryan C. Bailey
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Matthews Ave., Urbana, IL 61801, USA
- Department of Chemistry, University of Michigan, 930 N. University Ave. Ann Arbor, MI 48104, USA
| |
Collapse
|
40
|
Ruiz-Tórtola Á, Prats-Quílez F, González-Lucas D, Bañuls MJ, Maquieira Á, Wheeler G, Dalmay T, Griol A, Hurtado J, García-Rupérez J. High sensitivity and label-free oligonucleotides detection using photonic bandgap sensing structures biofunctionalized with molecular beacon probes. BIOMEDICAL OPTICS EXPRESS 2018; 9:1717-1727. [PMID: 29675313 PMCID: PMC5905917 DOI: 10.1364/boe.9.001717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/13/2018] [Accepted: 01/24/2018] [Indexed: 05/20/2023]
Abstract
A label-free sensor, based on the combination of silicon photonic bandgap (PBG) structures with immobilized molecular beacon (MB) probes, is experimentally developed. Complementary target oligonucleotides are specifically recognized through hybridization with the MB probes on the surface of the sensing structure. This combination of PBG sensing structures and MB probes demonstrates an extremely high sensitivity without the need for complex PCR-based amplification or labelling methods.
Collapse
Affiliation(s)
- Ángela Ruiz-Tórtola
- Nanophotonics Technology Center, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Francisco Prats-Quílez
- Nanophotonics Technology Center, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Daniel González-Lucas
- IDM, Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Departamento de Química, Universitat Politècnica de València, 46022 Valencia, Spain
| | - María-José Bañuls
- IDM, Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Departamento de Química, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Ángel Maquieira
- IDM, Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Departamento de Química, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Guy Wheeler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Amadeu Griol
- Nanophotonics Technology Center, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Juan Hurtado
- Nanophotonics Technology Center, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Jaime García-Rupérez
- Nanophotonics Technology Center, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
41
|
Caroselli R, García Castelló J, Escorihuela J, Bañuls MJ, Maquieira Á, García-Rupérez J. Experimental Study of the Oriented Immobilization of Antibodies on Photonic Sensing Structures by Using Protein A as an Intermediate Layer. SENSORS 2018; 18:s18041012. [PMID: 29597326 PMCID: PMC5949038 DOI: 10.3390/s18041012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 12/26/2022]
Abstract
A proper antibody immobilization on a biosensor is a crucial step in order to obtain a high sensitivity to be able to detect low target analyte concentrations. In this paper, we present an experimental study of the immobilization process of antibodies as bioreceptors on a photonic ring resonator sensor. A protein A intermediate layer was created on the sensor surface in order to obtain an oriented immobilization of the antibodies, which enhances the interaction with the target antigens to be detected. The anti-bovine serum albumin (antiBSA)-bovine serum albumin (BSA) pair was used as a model for our study. An opto-fluidic setup was developed in order to flow the different reagents and, simultaneously, to monitor in real-time the spectral response of the photonic sensing structure. The antiBSA immobilization and the BSA detection, their repeatability, and specificity were studied in different conditions of the sensor surface. Finally, an experimental limit of detection for BSA recognition of only 1 ng/mL was obtained.
Collapse
Affiliation(s)
- Raffaele Caroselli
- Nanophotonics Technology Center, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - Javier García Castelló
- Nanophotonics Technology Center, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - Jorge Escorihuela
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico, Departamento de Química, Universitat Politècnica de València, 46022 Valencia, Spain.
| | - María José Bañuls
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico, Departamento de Química, Universitat Politècnica de València, 46022 Valencia, Spain.
| | - Ángel Maquieira
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico, Departamento de Química, Universitat Politècnica de València, 46022 Valencia, Spain.
| | - Jaime García-Rupérez
- Nanophotonics Technology Center, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| |
Collapse
|
42
|
Toren P, Ozgur E, Bayindir M. Label-Free Optical Biodetection of Pathogen Virulence Factors in Complex Media Using Microtoroids with Multifunctional Surface Functionality. ACS Sens 2018; 3:352-359. [PMID: 29336141 DOI: 10.1021/acssensors.7b00775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Early detection of pathogens or their virulence factors in complex media has a key role in early diagnosis and treatment of many diseases. Nanomolar and selective detection of Exotoxin A, which is a virulence factor secreted from Pseudomonas aeruginosa in the sputum of Cystic Fibrosis (CF) patients, can pave the way for early diagnosis of P. aeruginosa infections. In this study, we conducted a preliminary study to demonstrate the feasibility of optical biodetection of P. aeruginosa Exotoxin A in a diluted artificial sputum mimicking the CF respiratory environment. Our surface engineering approach provides an effective biointerface enabling highly selective detection of the Exotoxin A molecules in the complex media using monoclonal anti-Exotoxin A functionalized microtoroids. The highly resilient microtoroid surface toward other constituents of the sputum provides Exotoxin A detection ability in the complex media by reproducible measurements. In this study, the limit-of-detection of Exotoxin A in the complex media is calculated as 2.45 nM.
Collapse
Affiliation(s)
- Pelin Toren
- Institute of Materials Science and Nanotechnology, §UNAM-National Nanotechnology Research Center, and ‡Department of Physics, Bilkent University , 06800 Ankara, Turkey
| | - Erol Ozgur
- Institute of Materials Science and Nanotechnology, §UNAM-National Nanotechnology Research Center, and ‡Department of Physics, Bilkent University , 06800 Ankara, Turkey
| | - Mehmet Bayindir
- Institute of Materials Science and Nanotechnology, §UNAM-National Nanotechnology Research Center, and ‡Department of Physics, Bilkent University , 06800 Ankara, Turkey
| |
Collapse
|
43
|
Ruiz-Valdepeñas Montiel V, Povedano E, Vargas E, Torrente-Rodríguez RM, Pedrero M, Reviejo AJ, Campuzano S, Pingarrón JM. Comparison of Different Strategies for the Development of Highly Sensitive Electrochemical Nucleic Acid Biosensors Using Neither Nanomaterials nor Nucleic Acid Amplification. ACS Sens 2018; 3:211-221. [PMID: 29282977 DOI: 10.1021/acssensors.7b00869] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Currently, electrochemical nucleic acid-based biosensing methodologies involving hybridization assays, specific recognition of RNA/DNA and RNA/RNA duplexes, and amplification systems provide an attractive alternative to conventional quantification strategies for the routine determination of relevant nucleic acids at different settings. A particularly relevant objective in the development of such nucleic acid biosensors is the design of as many as possible affordable, quick, and simple methods while keeping the required sensitivity. With this aim in mind, this work reports, for the first time, a thorough comparison between 11 methodologies that involve different assay formats and labeling strategies for targeting the same DNA. The assayed approaches use conventional sandwich and competitive hybridization assays, direct hybridization coupled to bioreceptors with affinity for RNA/DNA duplexes, multienzyme labeling bioreagents, and DNA concatamers. All of them have been implemented on the surface of magnetic beads (MBs) and involve amperometric transduction at screen-printed carbon electrodes (SPCEs). The influence of the formed duplex length and of the labeling strategy have also been evaluated. Results demonstrate that these strategies can provide very sensitive methods without the need for using nanomaterials or polymerase chain reaction (PCR). In addition, the sensitivity can be tailored within several orders of magnitude simply by varying the bioassay format, hybrid length or labeling strategy. This comparative study allowed us to conclude that the use of strategies involving longer hybrids, the use of antibodies with specificity for RNA/DNA heteroduplexes and labeling with bacterial antibody binding proteins conjugated with multiple enzyme molecules, provides the best sensitivity.
Collapse
Affiliation(s)
| | - Eloy Povedano
- Departamento de Química Analítica,
Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Eva Vargas
- Departamento de Química Analítica,
Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Rebeca M. Torrente-Rodríguez
- Departamento de Química Analítica,
Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - María Pedrero
- Departamento de Química Analítica,
Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - A. Julio Reviejo
- Departamento de Química Analítica,
Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Susana Campuzano
- Departamento de Química Analítica,
Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - José M. Pingarrón
- Departamento de Química Analítica,
Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| |
Collapse
|
44
|
Wei X, Duan X, Zhou X, Wu J, Xu H, Min X, Ding S. A highly sensitive SPRi biosensing strategy for simultaneous detection of multiplex miRNAs based on strand displacement amplification and AuNP signal enhancement. Analyst 2018; 143:3134-3140. [DOI: 10.1039/c8an00549d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Herein, a dual channel SPRi biosensor has been developed for the simultaneous and highly sensitive detection of multiplex miRNAs based on SDA and DNA-functionalized AuNP signal enhancement.
Collapse
Affiliation(s)
- Xiaotong Wei
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education)
- College of Laboratory Medicine
- Chongqing Medical University
- Chongqing 400016
- China
| | - Xiaolei Duan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education)
- College of Laboratory Medicine
- Chongqing Medical University
- Chongqing 400016
- China
| | - Xiaoyan Zhou
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education)
- College of Laboratory Medicine
- Chongqing Medical University
- Chongqing 400016
- China
| | - Jiangling Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education)
- College of Laboratory Medicine
- Chongqing Medical University
- Chongqing 400016
- China
| | - Hongbing Xu
- Department of Obstetrics and Gynecology
- The First Affiliated Hospital of Chongqing Medical University
- Chongqing 400016
- China
| | - Xun Min
- Department of Laboratory Medicine
- The Affiliated Hospital of Zunyi Medical University
- Zunyi, Guizhou 563000
- China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education)
- College of Laboratory Medicine
- Chongqing Medical University
- Chongqing 400016
- China
| |
Collapse
|
45
|
Kilic T, Erdem A, Ozsoz M, Carrara S. microRNA biosensors: Opportunities and challenges among conventional and commercially available techniques. Biosens Bioelectron 2018; 99:525-546. [DOI: 10.1016/j.bios.2017.08.007] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 12/19/2022]
|
46
|
Vargas E, Torrente-Rodríguez RM, Ruiz-Valdepeñas Montiel V, Povedano E, Pedrero M, Montoya JJ, Campuzano S, Pingarrón JM. Magnetic Beads-Based Sensor with Tailored Sensitivity for Rapid and Single-Step Amperometric Determination of miRNAs. Int J Mol Sci 2017; 18:ijms18112151. [PMID: 29120349 PMCID: PMC5713197 DOI: 10.3390/ijms18112151] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 02/06/2023] Open
Abstract
This work describes a sensitive amperometric magneto-biosensor for single-step and rapid determination of microRNAs (miRNAs). The developed strategy involves the use of direct hybridization of the target miRNA (miRNA-21) with a specific biotinylated DNA probe immobilized on streptavidin-modified magnetic beads (MBs), and labeling of the resulting heteroduplexes with a specific DNA–RNA antibody and the bacterial protein A (ProtA) conjugated with an horseradish peroxidase (HRP) homopolymer (Poly-HRP40) as an enzymatic label for signal amplification. Amperometric detection is performed upon magnetic capture of the modified MBs onto the working electrode surface of disposable screen-printed carbon electrodes (SPCEs) using the H2O2/hydroquinone (HQ) system. The magnitude of the cathodic signal obtained at −0.20 V (vs. the Ag pseudo-reference electrode) demonstrated linear dependence with the concentration of the synthetic target miRNA over the 1.0 to 100 pM range. The method provided a detection limit (LOD) of 10 attomoles (in a 25 μL sample) without any target miRNA amplification in just 30 min (once the DNA capture probe-MBs were prepared). This approach shows improved sensitivity compared with that of biosensors constructed with the same anti-DNA–RNA Ab as capture instead of a detector antibody and further labeling with a Strep-HRP conjugate instead of the Poly-HRP40 homopolymer. The developed strategy involves a single step working protocol, as well as the possibility to tailor the sensitivity by enlarging the length of the DNA/miRNA heteroduplexes using additional probes and/or performing the labelling with ProtA conjugated with homopolymers prepared with different numbers of HRP molecules. The practical usefulness was demonstrated by determination of the endogenous levels of the mature target miRNA in 250 ng raw total RNA (RNAt) extracted from human mammary epithelial normal (MCF-10A) and cancer (MCF-7) cells and tumor tissues.
Collapse
Affiliation(s)
- Eva Vargas
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid, Spain.
| | - Rebeca M Torrente-Rodríguez
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid, Spain.
| | | | - Eloy Povedano
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid, Spain.
| | - María Pedrero
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid, Spain.
| | - Juan J Montoya
- Cannan Research and Investment & Faculty of Medicine, University Complutense of Madrid, 28040 Madrid, Spain.
| | - Susana Campuzano
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid, Spain.
| | - José M Pingarrón
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
47
|
Robison HM, Bailey RC. A Guide to Quantitative Biomarker Assay Development using Whispering Gallery Mode Biosensors. ACTA ACUST UNITED AC 2017; 9:158-173. [PMID: 28910857 DOI: 10.1002/cpch.23] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Whispering gallery mode (WGM) sensors are a class of powerful analytical techniques defined by the measurement of changes in the local refractive index at or near the sensor surface. When functionalized with target-specific capture agents, analyte binding can be measured with very low limits of detection. There are many geometric manifestations of WGM sensors, with chip-integrated silicon photonic devices first commercialized because of the robust, wafer-scale device fabrication, facile optical interrogation, and amenability to the creation of multiplexed sensor arrays. Using these arrays, a number of biomolecular targets have been detected in both label-free and label-enhanced assay formats. For example, sub-picomolar detection limits for multiple cytokines were achieved using an enzymatically enhanced sandwich immunoassay that showed high analyte specificity suitable for detection in complex, clinical matrices. This protocol describes a generalizable approach for the development of quantitative, multiplexed immunoassays using silicon photonic microrings as an example WGM platform. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
| | - Ryan C Bailey
- Department of Chemistry, University of Michigan, Ann Arbor
| |
Collapse
|
48
|
Photonic ring resonance is a versatile platform for performing multiplex immunoassays in real time. J Immunol Methods 2017; 448:34-43. [DOI: 10.1016/j.jim.2017.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/07/2017] [Accepted: 05/11/2017] [Indexed: 12/17/2022]
|
49
|
Muehl EM, Gajsiewicz JM, Medfisch SM, Wiersma ZSB, Morrissey JH, Bailey RC. Multiplexed silicon photonic sensor arrays enable facile characterization of coagulation protein binding to nanodiscs with variable lipid content. J Biol Chem 2017; 292:16249-16256. [PMID: 28801460 DOI: 10.1074/jbc.m117.800938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/11/2017] [Indexed: 11/06/2022] Open
Abstract
Interactions of soluble proteins with the cell membrane are critical within the blood coagulation cascade. Of particular interest are the interactions of γ-carboxyglutamic acid-rich domain-containing clotting proteins with lipids. Variability among conventional analytical methods presents challenges for comparing clotting protein-lipid interactions. Most previous studies have investigated only a single clotting protein and lipid composition and have yielded widely different binding constants. Herein, we demonstrate that a combination of lipid bilayer nanodiscs and a multiplexed silicon photonic analysis technology enables high-throughput probing of many protein-lipid interactions among blood-clotting proteins. This approach allowed direct comparison of the binding constants of prothrombin, factor X, activated factor VII, and activated protein C to seven different binary lipid compositions. In a single experiment, the binding constants of one protein interacting with all lipid compositions were simultaneously determined. A simple surface regeneration then facilitated similar binding measurements for three other coagulation proteins. As expected, our results indicated that all proteins exhibit tighter binding (lower Kd ) as the proportion of anionic lipid increases. Interestingly, at high proportions of phosphatidylserine, the Kd values of all four proteins began to converge. We also found that although koff values for all four proteins followed trends similar to those observed for the Kd values, the variation among the proteins was much lower, indicating that much of the variation came from the kinetic binding (kon) of the proteins. These findings indicate that the combination of silicon photonic microring resonator arrays and nanodiscs enables rapid interrogation of biomolecular binding interactions at model cell membrane interfaces.
Collapse
Affiliation(s)
| | - Joshua M Gajsiewicz
- Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 and
| | - Sara M Medfisch
- the Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | | | - James H Morrissey
- Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 and
| | - Ryan C Bailey
- From the Departments of Chemistry and .,the Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
50
|
Ruiz-Valdepeñas Montiel V, Gutiérrez ML, Torrente-Rodríguez RM, Povedano E, Vargas E, Reviejo ÁJ, Linacero R, Gallego FJ, Campuzano S, Pingarrón JM. Disposable Amperometric Polymerase Chain Reaction-Free Biosensor for Direct Detection of Adulteration with Horsemeat in Raw Lysates Targeting Mitochondrial DNA. Anal Chem 2017; 89:9474-9482. [DOI: 10.1021/acs.analchem.7b02412] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | - María L. Gutiérrez
- Departamento
de Genética, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Rebeca M. Torrente-Rodríguez
- Departamento
de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Eloy Povedano
- Departamento
de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Eva Vargas
- Departamento
de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Á. Julio Reviejo
- Departamento
de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Rosario Linacero
- Departamento
de Genética, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Francisco J. Gallego
- Departamento
de Genética, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Susana Campuzano
- Departamento
de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - José M. Pingarrón
- Departamento
de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| |
Collapse
|