1
|
Gu R, Lambertsen Larsen K, Wang A, Tan J. Approaching Dynamic Behaviors of Life through Systems Chemistry. Chemistry 2025; 31:e202403083. [PMID: 39485372 DOI: 10.1002/chem.202403083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/20/2024] [Accepted: 10/30/2024] [Indexed: 11/03/2024]
Abstract
The intricate interplay of metabolic reactions and molecular assembly in living systems enables spatiotemporally organization and gives rise to diverse dynamic behaviors that characterize life. Over the last decades, research efforts have increasingly focused on replicating the remarkable properties and characteristics of living systems, driving the rapid growth of systems chemistry. This young discipline which generally studies interacting molecular networks and emergent system-level properties, behaviors, and functions, offers new concepts and tools to tackle the complexity of life. In this review paper, we have explored seminal research and recent advancements in recreating dynamic behaviors of life with systems chemistry. We believe that the recreation of the dynamic behaviors of life through systems chemistry would set the initial steps to obtain synthetic life de novo.
Collapse
Affiliation(s)
- Ruirui Gu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai, China
| | - Kim Lambertsen Larsen
- Department of Chemistry and Bioscience, Section of Chemistry Science and Engineering, Aalborg University, Fredrik Bajers Vej 7H, Aalborg Ø, Denmark
| | - Ali Wang
- Department of Chemistry, Section of Biological Chemistry, University of Copenhagen, Universitetsparken 5, København Ø, Denmark
| | - Junjun Tan
- Department of Chemistry, Section of Biological Chemistry, University of Copenhagen, Universitetsparken 5, København Ø, Denmark
| |
Collapse
|
2
|
Jin Y, Mandal PK, Wu J, Kiani A, Zhao R, Huc I, Otto S. Light-Mediated Interconversion between a Foldamer and a Self-Replicator. J Am Chem Soc 2024; 146:33395-33402. [PMID: 39590511 PMCID: PMC11638899 DOI: 10.1021/jacs.4c09114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
Self-replicating molecules and well-defined folded macromolecules are of great significance in the emergence and evolution of life. How they may interconnect and affect each other remains largely elusive. Here, we demonstrate an abiotic system where a single building block can oligomerize to yield either a self-replicating molecule or a foldamer. Specifically, agitation of a disulfide-based dynamic combinatorial library at moderately elevated pH channels it selectively into a self-replicating hexamer assembled into fibers, after passing through a period where a 15-subunit macrocyclic foldamer existed transiently. Without mechanoagitation or at lower pH, the formation of hexamer fiber is suppressed, resulting in the accumulation of the 15mer foldamer. Foldamer and self-replicator can be interconverted in response to external stimuli, including agitation and a change in pH. Furthermore, upon the addition of a photoacid, the pH of the medium can be controlled by irradiation, driving the switching between replicator and foldamer and allowing a dissipative out-of-equilibrium state to be accessed, using light as a source of energy.
Collapse
Affiliation(s)
- Yulong Jin
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
- State
Key Laboratory of Chemical Resource Engineering, Beijing Advanced
Innovation Center for Soft Matter Science and Engineering, College
of Chemistry, Beijing University of Chemical
Technology, 100029 Beijing, China
| | - Pradeep K. Mandal
- Department
of Pharmacy, Ludwig-Maximilians-Universität
München, 81377 Munich, Germany
| | - Juntian Wu
- Centre
for Systems Chemistry, Stratingh Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Armin Kiani
- Centre
for Systems Chemistry, Stratingh Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Rui Zhao
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
| | - Ivan Huc
- Department
of Pharmacy, Ludwig-Maximilians-Universität
München, 81377 Munich, Germany
| | - Sijbren Otto
- Centre
for Systems Chemistry, Stratingh Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
3
|
Eleveld MJ, Geiger Y, Wu J, Kiani A, Schaeffer G, Otto S. Competitive exclusion among self-replicating molecules curtails the tendency of chemistry to diversify. Nat Chem 2024:10.1038/s41557-024-01664-0. [PMID: 39613869 DOI: 10.1038/s41557-024-01664-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/04/2024] [Indexed: 12/01/2024]
Abstract
The transition of chemistry into biology is poorly understood. Key questions include how the inherently divergent nature of chemical reactions can be curtailed, and whether Darwinian principles from biology extend to chemistry. Addressing both questions simultaneously, we now show that the evolutionary principle of competitive exclusion, which states that a single niche can be stably occupied by only one species, also applies to self-replicating chemical systems, and that this principle diminishes the tendency of chemistry to diversify. Specifically, we report two systems in which three different self-replicator quasi-species emerge in a largely stochastic fashion from a mixture of two building blocks (resources). Competitive exclusion leads to the selection of only a single quasi-species when all replicators rely to the same extent on both resources. When one of the quasi-species preferentially uses one resource and another quasi-species specializes in the other (resource partitioning), these replicator quasi-species effectively occupy different niches and were found to coexist in an evolutionary stable steady state.
Collapse
Affiliation(s)
- Marcel J Eleveld
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, The Netherlands
| | - Yannick Geiger
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, The Netherlands
| | - Juntian Wu
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, The Netherlands
| | - Armin Kiani
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, The Netherlands
| | - Gaël Schaeffer
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, The Netherlands
| | - Sijbren Otto
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
4
|
Ovalle M, Stindt CN, Feringa BL. Light, Switch, Action! The Influence of Geometrical Photoisomerization in an Adaptive Self-Assembled System. J Am Chem Soc 2024; 146:31892-31900. [PMID: 39500717 PMCID: PMC11583216 DOI: 10.1021/jacs.4c11206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The ubiquitous ability of natural dynamic nanostructures to adapt to environmental changes is a highly desirable property for chemical systems, particularly in the development of complex matter, molecular machines, and life-like materials. Designing such systems is challenging due to the generation of complex mixtures with responses that are difficult to predict, characterize, and diversify. Here, we navigate between self-assembled architectures using light by operating an intrinsic photoswitchable building block that governs the state of the system. When complementary units are present, the photoswitch determines the predominant architecture, reversibly adapting between the cage and macrocycles, including (otherwise inaccessible) higher-energy assemblies. Our study showcases this concept with seven different transformations, offering an unprecedented degree of control, diversification, and adaptation by self-selecting complementary units. These findings could enable applications of on-demand dissipative macrocycles based on dynamic bonds. We also envision different transient nanostructures, e.g., reticular and polymeric materials, being explored by fine-tuning the nature of the complementary unit.
Collapse
Affiliation(s)
- Marco Ovalle
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, Groningen 9747 AG, The Netherlands
| | - Charlotte N Stindt
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, Groningen 9747 AG, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, Groningen 9747 AG, The Netherlands
| |
Collapse
|
5
|
Wu Q, Xu W, Shang J, Li J, Liu X, Wang F, Li J. Autocatalytic DNA circuitries. Chem Soc Rev 2024; 53:10878-10899. [PMID: 39400237 DOI: 10.1039/d4cs00046c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Autocatalysis, a self-sustained replication process where at least one of the products functions as a catalyst, plays a pivotal role in life's evolution, from genome duplication to the emergence of autocatalytic subnetworks in cell division and metabolism. Leveraging their programmability, controllability, and rich functionalities, DNA molecules have become a cornerstone for engineering autocatalytic circuits, driving diverse technological applications. In this tutorial review, we offer a comprehensive survey of recent advances in engineering autocatalytic DNA circuits and their practical implementations. We delve into the fundamental principles underlying the construction of these circuits, highlighting their reliance on DNAzyme biocatalysis, enzymatic catalysis, and dynamic hybridization assembly. The discussed autocatalytic DNA circuitry techniques have revolutionized ultrasensitive sensing of biologically significant molecules, encompassing genomic DNAs, RNAs, viruses, and proteins. Furthermore, the amplicons produced by these circuits serve as building blocks for higher-order DNA nanostructures, facilitating biomimetic behaviors such as high-performance intracellular bioimaging and precise algorithmic assembly. We summarize these applications and extensively address the current challenges, potential solutions, and future trajectories of autocatalytic DNA circuits. This review promises novel insights into the advancement and practical utilization of autocatalytic DNA circuits across bioanalysis, biomedicine, and biomimetics.
Collapse
Affiliation(s)
- Qiong Wu
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Wei Xu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jinhua Shang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Jiajing Li
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xiaoqing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Fuan Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Jinghong Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
- Beijing Institute of Life Science and Technology, Beijing 102206, China
| |
Collapse
|
6
|
Whitaker D, Powner MW. On the aqueous origins of the condensation polymers of life. Nat Rev Chem 2024; 8:817-832. [PMID: 39333736 DOI: 10.1038/s41570-024-00648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 09/30/2024]
Abstract
Water is essential for life as we know it, but it has paradoxically been considered inimical to the emergence of life. Proteins and nucleic acids have sustained evolution and life for billions of years, but both are condensation polymers, suggesting that their formation requires the elimination of water. This presents intrinsic challenges at the origins of life, including how condensation polymer synthesis can overcome the thermodynamic pressure of hydrolysis in water and how nucleophiles can kinetically outcompete water to yield condensation products. The answers to these questions lie in balancing thermodynamic activation and kinetic stability. For peptides, an effective strategy is to directly harness the energy trapped in prebiotic molecules, such as nitriles, and avoid the formation of fully hydrolysed monomers. In this Review, we discuss how chemical energy can be built into precursors, retained, and released selectively for polymer synthesis. Looking to the future, the outstanding goals include how nucleic acids can be synthesized, avoiding the formation of fully hydrolysed monomers and what caused information to flow from nucleic acids to proteins.
Collapse
Affiliation(s)
- Daniel Whitaker
- Department of Chemistry, University College London, London, UK.
| | | |
Collapse
|
7
|
Pol M, Thomann R, Thomann Y, Pappas CG. Abiotic Acyl Transfer Cascades Driven by Aminoacyl Phosphate Esters and Self-Assembly. J Am Chem Soc 2024; 146:29621-29629. [PMID: 39419499 PMCID: PMC11528443 DOI: 10.1021/jacs.4c10082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024]
Abstract
Biochemical acyl transfer cascades, such as those initiated by the adenylation of carboxylic acids, are central to various biological processes, including protein synthesis and fatty acid metabolism. Designing cascade reactions in aqueous media remains challenging due to the need to control multiple, sequential reactions in a single pot and manage the stability of reactive intermediates. Herein, we developed abiotic cascades using aminoacyl phosphate esters, the synthetic counterparts of biological aminoacyl adenylates, to drive sequential chemical reactions and self-assembly in a single pot. We demonstrated that the structural elements of amino acid side chains (aromatic versus aliphatic) significantly influence the reactivity and half-lives of aminoacyl phosphate esters, ranging from hours to days. This behavior, in turn, affects the number of couplings we can achieve in the network and the self-assembly propensity of activated intermediate structures. The cascades are constructed using bifunctional peptide substrates featuring side chain nucleophiles. Specifically, aromatic amino acids facilitate the formation of transient thioesters, which preorganized into spherical aggregates and further couple into chimeric assemblies composed of esters and thioesters. In contrast, aliphatic amino acids, which lack the ability to form such structures, predominantly undergo hydrolysis, bypassing further transformations after thioester formation. Additionally, in mixtures containing multiple aminoacyl phosphate esters and peptide substrates, we achieved selective product formation by following a distinct pathway that favors subsequent reactions through reactivity changes and self-assembly. By coupling chemical reactions with molecules of varying reactivity time scales, we can drive multiple reaction clocks with distinct lifetimes and self-assembly dynamics, facilitating precise temporal and structural regulation.
Collapse
Affiliation(s)
- Mahesh
D. Pol
- DFG
Cluster of Excellence livMatS @FIT−Freiburg Center for Interactive
Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Institute
of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Ralf Thomann
- Freiburg
Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Freiburg
Materials Research Center (FMF), University
of Freiburg, Stefan-Meier-Strasse
21, 79104 Freiburg, Germany
| | - Yi Thomann
- Freiburg
Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Charalampos G. Pappas
- DFG
Cluster of Excellence livMatS @FIT−Freiburg Center for Interactive
Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Institute
of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| |
Collapse
|
8
|
Paulchamy C, Vakkattuthundi Premji S, Shanmugam S. Methanogens and what they tell us about how life might survive on Mars. Crit Rev Biochem Mol Biol 2024; 59:337-362. [PMID: 39488737 DOI: 10.1080/10409238.2024.2418639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Space exploration and research are uncovering the potential for terrestrial life to survive in outer space, as well as the environmental factors that affect life during interplanetary transfer. The presence of methane in the Martian atmosphere suggests the possibility of methanogens, either extant or extinct, on Mars. Understanding how methanogens survive and adapt under space-exposed conditions is crucial for understanding the implications of extraterrestrial life. In this article, we discuss methanogens as model organisms for obtaining energy transducers and producing methane in a simulated Martian environment. We also explore the chemical evolution of cellular composition and growth maintenance to support survival in extraterrestrial environments. Neutral selective pressure is imposed on the chemical composition of cellular components to increase cell survival and reduce growth under physiological conditions. Energy limitation is an evolutionary driver of macromolecular polymerization, growth maintenance, and survival fitness of methanogens. Methanogens grown in a Martian environment may exhibit global alterations in their metabolic function and gene expression at the system scale. A space systems biology approach would further elucidate molecular survival mechanisms and adaptation to a drastic outer space environment. Therefore, identifying a genetically stable methanogenic community is essential for biomethane production from waste recycling to achieve sustainable space-life support functions.
Collapse
Affiliation(s)
- Chellapandi Paulchamy
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Sreekutty Vakkattuthundi Premji
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Saranya Shanmugam
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
9
|
Fu YH, Hu YF, Lin T, Zhuang GW, Wang YL, Chen WX, Li ZT, Hou JL. Constructing artificial gap junctions to mediate intercellular signal and mass transport. Nat Chem 2024; 16:1418-1426. [PMID: 38658798 DOI: 10.1038/s41557-024-01519-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Natural gap junctions are a type of channel protein responsible for intercellular signalling and mass communication. However, the scope of applications for these proteins is limited as they cannot be prepared at a large scale and are unable to spontaneously insert into cell membranes in vitro. The construction of artificial gap junctions may provide an alternative strategy for preparing analogues of the natural proteins and bottom-up building blocks necessary for the synthesis of artificial cells. Here we show the construction of artificial gap junction channels from unimolecular tubular molecules consisting of alternately arranged positively and negatively charged pillar[5]arene motifs. These molecules feature a hydrophobic-hydrophilic-hydrophobic triblock structure that allows them to efficiently insert into two adjacent plasma membranes and stretch across the gap between the two membranes to form gap junctions. Similar to natural gap junction channels, the synthetic channels could mediate intercellular signal coupling and reactive oxygen species transmission, leading to cellular activity.
Collapse
Affiliation(s)
- Yong-Hong Fu
- Department of Chemistry, Fudan University, Shanghai, China
| | - Yi-Fei Hu
- Department of Chemistry, Fudan University, Shanghai, China
| | - Tao Lin
- Department of Chemistry, Fudan University, Shanghai, China
| | - Guo-Wei Zhuang
- Department of Chemistry, Fudan University, Shanghai, China
| | - Ying-Lan Wang
- Department of Chemistry, Fudan University, Shanghai, China
| | - Wen-Xue Chen
- Department of Chemistry, Fudan University, Shanghai, China
| | - Zhan-Ting Li
- Department of Chemistry, Fudan University, Shanghai, China
| | - Jun-Li Hou
- Department of Chemistry, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Könnyű B, Szathmáry E, Czárán T, Szilágyi A. Kinetics and coexistence of autocatalytic reaction cycles. Sci Rep 2024; 14:18441. [PMID: 39117739 PMCID: PMC11310475 DOI: 10.1038/s41598-024-69267-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Biological reproduction rests ultimately on chemical autocatalysis. Autocatalytic chemical cycles are thought to have played an important role in the chemical complexification en route to life. There are two, related issues: what chemical transformations allow such cycles to form, and at what speed they are operating. Here we investigate the latter question for solitary as well as competitive autocatalytic cycles in resource-unlimited batch and resource-limited chemostat systems. The speed of growth tends to decrease with the length of a cycle. Reversibility of the reproductive step results in parabolic growth that is conducive to competitive coexistence. Reversibility of resource uptake also slows down growth. Unilateral help by a cycle of its competitor tends to favour the competitor (in effect a parasite on the helper), rendering coexistence unlikely. We also show that deep learning is able to predict the outcome of competition just from the topology and the kinetic rate constants, provided the training set is large enough. These investigations pave the way for studying autocatalytic cycles with more complicated coupling, such as mutual catalysis.
Collapse
Affiliation(s)
- Balázs Könnyű
- Institute of Evolution, HUN-REN Centre for Ecological Research, Konkoly-Thege Miklós út 29-33, Budapest, 1121, Hungary
- Center for Conceptual Foundations of Science, Parmenides Foundation, Hindenburgstr. 15., 82343, Pöcking, Germany
| | - Eörs Szathmáry
- Institute of Evolution, HUN-REN Centre for Ecological Research, Konkoly-Thege Miklós út 29-33, Budapest, 1121, Hungary
- Center for Conceptual Foundations of Science, Parmenides Foundation, Hindenburgstr. 15., 82343, Pöcking, Germany
| | - Tamás Czárán
- Institute of Evolution, HUN-REN Centre for Ecological Research, Konkoly-Thege Miklós út 29-33, Budapest, 1121, Hungary.
| | - András Szilágyi
- Institute of Evolution, HUN-REN Centre for Ecological Research, Konkoly-Thege Miklós út 29-33, Budapest, 1121, Hungary
- Center for Conceptual Foundations of Science, Parmenides Foundation, Hindenburgstr. 15., 82343, Pöcking, Germany
| |
Collapse
|
11
|
Song Y, Tüysüz H. CO 2 Fixation to Prebiotic Intermediates over Heterogeneous Catalysts. Acc Chem Res 2024; 57:2038-2047. [PMID: 39024180 PMCID: PMC11308370 DOI: 10.1021/acs.accounts.4c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/24/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
ConspectusThe study of the origin of life requires a multifaceted approach to understanding where and how life arose on Earth. One of the most compelling hypotheses is the chemosynthetic origin of life at hydrothermal vents, as this condition has been considered viable for early forms of life. The continuous production of H2 and heat by serpentinization generates reductive conditions at hydrothermal vents, in which CO2 can be used to build large biomolecules. Although this involves surface catalysis and an autocatalytic process, in which solid minerals act as catalysts in the conversion of CO2 to metabolically important organic molecules, the systematic investigation of heterogeneous catalysis to comprehend prebiotic chemistry at hydrothermal vents has not been undertaken.In this Account, we discuss geochemical CO2 fixation to metabolic intermediates by synthetic minerals at hydrothermal vents from the perspective of heterogeneous catalysis. Ni and Fe are the most abundant transition metals at hydrothermal vents and occur in the active site of the enzymes carbon monoxide dehydrogenases/acetyl coenzyme A synthases (CODH/ACS). Synthetic free-standing NiFe alloy nanoparticles can convert CO2 to acetyl coenzyme A pathway intermediates such as formate, acetate, and pyruvate. The same alloy can further convert pyruvate to citramalate, which is essential in the biological citramalate pathway. Thermal treatment of Ni3Fe nanoparticles under NH3, which can occur in hydrothermal vents, results in Ni3FeN/Ni3Fe heterostructures. This catalyst has been demonstrated to produce prebiotic formamide and acetamide from CO2 and H2O using Ni3FeN/Ni3Fe as both substrate and catalyst. In the process of serpentinization, Co can be reduced in the vicinity of olivine, a Mg-Fe silicate mineral. This produces CoFe and CoFe2 with serpentine in nature, representing SiO2-supported CoFe alloys. In mimicking these natural minerals, synthetic SiO2-supported CoFe alloys demonstrate the same liquid products as NiFe alloys, namely, formate, acetate, and pyruvate under mild hydrothermal vent conditions. In contrast to the NiFe system, hydrocarbons up to C6 were detected in the gas phase, which is also present in hydrothermal vents. The addition of alkali and alkaline-earth metals to the catalysts results in enhanced formate concentration, playing a promotional role in CO2 reduction. Finally, Co was loaded onto ordered mesoporous SiO2 after modification with cations to simulate the minerals found in hydrothermal vents. These catalysts were then investigated under diminished H2O concentration, revealing the conversion of CO2 to CO, CH4, methanol, and acetate. Notably, the selectivity to metabolically relevant methanol was enhanced in the presence of cations that could generate and stabilize the methoxy intermediate. Calculation using the machine learning approach revealed the possibility of predicting the selectivity of CO2 fixation when modifying mesoporous SiO2 supports with heterocations. Our research demonstrates that minerals at hydrothermal vents can convert CO2 into metabolites under a variety of prebiotic conditions, potentially paving the way for modern biological CO2 fixation processes.
Collapse
Affiliation(s)
- Youngdong Song
- Department of Heterogeneous
Catalysis, Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Harun Tüysüz
- Department of Heterogeneous
Catalysis, Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
12
|
Kriebisch CME, Burger L, Zozulia O, Stasi M, Floroni A, Braun D, Gerland U, Boekhoven J. Template-based copying in chemically fuelled dynamic combinatorial libraries. Nat Chem 2024; 16:1240-1249. [PMID: 39014158 PMCID: PMC11321992 DOI: 10.1038/s41557-024-01570-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/06/2024] [Indexed: 07/18/2024]
Abstract
One of science's greatest challenges is determining how life can spontaneously emerge from a mixture of molecules. A complicating factor is that life and its molecules are inherently unstable-RNA and proteins are prone to hydrolysis and denaturation. For the de novo synthesis of life or to better understand its emergence at its origin, selection mechanisms are needed for unstable molecules. Here we present a chemically fuelled dynamic combinatorial library to model RNA oligomerization and deoligomerization and shine new light on selection and purification mechanisms under kinetic control. In the experiments, oligomers can only be sustained by continuous production. Hybridization is a powerful tool for selecting unstable molecules, offering feedback on oligomerization and deoligomerization rates. Moreover, we find that templation can be used to purify libraries of oligomers. In addition, template-assisted formation of oligomers within coacervate-based protocells changes its compartment's physical properties, such as their ability to fuse. Such reciprocal coupling between oligomer production and physical properties is a key step towards synthetic life.
Collapse
Affiliation(s)
- Christine M E Kriebisch
- School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching, Germany
| | - Ludwig Burger
- School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching, Germany
| | - Oleksii Zozulia
- School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching, Germany
| | - Michele Stasi
- School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching, Germany
| | - Alexander Floroni
- Systems Biophysics Center for Nano-Science and Origins Cluster Initiative, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dieter Braun
- Systems Biophysics Center for Nano-Science and Origins Cluster Initiative, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ulrich Gerland
- School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching, Germany
| | - Job Boekhoven
- School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching, Germany.
| |
Collapse
|
13
|
Wu J, Greenfield JL. Photoswitchable Imines Drive Dynamic Covalent Systems to Nonequilibrium Steady States. J Am Chem Soc 2024; 146:20720-20727. [PMID: 39025474 PMCID: PMC11295185 DOI: 10.1021/jacs.4c03817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/06/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Coupling a photochemical reaction to a thermal exchange process can drive the latter to a nonequilibrium steady state (NESS) under photoirradiation. Typically, systems use separate motifs for photoresponse and equilibrium-related processes. Here, we show that photoswitchable imines can fulfill both roles simultaneously, autonomously driving a dynamic covalent system into a NESS under continuous light irradiation. We demonstrate this using transimination reactions, where E-to-Z photoisomerism generates a more kinetically labile species. At the NESS, energy is stored both in the metastable Z-isomer of the imine and in the system's nonequilibrium constitution; when the light is switched off, this stored energy is released as the system reverts to its equilibrium state. The system operates autonomously under continuous light irradiation and exhibits characteristics of a light-driven information ratchet. This is enabled by the dual-role of the imine linkage as both the photochromic and dynamic covalent bond. This work highlights the ability and application of these imines to drive systems to NESSs, thus offering a novel approach in the field of systems chemistry.
Collapse
Affiliation(s)
- Jiarong Wu
- Institut
für Organische Chemie, Universität
Würzburg, Würzburg 97074, Germany
- Center
for Nanosystems Chemistry (CNC), Universität
Würzburg, Würzburg 97074, Germany
| | - Jake L. Greenfield
- Institut
für Organische Chemie, Universität
Würzburg, Würzburg 97074, Germany
- Center
for Nanosystems Chemistry (CNC), Universität
Würzburg, Würzburg 97074, Germany
| |
Collapse
|
14
|
Fielden SDP. Kinetically Controlled and Nonequilibrium Assembly of Block Copolymers in Solution. J Am Chem Soc 2024; 146:18781-18796. [PMID: 38967256 PMCID: PMC11258791 DOI: 10.1021/jacs.4c03314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Covalent polymers are versatile macromolecules that have found widespread use in society. Contemporary methods of polymerization have made it possible to construct sequence polymers, including block copolymers, with high precision. Such copolymers assemble in solution when the blocks have differing solubilities. This produces nano- and microparticles of various shapes and sizes. While it is straightforward to draw an analogy between such amphiphilic block copolymers and phospholipids, these two classes of molecules show quite different assembly characteristics. In particular, block copolymers often assemble under kinetic control, thus producing nonequilibrium structures. This leads to a rich variety of behaviors being observed in block copolymer assembly, such as pathway dependence (e.g., thermal history), nonergodicity and responsiveness. The dynamics of polymer assemblies can be readily controlled using changes in environmental conditions and/or integrating functional groups situated on polymers with external chemical reactions. This perspective highlights that kinetic control is both pervasive and a useful attribute in the mechanics of block copolymer assembly. Recent examples are highlighted in order to show that toggling between static and dynamic behavior can be used to generate, manipulate and dismantle nonequilibrium states. New methods to control the kinetics of block copolymer assembly will provide endless unanticipated applications in materials science, biomimicry and medicine.
Collapse
Affiliation(s)
- Stephen D. P. Fielden
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| |
Collapse
|
15
|
Valentini M, Ercolani G, Di Stefano S. Kinetic Trapping of an Out-of-Equilibrium Dynamic Library of Imines by Changing Solvent. Chemistry 2024; 30:e202401104. [PMID: 38584126 DOI: 10.1002/chem.202401104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/09/2024]
Abstract
A well-behaved dynamic library composed of two imines and corresponding amines was subjected to the action of an activated carboxylic acid (ACA), whose decarboxylation is known to be base promoted, in different solvents, namely CD2Cl2, CD3CN, and mixtures of them. Two non-equilibrium systems are consequently obtained: i) a dissipative (CD2Cl2) and ii) an out-of-equilibrium (CD3CN) dynamic library whose composition goes back to equilibrium after a given time. In the former case, the library is fully coupled with the decarboxylation of the ACA, while in the latter, an energy ratchet operates. In the mixed solvents, the library exhibits a mediated behavior. Interestingly, in the presence of an excess of added ACA, the different behavior of the imine library in the two solvents is expected to manifest only when the excess acid is consumed.
Collapse
Affiliation(s)
- Matteo Valentini
- Department of Chemistry, Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma -, Meccanismi di Reazione, P.le A. Moro 5, I-00185, Roma, Italy
| | - Gianfranco Ercolani
- Department of Chemical Science and Technology, Università di Roma Tor Vergata, Via della Ricerca Scientifica, I-00133, Roma, Italy
| | - Stefano Di Stefano
- Department of Chemistry, Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma -, Meccanismi di Reazione, P.le A. Moro 5, I-00185, Roma, Italy
| |
Collapse
|
16
|
Sivoria N, Mahato RR, Priyanka, Saini A, Maiti S. Enzymatic Dissociation of DNA-Histone Condensates in an Electrophoretic Setting: Modulating DNA Patterning and Hydrogel Viscoelasticity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13505-13514. [PMID: 38896798 DOI: 10.1021/acs.langmuir.4c00939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Development of an energy-driven self-assembly process is a matter of interest for understanding and mimicking diverse ranges of biological and environmental patterns in a synthetic system. In this article, first we demonstrate transient and temporally controlled self-assembly of a DNA-histone condensate where trypsin (already present in the system) hydrolyzes histone, resulting in disassembly. Upon performing this dynamic self-assembly process in a gel matrix under an electric field, we observe diverse kinds of DNA patterning across the gel matrix depending on the amount of trypsin, incubation time of the reaction mixture, and gel porosity. Notably, here, the micrometer-sized DNA-histone condensate does not move through the gel and only free DNA can pass; therefore, transport and accumulation of DNA at different zones depend on the release rate of DNA by trypsin. Furthermore, we show that the viscoelasticity of the native gel increases in the presence of DNA and a pattern over gel viscoelasticity at different zones can be achieved by tuning the amount of enzyme, i.e., the dissociation rate of the DNA-histone condensate. We believe enabling spatiotemporally controlled DNA patterning by applying an electric field will be potentially important in designing different kinds of spatiotemporally distinct dynamic materials.
Collapse
Affiliation(s)
- Neetu Sivoria
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Rishi Ram Mahato
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Priyanka
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Aman Saini
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| |
Collapse
|
17
|
Wu H, Chen QX, Su Y, Chen Z. The Role of Hydrogen Bonds in Thermally Responsive Crystallization-Driven Template Autocatalysis. Angew Chem Int Ed Engl 2024; 63:e202404838. [PMID: 38654551 DOI: 10.1002/anie.202404838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Autocatalysis has been recognized to be involved in the emergence of life and intrinsic to biomolecular replication. Recently, an efficient template autocatalysis driven by solvent-free crystallization has been reported. Herein, we unveil the role of intermolecular hydrogen bonds formed by amides in crystallization-driven template autocatalysis (CDTA), which involves the autocatalytic activity, template selectivity, and thermal responsiveness. We found that the thermal-induced cis-trans isomerization of amides possibly affects the H-bonding-mediated template ability of products for autocatalytic transformation. As a result, CDTA can be reversibly inhibited and activated by tuning the reaction temperatures. Our work sheds light on the significance of noncovalent H-bonding interactions in artificial self-replicators.
Collapse
Affiliation(s)
- Huimin Wu
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Qing-Xuan Chen
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Yang Su
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Zhen Chen
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| |
Collapse
|
18
|
Elizebath D, Vedhanarayanan B, Dhiman A, Mishra RK, Ramachandran CN, Lin TW, Praveen VK. Spontaneous Curvature Induction in an Artificial Bilayer Membrane. Angew Chem Int Ed Engl 2024; 63:e202403900. [PMID: 38459961 DOI: 10.1002/anie.202403900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/11/2024]
Abstract
Maintaining lipid asymmetry across membrane leaflets is critical for functions like vesicular traffic and organelle homeostasis. However, a lack of molecular-level understanding of the mechanisms underlying membrane fission and fusion processes in synthetic systems precludes their development as artificial analogs. Here, we report asymmetry induction of a bilayer membrane formed by an extended π-conjugated molecule with oxyalkylene side chains bearing terminal tertiary amine moieties (BA1) in water. Autogenous protonation of the tertiary amines in the periphery of the bilayer by water induces anisotropic curvature, resulting in membrane fission to form vesicles and can be monitored using time-dependent spectroscopy and microscopy. Interestingly, upon loss of the induced asymmetry by extensive protonation using an organic acid restored bilayer membrane. The mechanism leading to the compositional asymmetry in the leaflet and curvature induction in the membrane is validated by density functional theory (DFT) calculations. Studies extended to control molecules having changes in hydrophilic (BA2) and hydrophobic (BA3) segments provide insight into the delicate nature of molecular scale interactions in the dynamic transformation of supramolecular structures. The synergic effect of hydrophobic interaction and the hydrated state of BA1 aggregates provide dynamicity and unusual stability. Our study unveils mechanistic insight into the dynamic transformation of bilayer membranes into vesicles.
Collapse
Affiliation(s)
- Drishya Elizebath
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Balaraman Vedhanarayanan
- Department of Chemistry, Tunghai University, No. 1727, Section 4, Taiwan Boulevard, Xitun District, Taichung City, 40704, Taiwan
| | - Angat Dhiman
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Rakesh K Mishra
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Department of Chemistry, National Institute of Technology Uttarakhand (NITUK), Srinagar (Garhwal), Uttarakhand, 246174, India
| | - C N Ramachandran
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Tsung-Wu Lin
- Department of Chemistry, Tunghai University, No. 1727, Section 4, Taiwan Boulevard, Xitun District, Taichung City, 40704, Taiwan
| | - Vakayil K Praveen
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
19
|
Malaterre C. Is Life Binary or Gradual? Life (Basel) 2024; 14:564. [PMID: 38792586 PMCID: PMC11121977 DOI: 10.3390/life14050564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
The binary nature of life is deeply ingrained in daily experiences, evident in the stark distinctions between life and death and the living and the inert. While this binary perspective aligns with disciplines like medicine and much of biology, uncertainties emerge in fields such as microbiology, virology, synthetic biology, and systems chemistry, where intermediate entities challenge straightforward classification as living or non-living. This contribution explores the motivations behind both binary and non-binary conceptualizations of life. Despite the perceived necessity to unequivocally define life, especially in the context of origin of life research and astrobiology, mounting evidence indicates a gray area between what is intuitively clearly alive and what is distinctly not alive. This prompts consideration of a gradualist perspective, depicting life as a spectrum with varying degrees of "lifeness". Given the current state of science, the existence or not of a definite threshold remains open. Nevertheless, shifts in epistemic granularity and epistemic perspective influence the framing of the question, and scientific advancements narrow down possible answers: if a threshold exists, it can only be at a finer level than what is intuitively taken as living or non-living. This underscores the need for a more refined distinction between the inanimate and the living.
Collapse
Affiliation(s)
- Christophe Malaterre
- Département de Philosophie, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada;
- Centre Interuniversitaire de Recherche sur la Science et la Technologie (CIRST), Montreal, QC H3C 3P8, Canada
| |
Collapse
|
20
|
Rothschild LJ, Averesch NJH, Strychalski EA, Moser F, Glass JI, Cruz Perez R, Yekinni IO, Rothschild-Mancinelli B, Roberts Kingman GA, Wu F, Waeterschoot J, Ioannou IA, Jewett MC, Liu AP, Noireaux V, Sorenson C, Adamala KP. Building Synthetic Cells─From the Technology Infrastructure to Cellular Entities. ACS Synth Biol 2024; 13:974-997. [PMID: 38530077 PMCID: PMC11037263 DOI: 10.1021/acssynbio.3c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 03/27/2024]
Abstract
The de novo construction of a living organism is a compelling vision. Despite the astonishing technologies developed to modify living cells, building a functioning cell "from scratch" has yet to be accomplished. The pursuit of this goal alone has─and will─yield scientific insights affecting fields as diverse as cell biology, biotechnology, medicine, and astrobiology. Multiple approaches have aimed to create biochemical systems manifesting common characteristics of life, such as compartmentalization, metabolism, and replication and the derived features, evolution, responsiveness to stimuli, and directed movement. Significant achievements in synthesizing each of these criteria have been made, individually and in limited combinations. Here, we review these efforts, distinguish different approaches, and highlight bottlenecks in the current research. We look ahead at what work remains to be accomplished and propose a "roadmap" with key milestones to achieve the vision of building cells from molecular parts.
Collapse
Affiliation(s)
- Lynn J. Rothschild
- Space Science
& Astrobiology Division, NASA Ames Research
Center, Moffett
Field, California 94035-1000, United States
- Department
of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Nils J. H. Averesch
- Department
of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | | | - Felix Moser
- Synlife, One Kendall Square, Cambridge, Massachusetts 02139-1661, United States
| | - John I. Glass
- J.
Craig
Venter Institute, La Jolla, California 92037, United States
| | - Rolando Cruz Perez
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Blue
Marble
Space Institute of Science at NASA Ames Research Center, Moffett Field, California 94035-1000, United
States
| | - Ibrahim O. Yekinni
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - Brooke Rothschild-Mancinelli
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0150, United States
| | | | - Feilun Wu
- J. Craig
Venter Institute, Rockville, Maryland 20850, United States
| | - Jorik Waeterschoot
- Mechatronics,
Biostatistics and Sensors (MeBioS), KU Leuven, 3000 Leuven Belgium
| | - Ion A. Ioannou
- Department
of Chemistry, MSRH, Imperial College London, London W12 0BZ, U.K.
| | - Michael C. Jewett
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Allen P. Liu
- Mechanical
Engineering & Biomedical Engineering, Cellular and Molecular Biology,
Biophysics, Applied Physics, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Vincent Noireaux
- Physics
and Nanotechnology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carlise Sorenson
- Department
of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katarzyna P. Adamala
- Department
of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
21
|
Komáromy D, Monzón DM, Marić I, Monreal Santiago G, Ottelé J, Altay M, Schaeffer G, Otto S. Generalist versus Specialist Self-Replicators. Chemistry 2024; 30:e202303837. [PMID: 38294075 DOI: 10.1002/chem.202303837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
Darwinian evolution, including the selection of the fittest species under given environmental conditions, is a major milestone in the development of synthetic living systems. In this regard, generalist or specialist behavior (the ability to replicate in a broader or narrower, more specific food environment) are of importance. Here we demonstrate generalist and specialist behavior in dynamic combinatorial libraries composed of a peptide-based and an oligo(ethylene glycol) based building block. Three different sets of macrocyclic replicators could be distinguished based on their supramolecular organization: two prepared from a single building block as well as one prepared from an equimolar mixture of them. Peptide-containing hexamer replicators were found to be generalists, i. e. they could replicate in a broad range of food niches, whereas the octamer peptide-based replicator and hexameric ethyleneoxide-based replicator were proven to be specialists, i. e. they only replicate in very specific food niches that correspond to their composition. However, sequence specificity cannot be demonstrated for either of the generalist replicators. The generalist versus specialist nature of these replicators was linked to their supramolecular organization. Assembly modes that accommodate structurally different building blocks lead to generalist replicators, while assembly modes that are more restrictive yield specialist replicators.
Collapse
Affiliation(s)
- Dávid Komáromy
- University of Groningen, Centre for Systems Chemistry, Stratingh Institute, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Diego M Monzón
- Instituto de Bio-Orgánica "Antonio González" (IUBO-AG), Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, 38206, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Ivana Marić
- University of Groningen, Centre for Systems Chemistry, Stratingh Institute, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Guillermo Monreal Santiago
- University of Groningen, Centre for Systems Chemistry, Stratingh Institute, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Jim Ottelé
- University of Groningen, Centre for Systems Chemistry, Stratingh Institute, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Meniz Altay
- University of Groningen, Centre for Systems Chemistry, Stratingh Institute, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Gaël Schaeffer
- University of Groningen, Centre for Systems Chemistry, Stratingh Institute, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Sijbren Otto
- University of Groningen, Centre for Systems Chemistry, Stratingh Institute, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
22
|
Markovitch O, Wu J, Otto S. Binding of Precursors to Replicator Assemblies Can Improve Replication Fidelity and Mediate Error Correction. Angew Chem Int Ed Engl 2024; 63:e202317997. [PMID: 38380789 DOI: 10.1002/anie.202317997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
Copying information is vital for life's propagation. Current life forms maintain a low error rate in replication, using complex machinery to prevent and correct errors. However, primitive life had to deal with higher error rates, limiting its ability to evolve. Discovering mechanisms to reduce errors would alleviate this constraint. Here, we introduce a new mechanism that decreases error rates and corrects errors in synthetic self-replicating systems driven by self-assembly. Previous work showed that macrocycle replication occurs through the accumulation of precursor material on the sides of the fibrous replicator assemblies. Stochastic simulations now reveal that selective precursor binding to the fiber surface enhances replication fidelity and error correction. Centrifugation experiments show that replicator fibers can exhibit the necessary selectivity in precursor binding. Our results suggest that synthetic replicator systems are more evolvable than previously thought, encouraging further evolution-focused experiments.
Collapse
Affiliation(s)
- Omer Markovitch
- Stratingh Institute, Centre for Systems Chemistry, University of Groningen, Groningen, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Juntian Wu
- Stratingh Institute, Centre for Systems Chemistry, University of Groningen, Groningen, The Netherlands
| | - Sijbren Otto
- Stratingh Institute, Centre for Systems Chemistry, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
23
|
Ranganath VA, Maity I. Artificial Homeostasis Systems Based on Feedback Reaction Networks: Design Principles and Future Promises. Angew Chem Int Ed Engl 2024; 63:e202318134. [PMID: 38226567 DOI: 10.1002/anie.202318134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/17/2024]
Abstract
Feedback-controlled chemical reaction networks (FCRNs) are indispensable for various biological processes, such as cellular mechanisms, patterns, and signaling pathways. Through the intricate interplay of many feedback loops (FLs), FCRNs maintain a stable internal cellular environment. Currently, creating minimalistic synthetic cells is the long-term objective of systems chemistry, which is motivated by such natural integrity. The design, kinetic optimization, and analysis of FCRNs to exhibit functions akin to those of a cell still pose significant challenges. Indeed, reaching synthetic homeostasis is essential for engineering synthetic cell components. However, maintaining homeostasis in artificial systems against various agitations is a difficult task. Several biological events can provide us with guidelines for a conceptual understanding of homeostasis, which can be further applicable in designing artificial synthetic systems. In this regard, we organize our review with artificial homeostasis systems driven by FCRNs at different length scales, including homogeneous, compartmentalized, and soft material systems. First, we stretch a quick overview of FCRNs in different molecular and supramolecular systems, which are the essential toolbox for engineering different nonlinear functions and homeostatic systems. Moreover, the existing history of synthetic homeostasis in chemical and material systems and their advanced functions with self-correcting, and regulating properties are also emphasized.
Collapse
Affiliation(s)
- Vinay Ambekar Ranganath
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, Karnataka, India
| | - Indrajit Maity
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, Karnataka, India
| |
Collapse
|
24
|
Belluati A, Jimaja S, Chadwick RJ, Glynn C, Chami M, Happel D, Guo C, Kolmar H, Bruns N. Artificial cell synthesis using biocatalytic polymerization-induced self-assembly. Nat Chem 2024; 16:564-574. [PMID: 38049652 PMCID: PMC10997521 DOI: 10.1038/s41557-023-01391-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/30/2023] [Indexed: 12/06/2023]
Abstract
Artificial cells are biomimetic microstructures that mimic functions of natural cells, can be applied as building blocks for molecular systems engineering, and host synthetic biology pathways. Here we report enzymatically synthesized polymer-based artificial cells with the ability to express proteins. Artificial cells were synthesized using biocatalytic atom transfer radical polymerization-induced self-assembly, in which myoglobin synthesizes amphiphilic block co-polymers that self-assemble into structures such as micelles, worm-like micelles, polymersomes and giant unilamellar vesicles (GUVs). The GUVs encapsulate cargo during the polymerization, including enzymes, nanoparticles, microparticles, plasmids and cell lysate. The resulting artificial cells act as microreactors for enzymatic reactions and for osteoblast-inspired biomineralization. Moreover, they can express proteins such as a fluorescent protein and actin when fed with amino acids. Actin polymerizes in the vesicles and alters the artificial cells' internal structure by creating internal compartments. Thus, biocatalytic atom transfer radical polymerization-induced self-assembly-derived GUVs can mimic bacteria as they are composed of a microscopic reaction compartment that contains genetic information for protein expression upon induction.
Collapse
Affiliation(s)
- Andrea Belluati
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, Glasgow, UK.
- Department of Chemistry and Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany.
| | - Sètuhn Jimaja
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Robert J Chadwick
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, Glasgow, UK
| | - Christopher Glynn
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, Glasgow, UK
| | | | - Dominic Happel
- Department of Chemistry and Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Chao Guo
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, Glasgow, UK
| | - Harald Kolmar
- Department of Chemistry and Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Nico Bruns
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, Glasgow, UK.
- Department of Chemistry and Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany.
| |
Collapse
|
25
|
Pal S, Saha B, Das D. Temporal (Dis)Assembly of Peptide Nanostructures Dictated by Native Multistep Catalytic Transformations. NANO LETTERS 2024; 24:2250-2256. [PMID: 38329289 DOI: 10.1021/acs.nanolett.3c04470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Emergence of complex catalytic machinery via simple building blocks under non-equilibrium conditions can contribute toward the system level understanding of the extant biocatalytic reaction network that fuels metabolism. Herein, we report temporal (dis)assembly of peptide nanostructures in presence of a cofactor dictated by native multistep cascade transformations. The short peptide can form a dynamic covalent bond with the thermodynamically activated substrate and recruit cofactor hemin to access non-equilibrium catalytic nanostructures (positive feedback). The neighboring imidazole and hemin moieties in the assembled state rapidly converted the substrate to product(s) via a two-step cascade reaction (hydrolase-peroxidase like) that subsequently triggered the disassembly of the catalytic nanostructures (negative feedback). The feedback coupled reaction cycle involving intrinsic catalytic prowess of short peptides to realize the advanced trait of two-stage cascade degradation of a thermodynamically activated substrate foreshadows the complex non-equilibrium protometabolic networks that might have preceded the chemical emergence of life.
Collapse
Affiliation(s)
- Sumit Pal
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Bapan Saha
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Dibyendu Das
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
26
|
Schoenmakers LLJ, Reydon TAC, Kirschning A. Evolution at the Origins of Life? Life (Basel) 2024; 14:175. [PMID: 38398684 PMCID: PMC10890241 DOI: 10.3390/life14020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The role of evolutionary theory at the origin of life is an extensively debated topic. The origin and early development of life is usually separated into a prebiotic phase and a protocellular phase, ultimately leading to the Last Universal Common Ancestor. Most likely, the Last Universal Common Ancestor was subject to Darwinian evolution, but the question remains to what extent Darwinian evolution applies to the prebiotic and protocellular phases. In this review, we reflect on the current status of evolutionary theory in origins of life research by bringing together philosophy of science, evolutionary biology, and empirical research in the origins field. We explore the various ways in which evolutionary theory has been extended beyond biology; we look at how these extensions apply to the prebiotic development of (proto)metabolism; and we investigate how the terminology from evolutionary theory is currently being employed in state-of-the-art origins of life research. In doing so, we identify some of the current obstacles to an evolutionary account of the origins of life, as well as open up new avenues of research.
Collapse
Affiliation(s)
- Ludo L. J. Schoenmakers
- Konrad Lorenz Institute for Evolution and Cognition Research (KLI), 3400 Klosterneuburg, Austria
| | - Thomas A. C. Reydon
- Institute of Philosophy, Centre for Ethics and Law in the Life Sciences (CELLS), Leibniz University Hannover, 30159 Hannover, Germany;
| | - Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, 30167 Hannover, Germany;
| |
Collapse
|
27
|
Stock M, Gorochowski TE. Open-endedness in synthetic biology: A route to continual innovation for biological design. SCIENCE ADVANCES 2024; 10:eadi3621. [PMID: 38241375 DOI: 10.1126/sciadv.adi3621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
Design in synthetic biology is typically goal oriented, aiming to repurpose or optimize existing biological functions, augmenting biology with new-to-nature capabilities, or creating life-like systems from scratch. While the field has seen many advances, bottlenecks in the complexity of the systems built are emerging and designs that function in the lab often fail when used in real-world contexts. Here, we propose an open-ended approach to biological design, with the novelty of designed biology being at least as important as how well it fulfils its goal. Rather than solely focusing on optimization toward a single best design, designing with novelty in mind may allow us to move beyond the diminishing returns we see in performance for most engineered biology. Research from the artificial life community has demonstrated that embracing novelty can automatically generate innovative and unexpected solutions to challenging problems beyond local optima. Synthetic biology offers the ideal playground to explore more creative approaches to biological design.
Collapse
Affiliation(s)
- Michiel Stock
- KERMIT & Biobix, Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Thomas E Gorochowski
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
- BrisEngBio, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| |
Collapse
|
28
|
Nédellec T, Boitrel B, Le Gac S. Parallel Chirality Inductions in Möbius Zn(II) Hexaphyrin Transformation Networks. J Am Chem Soc 2023. [PMID: 38037277 DOI: 10.1021/jacs.3c10835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Networked chemical transformations are key features of biological systems, in which complex multicomponent interactions enable the emergence of sophisticated functions. Being interested in chirality induction phenomena with dynamic Möbius π-systems, we have designed a pair of Möbius [28]hexaphyrin ligands in order to investigate mixtures rather than isolated molecules. Thus, a hexaphyrin bearing a chiral amino arm was first optimized and found to bind a ZnOAc moiety, triggering an impressive quasi-quantitative chirality induction over the Möbius π-system. Second, this amino-type hexaphyrin was mixed with a second hexaphyrin bearing a chiral carboxylate arm, affording at first ill-defined coordination assemblies in the presence of zinc. In contrast, a social self-sorting behavior occurred upon the addition of two exogenous achiral effectors (AcO- and BuNH2), leading to a well-defined 1:1 mixture of two Möbius complexes featuring a sole Möbius twist configuration (parallel chirality inductions). We next successfully achieved compartmentalized switching, i.e., a single-component transformation from such a complex mixture. The BuNH2 effector was selectively protected with Boc2O, owing to a lower reactivity of the arm's NH2 function intramolecularly bound to zinc, and subsequent addition of BuNH2 restored the initial mixture, retaining parallel chirality inductions (five cycles). By changing the nature and twist configuration of only one of the two complexes, at initial state or by switching, this approach enables a "two-channel" tuning of the chiroptical properties of the ensemble. Such multiple dynamic chirality inductions, controlled by selective metal-ligand recognition and chemical reactivity, set down the basis for Möbius-type stereoselective transformation networks with new functions.
Collapse
Affiliation(s)
- Thomas Nédellec
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000 Rennes, France
| | - Bernard Boitrel
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000 Rennes, France
| | - Stéphane Le Gac
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000 Rennes, France
| |
Collapse
|
29
|
Pross A, Pascal R. On the Emergence of Autonomous Chemical Systems through Dissipation Kinetics. Life (Basel) 2023; 13:2171. [PMID: 38004311 PMCID: PMC10672272 DOI: 10.3390/life13112171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
This work addresses the kinetic requirements for compensating the entropic cost of self-organization and natural selection, thereby revealing a fundamental principle in biology. Metabolic and evolutionary features of life cannot therefore be separated from an origin of life perspective. Growth, self-organization, evolution and dissipation processes need to be metabolically coupled and fueled by low-entropy energy harvested from the environment. The evolutionary process requires a reproduction cycle involving out-of-equilibrium intermediates and kinetic barriers that prevent the reproductive cycle from proceeding in reverse. Model analysis leads to the unexpectedly simple relationship that the system should be fed energy with a potential exceeding a value related to the ratio of the generation time to the transition state lifetime, thereby enabling a process mimicking natural selection to take place. Reproducing life's main features, in particular its Darwinian behavior, therefore requires satisfying constraints that relate to time and energy. Irreversible reaction cycles made only of unstable entities reproduce some of these essential features, thereby offering a physical/chemical basis for the possible emergence of autonomy. Such Emerging Autonomous Systems (EASs) are found to be capable of maintaining and reproducing their kind through the transmission of a stable kinetic state, thereby offering a physical/chemical basis for what could be deemed an epigenetic process.
Collapse
Affiliation(s)
- Addy Pross
- Department of Chemistry, Ben-Gurion University of the Negev, Be’er-Sheva 8410501, Israel;
| | - Robert Pascal
- PIIM, Institut Origines, Aix-Marseille Université—CNRS, Service 232, Saint Jérôme, Ave Escadrille Normandie Niemen, 13013 Marseille, France
| |
Collapse
|
30
|
Nogal N, Sanz-Sánchez M, Vela-Gallego S, Ruiz-Mirazo K, de la Escosura A. The protometabolic nature of prebiotic chemistry. Chem Soc Rev 2023; 52:7359-7388. [PMID: 37855729 PMCID: PMC10614573 DOI: 10.1039/d3cs00594a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 10/20/2023]
Abstract
The field of prebiotic chemistry has been dedicated over decades to finding abiotic routes towards the molecular components of life. There is nowadays a handful of prebiotically plausible scenarios that enable the laboratory synthesis of most amino acids, fatty acids, simple sugars, nucleotides and core metabolites of extant living organisms. The major bottleneck then seems to be the self-organization of those building blocks into systems that can self-sustain. The purpose of this tutorial review is having a close look, guided by experimental research, into the main synthetic pathways of prebiotic chemistry, suggesting how they could be wired through common intermediates and catalytic cycles, as well as how recursively changing conditions could help them engage in self-organized and dissipative networks/assemblies (i.e., systems that consume chemical or physical energy from their environment to maintain their internal organization in a dynamic steady state out of equilibrium). In the article we also pay attention to the implications of this view for the emergence of homochirality. The revealed connectivity between those prebiotic routes should constitute the basis for a robust research program towards the bottom-up implementation of protometabolic systems, taken as a central part of the origins-of-life problem. In addition, this approach should foster further exploration of control mechanisms to tame the combinatorial explosion that typically occurs in mixtures of various reactive precursors, thus regulating the functional integration of their respective chemistries into self-sustaining protocellular assemblies.
Collapse
Affiliation(s)
- Noemí Nogal
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain.
| | - Marcos Sanz-Sánchez
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain.
| | - Sonia Vela-Gallego
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain.
| | - Kepa Ruiz-Mirazo
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, Leioa, Spain
- Department of Philosophy, University of the Basque Country, Leioa, Spain
| | - Andrés de la Escosura
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain.
- Institute for Advanced Research in Chemistry (IAdChem), Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
31
|
Bechtel M, Ebeling M, Huber L, Trapp O. (Photoredox) Organocatalysis in the Emergence of Life: Discovery, Applications, and Molecular Evolution. Acc Chem Res 2023; 56:2801-2813. [PMID: 37752618 DOI: 10.1021/acs.accounts.3c00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
ConspectusLife as we know it is built on complex and perfectly interlocking processes that have evolved over millions of years through evolutionary optimization processes. The emergence of life from nonliving matter and the evolution of such highly efficient systems therefore constitute an enormous synthetic and systems chemistry challenge. Advances in supramolecular and systems chemistry are opening new perspectives that provide insights into living and self-sustaining reaction networks as precursors for life. However, the ab initio synthesis of such a system requires the possibility of autonomous optimization of catalytic properties and, consequently, of an evolutionary system at the molecular level. In this Account, we present our discovery of the formation of substituted imidazolidine-4-thiones (photoredox) organocatalysts from simple prebiotic building blocks such as aldehydes and ketones under Strecker reaction conditions with ammonia and cyanides in the presence of hydrogen sulfide. The necessary aldehydes are formed from CO2 and hydrogen under prebiotically plausible meteoritic or volcanic iron-particle catalysis in the atmosphere of the early Earth. Remarkably, the investigated imidazolidine-4-thiones undergo spontaneous resolution by conglomerate crystallization, opening a pathway for symmetry breaking, chiral amplification, and enantioselective organocatalysis. These imidazolidine-4-thiones enable α-alkylations of aldehydes and ketones by photoredox organocatalysis. Therefore, these photoredox organocatalysts are able to modify their aldehyde building blocks, which leads in an evolutionary process to mutated second-generation and third-generation catalysts. In our experimental studies, we found that this mutation can occur not only by new formation of the imidazolidine core structure of the catalyst from modified aldehyde building blocks or by continuous supply from a pool of available building blocks but also by a dynamic exchange of the carbonyl moiety in ring position 2 of the imidazolidine moiety. Remarkably, it can be shown that by incorporating aldehyde building blocks from their environment, the imidazolidine-4-thiones are able to change and adapt to altering environmental conditions without undergoing the entire formation process. The selection of the mutated catalysts is then based on the different catalytic activities in the modification of the aldehyde building blocks and on the catalysis of subsequent processes that can lead to the formation of molecular reaction networks as progenitors for cellular processes. We were able to show that these imidazolidine-4-thiones not only enable α-alkylations but also facilitate other important transformations, such as the selective phosphorylation of nucleosides to nucleotides as a key step leading to the oligomerization to RNA and DNA. It can therefore be expected that evolutionary processes have already taken place on a small molecular level and have thus developed chemical tools that change over time, representing a hidden layer on the path to enzymatically catalyzed biochemical processes.
Collapse
Affiliation(s)
- Maximilian Bechtel
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Marian Ebeling
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Laura Huber
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Oliver Trapp
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| |
Collapse
|
32
|
Del Giudice D, Di Stefano S. Dissipative Systems Driven by the Decarboxylation of Activated Carboxylic Acids. Acc Chem Res 2023; 56:889-899. [PMID: 36916734 PMCID: PMC10077594 DOI: 10.1021/acs.accounts.3c00047] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
ConspectusThe achievement of artificial systems capable of being maintained in out-of-equilibrium states featuring functional properties is a main goal of current chemical research. Absorption of electromagnetic radiation or consumption of a chemical species (a "chemical fuel") are the two strategies typically employed to reach such out-of-equilibrium states, which have to persist as long as one of the above stimuli is present. For this reason such systems are often referred to as "dissipative systems". In the simplest scheme, the dissipative system is initially found in a resting, equilibrium state. The addition of a chemical fuel causes the system to shift to an out-of-equilibrium state. When the fuel is exhausted, the system reverts to the initial, equilibrium state. Thus, from a mechanistic standpoint, the dissipative system turns out to be a catalyst for the fuel consumption. It has to be noted that, although very simple, this scheme implies the chance to temporally control the dissipative system. In principle, modulating the nature and/or the amount of the chemical fuel added, one can have full control of the time spent by the system in the out-of-equilibrium state.In 2016, we found that 2-cyano-2-phenylpropanoic acid (1a), whose decarboxylation proceeds smoothly under mild basic conditions, could be used as a chemical fuel to drive the back and forth motion of a catenane-based molecular switch. The acid donates a proton to the catenane that passes from the neutral state A to the transient protonated state B. Decarboxylation of the resulting carboxylate (1acb), generates a carbanion, which, being a strong base, retakes the proton from the protonated catenane that, consequently, returns to the initial state A. The larger the amount of the added fuel, the longer the time spent by the catenane in the transient, out-of-equilibrium state. Since then, acid 1a and other activated carboxylic acids (ACAs) have been used to drive the operation of a large number of dissipative systems based on the acid-base reaction, from molecular machines to host-guest systems, from catalysts to smart materials, and so on. This Account illustrates such systems with the purpose to show the wide applicability of ACAs as chemical fuels. This generality is due to the simplicity of the idea underlying the operation principle of ACAs, which always translates into simple experimental requirements.
Collapse
Affiliation(s)
- Daniele Del Giudice
- Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, 00185 Rome, Italy
| | - Stefano Di Stefano
- Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
33
|
Soai K. The Soai reaction and its implications with the life's characteristic features of self-replication and homochirality. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
34
|
Yanagisawa M. Cell-size space effects on phase separation of binary polymer blends. Biophys Rev 2022; 14:1093-1103. [PMID: 36345284 PMCID: PMC9636348 DOI: 10.1007/s12551-022-01001-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 12/22/2022] Open
Abstract
Within living cells, a diverse array of biomolecules is present at high concentrations. To better understand how molecular behavior differs under such conditions (collectively described as macromolecular crowding), the crowding environment has been reproduced inside artificial cells. We have previously shown that the combination of macromolecular crowding and microscale geometries imposed by the artificial cells can alter the molecular behaviors induced by macromolecular crowding in bulk solutions. We have named the effect that makes such a difference the cell-size space effect (CSE). Here, we review the underlying biophysics of CSE for phase separation of binary polymer blends. We discuss how the cell-size space can initiate phase separation, unlike nano-sized spaces, which are known to hinder nucleation and phase separation. Additionally, we discuss how the dimensions of the artificial cell and its membrane characteristics can significantly impact phase separation dynamics and equilibrium composition. Although these findings are, of themselves, very interesting, their real significance may lie in helping to clarify the functions of the cell membrane and space size in the regulation of intracellular phase separation.
Collapse
Affiliation(s)
- Miho Yanagisawa
- Graduate School of Arts and Sciences, Komaba Institute for Science, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo, 153-8902 Japan
- Department of Physics, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo, 113-0033 Japan
- Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo, 153-8902 Japan
| |
Collapse
|
35
|
Kumar Bandela A, Sadihov‐Hanoch H, Cohen‐Luria R, Gordon C, Blake A, Poppitz G, Lynn DG, Ashkenasy G. The Systems Chemistry of Nucleic‐acid‐Peptide Networks. Isr J Chem 2022. [DOI: 10.1002/ijch.202200030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anil Kumar Bandela
- Department of Chemistry Ben-Gurion University of the Negev Beer-Sheva 84105 Israel
| | - Hava Sadihov‐Hanoch
- Department of Chemistry Ben-Gurion University of the Negev Beer-Sheva 84105 Israel
| | - Rivka Cohen‐Luria
- Department of Chemistry Ben-Gurion University of the Negev Beer-Sheva 84105 Israel
| | - Christella Gordon
- Chemistry and Biology Emory University 1521 Dickey Drive NE Atlanta GA 30322 USA
| | - Alexis Blake
- Chemistry and Biology Emory University 1521 Dickey Drive NE Atlanta GA 30322 USA
| | - George Poppitz
- Chemistry and Biology Emory University 1521 Dickey Drive NE Atlanta GA 30322 USA
| | - David G. Lynn
- Chemistry and Biology Emory University 1521 Dickey Drive NE Atlanta GA 30322 USA
| | - Gonen Ashkenasy
- Department of Chemistry Ben-Gurion University of the Negev Beer-Sheva 84105 Israel
| |
Collapse
|
36
|
Englert A, Vogel JF, Bergner T, Loske J, von Delius M. A Ribonucleotide ↔ Phosphoramidate Reaction Network Optimized by Computer-Aided Design. J Am Chem Soc 2022; 144:15266-15274. [PMID: 35953065 PMCID: PMC9413217 DOI: 10.1021/jacs.2c05861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 12/02/2022]
Abstract
A growing number of out-of-equilibrium systems have been created and investigated in chemical laboratories over the past decade. One way to achieve this is to create a reaction cycle, in which the forward reaction is driven by a chemical fuel and the backward reaction follows a different pathway. Such dissipative reaction networks are still relatively rare, however, and most non-enzymatic examples are based on the carbodiimide-driven generation of carboxylic acid anhydrides. In this work, we describe a dissipative reaction network that comprises the chemically fueled formation of phosphoramidates from natural ribonucleotides (e.g., GMP or AMP) and phosphoramidate hydrolysis as a mild backward reaction. Because the individual reactions are subject to a multitude of interconnected parameters, the software-assisted tool "Design of Experiments" (DoE) was a great asset for optimizing and understanding the network. One notable insight was the stark effect of the nucleophilic catalyst 1-ethylimidazole (EtIm) on the hydrolysis rate, which is reminiscent of the action of the histidine group in phosphoramidase enzymes (e.g., HINT1). We were also able to use the reaction cycle to generate transient self-assemblies, which were characterized by dynamic light scattering (DLS), confocal microscopy (CLSM), and cryogenic transmission electron microscopy (cryo-TEM). Because these compartments are based on prebiotically plausible building blocks, our findings may have relevance for origin-of-life scenarios.
Collapse
Affiliation(s)
- Andreas Englert
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Julian F. Vogel
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Tim Bergner
- Central
Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Jessica Loske
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Max von Delius
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
37
|
Trapp O. Origins of life research: A roadmap for the transition from chemistry to biology. Bioessays 2022; 44:e2200157. [DOI: 10.1002/bies.202200157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Oliver Trapp
- Department Chemie Ludwig‐Maximilians‐Universität München München Germany
| |
Collapse
|
38
|
Martínez RF, Cuccia LA, Viedma C, Cintas P. On the Origin of Sugar Handedness: Facts, Hypotheses and Missing Links-A Review. ORIGINS LIFE EVOL B 2022; 52:21-56. [PMID: 35796896 DOI: 10.1007/s11084-022-09624-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
By paraphrasing one of Kipling's most amazing short stories (How the Leopard Got His Spots), this article could be entitled "How Sugars Became Homochiral". Obviously, we have no answer to this still unsolved mystery, and this perspective simply brings recent models, experiments and hypotheses into the homochiral homogeneity of sugars on earth. We shall revisit the past and current understanding of sugar chirality in the context of prebiotic chemistry, with attention to recent developments and insights. Different scenarios and pathways will be discussed, from the widely known formose-type processes to less familiar ones, often viewed as unorthodox chemical routes. In particular, problems associated with the spontaneous generation of enantiomeric imbalances and the transfer of chirality will be tackled. As carbohydrates are essential components of all cellular systems, astrochemical and terrestrial observations suggest that saccharides originated from environmentally available feedstocks. Such substances would have been capable of sustaining autotrophic and heterotrophic mechanisms integrating nutrients, metabolism and the genome after compartmentalization. Recent findings likewise indicate that sugars' enantiomeric bias may have emerged by a transfer of chirality mechanisms, rather than by deracemization of sugar backbones, yet providing an evolutionary advantage that fueled the cellular machinery.
Collapse
Affiliation(s)
- R Fernando Martínez
- Departamento de Química Orgánica E Inorgánica, Facultad de Ciencias, and Instituto Universitario de Investigación del Agua, Cambio Climático Y Sostenibilidad, (IACYS), Universidad de Extremadura, Avenida de Elvas s/n, 06006, Badajoz, Spain.
| | - Louis A Cuccia
- Department of Chemistry and Biochemistry, Quebec Centre for Advanced Materials (QCAM/CQMF), FRQNT, Concordia University, 7141 Sherbrooke St. West, Montreal, QC, H4B 1R6, Canada
| | - Cristóbal Viedma
- Department of Crystallography and Mineralogy, University Complutense, 28040, Madrid, Spain
| | - Pedro Cintas
- Departamento de Química Orgánica E Inorgánica, Facultad de Ciencias, and Instituto Universitario de Investigación del Agua, Cambio Climático Y Sostenibilidad, (IACYS), Universidad de Extremadura, Avenida de Elvas s/n, 06006, Badajoz, Spain.
| |
Collapse
|
39
|
Del Giudice D, Valentini M, Melchiorre G, Spatola E, Di Stefano S. Dissipative Dynamic Covalent Chemistry (DDCvC) Based on the Transimination Reaction. Chemistry 2022; 28:e202200685. [DOI: 10.1002/chem.202200685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Daniele Del Giudice
- Dipartimento di Chimica Università degli Studi di Roma “La Sapienza” P.le A. Moro 5 00185 Rome Italy
| | - Matteo Valentini
- Dipartimento di Chimica Università degli Studi di Roma “La Sapienza” P.le A. Moro 5 00185 Rome Italy
| | - Gabriele Melchiorre
- Dipartimento di Chimica Università degli Studi di Roma “La Sapienza” P.le A. Moro 5 00185 Rome Italy
| | - Emanuele Spatola
- Dipartimento di Chimica Università degli Studi di Roma “La Sapienza” P.le A. Moro 5 00185 Rome Italy
| | - Stefano Di Stefano
- Dipartimento di Chimica Università degli Studi di Roma “La Sapienza” P.le A. Moro 5 00185 Rome Italy
| |
Collapse
|