1
|
Mo F, Zhou P, Lin S, Zhong J, Wang Y. A Review of Conductive Hydrogel-Based Wearable Temperature Sensors. Adv Healthc Mater 2024; 13:e2401503. [PMID: 38857480 DOI: 10.1002/adhm.202401503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Conductive hydrogel has garnered significant attention as an emergent candidate for diverse wearable sensors, owing to its remarkable and tailorable properties such as flexibility, biocompatibility, and strong electrical conductivity. These attributes make it highly suitable for various wearable sensor applications (e.g., biophysical, bioelectrical, and biochemical sensors) that can monitor human health conditions and provide timely interventions. Among these applications, conductive hydrogel-based wearable temperature sensors are especially important for healthcare and disease surveillance. This review aims to provide a comprehensive overview of conductive hydrogel-based wearable temperature sensors. First, this work summarizes different types of conductive fillers-based hydrogel, highlighting their recent developments and advantages as wearable temperature sensors. Next, this work discusses the sensing characteristics of conductive hydrogel-based wearable temperature sensors, focusing on sensitivity, dynamic stability, stretchability, and signal output. Then, state-of-the-art applications are introduced, ranging from body temperature detection and wound temperature detection to disease monitoring. Finally, this work identifies the remaining challenges and prospects facing this field. By addressing these challenges with potential solutions, this review hopes to shed some light on future research and innovations in this promising field.
Collapse
Affiliation(s)
- Fan Mo
- Department of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
| | - Pengcheng Zhou
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Shihong Lin
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
| | - Junwen Zhong
- Department of Electromechanical Engineering, University of Macau, Macau, 999078, China
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
| |
Collapse
|
2
|
Lou R, Niu T, Zhao F, He L, Yuan Y, Wei G, Lyu G. Renewable symmetric supercapacitors assembled with lignin nanoparticles-based thin film electrolyte and carbon aerogel electrodes. Int J Biol Macromol 2024; 277:134474. [PMID: 39102912 DOI: 10.1016/j.ijbiomac.2024.134474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Lignin as a natural biopolymer is becoming increasingly in demand due to its eco-friendly properties, while lignin-based electrolyte with high conductivity and reliable durability for applications in supercapacitors is still challenging. Herein, a facile method to prepare lignin nanoparticles (LNPs)-based solid electrolyte thin film (LF) was proposed through chemical cross-linking reaction. The fabricated LF exhibited a distinctive spongy porous structure with the ionic conductivity of 3.26 mS cm-1, demonstrating the exceptional flexibility and favorable mechanical properties. Moreover, the assembly of all-LNPs-based symmetric supercapacitor (SSC) devices was achieved using LF electrolyte and LCA electrodes for the first time, confirming the LF3 electrolyte superior to commercial cellulose separator in capacitive behaviour. This SSC device exhibited a specific capacitance of 122.7 F g-1 at 0.5 A g-1 and the maximum energy density of 17.04 W h kg-1. Furthermore, the incorporation of sodium alginate (SA) significantly enhanced the ionic conductivity of SA/LF3 electrolyte, and the resulting SSC device delivered a higher specific capacitance of 174.5 F g-1 at 0.5 A g-1 and the maximum energy and power densities of 24.24 W h kg-1 and 5023 W kg-1, respectively. This study proposes a promising approach for sustainable utilization of lignin in energy storage applications.
Collapse
Affiliation(s)
- Rui Lou
- College of Mechanical and Electronic Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Taoyuan Niu
- College of Mechanical and Electronic Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Fengyu Zhao
- College of Mechanical and Electronic Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Long He
- College of Mechanical and Electronic Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Yuejin Yuan
- College of Mechanical and Electronic Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Guodong Wei
- College of Mechanical and Electronic Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Gaojin Lyu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| |
Collapse
|
3
|
Su H, Mao L, Chen X, Liu P, Pu J, Mao Z, Fujiwara T, Ma Y, Mao X, Li T. A Complementary Dual-Mode Ion-Electron Conductive Hydrogel Enables Sustained Conductivity for Prolonged Electroencephalogram Recording. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405273. [PMID: 39116352 PMCID: PMC11481220 DOI: 10.1002/advs.202405273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/12/2024] [Indexed: 08/10/2024]
Abstract
Conductive gel interface materials are widely employed as reliable agents for electroencephalogram (EEG) recording. However, prolonged EEG recording poses challenges in maintaining stable and efficient capture due to inevitable evaporation in hydrogels, which restricts sustained high conductivity. This study introduces a novel ion-electron dual-mode conductive hydrogel synthesized through a cost-effective and streamlined process. By embedding graphite nanoparticles into ionic hyaluronic acid (HAGN), the hydrogel maintains higher conductivity for over 72 h, outperforming commercial gels. Additionally, it exhibits superior low skin contact impedance, considerable electrochemical capability, and excellent tensile and adhesion performance in both dry and wet conditions. The biocompatibility of the HAGN hydrogel, verified through in vitro cell viability assays and in vivo skin irritation tests, underscores its suitability for prolonged skin contact without eliciting adverse reactions. Furthermore, in vivo EEG tests confirm the HAGN hydrogel's capability to provide high-fidelity signal acquisition across multiple EEG protocols. The HAGN hydrogel proves to be an effective interface for prolonged high-quality EEG recording, facilitating high-performance capture and classification of evoked potentials, thereby providing a reliable conductive medium for EEG-based systems.
Collapse
Affiliation(s)
- Hengjie Su
- Institute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192China
| | - Linna Mao
- Institute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192China
| | - Xiaoqi Chen
- Institute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192China
- Department of Biomedical EngineeringTiangong UniversityTianjin300187China
| | - Peishuai Liu
- Institute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192China
| | - Jiangbo Pu
- Institute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192China
| | - Zhuo Mao
- Institute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192China
| | - Tomoko Fujiwara
- Department of ChemistryThe University of MemphisMemphisTN38152USA
| | - Yue Ma
- Institute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192China
| | - Xinyang Mao
- Department of Biomedical EngineeringTianjin Medical UniversityTianjin301700China
| | - Ting Li
- Institute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192China
| |
Collapse
|
4
|
Kim S, Shin Y, Han J, Kim HJ, Sunwoo SH. Introductory Review of Soft Implantable Bioelectronics Using Conductive and Functional Hydrogels and Hydrogel Nanocomposites. Gels 2024; 10:614. [PMID: 39451267 PMCID: PMC11506957 DOI: 10.3390/gels10100614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
Interfaces between implantable bioelectrodes and tissues provide critical insights into the biological and pathological conditions of targeted organs, aiding diagnosis and treatment. While conventional bioelectronics, made from rigid materials like metals and silicon, have been essential for recording signals and delivering electric stimulation, they face limitations due to the mechanical mismatch between rigid devices and soft tissues. Recently, focus has shifted toward soft conductive materials, such as conductive hydrogels and hydrogel nanocomposites, known for their tissue-like softness, biocompatibility, and potential for functionalization. This review introduces these materials and provides an overview of recent advances in soft hydrogel nanocomposites for implantable electronics. It covers material strategies for conductive hydrogels, including both intrinsically conductive hydrogels and hydrogel nanocomposites, and explores key functionalization techniques like biodegradation, bioadhesiveness, injectability, and self-healing. Practical applications of these materials in implantable electronics are also highlighted, showcasing their effectiveness in real-world scenarios. Finally, we discuss emerging technologies and future needs for chronically implantable bioelectronics, offering insights into the evolving landscape of this field.
Collapse
Affiliation(s)
- San Kim
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Yumin Shin
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Jaewon Han
- Division of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Hye Jin Kim
- Division of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91106, USA
| |
Collapse
|
5
|
Vadukoote TT, Avestro AJ, Smith DK. 3D-Printing Multi-Component Multi-Domain Supramolecular Gels with Differential Conductivity. Angew Chem Int Ed Engl 2024; 63:e202409757. [PMID: 38935516 DOI: 10.1002/anie.202409757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024]
Abstract
We report the use of wet-spinning to 3D-print gels from low-molecular-weight gelators (LMWGs) based on the 1,3 : 2,4-dibenzylidenesorbitol (DBS) scaffold. Gel stripes assembled from DBS-CONHNH2 and DBS-COOH are printed, and their conductivities assessed. Printed gels based on DBS-CONHNH2 can be loaded with Au(III), which is reduced in situ to form embedded gold nanoparticles (AuNPs). The conductivity of these gels increases because of electron transport mediated by the AuNPs, whereas the conductivity of DBS-COOH, which does not promote AuNP formation, remains lower. We then fabricate multi-component gel patterns comprised of spatially well-defined domains of printed DBS-CONHNH2/AuNP (higher conductivity) and DBS-COOH (lower conductivity) resulting in soft multi-domain materials with differential conductivity. Such materials have future prospects in applications such as soft nanoelectronics or tissue engineering.
Collapse
Affiliation(s)
| | | | - David K Smith
- Department of Chemistry, University of York, Heslington, York, YO105DD, UK
| |
Collapse
|
6
|
Jin S, Mia R, Newton MAA, Cheng H, Gao W, Zheng Y, Dai Z, Zhu J. Nanofiber-reinforced self-healing polysaccharide-based hydrogel dressings for pH discoloration monitoring and treatment of infected wounds. Carbohydr Polym 2024; 339:122209. [PMID: 38823899 DOI: 10.1016/j.carbpol.2024.122209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/03/2024]
Abstract
The escalating global health concern arises from chronic wounds induced by bacterial infections, posing a significant threat to individuals. Consequently, an imperative exist for the development of hydrogel dressings to facilitate prompt wound monitoring and efficacious wound management. To this end, pH-sensitive bromothymol blue (BTB) and pH-responsive drug tetracycline hydrochloride (TH) were introduced into the polysaccharide-based hydrogel to realize the integration of wound monitoring and controlled treatment. Polysaccharide-based hydrogels were formed via a Schiff base reaction by cross-linking carboxymethyl chitosan (CMCS) on an oxidized sodium alginate (OSA) skeleton. BTB was used as a pH indicator to monitor wound infection through visual color changes visually. TH could be dynamically released through the pH response of the Schiff base bond to provide effective treatment and long-term antibacterial activity for chronically infected wounds. In addition, introducing polylactic acid nanofibers (PLA) enhanced the mechanical properties of hydrogels. The multifunctional hydrogel has excellent mechanical, self-healing, injectable, antibacterial properties and biocompatibility. Furthermore, the multifaceted hydrogel dressing under consideration exhibits noteworthy capabilities in fostering the healing process of chronically infected wounds. Consequently, the research contributes novel perspectives towards the advancement of intelligent and expeditious bacterial infection monitoring and dynamic treatment platforms.
Collapse
Affiliation(s)
- Shanshan Jin
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Rajib Mia
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Md All Amin Newton
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Hongju Cheng
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Weihong Gao
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yuansheng Zheng
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Zijian Dai
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
| | - Jie Zhu
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China.
| |
Collapse
|
7
|
Rahman Khan MM, Chakraborty N. Conducting Polymer-Based Gel Materials: Synthesis, Morphology, Thermal Properties, and Applications in Supercapacitors. Gels 2024; 10:553. [PMID: 39330155 PMCID: PMC11431190 DOI: 10.3390/gels10090553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/04/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Despite the numerous ongoing research studies in the area of conducting polymer-based electrode materials for supercapacitors, the implementation has been inadequate for commercialization. Further understanding is required for the design and synthesis of suitable materials like conducting polymer-based gels as electrode materials for supercapacitor applications. Among the polymers, conductive polymer gels (CPGs) have generated great curiosity for their use as supercapacitors, owing to their attractive qualities like integrated 3D porous nanostructures, softness features, very good conductivity, greater pseudo capacitance, and environmental friendliness. In this review, we describe the current progress on the synthesis of CPGs for supercapacitor applications along with their morphological behaviors and thermal properties. We clearly explain the synthesis approaches and related phenomena, including electrochemical approaches for supercapacitors, especially their potential applications as supercapacitors based on these materials. Focus is also given to the recent advances of CPG-based electrodes for supercapacitors, and the electrochemical performances of CP-based promising composites with CNT, graphene oxides, and metal oxides is discussed. This review may provide an extensive reference for forthcoming insights into CPG-based supercapacitors for large-scale applications.
Collapse
Affiliation(s)
- Mohammad Mizanur Rahman Khan
- Department of Mechanical Engineering, Gachon University-1342, Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Nilave Chakraborty
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112-0850, USA
| |
Collapse
|
8
|
Lei C, Guan W, Zhao Y, Yu G. Chemistries and materials for atmospheric water harvesting. Chem Soc Rev 2024; 53:7328-7362. [PMID: 38896434 DOI: 10.1039/d4cs00423j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Atmospheric water harvesting (AWH) is recognized as a crucial strategy to address the global challenge of water scarcity by tapping into the vast reserves of atmospheric moisture for potable water supply. Within this domain, sorbents lie in the core of AWH technologies as they possess broad adaptability across a wide spectrum of humidity levels, underpinned by the cyclic sorption and desorption processes of sorbents, necessitating a multi-scale viewpoint regarding the rational material and chemical selection and design. This Invited Review delves into the essential sorption mechanisms observed across various classes of sorbent systems, emphasizing the water-sorbent interactions and the progression of water networks. A special focus is placed on the insights derived from isotherm profiles, which elucidate sorbent structures and sorption dynamics. From these foundational principles, we derive material and chemical design guidelines and identify key tuning factors from a structural-functional perspective across multiple material systems, addressing their fundamental chemistries and unique attributes. The review further navigates through system-level design considerations to optimize water production efficiency. This review aims to equip researchers in the field of AWH with a thorough understanding of the water-sorbent interactions, material design principles, and system-level considerations essential for advancing this technology.
Collapse
Affiliation(s)
- Chuxin Lei
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Weixin Guan
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Yaxuan Zhao
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
9
|
Sharma A, Kaur N, Singh N. An Encyclopedic Compendium on Chemosensing Supramolecular Metal-Organic Gels. Chem Asian J 2024; 19:e202400258. [PMID: 38629210 DOI: 10.1002/asia.202400258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Chemosensing, an interdisciplinary scientific domain, plays a pivotal role ranging from environmental monitoring to healthcare diagnostics and (inter)national security. Metal-organic gels (MOGs) are recognized for their stability, selectivity, and responsiveness, making them valuable for chemosensing applications. Researchers have explored the development of MOGs based on different metal ions and ligands, allowing for tailored properties and sensitivities, and have even demonstrated their applications as portable sensors such as paper-based test strips for practical use. Herein, several studies related to MOGs development and their applications in the chemosensing field via UV-visible or luminance along with electrochemical approach are presented. These papers explored MOGs as versatile materials with their use in sensing bio or environmental analytes. This review provides a foundational understanding of key concepts, methodologies, and recent advancements in this field, fostering the scientific community.
Collapse
Affiliation(s)
- Arun Sharma
- Department of Chemistry, Indian Institute of Technology Ropar, 140001, Rupnagar, Panjab, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, 160014, Chandigarh, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, 140001, Rupnagar, Panjab, India
| |
Collapse
|
10
|
Huang H, Cong HT, Lin Z, Liao L, Shuai CX, Qu N, Luo Y, Guo S, Xu QC, Bai H, Jiang Y. Manipulation of Conducting Polymer Hydrogels with Different Shapes and Related Multifunctionality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309575. [PMID: 38279627 DOI: 10.1002/smll.202309575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/18/2023] [Indexed: 01/28/2024]
Abstract
Maneuver of conducting polymers (CPs) into lightweight hydrogels can improve their functional performances in energy devices, chemical sensing, pollutant removal, drug delivery, etc. Current approaches for the manipulation of CP hydrogels are limited, and they are mostly accompanied by harsh conditions, tedious processing, compositing with other constituents, or using unusual chemicals. Herein, a two-step route is introduced for the controllable fabrication of CP hydrogels in ambient conditions, where gelation of the shape-anisotropic nano-oxidants followed by in-situ oxidative polymerization leads to the formation of polyaniline (PANI) and polypyrrole hydrogels. The method is readily coupled with different approaches for materials processing of PANI hydrogels into varied shapes, including spherical beads, continuous wires, patterned films, and free-standing objects. In comparison with their bulky counterparts, lightweight PANI items exhibit improved properties when those with specific shapes are used as electrodes for supercapacitors, gas sensors, or dye adsorbents. The current study therefore provides a general and controllable approach for the implementation of CP into hydrogels of varied external shapes, which can pave the way for the integration of lightweight CP structures with emerging functional devices.
Collapse
Affiliation(s)
- Hao Huang
- College of Materials, College of Physical Science and Technology, MOE Key Laboratory of High Performance Ceramic Fibers, Xiamen University, Xiamen, 361005, P. R. China
| | - Hong-Tao Cong
- College of Materials, College of Physical Science and Technology, MOE Key Laboratory of High Performance Ceramic Fibers, Xiamen University, Xiamen, 361005, P. R. China
| | - Zewen Lin
- College of Materials, College of Physical Science and Technology, MOE Key Laboratory of High Performance Ceramic Fibers, Xiamen University, Xiamen, 361005, P. R. China
| | - Longhui Liao
- College of Materials, College of Physical Science and Technology, MOE Key Laboratory of High Performance Ceramic Fibers, Xiamen University, Xiamen, 361005, P. R. China
| | - Chen-Xi Shuai
- College of Materials, College of Physical Science and Technology, MOE Key Laboratory of High Performance Ceramic Fibers, Xiamen University, Xiamen, 361005, P. R. China
| | - Nuo Qu
- College of Materials, College of Physical Science and Technology, MOE Key Laboratory of High Performance Ceramic Fibers, Xiamen University, Xiamen, 361005, P. R. China
| | - Yujiao Luo
- College of Materials, College of Physical Science and Technology, MOE Key Laboratory of High Performance Ceramic Fibers, Xiamen University, Xiamen, 361005, P. R. China
| | - Shengshi Guo
- College of Materials, College of Physical Science and Technology, MOE Key Laboratory of High Performance Ceramic Fibers, Xiamen University, Xiamen, 361005, P. R. China
| | - Qing-Chi Xu
- College of Materials, College of Physical Science and Technology, MOE Key Laboratory of High Performance Ceramic Fibers, Xiamen University, Xiamen, 361005, P. R. China
| | - Hua Bai
- College of Materials, College of Physical Science and Technology, MOE Key Laboratory of High Performance Ceramic Fibers, Xiamen University, Xiamen, 361005, P. R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, P. R. China
| | - Yuan Jiang
- College of Materials, College of Physical Science and Technology, MOE Key Laboratory of High Performance Ceramic Fibers, Xiamen University, Xiamen, 361005, P. R. China
- State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
11
|
He W, Li P, Wang H, Hu Y, Lu B, Weng C, Cheng H, Qu L. Robustly and Intrinsically Stretchable Ionic Gel-Based Moisture-Enabled Power Generator with High Human Body Conformality. ACS NANO 2024; 18:12096-12104. [PMID: 38687972 DOI: 10.1021/acsnano.3c08543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Direct harvesting of energy from moist air will be a promising route to supply electricity for booming wearable and distributed electronics, with the recent rapid development of the moisture-enabled electricity generator (MEG). However, the easy spatial distortion of rigid MEG materials under severe deformation extremely inconveniences the human body with intense physical activity, seriously hindering the desirable applications. Here, an intrinsically stretchable moisture-enabled electricity generator (s-MEG) is developed based on a well-fabricated stretchable functional ionic gel (SIG) with a flexible double-network structure and reversible cross-linking interactions, demonstrating stable electricity output performance even when stretched up to 150% strain and high human body conformality. This SIG exhibits ultrahigh tensile strain (∼600%), and a 1 cm × 1 cm SIG film-based s-MEG can generate a voltage of ∼0.4 V and a current of ∼5.7 μA when absorbing water from humidity air. Based on the strong adhesion and the excellent interface combination of SIG and rough fabric electrodes induced by the fabrication process, s-MEG is able to realize bending or twisting deformation and shows outstanding electricity output stability with ∼90% performance retention after 5000 cycles of bending tests. By connecting s-MEG units in series or parallel, an integrated device of "moisture-powered wristband" is developed to wear on the wrist of humans and drive a flexible sensor for tracking finger motions. Additionally, a comfortable "moisture-powered sheath" based on s-MEGs is created, which can be worn like clothing on human arms to generate energy while walking and flexing the elbow, which is promising in the field of wearable electronics.
Collapse
Affiliation(s)
- Wenya He
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Puying Li
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Haiyan Wang
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Yajie Hu
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Bing Lu
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Chuanxin Weng
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Huhu Cheng
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Liangti Qu
- Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
12
|
Wang Y, Wang Y, Mushtaq RT, Wei Q. Advancements in Soft Robotics: A Comprehensive Review on Actuation Methods, Materials, and Applications. Polymers (Basel) 2024; 16:1087. [PMID: 38675005 PMCID: PMC11054840 DOI: 10.3390/polym16081087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The flexibility and adaptability of soft robots enable them to perform various tasks in changing environments, such as flower picking, fruit harvesting, in vivo targeted treatment, and information feedback. However, these fulfilled functions are discrepant, based on the varied working environments, driving methods, and materials. To further understand the working principle and research emphasis of soft robots, this paper summarized the current research status of soft robots from the aspects of actuating methods (e.g., humidity, temperature, PH, electricity, pressure, magnetic field, light, biological, and hybrid drive), materials (like hydrogels, shape-memory materials, and other flexible materials) and application areas (camouflage, medical devices, electrical equipment, and grippers, etc.). Finally, we provided some opinions on the technical difficulties and challenges of soft robots to comprehensively comprehend soft robots, lucubrate their applications, and improve the quality of our lives.
Collapse
Affiliation(s)
- Yanmei Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (R.T.M.); (Q.W.)
| | - Yanen Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (R.T.M.); (Q.W.)
| | | | | |
Collapse
|
13
|
Aydın EB, Aydın M, Sezgintürk MK. Label-Free Electrochemical Immunosensor Based on Conjugated Polymer Film Coated Disposable Electrode for Ultrasensitive Determination of Resistin Potential Obesity Biomarker. ACS APPLIED BIO MATERIALS 2024; 7:1820-1830. [PMID: 38395746 PMCID: PMC10952011 DOI: 10.1021/acsabm.3c01231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
A new label-free immunosensor was designed for sensitive detection of resistin obesity biomarker in human biological fluids. To construct a sensing interface, the monomer of double epoxy groups-substituted thiophene (TdiEpx) was synthesized for the fabrication of the biosensing system. A disposable indium tin oxide sheet was first modified by electrochemical polymerization of the TdiEpx monomer, and this robust and novel surface was characterized using different spectroscopic and electrochemical analyses. The double epoxy ends were linked to the amino ends of anti-resistin, and they served as binding points for the covalent binding of biomolecules. The double epoxy ends present in each TdiEpx monomer ensured an extensive surface area, which improved the quantity of attached anti-resistin. The determination of resistin antigen was based on the specific coupling of resistin with anti-resistin, and this interaction hindered the electron transfer reaction. The immunosensor introduced a wide linear range of 0.0125-15 pg/mL, a low detection limit of 4.17 fg/mL, and an excellent sensitivity of 1.38 kohm pg mL-1 cm2. In this study, a sandwich enzyme-linked immunosorbent assay spectrophotometric method was utilized as a reference technique for the quantitative analysis of resistin in human serum and saliva samples. Both measurements in clinical samples displayed correlations and high-correlation coefficients. In addition, this immunosensor had good storage stability, acceptable repeatability and reproducibility, high specificity, and good accuracy. The proposed immunosensor provided a simple and versatile impedimetric immunosensing platform and a promisingly sensitive way for clinical applications.
Collapse
Affiliation(s)
- Elif Burcu Aydın
- Scientific
and Technological Research Center, Tekirdaǧ
Namık Kemal University, Tekirdaǧ, Turkey 59030
| | - Muhammet Aydın
- Scientific
and Technological Research Center, Tekirdaǧ
Namık Kemal University, Tekirdaǧ, Turkey 59030
| | - Mustafa Kemal Sezgintürk
- Bioengineering
Department, Faculty of Engineering, Çanakkale
Onsekiz Mart University, Çanakkale, Turkey 17100
| |
Collapse
|
14
|
Yan Y, Han M, Jiang Y, Ng ELL, Zhang Y, Owh C, Song Q, Li P, Loh XJ, Chan BQY, Chan SY. Electrically Conductive Polymers for Additive Manufacturing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5337-5354. [PMID: 38284988 DOI: 10.1021/acsami.3c13258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The use of electrically conductive polymers (CPs) in the development of electronic devices has attracted significant interest due to their unique intrinsic properties, which result from the synergistic combination of physicochemical properties in conventional polymers with the electronic properties of metals or semiconductors. Most conventional methods adopted for the fabrication of devices with nonplanar morphologies are still challenged by the poor ionic/electronic mobility of end products. Additive manufacturing (AM) brings about exciting prospects to the realm of CPs by enabling greater design freedom, more elaborate structures, quicker prototyping, relatively low cost, and more environmentally friendly electronic device creation. A growing variety of AM technologies are becoming available for three-dimensional (3D) printing of conductive devices, i.e., vat photopolymerization (VP), material extrusion (ME), powder bed fusion (PBF), material jetting (MJ), and lamination object manufacturing (LOM). In this review, we provide an overview of the recent research progress in the area of CPs developed for AM, which advances the design and development of future electronic devices. We consider different AM techniques, vis-à-vis, their development progress and respective challenges in printing CPs. We also discuss the material requirements and notable advances in 3D printing of CPs, as well as their potential electronic applications including wearable electronics, sensors, energy storage and conversion devices, etc. This review concludes with an outlook on AM of CPs.
Collapse
Affiliation(s)
- Yinjia Yan
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), and Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Miao Han
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), and Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yixue Jiang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Evelyn Ling Ling Ng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yanni Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), and Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Cally Owh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Qing Song
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), and Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), and Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Benjamin Qi Yu Chan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Siew Yin Chan
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), and Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| |
Collapse
|
15
|
Checko S, Ju Z, Zhang B, Zheng T, Takeuchi ES, Marschilok AC, Takeuchi KJ, Yu G. Fast-Charging, Binder-Free Lithium Battery Cathodes Enabled via Multidimensional Conductive Networks. NANO LETTERS 2024; 24:1695-1702. [PMID: 38261789 DOI: 10.1021/acs.nanolett.3c04437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
To meet the growing demands in both energy and power densities of lithium ion batteries, electrode structures must be capable of facile electron and ion transport while minimizing the content of electrochemically inactive components. Herein, binder-free LiFePO4 (LFP) cathodes are fabricated with a multidimensional conductive architecture that allows for fast-charging capability, reaching a specific capacity of 94 mAh g-1 at 4 C. Such multidimensional networks consist of active material particles wrapped by 1D single-walled carbon nanotubes (CNTs) and bound together using 2D MXene (Ti3C2Tx) nanosheets. The CNTs form a porous coating layer and improve local electron transport across the LFP surface, while the Ti3C2Tx nanosheets provide simultaneously high electrode integrity and conductive pathways through the bulk of the electrode. This work highlights the ability of multidimensional conductive fillers to realize simultaneously superior electrochemical and mechanical properties, providing useful insights into future fast-charging electrode designs for scalable electrochemical systems.
Collapse
Affiliation(s)
- Shane Checko
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhengyu Ju
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Bowen Zhang
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Tianrui Zheng
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Esther S Takeuchi
- Institute of Energy: Sustainability, Environment, and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Amy C Marschilok
- Institute of Energy: Sustainability, Environment, and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Kenneth J Takeuchi
- Institute of Energy: Sustainability, Environment, and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
16
|
Singh AN, Meena A, Nam KW. Gels in Motion: Recent Advancements in Energy Applications. Gels 2024; 10:122. [PMID: 38391452 PMCID: PMC10888500 DOI: 10.3390/gels10020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Gels are attracting materials for energy storage technologies. The strategic development of hydrogels with enhanced physicochemical properties, such as superior mechanical strength, flexibility, and charge transport capabilities, introduces novel prospects for advancing next-generation batteries, fuel cells, and supercapacitors. Through a refined comprehension of gelation chemistry, researchers have achieved notable progress in fabricating hydrogels endowed with stimuli-responsive, self-healing, and highly stretchable characteristics. This mini-review delineates the integration of hydrogels into batteries, fuel cells, and supercapacitors, showcasing compelling instances that underscore the versatility of hydrogels, including tailorable architectures, conductive nanostructures, 3D frameworks, and multifunctionalities. The ongoing application of creative and combinatorial approaches in functional hydrogel design is poised to yield materials with immense potential within the domain of energy storage.
Collapse
Affiliation(s)
- Aditya Narayan Singh
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Abhishek Meena
- Division of Physics and Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Kyung-Wan Nam
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
- Center for Next Generation Energy and Electronic Materials, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| |
Collapse
|
17
|
Yi H, Patel R, Patel KD, Bouchard LS, Jha A, Perriman AW, Patel M. Conducting polymer-based scaffolds for neuronal tissue engineering. J Mater Chem B 2023; 11:11006-11023. [PMID: 37953707 DOI: 10.1039/d3tb01838e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Neuronal tissue engineering has immense potential for treating neurological disorders and facilitating nerve regeneration. Conducting polymers (CPs) have emerged as a promising class of materials owing to their unique electrical conductivity and biocompatibility. CPs, such as poly(3,4-ethylenedioxythiophene) (PEDOT), poly(3-hexylthiophene) (P3HT), polypyrrole (PPy), and polyaniline (PANi), have been extensively explored for their ability to provide electrical cues to neural cells. These polymers are widely used in various forms, including porous scaffolds, hydrogels, and nanofibers, and offer an ideal platform for promoting cell adhesion, differentiation, and axonal outgrowth. CP-based scaffolds can also serve as drug delivery systems, enabling localized and controlled release of neurotrophic factors and therapeutic agents to enhance neural regeneration and repair. CP-based scaffolds have demonstrated improved neural regeneration, both in vitro and in vivo, for treating spinal cord and peripheral nerve injuries. In this review, we discuss synthesis and scaffold processing methods for CPs and their applications in neuronal tissue regeneration. We focused on a detailed literature review of the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Hagje Yi
- Bio-Convergence (BC), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Songdogwahak-ro, Yeonsu-gu, Incheon 21983, South Korea
| | - Rajkumar Patel
- Energy & Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsugu, Incheon, 21938, South Korea
| | - Kapil D Patel
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- Research School of Chemistry (RSC), Australian National University, Canberra, ACT 2601, Australia
- John Curtin School of Medical Research (JCSMR), Australian National University, Canberra, ACT 2601, Australia
| | | | - Amitabh Jha
- Department of Chemistry, Acadia University, Wolfville, NS, Canada
| | - Adam Willis Perriman
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- Research School of Chemistry (RSC), Australian National University, Canberra, ACT 2601, Australia
- John Curtin School of Medical Research (JCSMR), Australian National University, Canberra, ACT 2601, Australia
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, South Korea.
| |
Collapse
|
18
|
Yang Y, He Y, Yang S, Dong D, Zhang J, Ding J, Zhang J, Chen YM. Tough, durable and saline-tolerant CNT@Gel-nacre nanocomposite for interfacial solar steam generation. J Colloid Interface Sci 2023; 650:182-192. [PMID: 37402324 DOI: 10.1016/j.jcis.2023.06.148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/08/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
Solar-driven interfacial evaporation materials based on nanocomposite hydrogels have emerged for seawater desalination. Nevertheless, the issue of mechanical degradation derived from the swelling behavior of hydrogel is often seriously underestimated, which strongly hinders the practical application for long-term solar vapor generation, especially in high-salinity brine. Herein, a novel CNT@Gel-nacre with enhanced capillary pumping design has been proposed and fabricated for tough and durable solar-driven evaporator through uniformly doping carbon nanotubes (CNTs) into the tough gel-nacre. Particularly, the salting out process gives rise to volume shrinkage and phase separation of polymer chains, endowing the nanocomposite hydrogel with significantly enhanced mechanical properties while simultaneously rendering more compact microchannels for water transportation, boosting the capillary pumping. Based on this unique design, the gel-nacre nanocomposite exhibits outstanding mechanical performances (13.41 MPa strength, 55.60 MJ m-3 toughness), especially mechanical durability in high salinity brine for long-term service. Furthermore, excellent water evaporation rate of 1.31 kg m-2h-1 and conversion efficiency of 93.5% in 3.5 wt% sodium chloride solution, as well as stable cycling without salt accumulation can be achieved. This work demonstrates an effective strategy for achieving solar-driven evaporator with superior mechanical properties and durability even in brine environment, showing huge potentials in long-term seawater desalination.
Collapse
Affiliation(s)
- Yang Yang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Yuan He
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Sihui Yang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Diandian Dong
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Jingjing Zhang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Jiansen Ding
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Jingwen Zhang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Yong Mei Chen
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China.
| |
Collapse
|
19
|
Entezari A, Esan OC, Yan X, Wang R, An L. Sorption-Based Atmospheric Water Harvesting: Materials, Components, Systems, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210957. [PMID: 36869587 DOI: 10.1002/adma.202210957] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Freshwater scarcity is a global challenge posing threats to the lives and daily activities of humankind such that two-thirds of the global population currently experience water shortages. Atmospheric water, irrespective of geographical location, is considered as an alternative water source. Sorption-based atmospheric water harvesting (SAWH) has recently emerged as an efficient strategy for decentralized water production. SAWH thus opens up a self-sustaining source of freshwater that can potentially support the global population for various applications. In this review, the state-of-the-art of SAWH, considering its operation principle, thermodynamic analysis, energy assessment, materials, components, different designs, productivity improvement, scale-up, and application for drinking water, is first extensively explored. Thereafter, the practical integration and potential application of SAWH, beyond drinking water, for wide range of utilities in agriculture, fuel/electricity production, thermal management in building services, electronic devices, and textile are comprehensively discussed. The various strategies to reduce human reliance on natural water resources by integrating SAWH into existing technologies, particularly in underdeveloped countries, in order to satisfy the interconnected needs for food, energy, and water are also examined. This study further highlights the urgent need and future research directions to intensify the design and development of hybrid-SAWH systems for sustainability and diverse applications.
Collapse
Affiliation(s)
- Akram Entezari
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Oladapo Christopher Esan
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Xiaohui Yan
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ruzhu Wang
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Liang An
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
20
|
Han X, Lu T, Zhang Z, Wang H, Lu S. Tremella polysaccharide-based conductive hydrogel with anti-freezing and self-healing ability for motion monitoring and intelligent interaction. Int J Biol Macromol 2023; 248:125987. [PMID: 37516220 DOI: 10.1016/j.ijbiomac.2023.125987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
The application of conductive hydrogels in flexible wearable devices has garnered significant attention. In this study, a self-healing, anti-freezing, and fire-resistant hydrogel strain sensor is successfully synthesized by incorporating sustainable natural biological materials, viz. Tremella polysaccharide and silk fiber, into a polyvinyl alcohol matrix with borax cross-linking. The resulting hydrogel exhibits excellent transparency, thermoplasticity, and remarkable mechanical properties, including a notable elongation (1107.3 %) and high self-healing rate (91.11 %) within 5 min, attributed to the dynamic cross-linking effect of hydrogen bonds and borax. A strain sensor based on the prepared hydrogel sensor can be used to accurately monitor diverse human movements, while maintaining exceptional sensing stability and durability under repeated strain cycles. Additionally, a hydrogel touch component is designed that can successfully interact with intelligent electronic devices, encompassing functions like clicking, writing, and drawing. These inherent advantages make the prepared hydrogel a promising candidate for applications in human health monitoring and intelligent electronic device interaction.
Collapse
Affiliation(s)
- Xiaokun Han
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber, Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266061, PR China; Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin 541004, PR China
| | - Tianyun Lu
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber, Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266061, PR China
| | - Zuocai Zhang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - He Wang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber, Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266061, PR China
| | - Shaorong Lu
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin 541004, PR China.
| |
Collapse
|
21
|
Geng B, Zeng H, Luo H, Wu X. Construction of Wearable Touch Sensors by Mimicking the Properties of Materials and Structures in Nature. Biomimetics (Basel) 2023; 8:372. [PMID: 37622977 PMCID: PMC10452172 DOI: 10.3390/biomimetics8040372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Wearable touch sensors, which can convert force or pressure signals into quantitative electronic signals, have emerged as essential smart sensing devices and play an important role in various cutting-edge fields, including wearable health monitoring, soft robots, electronic skin, artificial prosthetics, AR/VR, and the Internet of Things. Flexible touch sensors have made significant advancements, while the construction of novel touch sensors by mimicking the unique properties of biological materials and biogenetic structures always remains a hot research topic and significant technological pathway. This review provides a comprehensive summary of the research status of wearable touch sensors constructed by imitating the material and structural characteristics in nature and summarizes the scientific challenges and development tendencies of this aspect. First, the research status for constructing flexible touch sensors based on biomimetic materials is summarized, including hydrogel materials, self-healing materials, and other bio-inspired or biomimetic materials with extraordinary properties. Then, the design and fabrication of flexible touch sensors based on bionic structures for performance enhancement are fully discussed. These bionic structures include special structures in plants, special structures in insects/animals, and special structures in the human body. Moreover, a summary of the current issues and future prospects for developing wearable sensors based on bio-inspired materials and structures is discussed.
Collapse
Affiliation(s)
| | | | - Hua Luo
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | | |
Collapse
|
22
|
Liu Y, Zhang X, Xiao C, Liu B. Engineered hydrogels for peripheral nerve repair. Mater Today Bio 2023; 20:100668. [PMID: 37273791 PMCID: PMC10232914 DOI: 10.1016/j.mtbio.2023.100668] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 06/06/2023] Open
Abstract
Peripheral nerve injury (PNI) is a complex disease that often appears in young adults. It is characterized by a high incidence, limited treatment options, and poor clinical outcomes. This disease not only causes dysfunction and psychological disorders in patients but also brings a heavy burden to the society. Currently, autologous nerve grafting is the gold standard in clinical treatment, but complications, such as the limited source of donor tissue and scar tissue formation, often further limit the therapeutic effect. Recently, a growing number of studies have used tissue-engineered materials to create a natural microenvironment similar to the nervous system and thus promote the regeneration of neural tissue and the recovery of impaired neural function with promising results. Hydrogels are often used as materials for the culture and differentiation of neurogenic cells due to their unique physical and chemical properties. Hydrogels can provide three-dimensional hydration networks that can be integrated into a variety of sizes and shapes to suit the morphology of neural tissues. In this review, we discuss the recent advances of engineered hydrogels for peripheral nerve repair and analyze the role of several different therapeutic strategies of hydrogels in PNI through the application characteristics of hydrogels in nerve tissue engineering (NTE). Furthermore, the prospects and challenges of the application of hydrogels in the treatment of PNI are also discussed.
Collapse
Affiliation(s)
- Yao Liu
- Hand and Foot Surgery Department, First Hospital of Jilin University, Xinmin Street, Changchun, 130061, PR China
| | - Xiaonong Zhang
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Bin Liu
- Hand and Foot Surgery Department, First Hospital of Jilin University, Xinmin Street, Changchun, 130061, PR China
| |
Collapse
|
23
|
Lin W, Wu S, Han S, Xie J, He H, Zou Q, Xu D, Ning D, Mondal AK, Huang F. Preparation and characterization of highly conductive lignin aerogel based on tunicate nanocellulose framework. Int J Biol Macromol 2023:125010. [PMID: 37217060 DOI: 10.1016/j.ijbiomac.2023.125010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
The highly conductive and elastic three-dimensional mesh porous material is an ideal platform for the fabrication of high electrical conductivity conductive aerogels. Herein, a multifunctional aerogel that is lightweight, highly conductive and stable sensing properties is reported. Tunicate nanocellulose (TCNCs) with a high aspect ratio, high Young's modulus, high crystallinity, good biocompatibility and biodegradability was used as the basic skeleton to prepare aerogel by freeze-drying technique. Alkali lignin (AL) was used as the raw material, polyethylene glycol diglycidyl ether (PEGDGE) was used as the cross-linking agent, and polyaniline (PANI) was used as the conductive polymer. Preparation of aerogels by freeze-drying technique, in situ synthesis of PANI, and construction of highly conductive aerogel from lignin/TCNCs. The structure, morphology and crystallinity of the aerogel were characterized by FT-IR, SEM, and XRD. The results show that the aerogel has good conductivity (as high as 5.41 S/m) and excellent sensing performance. When the aerogel was assembled as a supercapacitor, the maximum specific capacitance can reach 772 mF/cm2 at 1 mA/cm2 current density, and maximum power and energy density can reach 59.4 μWh/cm2 and 3600 μW/cm2, respectively. It is expected the aerogel can be applied in the field of wearable devices and electronic skin.
Collapse
Affiliation(s)
- Weijie Lin
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, Fujian, China
| | - Shuai Wu
- College of Material Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Shibo Han
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, Fujian, China
| | - Jie Xie
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, Fujian, China
| | - Hongshen He
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, Fujian, China
| | - Qiuxia Zou
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, Fujian, China
| | - Dezhong Xu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, Fujian, China
| | - Dengwen Ning
- Yibin Forest and Bamboo Industry Research Institute, Yibin 644000, Sichuan, China
| | - Ajoy Kanti Mondal
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, Fujian, China; Leather Research Institute, Bangladesh Council of Scientific and Industrial Research, Savar, Dhaka 1350, Bangladesh
| | - Fang Huang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, Fujian, China.
| |
Collapse
|
24
|
Cheng H, Liu R, Zhang R, Huang L, Yuan Q. Recent advances in supramolecular self-assembly derived materials for high-performance supercapacitors. NANOSCALE ADVANCES 2023; 5:2394-2412. [PMID: 37143817 PMCID: PMC10153478 DOI: 10.1039/d3na00067b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/10/2023] [Indexed: 05/06/2023]
Abstract
The key preponderance of supramolecular self-assembly strategy is its ability to precisely assemble various functional units at the molecular level through non-covalent bonds to form multifunctional materials. Supramolecular materials have the merits of diverse functional groups, flexible structure, and unique self-healing properties, which make them of great value in the field of energy storage. This paper reviews the latest research progress of the supramolecular self-assembly strategy for the advanced electrode materials and electrolytes for supercapacitors, including supramolecular self-assembly for the preparation of high-performance carbon materials, metal-based materials and conductive polymer materials, and its beneficial effects on the performance of supercapacitors. The preparation of high performance supramolecular polymer electrolytes and their application in flexible wearable devices and high energy density supercapacitors are also discussed in detail. In addition, at the end of this paper, the challenges of the supramolecular self-assembly strategy are summarized and the development of supramolecular-derived materials for supercapacitors is prospected.
Collapse
Affiliation(s)
- Honghong Cheng
- School of Chemistry and Materials Science, Guangdong University of Education Guangzhou 510800 P.R. China
| | - Ruliang Liu
- School of Chemistry and Materials Science, Guangdong University of Education Guangzhou 510800 P.R. China
| | - Ruyi Zhang
- School of Chemistry and Materials Science, Guangdong University of Education Guangzhou 510800 P.R. China
| | - Lan Huang
- School of Chemistry and Materials Science, Guangdong University of Education Guangzhou 510800 P.R. China
| | - Qiaoyi Yuan
- School of Chemistry and Materials Science, Guangdong University of Education Guangzhou 510800 P.R. China
| |
Collapse
|
25
|
Jansen-van Vuuren RD, Naficy S, Ramezani M, Cunningham M, Jessop P. CO 2-responsive gels. Chem Soc Rev 2023; 52:3470-3542. [PMID: 37128844 DOI: 10.1039/d2cs00053a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CO2-responsive materials undergo a change in chemical or physical properties in response to the introduction or removal of CO2. The use of CO2 as a stimulus is advantageous as it is abundant, benign, inexpensive, and it does not accumulate in a system. Many CO2-responsive materials have already been explored including polymers, latexes, surfactants, and catalysts. As a sub-set of CO2-responsive polymers, the study of CO2-responsive gels (insoluble, cross-linked polymers) is a unique discipline due to the unique set of changes in the gels brought about by CO2 such as swelling or a transformed morphology. In the past 15 years, CO2-responsive gels and self-assembled gels have been investigated for a variety of emerging potential applications, reported in 90 peer-reviewed publications. The two most widely exploited properties include the control of flow (fluids) via CO2-triggered aggregation and their capacity for reversible CO2 absorption-desorption, leading to applications in Enhanced Oil Recovery (EOR) and CO2 sequestration, respectively. In this paper, we review the preparation, properties, and applications of these CO2-responsive gels, broadly classified by particle size as nanogels, microgels, aerogels, and macrogels. We have included a section on CO2-induced self-assembled gels (including poly(ionic liquid) gels).
Collapse
Affiliation(s)
- Ross D Jansen-van Vuuren
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Sina Naficy
- School of Chemical and Biomolecular Engineering, Centre for Excellence in Advanced Food Enginomics (CAFE), The University of Sydney, Sydney, NSW 2006, Australia
| | - Maedeh Ramezani
- Department of Chemistry, Chernoff Hall, Queen's University, Kingston, Ontario, K7K 2N1, Canada.
| | - Michael Cunningham
- Department of Engineering, Dupuis Hall, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Philip Jessop
- Department of Chemistry, Chernoff Hall, Queen's University, Kingston, Ontario, K7K 2N1, Canada.
| |
Collapse
|
26
|
Li J, Ding Q, Wang H, Wu Z, Gui X, Li C, Hu N, Tao K, Wu J. Engineering Smart Composite Hydrogels for Wearable Disease Monitoring. NANO-MICRO LETTERS 2023; 15:105. [PMID: 37060483 PMCID: PMC10105367 DOI: 10.1007/s40820-023-01079-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/16/2023] [Indexed: 05/31/2023]
Abstract
Growing health awareness triggers the public's concern about health problems. People want a timely and comprehensive picture of their condition without frequent trips to the hospital for costly and cumbersome general check-ups. The wearable technique provides a continuous measurement method for health monitoring by tracking a person's physiological data and analyzing it locally or remotely. During the health monitoring process, different kinds of sensors convert physiological signals into electrical or optical signals that can be recorded and transmitted, consequently playing a crucial role in wearable techniques. Wearable application scenarios usually require sensors to possess excellent flexibility and stretchability. Thus, designing flexible and stretchable sensors with reliable performance is the key to wearable technology. Smart composite hydrogels, which have tunable electrical properties, mechanical properties, biocompatibility, and multi-stimulus sensitivity, are one of the best sensitive materials for wearable health monitoring. This review summarizes the common synthetic and performance optimization strategies of smart composite hydrogels and focuses on the current application of smart composite hydrogels in the field of wearable health monitoring.
Collapse
Affiliation(s)
- Jianye Li
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xuchun Gui
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Chunwei Li
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ning Hu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China.
| | - Kai Tao
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
27
|
Duan C, Long F, Shi X, Wang Y, Dong J, Ying S, Li Y, Cheng Y, Guo J, Xu G, Sun A. MWCNTs-GNPs Reinforced TPU Composites with Thermal and Electrical Conductivity: Low-Temperature Controlled DIW Forming. MICROMACHINES 2023; 14:815. [PMID: 37421048 DOI: 10.3390/mi14040815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 07/09/2023]
Abstract
As an effective technique for fabricating conductive and thermally conductive polymer composites, a multi-filler system incorporates different types and sizes of multiple fillers to form interconnected networks with improved electrical, thermal, and processing properties. In this study, DIW forming of bifunctional composites was achieved by controlling the temperature of the printing platform. The study was based on enhancing the thermal and electrical transport properties of hybrid ternary polymer nanocomposites with multi-walled carbon nanotubes (MWCNTs) and graphene nanoplates (GNPs). With thermoplastic polyurethane (TPU) used as the matrix, the addition of MWCNTs, GNPs and both mixtures further improved the thermal conductivity of the elastomers. By adjusting the weight fraction of the functional fillers (MWCNTs and GNPs), the thermal and electrical properties were gradually explored. Here, the thermal conductivity of the polymer composites increased nearly sevenfold (from 0.36 W·m-1·k-1 to 2.87 W·m-1·k-1) and the electrical conductivity increased up to 5.49 × 10-2 S·m-1. It is expected to be used in the field of electronic packaging and environmental thermal dissipation, especially for modern electronic industrial equipment.
Collapse
Affiliation(s)
- Chenqi Duan
- Ganzhou Key Laboratory of Advanced Metals and Functional Materials, School of Materials Science and Engineering, Jiangxi University of Science and Technology (JXUST), 86 Hongqi Road, Ganzhou 341000, China
- Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Fei Long
- Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, Ningbo 315100, China
| | - Xiaolu Shi
- Ningbo New Material Testing and Evaluation Center Co., Ltd., Ningbo 315201, China
| | - Yuting Wang
- Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jiajing Dong
- Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Songtao Ying
- Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yesheng Li
- Ganzhou Key Laboratory of Advanced Metals and Functional Materials, School of Materials Science and Engineering, Jiangxi University of Science and Technology (JXUST), 86 Hongqi Road, Ganzhou 341000, China
| | - Yuchuan Cheng
- Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jianjun Guo
- Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Gaojie Xu
- Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Aihua Sun
- Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
28
|
Yang Y, Zhang C, Gong M, Zhan Y, Yu Z, Shen C, Zhang Y, Yu L, Chen Z. Integrated photo-inspired antibacterial polyvinyl alcohol/carboxymethyl cellulose hydrogel dressings for pH real-time monitoring and accelerated wound healing. Int J Biol Macromol 2023; 238:124123. [PMID: 36963550 DOI: 10.1016/j.ijbiomac.2023.124123] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023]
Abstract
Recurrent infection of chronic wounds remains a major clinical challenge. Recently, the hydrogel antibacterial materials have attracted extensive attention for preventing infection in wound healing. In this study, a hybrid hydrogel made of polyvinyl alcohol - iodine (PAI), sodium carboxymethyl cellulose (CMC), and carbamino quantum dot (CQDs) was prepared by the cross-linking of hydrogen bonds, named as polyvinyl alcohol‑iodine/sodium carboxymethyl cellulose/carbon quantum dots (PAI/CMC/CQDs). The composite hydrogels exhibited the outstanding photothermal conversion efficiency with near infrared (NIR) light irradiation, and the high antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Meanwhile, the elevated temperature of the composite hydrogels up to ~45 °C was able to stimulate the migration of epidermal cell to accelerate skin repair. Given that PAI and CQDs could respond to different pH values (5-8), the real-time would pH information was provided by the visible light and fluorescent light dual monitoring system by naked eye. Moreover, the visible-fluorescent images could be collected and transformed into RGB signals to quantify the would pH levels, avoiding secondary injuries caused by frequent dressing changes. PAI/CMC/CQDs was demonstrated the significant therapeutic effect on chronic wounds by eliminating bacterial infections and promoting skin repair under the smart RGB monitoring system.
Collapse
Affiliation(s)
- Yuanyuan Yang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Chong Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ming Gong
- Department of Trauma and Microsurgery Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yuan Zhan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhenkun Yu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Chang Shen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yuhong Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Li Yu
- Department of Trauma and Microsurgery Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Zhaoxia Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
29
|
Feng X, Wang C, Shang S, Liu H, Huang X, Jiang J, Song Z, Zhang H. Self-healing, EMI shielding, and antibacterial properties of recyclable cellulose liquid metal hydrogel sensor. Carbohydr Polym 2023; 311:120786. [PMID: 37028884 DOI: 10.1016/j.carbpol.2023.120786] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/16/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
Flexible hydrogels are promising materials for the preparation of artificial intelligence electronics and wearable devices. Introducing a rigid conductive material into the hydrogels can improve their electrical conductivities. However, it may have poor interfacial compatibility with the flexible hydrogel matrix. Therefore, we prepared a hydrogel containing flexible and highly ductile liquid metal (LM). The hydrogel can be used as a strain sensor to monitor human motion. The hydrogel showed many properties (i.e., recyclability, EMI shielding properties (33.14 dB), antibacterial (100 %), strain sensitivity (gauge factor = 2.92), and self-healing) that cannot be achieved simultaneously by a single hydrogel. Furthermore, the recycling of LM and their application to hydrogel-based EMI shielding materials have not been investigated previously. Due to its excellent properties, the prepared flexible hydrogel has great potential for applications in artificial intelligence, personal healthcare, and wearable devices.
Collapse
|
30
|
C S A, Kandasubramanian B. Hydrogel as an advanced energy material for flexible batteries. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2113893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Anju C S
- CIPET, Institute of Petrochemicals Technology (IPT), Kochi, India
| | | |
Collapse
|
31
|
Electrochemical study of agarose hydrogels for natural convection on macroelectrodes and ultramicroelectrodes. J Anal Sci Technol 2023. [DOI: 10.1186/s40543-023-00375-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
AbstractElectrochemical measurements using an agarose hydrogel as a solid electrolyte and ferrocyanide as a redox probe were conducted to analyze transport properties and natural convection effects. The mass transport properties and diffusion coefficients of ferrocyanide were studied using various macroelectrodes and ultramicroelectrodes via cyclic voltammetry. The experimental results confirmed that the mass transfer behavior in agarose was similar to that in solution. The good linearity of the square root of the scan-rate-dependent peak current demonstrated that diffusion is dominant during mass transfer in agarose hydrogel owing to a reduction in other mass transport effects (i.e., migration and convection). Furthermore, chronoamperometry (CA) was performed to estimate the effects of natural convection in the solution and agarose hydrogel. CA curves and plots of current as a function of the inverse square root of time yielded irregular and irreproducible responses in the solution for relatively long-term electrochemistry. However, in the agarose hydrogel, the CA response was more regular and reproducible for > 300 s because of reduced natural convection, based on the Cottrell’s theory.
Collapse
|
32
|
Gandra U, Podiyanachari SK, Bazzi HS, Al-Hashimi M. Recent Advances in Drug Release, Sensing, and Cellular Uptake of Ring-Opening Metathesis Polymerization (ROMP) Derived Poly(olefins). ACS OMEGA 2023; 8:1724-1738. [PMID: 36687055 PMCID: PMC9850466 DOI: 10.1021/acsomega.2c05563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The synthesis and applications of ring-opening metathesis polymerization (ROMP) derived poly(olefins) have emerged as an exciting area of great interest in the field of biomaterials science. The major focus of this mini-review is to present recent advances in the synthesis of functional materials using ROMP-derived poly(olefins) utilized for drug release, sensing, and cellular uptake in the past seven years (2015-2022). This review reveals that materials synthesized by ROMP-derived well-defined functional poly(olefins) stand to be highly promising systems for medical as well as biological studies. Thus, this review may prove to be beneficial for the design and development of new smart and flexible-functionality ROMP-based polymeric materials for various biological applications.
Collapse
Affiliation(s)
- Upendar
Reddy Gandra
- Division
of Arts and Sciences, Texas A&M University
at Qatar, P.O. Box 23874, Doha 23874, Qatar
- Department
of Chemistry, Ulsan National Institute of
Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | | | - Hassan S. Bazzi
- Division
of Arts and Sciences, Texas A&M University
at Qatar, P.O. Box 23874, Doha 23874, Qatar
- Department
of Materials Science & Engineering, Texas A&M University, 209 Reed MacDonald Building, College Station, Texas 77843-3003, United States
| | - Mohammed Al-Hashimi
- Division
of Arts and Sciences, Texas A&M University
at Qatar, P.O. Box 23874, Doha 23874, Qatar
| |
Collapse
|
33
|
Ham J, Park S, Jeon N. Conductive Polyaniline-Indium Oxide Composite Films Prepared by Sequential Infiltration Synthesis for Electrochemical Energy Storage. ACS OMEGA 2023; 8:946-953. [PMID: 36643492 PMCID: PMC9835541 DOI: 10.1021/acsomega.2c06309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Composites of conductive polymers (CP) and metal oxides (MO) have attracted continued interest in the past decade for diverse application fields because the synergistic effects of CP and MO enable the realization of unusual electronic, electrochemical, catalytic, and mechanical properties of the composites. Herein, we present a novel method for the sequential infiltration synthesis of composite films of polyaniline (PANI) and indium oxide (InO x ) with high electrical conductivities (4-9 S/cm). The synthesized composite films were composed of two phases of graded concentration: InO x with oxygen vacancies and PANI with partially protonated molecular units. The PANI-InO x composite films displayed enhanced electrochemical activity with a pair of well-defined redox peaks. The open interfacial regions between the InO x and PANI phases may provide efficient pathways for ion diffusion and active sites for improved charge transfer.
Collapse
|
34
|
Benny Mattam L, Bijoy A, Abraham Thadathil D, George L, Varghese A. Conducting Polymers: A Versatile Material for Biomedical Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202201765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Liya Benny Mattam
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road, Bengaluru Karnataka 560029 India
| | - Anusha Bijoy
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road, Bengaluru Karnataka 560029 India
| | - Ditto Abraham Thadathil
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road, Bengaluru Karnataka 560029 India
| | - Louis George
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road, Bengaluru Karnataka 560029 India
| | - Anitha Varghese
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road, Bengaluru Karnataka 560029 India
| |
Collapse
|
35
|
Influence of the Nature and Structure of Polyelectrolyte Cryogels on the Polymerization of (3,4-Ethylenedioxythiophene) and Spectroscopic Characterization of the Composites. Molecules 2022; 27:molecules27217576. [DOI: 10.3390/molecules27217576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Conductive hydrogels are polymeric materials that are promising for bioelectronic applications. In the present study, a complex based on sulfonic cryogels and poly(3,4-ethylenedioxythiophene) (PEDOT) was investigated as an example of a conductive hydrogel. Preparation of polyacrylate cryogels of various morphologies was carried out by cryotropic gelation of 3-sulfopropyl methacrylate and sulfobetaine methacrylate in the presence of functional comonomers (2-hydroxyethyl methacrylate and vinyl acetate). Polymerization of 3,4-ethylenedioxythiophene in the presence of several of the above cryogels occurred throughout the entire volume of each polyelectrolyte cryogel because of its porous structure. Structural features of cryogel@PEDOT complexes in relation to their electrochemical properties were investigated. It was shown that poly(3,4-ethylenedioxythiophene) of a linear conformation was formed in the presence of a cryogel based on sulfobetaine methacrylate, while minimum values of charge-transfer resistance were observed in those complexes, and electrochemical properties of the complexes did not depend on diffusion processes.
Collapse
|
36
|
Yuan J, Dong S, Hao J. Fluorescent assemblies: Synergistic of amphiphilic molecules and fluorescent elements. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Long Y, Wang Z, Xu F, Jiang B, Xiao J, Yang J, Wang ZL, Hu W. Mechanically Ultra-Robust, Elastic, Conductive, and Multifunctional Hybrid Hydrogel for a Triboelectric Nanogenerator and Flexible/Wearable Sensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203956. [PMID: 36228096 DOI: 10.1002/smll.202203956] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/28/2022] [Indexed: 06/16/2023]
Abstract
Flexibility/wearable electronics such as strain/pressure sensors in human-machine interactions (HMI) are highly developed nowadays. However, challenges remain because of the lack of flexibility, fatigue resistance, and versatility, leading to mechanical damage to device materials during practical applications. In this work, a triple-network conductive hydrogel is fabricated by combining 2D Ti3 C2 Tx nanosheets with two kinds of 1D polymer chains, polyacrylamide, and polyvinyl alcohol. The Ti3 C2 Tx nanosheets act as the crosslinkers, which combine the two polymer chains of PAM and PVA via hydrogen bonds. Such a unique structure endows the hydrogel (MPP-hydrogel) with merits such as mechanical ultra-robust, super-elasticity, and excellent fatigue resistance. More importantly, the introduced Ti3 C2 Tx nanosheets not only enhance the hydrogel's conductivity but help form double electric layers (DELs) between the MXene nanosheets and the free water molecules inside the MPP-hydrogel. When the MPP-hydrogel is used as the electrode of the triboelectric nanogenerator (MPP-TENG), due to the dynamic balance of the DELs under the initial potential difference generated from the contact electrification as the driving force, an enhanced electrical output of the TENG is generated. Moreover, flexible strain/pressure sensors for tiny and low-frequency human motion detection are achieved. This work demonstrates a promising flexible electronic material for e-skin and HMI.
Collapse
Affiliation(s)
- Yong Long
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Zhuo Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Fan Xu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bin Jiang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Junfeng Xiao
- School of Electronic Communication Technology, Shenzhen Institute of Information Technology, Shenzhen, 518172, P. R. China
| | - Jun Yang
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518000, P. R. China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Weiguo Hu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| |
Collapse
|
38
|
Luo Y, Peng R, Zhang H, Cui Q, Niu P, Li L. Graphitic carbon nitride colloid as one photoinitiator for two-step polymerization. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Liu C, Li Y, Zhuang J, Xiang Z, Jiang W, He S, Xiao H. Conductive Hydrogels Based on Industrial Lignin: Opportunities and Challenges. Polymers (Basel) 2022; 14:polym14183739. [PMID: 36145882 PMCID: PMC9501220 DOI: 10.3390/polym14183739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
The development of green materials, especially the preparation of high-performance conductive hydrogels from biodegradable biomass materials, is of great importance and has received worldwide attention. As an aromatic polymer found in many natural biomass resources, lignin has the advantage of being renewable, biodegradable, non-toxic, widely available, and inexpensive. The unique physicochemical properties of lignin, such as the presence of hydroxyl, carboxyl, and sulfonate groups, make it promising for use in composite conductive hydrogels. In this review, the source, structure, and reaction characteristics of industrial lignin are provided. Description of the preparation method (physical and chemical strategies) of lignin-based conductive hydrogel is elaborated along with their several important properties, such as electrical conductivity, mechanical properties, and porous structure. Furthermore, we provide insights into the latest research advances in industrial lignin conductive hydrogels, including biosensors, strain sensors, flexible energy storage devices, and other emerging applications. Finally, the prospects and challenges for the development of lignin-conductive hydrogels are presented.
Collapse
Affiliation(s)
- Chao Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
- Correspondence: (C.L.); (S.H.)
| | - Yu Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Jingshun Zhuang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhouyang Xiang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Weikun Jiang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Shuaiming He
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Correspondence: (C.L.); (S.H.)
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
40
|
Ding L, Zhou H, Li S, Lan X, Chen X, Zeng S. Boosting visible photocatalytic degradation of 2,4-dichlorophenol and phenol efficiency by stable core@shell hybrid Ag3PO4@polypyrrole. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
41
|
Guo XX, Hou SC, Li HJ, Chen J, Haleem A, He WD. Simultaneous Cryogenic Radical and Oxidative Coupling Polymerizations to Polyaniline/Polyacrylamide Conductive Cryogels for Gas Sensing. Gels 2022; 8:gels8090556. [PMID: 36135268 PMCID: PMC9498737 DOI: 10.3390/gels8090556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
The macro-porous structure of polymer cryogels provides an appropriate channel for the adsorption and transport of substances, endowing its application in the field of electrochemical sensing. The combination mode of a polymer matrix and electro-active substance, particularly the distribution of an electro-active substance in the matrix, has an important effect on the overall performance of the sensor. In this work, through the simultaneous oxidation coupling polymerization of aniline (ANI) and radical polymerization of acrylamide (AAm) under cryogenic condition, conductive composite cryogels were prepared, aiming for the uniform distribution of PANI in the PAAm matrix. The possibility of simultaneous polymerizations was symmetrically investigated, and the obtained PANI/PAAm cryogels were characterized. Due to the acid-doping of PANI, the electrical conductivity of PANI/PAAm cryogels could be modulated with acidic and basic gases. Thus, the performance of the gas sensor was studied by making conductive PANI/PAAm cryogel sheets as resistive sensor electrodes. We found that the content of PANI, the sheet thickness and the dry/wet state of the cryogel influenced the response sensitivity and rate as well as the recovery properties. The response duration for HCl and NH3 gas was shorter than 70 and 120 s, respectively. The cyclic detection of HCl gas and the alternate detection of NH3/HCl were achieved. This gas sensor with advantages, including simple preparation, low cost and high sensitivity, would have great potential for the application to monitor the leakage of acidic and basic gases.
Collapse
Affiliation(s)
- Xiao-Xiao Guo
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shi-Chang Hou
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hui-Juan Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jun Chen
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Abdul Haleem
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wei-Dong He
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Correspondence:
| |
Collapse
|
42
|
Fraser SA, van Zyl WE. In situ polymerization and electrical conductivity of polypyrrole/cellulose nanocomposites using Schweizer's reagent. RSC Adv 2022; 12:22031-22043. [PMID: 36043106 PMCID: PMC9361926 DOI: 10.1039/d2ra04320c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
Cellulose-based composites have attracted interest given the shift towards 'green' materials, but achieving uniform dispersions of cellulose in polymer matrices and/or enhancement of interfacial interactions between components remains challenging. Herein we report the preparation of polypyrrole/cellulose nanocomposites in [Cu(NH3)4(H2O)2](OH)2 (Schweizer's reagent/cuoxam)-based reaction media via in situ polymerization. The effect of cellulose template morphology and reaction media on the microstructure, electrical conductivity, and surface wettability was studied. Aqueous reaction media favored the formation of a uniform polypyrrole coating encapsulating the cellulose fibers; concentrated cuoxam solutions promoted inhomogeneity and exhibited a progressive decline in conductivity. The maximum conductivity attained was 3.08 S cm-1 from a bacterial cellulose-templated composite prepared in aqueous reaction media and afforded an approximately threefold increase in conductivity when compared with pure PPy at 1.14 S cm-1. Generally, the composites resembled wetting surfaces - with highly concentrated cuoxam solutions yielding improved hydrophilicity, while substitution of bacterial cellulose with nanocrystalline cellulose engendered a shift towards hydrophobicity. Most composites displayed a contact angle of less than 90° suggesting PPy/cellulose composites tended towards hydrophilic behavior. This study highlights investigations into the viability of cellulose solvents as a facile means to control the structure and performance of in situ functionalized cellulose nanocomposites.
Collapse
Affiliation(s)
- Stephanie A Fraser
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus Durban 4000 South Africa
| | - Werner E van Zyl
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus Durban 4000 South Africa
| |
Collapse
|
43
|
Shi R, Jiao S, Yue Q, Gu G, Zhang K, Zhao Y. Challenges and advances of organic electrode materials for sustainable secondary batteries. EXPLORATION (BEIJING, CHINA) 2022; 2:20220066. [PMID: 37325604 PMCID: PMC10190941 DOI: 10.1002/exp.20220066] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/29/2022] [Indexed: 06/16/2023]
Abstract
Organic electrode materials (OEMs) emerge as one of the most promising candidates for the next-generation rechargeable batteries, mainly owing to their advantages of bountiful resources, high theoretical capacity, structural designability, and sustainability. However, OEMs usually suffer from poor electronic conductivity and unsatisfied stability in common organic electrolytes, ultimately leading to their deteriorating output capacity and inferior rate capability. Making clear of the issues from microscale to macroscale level is of great importance for the exploration of novel OEMs. Herein, the challenges and advanced strategies to boost the electrochemical performance of redox-active OEMs for sustainable secondary batteries are systematically summarized. Particularly, the characterization technologies and computational methods to elucidate the complex redox reaction mechanisms and confirm the organic radical intermediates of OEMs have been introduced. Moreover, the structural design of OEMs-based full cells and the outlook for OEMs are further presented. This review will shed light on the in-depth understanding and development of OEMs for sustainable secondary batteries.
Collapse
Affiliation(s)
- Ruijuan Shi
- School of Materials, Key Lab for Special Functional Materials of Ministry of EducationHenan UniversityKaifengChina
| | - Shilong Jiao
- School of Materials, Key Lab for Special Functional Materials of Ministry of EducationHenan UniversityKaifengChina
| | - Qianqian Yue
- School of Materials, Key Lab for Special Functional Materials of Ministry of EducationHenan UniversityKaifengChina
| | - Guangqin Gu
- School of Materials, Key Lab for Special Functional Materials of Ministry of EducationHenan UniversityKaifengChina
| | - Kai Zhang
- Frontiers Science Center for New Organic MatterRenewable Energy Conversion and Storage Center (RECAST)Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)College of ChemistryNankai UniversityTianjinChina
- Haihe Laboratory of Sustainable Chemical TransformationsTianjinChina
| | - Yong Zhao
- School of Materials, Key Lab for Special Functional Materials of Ministry of EducationHenan UniversityKaifengChina
| |
Collapse
|
44
|
Baykov SV, Semenov AV, Presnukhina SI, Novikov AS, Shetnev AA, Boyarskiy VP. Hydrogen vs. halogen bonding in crystals of 2,5-dibromothiophene-3-carboxylic acid derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Mir A, Kumar A, Riaz U. A short review on the synthesis and advance applications of polyaniline hydrogels. RSC Adv 2022; 12:19122-19132. [PMID: 35865573 PMCID: PMC9244896 DOI: 10.1039/d2ra02674k] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Conductive polymeric hydrogels (CPHs) exhibit remarkable properties such as high toughness, self-recoverability, electrical conductivity, transparency, freezing resistance, stimulus responsiveness, stretch ability, self-healing, and strain sensitivity. Due to their exceptional physicochemical and physio-mechanical properties, among the widely studied CPHs, polyaniline (PANI) has been the subject of immense interest due to its stability, tunable electrical conductivity, low cost, and good biocompatibility. The current state of research on PANI hydrogel is discussed in this short review, along with the properties, preparation methods, and common characterization techniques as well as their applications in a variety of fields such as sensor and actuator manufacturing, biomedicine, and soft electronics. Furthermore, the future development and applications of PANI hydrogels are also mentioned.
Collapse
Affiliation(s)
- Aleena Mir
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia New Delhi-110025 India
| | - Amit Kumar
- Theory & Simulation Laboratory, Department of Chemistry, Jamia Millia Islamia New Delhi-110025 India
| | - Ufana Riaz
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia New Delhi-110025 India
| |
Collapse
|
46
|
Kim BK, Park K. Mass Transport Properties and Influence of Natural Convection for Voltammetry at the Agarose Hydrogel Interface. J ELECTROCHEM SCI TE 2022. [DOI: 10.33961/jecst.2022.00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Guo X, Li J, Wang F, Zhang J, Zhang J, Shi Y, Pan L. Application of conductive polymer hydrogels in flexible electronics. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xin Guo
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Jiean Li
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Fanyu Wang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Jia‐Han Zhang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Jing Zhang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| |
Collapse
|
48
|
Zhao X, Liu X, Fan B, Zheng X. Optimized Anticorrosion of Polypyrrole Coating by Inverted-Electrode Strategy: Experimental and Molecular Dynamics Investigations. Polymers (Basel) 2022; 14:1356. [PMID: 35406230 PMCID: PMC9002398 DOI: 10.3390/polym14071356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
To improve the poor adhesion and the ensuing insufficient anticorrosion efficacy of electropolymerized polypyrrole (PPy) on copper surface, an inverted-electrode strategy was applied after the passivation procedure, for which the compact coating (PPy-I) was deposited on the substrate in a cathodic window. Morphological and physical characterizations revealed that PPy-I exerted satisfactory adhesion strength and suitable thickness and conductivity compared with the analogue prepared via the traditional protocol (PPy-T). Potentiodynamic polarization, electrochemical impedance spectroscopy and frequency modulation were employed to ascertain the propitious protection of PPy-I for copper in artificial seawater (ASW). Due to the dominant electroactivity, the PPy-I-coated sample possessed higher apparent current density and lower charge transfer resistance than its PPy-T-protected counterpart, which maintained the passivation of the substrate. Surface analysis also supported the viability of PPy-I for copper in ASW for a well-protected surface with inferior water wettability. Molecular dynamics simulations evidenced that PPy-I with the higher density retained efficient anticorrosion capacity on copper at elevated temperatures. Therein, the derived time-dependent spatial diffusion trajectories of ions were locally confined with low diffusion coefficients. Highly twisted pore passages and anodic protection behavior arising respectively from the tight coating architecture and electroactivity contributed to the adequate corrosion resistance of PPy-I-coated copper.
Collapse
Affiliation(s)
- Xiaoqi Zhao
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaoyan Liu
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Baomin Fan
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xingwen Zheng
- Key Laboratory of Material Corrosion and Protection of Sichuan Province, Sichuan University of Science & Engineering, Zigong 643000, China
| |
Collapse
|
49
|
Nizami MZI, Campéon BDL, Satoh A, Nishina Y. Graphene oxide-based multi-component antimicrobial hydrogels. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mohammed Zahedul Islam Nizami
- Research Core for Interdisciplinary Sciences, Okayama University, Okayama, Japan
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | | | - Akira Satoh
- Research Core for Interdisciplinary Sciences, Okayama University, Okayama, Japan
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Yuta Nishina
- Research Core for Interdisciplinary Sciences, Okayama University, Okayama, Japan
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
50
|
|