1
|
Chen JL, Njoku DI, Tang C, Gao Y, Chen J, Peng YK, Sun H, Mao G, Pan M, Tam NFY. Advances in Microfluidic Paper-Based Analytical Devices (µPADs): Design, Fabrication, and Applications. SMALL METHODS 2024:e2400155. [PMID: 38781604 DOI: 10.1002/smtd.202400155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Microfluidic Paper-based Analytical Devices (µPADs) have emerged as a new class of microfluidic systems, offering numerous advantages over traditional microfluidic chips. These advantages include simplicity, cost-effectiveness, stability, storability, disposability, and portability. As a result, various designs for different types of assays are developed and investigated. In recent years, µPADs are combined with conventional detection methods to enable rapid on-site detection, providing results comparable to expensive and sophisticated large-scale testing methods that require more time and skilled personnel. The application of µPAD techniques is extensive in environmental quality control/analysis, clinical diagnosis, and food safety testing, paving the way for on-site real-time diagnosis as a promising future development. This review focuses on the recent research advancements in the design, fabrication, material selection, and detection methods of µPADs. It provides a comprehensive understanding of their principles of operation, applications, and future development prospects.
Collapse
Affiliation(s)
- Jian Lin Chen
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Good Shepherd Street, Ho Man Tin, Kowloon, Hong Kong SAR, P. R. China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Demian Ifeanyi Njoku
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Good Shepherd Street, Ho Man Tin, Kowloon, Hong Kong SAR, P. R. China
| | - Cui Tang
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Good Shepherd Street, Ho Man Tin, Kowloon, Hong Kong SAR, P. R. China
| | - Yaru Gao
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Good Shepherd Street, Ho Man Tin, Kowloon, Hong Kong SAR, P. R. China
| | - Jiayu Chen
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Good Shepherd Street, Ho Man Tin, Kowloon, Hong Kong SAR, P. R. China
| | - Yung-Kang Peng
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Hongyan Sun
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Guozhu Mao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Min Pan
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Good Shepherd Street, Ho Man Tin, Kowloon, Hong Kong SAR, P. R. China
| | - Nora Fung-Yee Tam
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Good Shepherd Street, Ho Man Tin, Kowloon, Hong Kong SAR, P. R. China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
2
|
Malik S, Singh J, Saini K, Chaudhary V, Umar A, Ibrahim AA, Akbar S, Baskoutas S. Paper-based sensors: affordable, versatile, and emerging analyte detection platforms. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2777-2809. [PMID: 38639474 DOI: 10.1039/d3ay02258g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Paper-based sensors, often referred to as paper-based analytical devices (PADs), stand as a transformative technology in the field of analytical chemistry. They offer an affordable, versatile, and accessible solution for diverse analyte detection. These sensors harness the unique properties of paper substrates to provide a cost-effective and adaptable platform for rapid analyte detection, spanning chemical species, biomolecules, and pathogens. This review highlights the key attributes that make paper-based sensors an attractive choice for analyte detection. PADs demonstrate their versatility by accommodating a wide range of analytes, from ions and gases to proteins, nucleic acids, and more, with customizable designs for specific applications. Their user-friendly operation and minimal infrastructure requirements suit point-of-care diagnostics, environmental monitoring, food safety, and more. This review also explores various fabrication methods such as inkjet printing, wax printing, screen printing, dip coating, and photolithography. Incorporating nanomaterials and biorecognition elements promises even more sophisticated and sensitive applications.
Collapse
Affiliation(s)
- Sumit Malik
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India.
| | - Joginder Singh
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India.
| | - Kajal Saini
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India.
| | - Vivek Chaudhary
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India.
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran-11001, Kingdom of Saudi Arabia.
- Department of Materials Science and Engineering, The Ohio State University, Columbus 43210, OH, USA
- STEM Pioneers Training Lab, Najran University, Najran 11001, Kingdom of Saudi Arabia
| | - Ahmed A Ibrahim
- Department of Chemistry, Faculty of Science and Arts, Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran-11001, Kingdom of Saudi Arabia.
- STEM Pioneers Training Lab, Najran University, Najran 11001, Kingdom of Saudi Arabia
| | - Sheikh Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus 43210, OH, USA
| | | |
Collapse
|
3
|
Hasan MR, Singh S, Sharma P, Azmi Z, Dadial AS, Narang J. Kirigami tripod-based electrode for the development of highly stretchable dengue aptasensor. Biomed Microdevices 2024; 26:21. [PMID: 38558326 DOI: 10.1007/s10544-024-00704-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
Kirigami is one of the interesting paper art forms and the modified sub-class of origami. Kirigami paper art is widely employed in a variety of applications, and it is currently being used in biosensors because of its outstanding advantages. This is the first study on the use of a Kirigami-based aptasensor for DENV (Dengue virus)-antigen detection. In this study, the kirigami approach has been utilized to develop a stretchable, movable, and flexible sensor. The constructed stretchable-kirigami electrode helps in adjusting the connection of electrodes without disturbing the electrochemical cell zone during the experiment. To increase the sensitivity of this biosensor we have synthesized Ag-NPs (Silver nanoparticles) via chemical methods and characterized their results with the help of TEM & UV-Vis Spectroscopy. Different electrochemical approaches were used to validate the sensor response i.e., CV (Cyclic voltammetry) and LSV (Linear sweep voltammetry), which exhibited great detection capability towards dengue virus with the range of 0.1 µg/ml to 1000 µg/ml along with a detection limit of 0.1 µg/ml and showing no reactivity to the chikungunya virus antigen, making it more specific to the DENV antigen. Serum (healthy-human) was also successfully applied to validate the results of the constructed aptasensor. Integration of the Kirigami approach form with the electrochemical aptasensor that utilizes a 3-E setup (three-electrode setup) which is referred to as a tripod and collectively called Kirigami-tripod-based aptasensor. Thus, the developed integrated platform improves the sensors capabilities in terms of cost efficiency, high stretchability, and sensitivity.
Collapse
Affiliation(s)
- Mohd Rahil Hasan
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India
| | - Saumitra Singh
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India
| | | | - Zaira Azmi
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India
| | | | - Jagriti Narang
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
4
|
Ateia M, Wei H, Andreescu S. Sensors for Emerging Water Contaminants: Overcoming Roadblocks to Innovation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2636-2651. [PMID: 38302436 DOI: 10.1021/acs.est.3c09889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Ensuring water quality and safety requires the effective detection of emerging contaminants, which present significant risks to both human health and the environment. Field deployable low-cost sensors provide solutions to detect contaminants at their source and enable large-scale water quality monitoring and management. Unfortunately, the availability and utilization of such sensors remain limited. This Perspective examines current sensing technologies for detecting emerging contaminants and analyzes critical barriers, such as high costs, lack of reliability, difficulties in implementation in real-world settings, and lack of stakeholder involvement in sensor design. These technical and nontechnical barriers severely hinder progression from proof-of-concepts and negatively impact user experience factors such as ease-of-use and actionability using sensing data, ultimately affecting successful translation and widespread adoption of these technologies. We provide examples of specific sensing systems and explore key strategies to address the remaining scientific challenges that must be overcome to translate these technologies into the field such as improving sensitivity, selectivity, robustness, and performance in real-world water environments. Other critical aspects such as tailoring research to meet end-users' requirements, integrating cost considerations and consumer needs into the early prototype design, establishing standardized evaluation and validation protocols, fostering academia-industry collaborations, maximizing data value by establishing data sharing initiatives, and promoting workforce development are also discussed. The Perspective describes a set of guidelines for the development, translation, and implementation of water quality sensors to swiftly and accurately detect, analyze, track, and manage contamination.
Collapse
Affiliation(s)
- Mohamed Ateia
- Center for Environmental Solutions & Emergency Response, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1827, United States
| | - Haoran Wei
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, 660 N. Park Street, Madison, Wisconsin 53706, United States
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13676-5810, United States
| |
Collapse
|
5
|
Mishra P, Navariya S, Gupta P, Singh BP, Chopra S, Shrivastava S, Agrawal VV. A novel approach to low-cost, rapid and simultaneous colorimetric detection of multiple analytes using 3D printed microfluidic channels. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231168. [PMID: 38234445 PMCID: PMC10791535 DOI: 10.1098/rsos.231168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024]
Abstract
This research paper presents an inventive technique to swiftly create microfluidic channels on distinct membrane papers, enabling colorimetric drug detection. Using a modified DIY RepRap 3D printer with a syringe pump, microfluidic channels (µPADs) are crafted on a flexible nylon-based substrate. This allows simultaneous detection of four common drugs with a single reagent. An optimized blend of polydimethylsiloxane (PDMS) dissolved in hexane is used to create hydrophobic channels on various filter papers. The PDMS-hexane mixture infiltrates the paper's pores, forming hydrophobic barriers that confine liquids within the channels. These barriers are cured on the printer's hot plate, controlling channel width and preventing spreading. Capillary action drives fluid along these paths without spreading. This novel approach provides a versatile solution for rapid microfluidic channel creation on membrane papers. The DIY RepRap 3D printer integration offers precise control and faster curing. The PDMS-hexane solution accurately forms hydrophobic barriers, containing liquids within desired channels. The resulting microfluidic system holds potential for portable, cost-effective drug detection and various sensing applications.
Collapse
Affiliation(s)
- Piyush Mishra
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sagar Navariya
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priyanshi Gupta
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
| | - Bhupendra Pratap Singh
- Liquid Crystal Research Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, India
- Department of Electro-Optical Engineering, National United University, Miao-Li-360, Taiwan
| | - Samridhi Chopra
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Swapnil Shrivastava
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
| | - Ved Varun Agrawal
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
| |
Collapse
|
6
|
Kim AL, Dubrovskii AV, Musin EV, Tikhonenko SA. Determination of Phenol with Peroxidase Immobilized on CaCO3. Int J Mol Sci 2023; 24:ijms24076766. [PMID: 37047739 PMCID: PMC10094929 DOI: 10.3390/ijms24076766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Phenols are widely used in industries despite their toxicity, which requires governments to limit their concentration in water to 5 mg/L before discharge to the city sewer. Thus, it is essential to develop a rapid, simple, and low-cost detection method for phenol. This study explored two pathways of peroxidase immobilization to develop a phenol detection system: peroxidase encapsulation into polyelectrolyte microcapsules and peroxidase captured by CaCO3. The encapsulation of peroxidase decreased enzyme activity by 96%; thus, this method cannot be used for detection systems. The capturing process of peroxidase by CaCO3 microspherulites did not affect the maximum reaction rate and the Michaelis constant of peroxidase. The native peroxidase—Vmax = 109 µM/min, Km = 994 µM; CaCO3–peroxidase—Vmax = 93.5 µM/min, Km = 956 µM. Ultimately, a reusable phenol detection system based on CaCO3 microparticles with immobilized peroxidase was developed, capable of detecting phenol in the range of 700 ng/mL to 14 µg/mL, with an error not exceeding 5%, and having a relatively low cost and production time. The efficiency of the system was confirmed by determining the content of phenol in a paintwork product.
Collapse
Affiliation(s)
- Aleksandr L. Kim
- Institute of Theoretical and Experimental Biophysics Russian Academy of Science, Institutskaya St., 3, 142290 Puschino, Moscow Region, Russia
| | - Alexey V. Dubrovskii
- Institute of Theoretical and Experimental Biophysics Russian Academy of Science, Institutskaya St., 3, 142290 Puschino, Moscow Region, Russia
| | - Egor V. Musin
- Institute of Theoretical and Experimental Biophysics Russian Academy of Science, Institutskaya St., 3, 142290 Puschino, Moscow Region, Russia
| | - Sergey A. Tikhonenko
- Institute of Theoretical and Experimental Biophysics Russian Academy of Science, Institutskaya St., 3, 142290 Puschino, Moscow Region, Russia
| |
Collapse
|
7
|
Goué EL, Ham-Pichavant F, Grelier S, Remy J, Coma V. Functional Chitosan-Calcium Carbonate Coatings for Enhancing Water and Fungal Resistance of Paper Materials. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248886. [PMID: 36558019 PMCID: PMC9785779 DOI: 10.3390/molecules27248886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/16/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
The objective of this study was to increase the water resistance of paper while providing fungal resistance using a bio-based coating made from chitosan. The water resistance was improved through the surface control of roughness using modified calcium carbonate particles. The higher the quantity of particles in the film-forming solution, the higher the surface hydrophobicity of the paper. The addition of particles was found to counterbalance the chitosan hydrophilicity through the control of the coatings' penetration in the paper bulk. As a consequence, the wetting time and liquid water resistance were enhanced. The antifungal activity of the film-forming solutions and coated paper was also investigated against the growth of Chaetomium globosum, which was selected as a model strain able to contaminate paper materials. The results reveal that the antifungal activity of chitosan was improved by a possible synergic effect with the bicarbonate ions from the mineral particles.
Collapse
Affiliation(s)
- Erwan Le Goué
- Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux, CNRS, Bordeaux INP, UMR 5629, 16 Avenue Pey-Berland, 33600 Pessac, France
- Papeterie Zuber Rieder, rue Ernest Zuber, 25320 Boussières, France
| | - Frédérique Ham-Pichavant
- Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux, CNRS, Bordeaux INP, UMR 5629, 16 Avenue Pey-Berland, 33600 Pessac, France
| | - Stéphane Grelier
- Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux, CNRS, Bordeaux INP, UMR 5629, 16 Avenue Pey-Berland, 33600 Pessac, France
| | - Jordan Remy
- Papeterie Zuber Rieder, rue Ernest Zuber, 25320 Boussières, France
| | - Véronique Coma
- Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux, CNRS, Bordeaux INP, UMR 5629, 16 Avenue Pey-Berland, 33600 Pessac, France
- Correspondence:
| |
Collapse
|
8
|
Development of a paper-based chromogenic strip and electrochemical sensor for the detection of tannic acid in beverages. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Zhang J, Lei J, Liu Z, Chu Z, Jin W. Nanomaterial-based electrochemical enzymatic biosensors for recognizing phenolic compounds in aqueous effluents. ENVIRONMENTAL RESEARCH 2022; 214:113858. [PMID: 35952740 DOI: 10.1016/j.envres.2022.113858] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/18/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
With the rapid development of industrial society, phenolic pollutants already identified in water are severe threats to human health. Traditional detection techniques like chromatography are poor in the ability of cost-effectiveness and on-site detection. In recent years, electrochemical enzymatic biosensors have attracted increasing attention for use in the recognition of phenolic compounds, which is considered an effective strategy for the product transfer of portable analytical devices. Although electrochemical enzymatic biosensors provide a fast, accurate on-site detection technique, the difficulties of enzyme deactivation, poor stability and low sensitivity remain to be solved. Thus, effective immobilization methods of enzymes and nanomaterials with excellent properties have been extensively researched to obtain a high-sensitivity and high-stability biosensing platform. Simultaneous detection of multiple phenols may become the focus of further research. In this review, we provide an overview of recent progress toward electrochemical enzymatic biosensors for the detection of phenolic compounds, including enzyme immobilization approaches and advanced nanomaterials, especially nanocomposites with attractive properties such as good conductivity, high specific surface area, and porous structure. We will comprehensively discuss the features and mechanisms of the main enzymes adopted in the construction of different phenolic biosensors, as well as traditional methods (e.g., adsorption, covalent bonding, entrapment, encapsulation, cross-linking) of enzyme immobilization. The most effective method is based on the properties of enzymes, supports and application objective because there is no one-size-fits-all method of enzymatic immobilization. The emphasis will be given to various advanced nanomaterials, including their special nanostructures, preparation methods and performance. Finally, the main challenges in future research on electrochemical phenolic biosensors will be discussed to provide further perspectives for practical applications in dynamic and on-site monitoring. We believe this review will deliver an important inspiration for the construction of novel and high-performance electrochemical biosensors from enzyme selection to nanomaterial design for the detection of various hazardous materials. We believe this review will deliver an important inspiration on the construction of novel and high-performance electrochemical biosensors from the enzyme selection to the nanomaterial design for detections of various hazardous materials.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Jing Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Zhengkun Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Zhenyu Chu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China.
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China.
| |
Collapse
|
10
|
Mabrouk M, Hammad SF, Mansour FR, Abdella AA. A Critical Review of Analytical Applications of Chitosan as a Sustainable Chemical with Functions Galore. Crit Rev Anal Chem 2022; 54:840-856. [PMID: 35903052 DOI: 10.1080/10408347.2022.2099220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Biomass and biowastes stand as sustainable and cost-effective environmentally benign alternative feedstock. Chitosan is a biocompatible, bioactive, and biodegradable biopolymer derived from chitin to achieve eight aspects out of the 12 green chemistry principles. Chitosan got significant attention in several fields including chemical analysis, in addition to chemical functionally, which enabled its use as adsorbent and its structural crosslinking using various crosslinkers. The physicochemical, technological, and optical properties of chitosan have been extensively exploited in analysis. Mainly, deacetylation degree and molecular weight are controlling its properties and hence controlling its functions. This review presents a structure, properties, and functions relationships of chitosan. It also aims to provide an overview of the different functions that chitosan can serve in each analytical technique such as supporting matrix, catalyst…etc. The contribution of chitosan in improving the ecological performance is discussed in each technique.
Collapse
Affiliation(s)
- Mokhtar Mabrouk
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
- Pharmaceutical Services Center, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Sherin F Hammad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Fotouh R Mansour
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
- Pharmaceutical Services Center, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Aya A Abdella
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
11
|
Yang X, Lei L, Song D, Sun Y, Yang M, Sang Z, Zhou J, Huang H, Li Y. An efficient differential sensing strategy for phenolic pollutants based on the nanozyme with polyphenol oxidase activity. LUMINESCENCE 2022; 37:1414-1426. [PMID: 35723898 DOI: 10.1002/bio.4313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 11/10/2022]
Abstract
To realize the efficient differential sensing of phenolic pollutants in sewage, a novel sensing strategy was successfully developed based on one nanozyme (GMP-Cu) with polyphenol oxidase activity. Phenolic pollutants can be oxidized by GMP-Cu, and the oxidation products reacts subsequently with 4-aminoantipyrine to produce a quinone-imine compound. The absorption spectra of final quinone-imine products resulted from different phenolic pollutants showed obvious differences, which were due to the interaction difference between GMP-Cu and phenolic pollutants, as well as the different molecular structures of the quinone-imine products from different phenolic pollutants. Based on the difference of absorption spectra, a novel differential sensing strategy was developed. The genetic algorithm was used to select the characteristic wavelengths at different enzymatic reaction times, HCA and PLS-DA algorithms were utilized for the discriminant sensing of seven representative phenolic pollutants, including hydroquinone, resorcinol, catechol, resorcinol, phenol, p-chlorophenol, and 2,4-dichlorophenol. Scientific wavelength selection algorithm and recognition algorithm resulted in the successful identification of phenolic pollutants in sewage with a discriminant accuracy of 100%, and differentiation of the phenolic pollutants regardless of their concentration. These results indicate that sensing strategy can be used as an effective tool for the efficient identification and differentiation of phenolic pollutants in sewage.
Collapse
Affiliation(s)
- Xiaoyu Yang
- College of Food Science and Engineering, Jilin University, Changchun, P. R. China
| | - Lulu Lei
- College of Food Science and Engineering, Jilin University, Changchun, P. R. China
| | - Donghui Song
- College of Food Science and Engineering, Jilin University, Changchun, P. R. China
| | - Yue Sun
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun, P. R. China
| | - Meng Yang
- College of Food Science and Engineering, Jilin University, Changchun, P. R. China
| | - Zhen Sang
- College of Food Science and Engineering, Jilin University, Changchun, P. R. China
| | - Jianan Zhou
- College of Food Science and Engineering, Jilin University, Changchun, P. R. China
| | - Hui Huang
- College of Food Science and Engineering, Jilin University, Changchun, P. R. China
| | - Yongxin Li
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun, P. R. China
| |
Collapse
|
12
|
Chen S, Lei Y, Xu J, Yang Y, Dong Y, Li Y, Yi H, Liao Y, Chen L, Xiao Y. Simple, rapid, and visual electrochemiluminescence sensor for on-site catechol analysis. RSC Adv 2022; 12:17330-17336. [PMID: 35765423 PMCID: PMC9189704 DOI: 10.1039/d2ra03067e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/06/2022] [Indexed: 12/27/2022] Open
Abstract
Environmental pollution caused by aromatic compounds such as catechol (Cat) has become a major issue for human health. However, there is no simple, rapid, and low-cost method for on-site monitoring of Cat. Here, based on ECL quenching mechanism, we develop a simple, rapid and visual mesoporous silica (MSNs)-electrochemiluminescence (ECL) sensor for on-site monitoring of Cat. The mechanism of ECL quenching is due to the interaction between Cat and Ru(bpy)32+* and the interactions between the oxidation products of Cat and DBAE. MSNs films with ordered perpendicular mesopore channels exhibit an amplification effect of ECL intensity due to the negatively charged pore channel. There is a good linear relationship between ECL intensity and Cat concentration in the range of 10 ∼ 1000 μM with the limit of detection (LOD) of 9.518 μM (R2 = 0.99). The on-site sensor is promising to offer new opportunities for pharmaceuticals analysis, on-site monitoring, and exposure risk assessment. A simple, rapid and visual mesoporous silica (MSNs)-electrochemiluminescence (ECL) sensor was developed for on-site monitoring of Cat.![]()
Collapse
Affiliation(s)
- Suhua Chen
- Hunan Provincial Maternal and Child Health Care Hospital Changsha 410008 Hunan China
| | - Yuanyuan Lei
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University Changsha 410013 Hunan China
| | - Junrong Xu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University Changsha 410013 Hunan China
| | - Yun Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University Changsha 410013 Hunan China
| | - Yiying Dong
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University Changsha 410013 Hunan China
| | - Yanmei Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University Changsha 410013 Hunan China
| | - Haomin Yi
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University Changsha 410013 Hunan China
| | - Yilong Liao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University Changsha 410013 Hunan China
| | - Liyin Chen
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University Changsha 410013 Hunan China
| | - Yi Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University Changsha 410013 Hunan China.,Experimental Soft Condensed Matter Group, School of Engineering and Applied Sciences, Harvard University Cambridge Massachusetts 02138 USA
| |
Collapse
|
13
|
Enespa, Chandra P, Singh DP. Sources, purification, immobilization and industrial applications of microbial lipases: An overview. Crit Rev Food Sci Nutr 2022; 63:6653-6686. [PMID: 35179093 DOI: 10.1080/10408398.2022.2038076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Microbial lipase is looking for better attention with the fast growth of enzyme proficiency and other benefits like easy, cost-effective, and reliable manufacturing. Immobilized enzymes can be used repetitively and are incapable to catalyze the reactions in the system continuously. Hydrophobic supports are utilized to immobilize enzymes when the ionic strength is low. This approach allows for the immobilization, purification, stability, and hyperactivation of lipases in a single step. The diffusion of the substrate is more advantageous on hydrophobic supports than on hydrophilic supports in the carrier. These approaches are critical to the immobilization performance of the enzyme. For enzyme immobilization, synthesis provides a higher pH value as well as greater heat stability. Using a mixture of immobilization methods, the binding force between enzymes and the support rises, reducing enzyme leakage. Lipase adsorption produces interfacial activation when it is immobilized on hydrophobic support. As a result, in the immobilization process, this procedure is primarily used for a variety of industrial applications. Microbial sources, immobilization techniques, and industrial applications in the fields of food, flavor, detergent, paper and pulp, pharmaceuticals, biodiesel, derivatives of esters and amino groups, agrochemicals, biosensor applications, cosmetics, perfumery, and bioremediation are all discussed in this review.
Collapse
Affiliation(s)
- Enespa
- School for Agriculture, Sri Mahesh Prasad Post Graduate College, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Prem Chandra
- Food Microbiology & Toxicology Laboratory, Department of Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh, India
| | - Devendra Pratap Singh
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
14
|
Wang G, Zhang S, Wu Q, Zhu J, Chen S, Lei Y, Li Y, Yi H, Chen L, Shi ZQ, Xiao Y. Simultaneous detection of acetaminophen, catechol and hydroquinone using a graphene-assisted electrochemical sensor. RSC Adv 2022; 12:23762-23768. [PMID: 36093255 PMCID: PMC9394483 DOI: 10.1039/d2ra03900a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/11/2022] [Indexed: 01/14/2023] Open
Abstract
Simple, rapid and sensitive analysis of drug-derived pollutants is critically valuable for environmental monitoring. Here, taking acetaminophen, hydroquinone and catechol as a study example, a sensor based on an ITO/APTES/r-GO@Au electrode was developed for separate and simultaneous determination of phenolic pollutants. ITO electrodes that are modified with 3-aminopropyltriethoxysilane (APTES), graphene (GO) and Au nanoparticles (Au NPs) can significantly enhance the electronic transport of phenolic pollutants at the electrode surface. The redox mechanisms of phenolic pollutants include the electron transfer with the enhancement of r-GO@Au. The modified ITO electrode exhibits excellent electrical properties to phenolic pollutants and a good linear relationship between ECL intensity and the concentration of phenolic pollutants, with a limit of detection of 0.82, 1.41 and 1.95 μM, respectively. The separate and simultaneous determination of AP, CC and HQ is feasible with the ITO/APTES/r-GO@Au electrode. The sensor shows great promise as a low-lost, sensitive, and rapid method for simultaneous determination of drug-derived pollutants. Simple, rapid and sensitive analysis of drug-derived pollutants is critically valuable for environmental monitoring.![]()
Collapse
Affiliation(s)
- Guofang Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| | - Siyi Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| | - Qinyu Wu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| | - Jingzhi Zhu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| | - Suhua Chen
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, Hunan, China
| | - Yuanyuan Lei
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| | - Yanmei Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| | - Haomin Yi
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| | - Liyin Chen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Zi-Qi Shi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, China
| | - Yi Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
15
|
Advanced Optical Sensing of Phenolic Compounds for Environmental Applications. SENSORS 2021; 21:s21227563. [PMID: 34833640 PMCID: PMC8619556 DOI: 10.3390/s21227563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
Phenolic compounds are particularly dangerous due to their ability to remain in the environment for a long period of time and their toxic effects. They enter in the environment in different ways, such as waste from paper manufacturing, agriculture (pesticides, insecticides, herbicides), pharmaceuticals, the petrochemical industry, and coal processing. Conventional methods for phenolic compounds detection present some disadvantages, such as cumbersome sample preparation, complex and time-consuming procedures, and need of expensive equipment. Therefore, there is a very large interest in developing sensors and new sensing schemes for fast and easy-to-use methods for detecting and monitoring the phenolic compound concentration in the environment, with special attention to water. Good analytical properties, reliability, and adaptability are required for the developed sensors. The present paper aims at revising the most generally used optical methods for designing and fabricating biosensors and sensors for phenolic compounds. Some selected examples of the most interesting applications of these techniques are also proposed.
Collapse
|
16
|
Recent Developments in Plasmonic Sensors of Phenol and Its Derivatives. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many scientists are increasingly interested in on-site detection methods of phenol and its derivatives because these substances have been universally used as a significant raw material in the industrial manufacturing of various chemicals of antimicrobials, anti-inflammatory drugs, antioxidants, and so on. The contamination of phenolic compounds in the natural environment is a toxic response that induces harsh impacts on plants, animals, and human health. This mini-review updates recent developments and trends of novel plasmonic resonance nanomaterials, which are assisted by various optical sensors, including colorimetric, fluorescence, localized surface plasmon resonance (LSPR), and plasmon-enhanced Raman spectroscopy. These advanced and powerful analytical tools exhibit potential application for ultrahigh sensitivity, selectivity, and rapid detection of phenol and its derivatives. In this report, we mainly emphasize the recent progress and novel trends in the optical sensors of phenolic compounds. The applications of Raman technologies based on pure noble metals, hybrid nanomaterials, and metal–organic frameworks (MOFs) are presented, in which the remaining establishments and challenges are discussed and summarized to inspire the future improvement of scientific optical sensors into easy-to-operate effective platforms for the rapid and trace detection of phenol and its derivatives.
Collapse
|
17
|
Dang TV, Heo NS, Cho HJ, Lee SM, Song MY, Kim HJ, Kim MI. Colorimetric determination of phenolic compounds using peroxidase mimics based on biomolecule-free hybrid nanoflowers consisting of graphitic carbon nitride and copper. Mikrochim Acta 2021; 188:293. [PMID: 34363539 DOI: 10.1007/s00604-021-04937-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/09/2021] [Indexed: 11/26/2022]
Abstract
Hybrid nanoflowers consisting of graphitic carbon nitride (GCN) and copper were successfully constructed without the involvement of any biomolecule, by simply mixing them at room temperature to induce proper self-assembly to achieve a flower-like morphology. The resulting biomolecule-free GCN-copper hybrid nanoflowers (GCN-Cu NFs) exhibited an apparent peroxidase-mimicking activity, possibly owing to the synergistic effect from the coordination of GCN and copper, as well as their large surface area, which increased the number of catalytic reaction sites. The peroxidase-mimicking GCN-Cu NFs were then employed in the colorimetric determination of selected phenolic compounds hydroquinone (HQ), methylhydroquinone (MHQ), and catechol (CC). For samples without phenolic compounds, GCN-Cu NFs catalyzed the oxidation of the peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2, producing an intense blue color signal. Conversely, in the presence of phenolic compounds, the oxidation of TMB was inhibited, resulting in a significant reduction of the color signal. Using this strategy, HQ, MHQ, and CC were selectively and sensitively determined in a linear range up to 100 μM with detection limits down to 0.82, 0.27, and 0.36 μM, respectively. The practical utility of this assay system was also validated by using it to detect phenolic compounds spiked in tap water, yielding a good recovery of 97.1-108.9% and coefficient of variation below 3.0%, demonstrating the excellent reliability and reproducibility of this strategy. Colorimetric determination of phenolic compounds using peroxidase mimics based on biomolecule-free hybrid nanoflowers consisting of graphitic carbon nitride and copper.
Collapse
Affiliation(s)
- Thinh Viet Dang
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi, 13120, Republic of Korea
| | - Nam Su Heo
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Hye-Jin Cho
- Reliability Assessment Center for Chemical Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 305-600, Republic of Korea
| | - Sang Moon Lee
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Min Young Song
- Reliability Assessment Center for Chemical Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 305-600, Republic of Korea
| | - Hae Jin Kim
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea.
| | - Moon Il Kim
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi, 13120, Republic of Korea.
| |
Collapse
|
18
|
Du J, Qi S, Fan T, Yang Y, Wang C, Shu Q, Zhuo S, Zhu C. Nitrogen and copper-doped carbon quantum dots with intrinsic peroxidase-like activity for double-signal detection of phenol. Analyst 2021; 146:4280-4289. [PMID: 34105526 DOI: 10.1039/d1an00796c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a simple and facile one-step hydrothermal carbonization synthesis procedure for the fabrication of N, Cu-doped carbon quantum dots (N, Cu-CQDs) as a peroxidase-mimicking enzyme was reported. The peroxidase-like performance of N, Cu-CQDs was assessed based on the oxidative coupling reaction of phenol with 4-aminoantipyrine (4-AAP) in the presence of hydrogen peroxide (H2O2). The N, Cu-CQDs/4-AAP/H2O2 system was applied to sensing phenol based on double signals of absorption spectra (or colorimetric visualization) as well as fluorescence spectra. The obtained limits of detection (LODs) were as low as 0.12 μM and 0.02 μM, respectively. Moreover, the proposed method was successfully applied to the determination of phenol in sewage with satisfactory recovery. Our results demonstrate that the N, Cu-CQDs/4-AAP/H2O2/phenol sensing system has a great potential prospect for applications in environmental chemistry and biotechnology.
Collapse
Affiliation(s)
- Jinyan Du
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P R China.
| | - Shuangqing Qi
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P R China.
| | - Tingting Fan
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P R China.
| | - Ying Yang
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P R China.
| | - Chaofeng Wang
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P R China.
| | - Qin Shu
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P R China.
| | - Shujuan Zhuo
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P R China.
| | - Changqing Zhu
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P R China.
| |
Collapse
|
19
|
Koyappayil A, Kim HT, Lee MH. 'Laccase-like' properties of coral-like silver citrate micro-structures for the degradation and determination of phenolic pollutants and adrenaline. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125211. [PMID: 33516111 DOI: 10.1016/j.jhazmat.2021.125211] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 05/21/2023]
Abstract
Laccases are multicopper containing oxidase enzymes that are highly important in environmental remediation and biotechnology. To date, complex Copper containing materials have been reported as laccase mimic, and the possibility of a non-Cu laccase mimic remained unknown. In this work, we report an exceptionally simple functional laccase mimic based on coral-like silver citrate (AgCit) microstructures. The AgCit was synthesized by a simple precipitation method and was found to possess excellent laccase-like activity capable of oxidizing phenolic substrates and the endocrine hormone adrenaline. Compared to the natural laccase enzyme, our reported laccase-mimic has a higher υmax and lower Km value using adrenaline as a substrate. In addition, the AgCit laccase mimic was observed to be stable at extreme pH, higher temperature, and suitable for long-term storage at room temperature. The laccase-like properties of the AgCit nanozyme were successfully applied for the quantification and degradation of various phenolic pollutants and the adrenaline hormone.
Collapse
Affiliation(s)
- Aneesh Koyappayil
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-Gu, Seoul 06974, South Korea
| | - Hyun Tae Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-Gu, Seoul 06974, South Korea
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-Gu, Seoul 06974, South Korea.
| |
Collapse
|
20
|
Nochit P, Sub-udom P, Teepoo S. Multiwalled Carbon Nanotube (MWCNT) Based Electrochemical Paper-Based Analytical Device (ePAD) for the Determination of Catechol in Wastewater. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1872591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Phatchada Nochit
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, Pathum Thani, Thailand
| | - Paitoon Sub-udom
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, Pathum Thani, Thailand
| | - Siriwan Teepoo
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, Pathum Thani, Thailand
| |
Collapse
|
21
|
Apak R, Çekiç SD, Üzer A, Çapanoğlu E, Çelik SE, Bener M, Can Z, Durmazel S. Colorimetric sensors and nanoprobes for characterizing antioxidant and energetic substances. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5266-5321. [PMID: 33170182 DOI: 10.1039/d0ay01521k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of analytical techniques for antioxidant compounds is important, because antioxidants that can inactivate reactive species and radicals are health-beneficial compounds, also used in the preservation of food and protection of almost every kind of organic substance from oxidation. Energetic substances include explosives, pyrotechnics, propellants and fuels, and their determination at bulk/trace levels is important for the safety and well-being of modern societies exposed to various security threats. Most of the time, in field/on site detection of these important analytes necessitates the use of colorimetric sensors and probes enabling naked-eye detection, or low-cost and easy-to-use fluorometric sensors. The use of nanosensors brings important advantages to this field of analytical chemistry due to their various physico-chemical advantages of increased surface area, surface plasmon resonance absorption of noble metal nanoparticles, and superior enzyme-mimic catalytic properties. Thus, this critical review focuses on the design strategies for colorimetric sensors and nanoprobes in characterizing antioxidant and energetic substances. In this regard, the main themes and properties in optical sensor design are defined and classified. Nanomaterial-based optical sensors/probes are discussed with respect to their mechanisms of operation, namely formation and growth of noble metal nanoparticles, their aggregation and disaggregation, displacement of active constituents by complexation or electrostatic interaction, miscellaneous mechanisms, and the choice of metallic oxide nanoparticles taking part in such formulations.
Collapse
Affiliation(s)
- Reşat Apak
- Analytical Chemistry Division, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar 34320, Istanbul, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Espino M, de los Angeles Fernández M, Silva MF, Gomez FJ. Paper microzone plates integrating Natural Deep Eutectic Solvents: Total phenolic compounds and antioxidant capacity as performed by nature. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
23
|
Dopamine and norepinephrine assistant-synthesized nanoflowers immobilized membrane with peroxidase mimic activity for efficient detection of model substrates. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01577-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Dadi S, Celik C, Ocsoy I. Gallic acid nanoflower immobilized membrane with peroxidase-like activity for m-cresol detection. Sci Rep 2020; 10:16765. [PMID: 33028883 PMCID: PMC7542149 DOI: 10.1038/s41598-020-73778-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/22/2020] [Indexed: 11/18/2022] Open
Abstract
We report fabrication of new generation nanoflowers (NFs) using gallic acid (GA) and copper (II) ions (Cu2+) acted as an organic and inorganic component, respectively with effective peroxidase mimic activities in solution and on filter membrane. Unlike the typical protein NFs synthesis mechanism, gallic acid NFs (GA-NFs) was formed via coordination reaction between carboxyl groups of GA and Cu2+. The different morphologies of the GA-NFs were acquired based upon whether the carboxyl groups in gallic acid are active or not. The peroxidase mimic activity of the GA-NFs relied on the Fenton reaction in the presence of hydrogen peroxide (H2O2) was tested towards m-cresol as a function of concentration of the GA-NFs, m-cresol, H2O2 and reaction time. Under the optimized conditions, the oxidative coupling of m-cresol with 4-aminoantipyrine (4-AAP) was catalyzed by the GA-NFs dispersed in solution and adsorbed on filter paper to form an antipyrine dye and it was visually and spectrophotometrically recorded. The m-cresol with range of 0.05-0.5 mM was detected in 10 min and 15 min by using the GA-NFs in solution and on filter paper, respectively. We demonstrated that the NFs can be produced from non-protein molecules and GA-NFs can be used as a promising nanocatalyst for a variety of applications.
Collapse
Affiliation(s)
- Seyma Dadi
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38039, Kayseri, Turkey
| | - Cagla Celik
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38039, Kayseri, Turkey
| | - Ismail Ocsoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38039, Kayseri, Turkey.
| |
Collapse
|
25
|
Abu-Thabit N, Hakeem AS, Mezghani K, Ratemi E, Elzagheid M, Umar Y, Primartomo A, Al Batty S, Azad AK, Al Anazi S, Ahmad A. Preparation of pH-Indicative and Flame-Retardant Nanocomposite Films for Smart Packaging Applications. SENSORS 2020; 20:s20195462. [PMID: 32977576 PMCID: PMC7582257 DOI: 10.3390/s20195462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022]
Abstract
There is an increasing demand for sustainable and safe packaging technologies to improve consumer satisfaction, reduce food loss during storage and transportation, and track the quality status of food throughout its distribution. This study reports the fabrication of colorimetric pH-indicative and flame-retardant nanocomposite films (NCFs) based on polyvinyl alcohol (PVA) and nanoclays for smart and safe food packaging applications. Tough, flexible, and transparent NCFs were obtained using 15% nanoclay loading (PVA-15) with superior properties, including low solubility/swelling in water and high thermal stability with flame-retardant behavior. The NCFs showed average mechanical properties that are comparable to commercial films for packaging applications. The color parameters were recorded at different pH values and the prepared NCFs showed distinctive colorimetric pH-responsive behavior during the transition from acidic to alkaline medium with high values for the calculated color difference (∆E ≈ 50). The prepared NCFs provided an effective way to detect the spoilage of the shrimp samples via monitoring the color change of the NCFs during the storage period. The current study proposes the prepared NCFs as renewable candidates for smart food packaging featuring colorimetric pH-sensing for monitoring food freshness as well as a safer alternative choice for applications that demand films with fire-retardant properties.
Collapse
Affiliation(s)
- Nedal Abu-Thabit
- Department of Chemical and Process Engineering Technology, Jubail Industrial College, Jubail Industrial City 31961, Saudi Arabia; (E.R.); (M.E.); (Y.U.); (S.A.B.); (A.K.A.); (S.A.A.); (A.A.)
- Correspondence: ; Tel.: +966-13-340-5400
| | - Abbas Saeed Hakeem
- Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia;
| | - Khaled Mezghani
- Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
| | - Elaref Ratemi
- Department of Chemical and Process Engineering Technology, Jubail Industrial College, Jubail Industrial City 31961, Saudi Arabia; (E.R.); (M.E.); (Y.U.); (S.A.B.); (A.K.A.); (S.A.A.); (A.A.)
| | - Mohamed Elzagheid
- Department of Chemical and Process Engineering Technology, Jubail Industrial College, Jubail Industrial City 31961, Saudi Arabia; (E.R.); (M.E.); (Y.U.); (S.A.B.); (A.K.A.); (S.A.A.); (A.A.)
| | - Yunusa Umar
- Department of Chemical and Process Engineering Technology, Jubail Industrial College, Jubail Industrial City 31961, Saudi Arabia; (E.R.); (M.E.); (Y.U.); (S.A.B.); (A.K.A.); (S.A.A.); (A.A.)
| | - Adhi Primartomo
- Department of Mechanical and Manufacturing Engineering Technology, Jubail Industrial College, Jubail Industrial City 31961, Saudi Arabia;
| | - Sirhan Al Batty
- Department of Chemical and Process Engineering Technology, Jubail Industrial College, Jubail Industrial City 31961, Saudi Arabia; (E.R.); (M.E.); (Y.U.); (S.A.B.); (A.K.A.); (S.A.A.); (A.A.)
| | - Abdul Kalam Azad
- Department of Chemical and Process Engineering Technology, Jubail Industrial College, Jubail Industrial City 31961, Saudi Arabia; (E.R.); (M.E.); (Y.U.); (S.A.B.); (A.K.A.); (S.A.A.); (A.A.)
| | - Sami Al Anazi
- Department of Chemical and Process Engineering Technology, Jubail Industrial College, Jubail Industrial City 31961, Saudi Arabia; (E.R.); (M.E.); (Y.U.); (S.A.B.); (A.K.A.); (S.A.A.); (A.A.)
| | - Ayman Ahmad
- Department of Chemical and Process Engineering Technology, Jubail Industrial College, Jubail Industrial City 31961, Saudi Arabia; (E.R.); (M.E.); (Y.U.); (S.A.B.); (A.K.A.); (S.A.A.); (A.A.)
| |
Collapse
|
26
|
Mirza Alizadeh A, Masoomian M, Shakooie M, Zabihzadeh Khajavi M, Farhoodi M. Trends and applications of intelligent packaging in dairy products: a review. Crit Rev Food Sci Nutr 2020; 62:383-397. [DOI: 10.1080/10408398.2020.1817847] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Adel Mirza Alizadeh
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Masoomian
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Shakooie
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Zabihzadeh Khajavi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Farhoodi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Noori R, Perwez M, Mazumder JA, Sardar M. Development of low-cost paper-based biosensor of polyphenol oxidase for detection of phenolic contaminants in water and clinical samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:30081-30092. [PMID: 32447731 DOI: 10.1007/s11356-020-09331-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
In the present work, polyphenol oxidase (PPO) enzyme was purified from potato peel using three-phase partitioning (TPP). In this method, ammonium sulfate and t-butanol were added to precipitate the protein/enzyme from the crude aqueous extract. The PPO enzyme precipitated as an interfacial layer between the upper organic solvent phase and lower aqueous phase. Different purification parameters such as crude extract to t-butanol ratio, ammonium sulfate concentration, temperature, and pH were optimized for TPP. About 69% PPO enzyme activity was recovered in a single step of TPP with 9.2-fold purification. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis profile of partially purified PPO enzyme showed molecular weight in the range of about 30-40 kDa. The PPO enzyme was then investigated for the fabrication of a portable, cost-effective, and disposable colorimetric paper biosensor or colorimetric "test strips" for detection of phenolic contaminants. PPO and a chromophore reagent (3-methyl-2-benzothiazolinone hydrazine) generated a range of color in the presence of phenolic compounds (catechol, phenol, p-cresol, 4-methyl catechol) within 15 min, and limit of detection was found to be 0.5 μM. The biosensor worked in a broad range of pH from 3 to 11 and showed good storage stability at 25 °C and 4 °C for 30 days with no significant loss of activity. The biosensor was also applied on environmental water and urine sample to show reliability of biosensor.
Collapse
Affiliation(s)
- Rubia Noori
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Mohammad Perwez
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | | | - Meryam Sardar
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
28
|
Ates B, Koytepe S, Ulu A, Gurses C, Thakur VK. Chemistry, Structures, and Advanced Applications of Nanocomposites from Biorenewable Resources. Chem Rev 2020; 120:9304-9362. [PMID: 32786427 DOI: 10.1021/acs.chemrev.9b00553] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Researchers have recently focused on the advancement of new materials from biorenewable and sustainable sources because of great concerns about the environment, waste accumulation and destruction, and the inevitable depletion of fossil resources. Biorenewable materials have been extensively used as a matrix or reinforcement in many applications. In the development of innovative methods and materials, composites offer important advantages because of their excellent properties such as ease of fabrication, higher mechanical properties, high thermal stability, and many more. Especially, nanocomposites (obtained by using biorenewable sources) have significant advantages when compared to conventional composites. Nanocomposites have been utilized in many applications including food, biomedical, electroanalysis, energy storage, wastewater treatment, automotive, etc. This comprehensive review provides chemistry, structures, advanced applications, and recent developments about nanocomposites obtained from biorenewable sources.
Collapse
Affiliation(s)
- Burhan Ates
- Inonu University, Department of Chemistry, 44280 Malatya, Turkey
| | - Suleyman Koytepe
- Inonu University, Department of Chemistry, 44280 Malatya, Turkey
| | - Ahmet Ulu
- Inonu University, Department of Chemistry, 44280 Malatya, Turkey
| | - Canbolat Gurses
- Inonu University, Department of Molecular Biology and Genetics, 44280 Malatya, Turkey
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.,Enhanced Composites and Structures Center, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, U.K.,Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Greater Noida, Uttar Pradesh 201314, India
| |
Collapse
|
29
|
Boobphahom S, Nguyet Ly M, Soum V, Pyun N, Kwon OS, Rodthongkum N, Shin K. Recent Advances in Microfluidic Paper-Based Analytical Devices toward High-Throughput Screening. Molecules 2020; 25:E2970. [PMID: 32605281 PMCID: PMC7412548 DOI: 10.3390/molecules25132970] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Microfluidic paper-based analytical devices (µPADs) have become promising tools offering various analytical applications for chemical and biological assays at the point-of-care (POC). Compared to traditional microfluidic devices, µPADs offer notable advantages; they are cost-effective, easily fabricated, disposable, and portable. Because of our better understanding and advanced engineering of µPADs, multistep assays, high detection sensitivity, and rapid result readout have become possible, and recently developed µPADs have gained extensive interest in parallel analyses to detect biomarkers of interest. In this review, we focus on recent developments in order to achieve µPADs with high-throughput capability. We discuss existing fabrication techniques and designs, and we introduce and discuss current detection methods and their applications to multiplexed detection assays in relation to clinical diagnosis, drug analysis and screening, environmental monitoring, and food and beverage quality control. A summary with future perspectives for µPADs is also presented.
Collapse
Affiliation(s)
- Siraprapa Boobphahom
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok 10330, Thailand;
| | - Mai Nguyet Ly
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul 04107, Korea; (M.N.L.); (V.S.); (N.P.); (O.-S.K.)
| | - Veasna Soum
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul 04107, Korea; (M.N.L.); (V.S.); (N.P.); (O.-S.K.)
| | - Nayoon Pyun
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul 04107, Korea; (M.N.L.); (V.S.); (N.P.); (O.-S.K.)
| | - Oh-Sun Kwon
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul 04107, Korea; (M.N.L.); (V.S.); (N.P.); (O.-S.K.)
| | - Nadnudda Rodthongkum
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok 10330, Thailand;
| | - Kwanwoo Shin
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul 04107, Korea; (M.N.L.); (V.S.); (N.P.); (O.-S.K.)
| |
Collapse
|
30
|
Fatoni A, Aziz AN, Anggraeni MD. Low-cost and real-time color detector developments for glucose biosensor. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2020.100325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
31
|
Dabhade A, Jayaraman S, Paramasivan B. Colorimetric paper bioassay by horseradish peroxidase for the detection of catechol and resorcinol in aqueous samples. Prep Biochem Biotechnol 2020; 50:849-856. [DOI: 10.1080/10826068.2020.1760883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ajinkya Dabhade
- Department of Biotechnology and Medical Engineering, Agricultural and Environmental Biotechnology Lab, National Institute of Technology Rourkela, Rourkela, India
| | - Sivaraman Jayaraman
- Department of Biotechnology and Medical Engineering, Medical Electronics and Instrumentation Lab, National Institute of Technology Rourkela, Rourkela, India
| | - Balasubramanian Paramasivan
- Department of Biotechnology and Medical Engineering, Agricultural and Environmental Biotechnology Lab, National Institute of Technology Rourkela, Rourkela, India
| |
Collapse
|
32
|
Hashim HS, Fen YW, Sheh Omar NA, Abdullah J, Daniyal WMEMM, Saleviter S. Detection of phenol by incorporation of gold modified-enzyme based graphene oxide thin film with surface plasmon resonance technique. OPTICS EXPRESS 2020; 28:9738-9752. [PMID: 32225575 DOI: 10.1364/oe.387027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
In this study, the incorporation between gold modified-tyrosinase (Tyr) enzyme based graphene oxide (GO) thin film with surface plasmon resonance (SPR) technique has been developed for the detection of phenol. SPR signal for the thin film contacted with phenol solution was monitored using SPR technique. From the SPR curve, sensitivity, full width at half maximum (FWHM), detection accuracy (DA) and signal-to-noise ratio (SNR) have been analyzed. The sensor produces a linear response for phenol up to 100 µM with sensitivity of 0.00193° µM-1. Next, it can be observed that deionized water has the lowest FWHM, with a value of 1.87° and also the highest value of DA. Besides, the SNR of the SPR signal was proportional to the phenol concentrations. Furthermore, the surface morphology of the modified thin film after exposed with phenol solution observed using atomic force microscopy showed a lot of sharp peaks compared to the image before in contact with phenol proved the interaction between the thin film and phenol.
Collapse
|
33
|
Hu C, Annese VF, Velugotla S, Al-Rawhani M, Cheah BC, Grant J, Barrett MP, Cumming DRS. Disposable Paper-on-CMOS Platform for Real-Time Simultaneous Detection of Metabolites. IEEE Trans Biomed Eng 2020; 67:2417-2426. [PMID: 32011243 DOI: 10.1109/tbme.2019.2962239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Early stage diagnosis of sepsis without overburdening health services is essential to improving patient outcomes. METHODS A fast and simple-to-use platform that combines an integrated circuit with paper microfluidics for simultaneous detection of multiple-metabolites appropriate for diagnostics was presented. Paper based sensors are a primary candidate for widespread deployment of diagnostic or test devices. However, the majority of devices today use a simple paper strip to detect a single marker using the reflectance of light. However, for many diseases such as sepsis, one biomarker is not sufficient to make a unique diagnosis. In this work multiple measurements are made on patterned paper simultaneously. Using laser ablation to fabricate microfluidic channels on paper provides a flexible and direct approach for mass manufacture of disposable paper strips. A reusable photodiode array on a complementary metal oxide semiconductor chip is used as the transducer. RESULTS The system measures changes in optical absorbance in the paper to achieve a cost-effective and easily implemented system that is capable of multiple simultaneous assays. Potential sepsis metabolite biomarkers glucose and lactate have been studied and quantified with the platform, achieving sensitivity within the physiological range in human serum. CONCLUSION We have detailed a disposable paper-based CMOS photodiode sensor platform for real-time simultaneous detection of metabolites for diseases such as sepsis. SIGNIFICANCE A combination of a low-cost paper strip with microfluidic channels and a sensitive CMOS photodiode sensor array makes our platform a robust portable and inexpensive biosensing device for multiple diagnostic tests in many different applications.
Collapse
|
34
|
Ge L, Li SP, Lisak G. Advanced sensing technologies of phenolic compounds for pharmaceutical and biomedical analysis. J Pharm Biomed Anal 2020; 179:112913. [DOI: 10.1016/j.jpba.2019.112913] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/10/2019] [Accepted: 10/05/2019] [Indexed: 11/17/2022]
|
35
|
Fabrication of water soluble and luminescent Eu2O3 nanoparticles for specific quantification of aromatic nitrophenols in aqueous media. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.136799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Wang J, Deng K, Zhou C, Fang Z, Meyer C, Deshpande KUA, Li Z, Mi X, Luo Q, Hammock BD, Tan C, Chen Y, Pan T. Microfluidic cap-to-dispense (μCD): a universal microfluidic-robotic interface for automated pipette-free high-precision liquid handling. LAB ON A CHIP 2019; 19:3405-3415. [PMID: 31501848 PMCID: PMC6785371 DOI: 10.1039/c9lc00622b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Microfluidic devices have been increasingly used for low-volume liquid handling operations. However, laboratory automation of such delicate devices has lagged behind due to the lack of world-to-chip (macro-to-micro) interfaces. In this paper, we have presented the first pipette-free robotic-microfluidic interface using a microfluidic-embedded container cap, referred to as a microfluidic cap-to-dispense (μCD), to achieve a seamless integration of liquid handling and robotic automation without any traditional pipetting steps. The μCD liquid handling platform offers a generic and modular way to connect the robotic device to standard liquid containers. It utilizes the high accuracy and high flexibility of the robotic system to recognize, capture and position; and then using microfluidic adaptive printing it can achieve high-precision on-demand volume distribution. With its modular connectivity, nanoliter processability, high adaptability, and multitask capacity, μCD shows great potential as a generic robotic-microfluidic interface for complete pipette-free liquid handling automation.
Collapse
Affiliation(s)
- Jingjing Wang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kirk KA, Andreescu S. Easy-to-Use Sensors for Field Monitoring of Copper Contamination in Water and Pesticide-Sprayed Plants. Anal Chem 2019; 91:13892-13899. [DOI: 10.1021/acs.analchem.9b03385] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Kevin A. Kirk
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, United States
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, United States
| |
Collapse
|
38
|
Akar Z, Burnaz NA. A new colorimetric method for CUPRAC assay with using of TLC plate. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Wang H, Yuan F, Wu X, Dong Y, Wang GL. Enzymatic in situ generation of covalently conjugated electron acceptor of PbSe quantum dots for high throughput and versatile photoelectrochemical bioanalysis. Anal Chim Acta 2019; 1058:1-8. [DOI: 10.1016/j.aca.2019.01.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/24/2019] [Accepted: 01/30/2019] [Indexed: 12/21/2022]
|
40
|
Zong L, Han Y, Gao L, Du C, Zhang X, Li L, Huang X, Liu J, Yu HD, Huang W. A transparent paper-based platform for multiplexed bioassays by wavelength-dependent absorbance/transmittance. Analyst 2019; 144:7157-7161. [DOI: 10.1039/c9an01647c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present work describes the rational design of a paper-based biosensing platform for multi-target detection with low cost and high sensitivity by wavelength-dependent absorbance/transmittance.
Collapse
|
41
|
Pellegrini E, Contin M, Vittori Antisari L, Vianello G, Ferronato C, De Nobili M. A new paper sensor method for field analysis of acid volatile sulfides in soils. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:3025-3031. [PMID: 30259571 DOI: 10.1002/etc.4279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/28/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
Monitoring of biogenic sulfide is important because acid volatile sulfides (AVS) represent a reactive pool responsible for immobilization of toxic metals. We propose a new sulfide paper sensor method for semiquantitative determination of AVS in which developed color is compared to a reference chart. The method was validated against the ion-selective microelectrode and the purge-and-trap methods. For fieldwork, readings should fall within 1 to 10 μmoles S2- . Considering that the volume of soil used ranged between 1 and 16 cm3 , the corresponding soil sulfides concentration range spans from 0.06 to 10 mmoles S2- cm-3 . The sulfide paper sensor method is highly suitable for field screening and has sensitivity levels comparable to laboratory methods. Environ Toxicol Chem 2018;37:3025-3031. © 2018 SETAC.
Collapse
Affiliation(s)
- Elisa Pellegrini
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, Udine, Italy
| | - Marco Contin
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, Udine, Italy
| | - Livia Vittori Antisari
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Gilmo Vianello
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Chiara Ferronato
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Maria De Nobili
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, Udine, Italy
| |
Collapse
|
42
|
Chaudhary S, Sharma P, Kumar S, Alex SA, Kumar R, Mehta S, Mukherjee A, Umar A. A comparative multi-assay approach to study the toxicity behaviour of Eu2O3 nanoparticles. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
43
|
Mustafa F, Andreescu S. Chemical and Biological Sensors for Food-Quality Monitoring and Smart Packaging. Foods 2018; 7:E168. [PMID: 30332833 PMCID: PMC6210272 DOI: 10.3390/foods7100168] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/06/2018] [Accepted: 10/10/2018] [Indexed: 12/18/2022] Open
Abstract
The growing interest in food quality and safety requires the development of sensitive and reliable methods of analysis as well as technology for freshness preservation and food quality. This review describes the status of chemical and biological sensors for food monitoring and smart packaging. Sensing designs and their analytical features for measuring freshness markers, allergens, pathogens, adulterants and toxicants are discussed with example of applications. Their potential implementation in smart packaging could facilitate food-status monitoring, reduce food waste, extend shelf-life, and improve overall food quality. However, most sensors are still in the development stage and need significant work before implementation in real-world applications. Issues like sensitivity, selectivity, robustness, and safety of the sensing materials due to potential contact or migration in food need to be established. The current development status of these technologies, along with a discussion of the challenges and opportunities for future research, are discussed.
Collapse
Affiliation(s)
- Fatima Mustafa
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA.
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA.
| |
Collapse
|
44
|
Esen E, Yazgan I, Demirkol DO, Timur S. Laccase assay based on electrochemistry and fluorescence detection via anthracene sequestered poly(amic acid) films. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
45
|
Qi J, Li B, Wang X, Fu L, Luo L, Chen L. Rotational Paper-Based Microfluidic-Chip Device for Multiplexed and Simultaneous Fluorescence Detection of Phenolic Pollutants Based on a Molecular-Imprinting Technique. Anal Chem 2018; 90:11827-11834. [DOI: 10.1021/acs.analchem.8b01291] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ji Qi
- College of Sciences, Shanghai University, Shanghai 200444, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Bowei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Longwen Fu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Liqiang Luo
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
46
|
Mimicking peroxidase activity of Co 2(OH) 2CO 3-CeO 2 nanocomposite for smartphone based detection of tumor marker using paper-based microfluidic immunodevice. Talanta 2018; 189:100-110. [PMID: 30086892 DOI: 10.1016/j.talanta.2018.06.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/10/2018] [Accepted: 06/10/2018] [Indexed: 01/10/2023]
Abstract
We present a paper-based microfluidic colorimetric immunosensor for the detection of carcinoembryonic antigen (CEA), using Co2(OH)2CO3-CeO2 nanocomposite with extraordinary intrinsic peroxidase like activity. The morphology and composition of the nanocomposite characterized with Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques. The proposed immunosensor facilely fabricated by loading mixture of ionic liquid and chitosan functionalized primary antibodies (Ab1) on the surface of paper. Compared to traditional paper based immunodevice, when ionic liquid was used the nonspecific binding protein from the paper surface was more effectively removed. Secondary antibodies (Ab2) were stacked on the surface of the carboxylated Co2(OH)2CO3-CeO2 nanocomposite. The immunosensor response was obtained by a color change resulting from Co2(OH)2CO3-CeO2 nanocomposite catalyzing the oxidation of 3,3',5,5'-tetramethyl benzidine in the presence of H2O2. The colorimetric sensing was accomplished on the paper, using smartphone for taking a photo and then analyzing the colors with an installed application. Detection of CEA was performed by this method with a linear range from 0.002 to 75.0 ng mL-1 and a detection limit of 0.51 pg mL-1. In this paper we developed simple, cost-effective and portable design for sensitive immunoassay and point-of-care diagnostics of cancer marker.
Collapse
|
47
|
Xu W, Chen X, Cai S, Chen J, Xu Z, Jia H, Chen J. Superhydrophobic titania nanoparticles for fabrication of paper-based analytical devices: An example of heavy metals assays. Talanta 2018; 181:333-339. [DOI: 10.1016/j.talanta.2018.01.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 12/29/2017] [Accepted: 01/15/2018] [Indexed: 02/07/2023]
|
48
|
Wang GL, Yuan F, Gu T, Dong Y, Wang Q, Zhao WW. Enzyme-Initiated Quinone-Chitosan Conjugation Chemistry: Toward A General in Situ Strategy for High-Throughput Photoelectrochemical Enzymatic Bioanalysis. Anal Chem 2018; 90:1492-1497. [DOI: 10.1021/acs.analchem.7b04625] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Guang-Li Wang
- Key
Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Fang Yuan
- Key
Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Tiantian Gu
- Key
Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yuming Dong
- Key
Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Qian Wang
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei-Wei Zhao
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Department
of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
49
|
KIRK KA, OTHMAN A, ANDREESCU S. Nanomaterial-functionalized Cellulose: Design, Characterization and Analytical Applications. ANAL SCI 2018; 34:19-31. [DOI: 10.2116/analsci.34.19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Kevin A. KIRK
- Department of Chemistry and Biomolecular Science, Clarkson University
| | - Ali OTHMAN
- Department of Chemistry and Biomolecular Science, Clarkson University
| | - Silvana ANDREESCU
- Department of Chemistry and Biomolecular Science, Clarkson University
| |
Collapse
|
50
|
Xue H, Yan Y, Hou Y, Li G, Hao C. Novel carbon quantum dots for fluorescent detection of phenol and insights into the mechanism. NEW J CHEM 2018. [DOI: 10.1039/c8nj01611a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phenol is considered as one of the most important pollutants in the water environment, and thus its detection plays a cardinal role in environmental assessment and treatment.
Collapse
Affiliation(s)
- Hong Xue
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- China
| | - Yang Yan
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- China
| | - Yong Hou
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- China
| | - Guanglan Li
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- China
| | - Ce Hao
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- China
| |
Collapse
|