1
|
Schnable BL, Schaich MA, Roginskaya V, Leary LP, Weaver TM, Freudenthal BD, Drohat AC, Van Houten B. Thymine DNA glycosylase combines sliding, hopping, and nucleosome interactions to efficiently search for 5-formylcytosine. Nat Commun 2024; 15:9226. [PMID: 39455577 PMCID: PMC11512004 DOI: 10.1038/s41467-024-53497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Base excision repair is the main pathway involved in active DNA demethylation. 5-formylcytosine and 5-carboxylcytosine, two oxidized moieties of methylated cytosine, are recognized and removed by thymine DNA glycosylase (TDG) to generate an abasic site. Using single molecule fluorescence experiments, we study TDG in the presence and absence of 5-formylcytosine. TDG exhibits multiple modes of linear diffusion, including hopping and sliding, in search of base modifications. TDG active site variants and truncated N-terminus, reveals these variants alter base modification search and recognition mechanism of TDG. On DNA containing an undamaged nucleosome, TDG is found to either bypass, colocalize with, or encounter but not bypass the nucleosome. Truncating the N-terminus reduces the number of interactions with the nucleosome. Our findings provide mechanistic insights into how TDG searches for modified DNA bases in chromatin.
Collapse
Affiliation(s)
- Brittani L Schnable
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburg, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew A Schaich
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vera Roginskaya
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Liam P Leary
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tyler M Weaver
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Alexander C Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bennett Van Houten
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburg, Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Yang M, Bakker DTR, Li ITS. Engineering tunable catch bonds with DNA. Nat Commun 2024; 15:8828. [PMID: 39396048 PMCID: PMC11470926 DOI: 10.1038/s41467-024-52749-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/20/2024] [Indexed: 10/14/2024] Open
Abstract
Unlike most adhesive bonds, biological catch bonds strengthen with increased tension. This characteristic is essential to specific receptor-ligand interactions, underpinning biological adhesion dynamics, cell communication, and mechanosensing. While artificial catch bonds have been conceived, the tunability of their catch behaviour is limited. Here, we present the fish-hook, a rationally designed DNA catch bond that can be finely adjusted to a wide range of catch behaviours. We develop models to design these DNA structures and experimentally validate different catch behaviours by single-molecule force spectroscopy. The fish-hook architecture supports a vast sequence-dependent behaviour space, making it a valuable tool for reprogramming biological interactions and engineering force-strengthening materials.
Collapse
Affiliation(s)
- Micah Yang
- Department of Chemistry, The University of British Columbia, Kelowna, BC, Canada
| | - David T R Bakker
- Department of Chemistry, The University of British Columbia, Kelowna, BC, Canada
| | - Isaac T S Li
- Department of Chemistry, The University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
3
|
Sala S, Caillier A, Oakes PW. Principles and regulation of mechanosensing. J Cell Sci 2024; 137:jcs261338. [PMID: 39297391 PMCID: PMC11423818 DOI: 10.1242/jcs.261338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Abstract
Research over the past two decades has highlighted that mechanical signaling is a crucial component in regulating biological processes. Although many processes and proteins are termed 'mechanosensitive', the underlying mechanisms involved in mechanosensing can vary greatly. Recent studies have also identified mechanosensing behaviors that can be regulated independently of applied force. This important finding has major implications for our understanding of downstream mechanotransduction, the process by which mechanical signals are converted into biochemical signals, as it offers another layer of biochemical regulatory control for these crucial signaling pathways. In this Review, we discuss the different molecular and cellular mechanisms of mechanosensing, how these processes are regulated and their effects on downstream mechanotransduction. Together, these discussions provide an important perspective on how cells and tissues control the ways in which they sense and interpret mechanical signals.
Collapse
Affiliation(s)
- Stefano Sala
- Department of Cell & Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | - Alexia Caillier
- Department of Cell & Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | - Patrick W. Oakes
- Department of Cell & Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| |
Collapse
|
4
|
Sethi S, Xu T, Sarkar A, Drees C, Jacob C, Walther A. Nuclease-Resistant L-DNA Tension Probes Enable Long-Term Force Mapping of Single Cells and Cell Consortia. Angew Chem Int Ed Engl 2024:e202413983. [PMID: 39212256 DOI: 10.1002/anie.202413983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
DNA-based tension probes with precisely programmable force responses provide important insights into cellular mechanosensing. However, their degradability in cell culture limits their use for long-term imaging, for instance, when cells migrate, divide, and differentiate. This is a critical limitation for providing insights into mechanobiology for these longer-term processes. Here, we present DNA-based tension probes that are entirely designed based on the stereoisomer of biological D-DNA, i.e., L-DNA. We demonstrate that L-DNA tension probes are essentially indestructible by nucleases and provide days-long imaging without significant loss in image quality. We also show their superiority already for short imaging times commonly used for classical D-DNA tension probes. We showcase the potential of these resilient probes to image minute movements, and for generating long term force maps of single cells and of collectively migrating cell populations.
Collapse
Affiliation(s)
- Soumya Sethi
- Life-like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Tao Xu
- Life-like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Aritra Sarkar
- Life-like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Christoph Drees
- Life-like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Claire Jacob
- Department of Biology, University of Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany
| | - Andreas Walther
- Life-like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
5
|
Combs JD, Foote AK, Ogasawara H, Velusamy A, Rashid SA, Mancuso JN, Salaita K. Measuring Integrin Force Loading Rates Using a Two-Step DNA Tension Sensor. J Am Chem Soc 2024; 146:23034-23043. [PMID: 39133202 PMCID: PMC11345772 DOI: 10.1021/jacs.4c03629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
Cells apply forces to extracellular matrix (ECM) ligands through transmembrane integrin receptors: an interaction which is intimately involved in cell motility, wound healing, cancer invasion and metastasis. These small (piconewton) integrin-ECM forces have been studied by molecular tension fluorescence microscopy (MTFM), which utilizes a force-induced conformational change of a probe to detect mechanical events. MTFM has revealed the force magnitude for integrin receptors in a variety of cell models including primary cells. However, force dynamics and specifically the force loading rate (LR) have important implications in receptor signaling and adhesion formation and remain poorly characterized. Here, we develop an LR probe composed of an engineered DNA structure that undergoes two mechanical transitions at distinct force thresholds: a low force threshold at 4.7 pN (hairpin unfolding) and a high force threshold at 47 pN (duplex shearing). These transitions yield distinct fluorescence signatures observed through single-molecule fluorescence microscopy in live cells. Automated analysis of tens of thousands of events from eight cells showed that the bond lifetime of integrins that engage their ligands and transmit a force >4.7 pN decays exponentially with a τ of 45.6 s. A subset of these events mature in magnitude to >47 pN with a median loading rate of 1.1 pN s-1 and primarily localize at the periphery of the cell-substrate junction. The LR probe design is modular and can be adapted to measure force ramp rates for a broad range of mechanoreceptors and cell models, thus aiding in the study of molecular mechanotransduction in living systems.
Collapse
Affiliation(s)
- J. Dale Combs
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Alexander K. Foote
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Hiroaki Ogasawara
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Arventh Velusamy
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Sk Aysha Rashid
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | | | - Khalid Salaita
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
6
|
Wang XH, Wang M, Pan JB, Zhu JM, Cheng H, Dong HZ, Bi WJ, Yang SW, Chen YY, Xu F, Duan XJ. Fluorescent probe for imaging intercellular tension: molecular force approach. RSC Adv 2024; 14:22877-22881. [PMID: 39035717 PMCID: PMC11258865 DOI: 10.1039/d4ra02647k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Cellular mechanical force plays a crucial role in numerous biological processes, including wound healing, cell development, and metastasis. To enable imaging of intercellular tension, molecular tension probes were designed, which offer a simple and efficient method for preparing Au-DNA intercellular tension probes with universal applicability. The proposed approach utilizes gold nanoparticles linked to DNA hairpins, enabling sensitive visualization of cellular force in vitro. Specifically, the designed Au-DNA intercellular tension probe includes a molecular spring flanked by a fluorophore-quencher pair, which is anchored between cells. As intercellular forces open the hairpin, the fluorophore is de-quenched, allowing for visualization of cellular force. The effectiveness of this approach was demonstrated by imaging the cellular force in living cells using the designed Au-DNA intercellular tension probe.
Collapse
Affiliation(s)
- Xiao-Hong Wang
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Ming Wang
- School of Energy Materials and Chemical Engineering, Hefei University Hefei 230601 China
| | - Jian-Bin Pan
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 210023 China
| | - Jin-Miao Zhu
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Hu Cheng
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Hua-Ze Dong
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Wen-Jie Bi
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Shi-Wei Yang
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Yuan-Yuan Chen
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Fan Xu
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| | - Xiao-Jing Duan
- School of Chemical and Pharmaceutical Engineering, Hefei Normal University 230061 Hefei Anhui China
| |
Collapse
|
7
|
Eliahoo P, Setayesh H, Hoffman T, Wu Y, Li S, Treweek JB. Viscoelasticity in 3D Cell Culture and Regenerative Medicine: Measurement Techniques and Biological Relevance. ACS MATERIALS AU 2024; 4:354-384. [PMID: 39006396 PMCID: PMC11240420 DOI: 10.1021/acsmaterialsau.3c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 07/16/2024]
Abstract
The field of mechanobiology is gaining prominence due to recent findings that show cells sense and respond to the mechanical properties of their environment through a process called mechanotransduction. The mechanical properties of cells, cell organelles, and the extracellular matrix are understood to be viscoelastic. Various technologies have been researched and developed for measuring the viscoelasticity of biological materials, which may provide insight into both the cellular mechanisms and the biological functions of mechanotransduction. Here, we explain the concept of viscoelasticity and introduce the major techniques that have been used to measure the viscoelasticity of various soft materials in different length- and timescale frames. The topology of the material undergoing testing, the geometry of the probe, the magnitude of the exerted stress, and the resulting deformation should be carefully considered to choose a proper technique for each application. Lastly, we discuss several applications of viscoelasticity in 3D cell culture and tissue models for regenerative medicine, including organoids, organ-on-a-chip systems, engineered tissue constructs, and tunable viscoelastic hydrogels for 3D bioprinting and cell-based therapies.
Collapse
Affiliation(s)
- Payam Eliahoo
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089 United States
| | - Hesam Setayesh
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089 United States
| | - Tyler Hoffman
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Yifan Wu
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Jennifer B Treweek
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089 United States
| |
Collapse
|
8
|
Zhang X, Zhang X, Yong T, Gan L, Yang X. Boosting antitumor efficacy of nanoparticles by modulating tumor mechanical microenvironment. EBioMedicine 2024; 105:105200. [PMID: 38876044 PMCID: PMC11225208 DOI: 10.1016/j.ebiom.2024.105200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024] Open
Abstract
Nanoparticles have shown great potential for tumor targeting delivery via enhanced permeability and retention effect. However, the tumor mechanical microenvironment, characterized by dense extracellular matrix (ECM), high tumor stiffness and solid stress, leads to only 0.7% of administered dose accumulating in solid tumors and even fewer (∼0.0014%) reaching tumor cells, limiting the therapeutic efficacy of nanoparticles. Furthermore, the tumor mechanical microenvironment can regulate tumor cell stemness, promote tumor invasion, metastasis and reduce treatment efficacy. In this review, methods detecting the mechanical are introduced. Strategies for modulating the mechanical microenvironment including elimination of dense ECM by physical, chemical and biological methods, disruption of ECM formation, depletion or inhibition of cancer-associated fibroblasts, are then summarized. Finally, prospects and challenges for further clinical applications of mechano-modulating strategies to enhance the therapeutic efficacy of nanomedicines are discussed. This review may provide guidance for the rational design and application of nanoparticles in clinical settings.
Collapse
Affiliation(s)
- Xiaoqiong Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaojuan Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tuying Yong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
9
|
Huang Y, Chen T, Chen X, Chen X, Zhang J, Liu S, Lu M, Chen C, Ding X, Yang C, Huang R, Song Y. Decoding Biomechanical Cues Based on DNA Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310330. [PMID: 38185740 DOI: 10.1002/smll.202310330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/18/2023] [Indexed: 01/09/2024]
Abstract
Biological systems perceive and respond to mechanical forces, generating mechanical cues to regulate life processes. Analyzing biomechanical forces has profound significance for understanding biological functions. Therefore, a series of molecular mechanical techniques have been developed, mainly including single-molecule force spectroscopy, traction force microscopy, and molecular tension sensor systems, which provide indispensable tools for advancing the field of mechanobiology. DNA molecules with a programmable structure and well-defined mechanical characteristics have attached much attention to molecular tension sensors as sensing elements, and are designed for the study of biomechanical forces to present biomechanical information with high sensitivity and resolution. In this work, a comprehensive overview of molecular mechanical technology is presented, with a particular focus on molecular tension sensor systems, specifically those based on DNA. Finally, the future development and challenges of DNA-based molecular tension sensor systems are looked upon.
Collapse
Affiliation(s)
- Yihao Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ting Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiaodie Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ximing Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jialu Zhang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Sinong Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Menghao Lu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chong Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiangyu Ding
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ruiyun Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
10
|
Han S, Lee G, Kim D, Kim J, Kim I, Kim H, Kim D. Selective Suppression of Integrin-Ligand Binding by Single Molecular Tension Probes Mediates Directional Cell Migration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306497. [PMID: 38311584 PMCID: PMC11005741 DOI: 10.1002/advs.202306497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/04/2024] [Indexed: 02/06/2024]
Abstract
Cell migration interacting with continuously changing microenvironment, is one of the most essential cellular functions, participating in embryonic development, wound repair, immune response, and cancer metastasis. The migration process is finely tuned by integrin-mediated binding to ligand molecules. Although numerous biochemical pathways orchestrating cell adhesion and motility are identified, how subcellular forces between the cell and extracellular matrix regulate intracellular signaling for cell migration remains unclear. Here, it is showed that a molecular binding force across integrin subunits determines directional migration by regulating tension-dependent focal contact formation and focal adhesion kinase phosphorylation. Molecular binding strength between integrin αvβ3 and fibronectin is precisely manipulated by developing molecular tension probes that control the mechanical tolerance applied to cell-substrate interfaces. This data reveals that integrin-mediated molecular binding force reduction suppresses cell spreading and focal adhesion formation, attenuating the focal adhesion kinase (FAK) phosphorylation that regulates the persistence of cell migration. These results further demonstrate that manipulating subcellular binding forces at the molecular level can recapitulate differential cell migration in response to changes of substrate rigidity that determines the physical condition of extracellular microenvironment. Novel insights is provided into the subcellular mechanics behind global mechanical adaptation of the cell to surrounding tissue environments featuring distinct biophysical signatures.
Collapse
Affiliation(s)
- Seong‐Beom Han
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Geonhui Lee
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Daesan Kim
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Jeong‐Ki Kim
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - In‐San Kim
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
- Biomedical Research CenterKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Hae‐Won Kim
- Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonan31116Republic of Korea
- Department of Biomaterials Science in College of Dentistry & Department of Nanobiomedical Science in Graduate SchoolDankook UniversityCheonan31116Republic of Korea
| | - Dong‐Hwee Kim
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
- Biomedical Research CenterKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Department of Integrative Energy EngineeringCollege of EngineeringKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
11
|
Combs JD, Foote AK, Ogasawara H, Velusamy A, Rashid SA, Mancuso JN, Salaita K. Measuring integrin force loading rates using a two-step DNA tension sensor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585042. [PMID: 38558970 PMCID: PMC10980004 DOI: 10.1101/2024.03.15.585042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Cells apply forces to extracellular matrix (ECM) ligands through transmembrane integrin receptors: an interaction which is intimately involved in cell motility, wound healing, cancer invasion and metastasis. These small (pN) forces exerted by cells have been studied by molecular tension fluorescence microscopy (MTFM), which utilizes a force-induced conformational change of a probe to detect mechanical events. MTFM has revealed the force magnitude for integrins receptors in a variety of cell models including primary cells. However, force dynamics and specifically the force loading rate (LR) have important implications in receptor signaling and adhesion formation and remain poorly characterized. Here, we develop a LR probe which is comprised of an engineered DNA structures that undergoes two mechanical transitions at distinct force thresholds: a low force threshold at 4.7 pN corresponding to hairpin unfolding and a high force threshold at 56 pN triggered through duplex shearing. These transitions yield distinct fluorescence signatures observed through single-molecule fluorescence microscopy in live-cells. Automated analysis of tens of thousands of events from 8 cells showed that the bond lifetime of integrins that engage their ligands and transmit a force >4.7 pN decays exponentially with a τ of 45.6 sec. A small subset of these events (<10%) mature in magnitude to >56pN with a median loading rate of 1.3 pNs-1 with these mechanical ramp events localizing at the periphery of the cell-substrate junction. Importantly, the LR probe design is modular and can be adapted to measure force ramp rates for a broad range of mechanoreceptors and cell models, thus aiding in the study of mechanotransduction.
Collapse
Affiliation(s)
- J. Dale Combs
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | | | | - Arventh Velusamy
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Sk Aysha Rashid
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, GA 30322, USA
| |
Collapse
|
12
|
Al Abdullatif S, Narum S, Hu Y, Rogers J, Fitzgerald R, Salaita K. Molecular Compressive Force Sensor for Mapping Forces at the Cell-Substrate Interface. J Am Chem Soc 2024; 146:6830-6836. [PMID: 38418383 PMCID: PMC10941184 DOI: 10.1021/jacs.3c13648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 03/01/2024]
Abstract
Mechanical forces are crucial for biological processes such as T cell antigen recognition. A suite of molecular tension probes to measure pulling forces have been reported over the past decade; however, there are no reports of molecular probes for measuring compressive forces, representing a gap in the current mechanobiology toolbox. To address this gap, we report a molecular compression reporter using pseudostable hairpins (M-CRUSH). The design principle was based on a pseudostable DNA structure that folds in response to an external compressive force. We created a library of DNA stem-loop hairpins with varying thermodynamic stability, and then used Förster Resonance Energy Transfer (FRET) to quantify hairpin folding stability as a function of temperature and crowding. We identified an optimal pseudostable DNA hairpin highly sensitive to molecular crowding that displayed a shift in melting temperature (Tm) of 7 °C in response to a PEG crowding agent. When immobilized on surfaces, this optimized DNA hairpin showed a 29 ± 6% increase in FRET index in response to 25% w/w PEG 8K. As a proof-of-concept demonstration, we employed M-CRUSH to map the compressive forces generated by primary naïve T cells. We noted dynamic compressive forces that were highly sensitive to antigen presentation and coreceptor engagement. Importantly, mechanical forces are generated by cytoskeletal protrusions caused by acto-myosin activity. This was confirmed by treating cells with cytoskeletal inhibitors, which resulted in a lower FRET response when compared to untreated cells. Furthermore, we showed that M-CRUSH signal is dependent on probe density with greater density probes showing enhanced signal. Finally, we demonstrated that M-CRUSH probes are modular and can be applied to different cell types by displaying a compressive signal observed under human platelets. M-CRUSH offers a powerful tool to complement tension sensors and map out compressive forces in living systems.
Collapse
Affiliation(s)
- Sarah Al Abdullatif
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Steven Narum
- Department
of Biomedical Engineering, Georgia Institute
of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Yuesong Hu
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Jhordan Rogers
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Rachel Fitzgerald
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Khalid Salaita
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
- Department
of Biomedical Engineering, Georgia Institute
of Technology and Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
13
|
Yang S, Wang M, Tian D, Zhang X, Cui K, Lü S, Wang HH, Long M, Nie Z. DNA-functionalized artificial mechanoreceptor for de novo force-responsive signaling. Nat Chem Biol 2024:10.1038/s41589-024-01572-x. [PMID: 38448735 DOI: 10.1038/s41589-024-01572-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Synthetic signaling receptors enable programmable cellular responses coupling with customized inputs. However, engineering a designer force-sensing receptor to rewire mechanotransduction remains largely unexplored. Herein, we introduce nongenetically engineered artificial mechanoreceptors (AMRs) capable of reprogramming non-mechanoresponsive receptor tyrosine kinases (RTKs) to sense user-defined force cues, enabling de novo-designed mechanotransduction. AMR is a modular DNA-protein chimera comprising a mechanosensing-and-transmitting DNA nanodevice grafted on natural RTKs via aptameric anchors. AMR senses intercellular tensile force via an allosteric DNA mechano-switch with tunable piconewton-sensitive force tolerance, actuating a force-triggered dynamic DNA assembly to manipulate RTK dimerization and activate intracellular signaling. By swapping the force-reception ligands, we demonstrate the AMR-mediated activation of c-Met, a representative RTK, in response to the cellular tensile forces mediated by cell-adhesion proteins (integrin, E-cadherin) or membrane protein endocytosis (CI-M6PR). Moreover, AMR also allows the reprogramming of FGFR1, another RTK, to customize mechanobiological function, for example, adhesion-mediated neural stem cell maintenance.
Collapse
Affiliation(s)
- Sihui Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, China
| | - Miao Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, China
| | - Dawei Tian
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Zhang
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Kaiqing Cui
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, China
| | - Shouqin Lü
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Hui Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, China
| | - Mian Long
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, China.
| |
Collapse
|
14
|
Xu F, Zhang S, Ma L, Hou Y, Li J, Denisenko A, Li Z, Spatz J, Wrachtrup J, Lei H, Cao Y, Wei Q, Chu Z. Quantum-enhanced diamond molecular tension microscopy for quantifying cellular forces. SCIENCE ADVANCES 2024; 10:eadi5300. [PMID: 38266085 PMCID: PMC10807811 DOI: 10.1126/sciadv.adi5300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
The constant interplay and information exchange between cells and the microenvironment are essential to their survival and ability to execute biological functions. To date, a few leading technologies such as traction force microscopy, optical/magnetic tweezers, and molecular tension-based fluorescence microscopy are broadly used in measuring cellular forces. However, the considerable limitations, regarding the sensitivity and ambiguities in data interpretation, are hindering our thorough understanding of mechanobiology. Here, we propose an innovative approach, namely, quantum-enhanced diamond molecular tension microscopy (QDMTM), to precisely quantify the integrin-based cell adhesive forces. Specifically, we construct a force-sensing platform by conjugating the magnetic nanotags labeled, force-responsive polymer to the surface of a diamond membrane containing nitrogen-vacancy centers. Notably, the cellular forces will be converted into detectable magnetic variations in QDMTM. After careful validation, we achieved the quantitative cellular force mapping by correlating measurement with the established theoretical model. We anticipate our method can be routinely used in studies like cell-cell or cell-material interactions and mechanotransduction.
Collapse
Affiliation(s)
- Feng Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Shuxiang Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Linjie Ma
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Yong Hou
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Jie Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Andrej Denisenko
- 3rd Institute of Physics, Research Center SCoPE and IQST, University of Stuttgart, 70569 Stuttgart, Germany
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Joachim Spatz
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), University of Heidelberg, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Jörg Wrachtrup
- 3rd Institute of Physics, Research Center SCoPE and IQST, University of Stuttgart, 70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Hai Lei
- National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yi Cao
- National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
15
|
Suga K, Yamakado T, Saito S. Dual Ratiometric Fluorescence Monitoring of Mechanical Polymer Chain Stretching and Subsequent Strain-Induced Crystallization. J Am Chem Soc 2023. [PMID: 38051032 DOI: 10.1021/jacs.3c09175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Tracking the behavior of mechanochromic molecules provides valuable insights into force transmission and associated microstructural changes in soft materials under load. Herein, we report a dual ratiometric fluorescence (FL) analysis for monitoring both mechanical polymer chain stretching and strain-induced crystallization (SIC) of polymers. SIC has recently attracted renewed attention as an effective mechanism for improving the mechanical properties of polymers. A polyurethane (PU) film incorporating a trace of a dual-emissive flapping force probe (N-FLAP, 0.008 wt %) exhibited a blue-to-green FL spectral change in a low-stress region (<20 MPa), resulting from conformational planarization of the probe in mechanically stretched polymer chains. More importantly, at higher probe concentrations (∼0.65 wt %), the PU film showed a second spectral change from green to yellow during the SIC growth (20-65 MPa) due to self-absorption of scattered FL in a short wavelength region. The reversibility of these spectral changes was demonstrated by load-unload cycles. With these results in hand, the degrees of the polymer chain stretching and the SIC were quantitatively mapped and monitored by dual ratiometric imaging based on different FL ratios (I525/I470 and I525/I600). Simultaneous analysis of these two mappings revealed a spatiotemporal gap in the distribution of the polymer chain stretching and the SIC. The combinational use of the dual-emissive force probe and the ratiometric FL imaging is a universal approach for the development of soft matter physics.
Collapse
Affiliation(s)
- Kensuke Suga
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takuya Yamakado
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shohei Saito
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
16
|
Amiri S, Muresan C, Shang X, Huet-Calderwood C, Schwartz MA, Calderwood DA, Murrell M. Intracellular tension sensor reveals mechanical anisotropy of the actin cytoskeleton. Nat Commun 2023; 14:8011. [PMID: 38049429 PMCID: PMC10695988 DOI: 10.1038/s41467-023-43612-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023] Open
Abstract
The filamentous actin (F-actin) cytoskeleton is a composite material consisting of cortical actin and bundled F-actin stress fibers, which together mediate the mechanical behaviors of the cell, from cell division to cell migration. However, as mechanical forces are typically measured upon transmission to the extracellular matrix, the internal distribution of forces within the cytoskeleton is unknown. Likewise, how distinct F-actin architectures contribute to the generation and transmission of mechanical forces is unclear. Therefore, we have developed a molecular tension sensor that embeds into the F-actin cytoskeleton. Using this sensor, we measure tension within stress fibers and cortical actin, as the cell is subject to uniaxial stretch. We find that the mechanical response, as measured by FRET, depends on the direction of applied stretch relative to the cell's axis of alignment. When the cell is aligned parallel to the direction of the stretch, stress fibers and cortical actin both accumulate tension. By contrast, when aligned perpendicular to the direction of stretch, stress fibers relax tension while the cortex accumulates tension, indicating mechanical anisotropy within the cytoskeleton. We further show that myosin inhibition regulates this anisotropy. Thus, the mechanical anisotropy of the cell and the coordination between distinct F-actin architectures vary and depend upon applied load.
Collapse
Affiliation(s)
- Sorosh Amiri
- Systems Biology Institute, 850 West Campus Drive, Yale University, West Haven, CT, 06516, USA
- Department of Mechanical Engineering and Material Science, 17 Hillhouse Ave, Yale University, New Haven, CT, 06511, USA
| | - Camelia Muresan
- Systems Biology Institute, 850 West Campus Drive, Yale University, West Haven, CT, 06516, USA
- Department of Biomedical Engineering, 17 Hillhouse Ave, Yale University, New Haven, CT, 06511, USA
| | - Xingbo Shang
- Systems Biology Institute, 850 West Campus Drive, Yale University, West Haven, CT, 06516, USA
- Department of Biomedical Engineering, 17 Hillhouse Ave, Yale University, New Haven, CT, 06511, USA
| | | | - Martin A Schwartz
- Department of Biomedical Engineering, 17 Hillhouse Ave, Yale University, New Haven, CT, 06511, USA
- Department of Cell Biology, 333 Cedar St, Yale University, New Haven, CT, 06510, USA
- Yale Cardiovascular Research Center, 300 George St, New Haven, CT, 06511, USA
| | - David A Calderwood
- Department of Pharmacology, 333 Cedar St, Yale University, New Haven, CT, 06510, USA
- Department of Cell Biology, 333 Cedar St, Yale University, New Haven, CT, 06510, USA
| | - Michael Murrell
- Systems Biology Institute, 850 West Campus Drive, Yale University, West Haven, CT, 06516, USA.
- Department of Biomedical Engineering, 17 Hillhouse Ave, Yale University, New Haven, CT, 06511, USA.
- Department of Physics, 217 Prospect Street, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
17
|
Li X, Combs JD, Salaita K, Shu X. Polarized focal adhesion kinase activity within a focal adhesion during cell migration. Nat Chem Biol 2023; 19:1458-1468. [PMID: 37349581 PMCID: PMC10732478 DOI: 10.1038/s41589-023-01353-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/03/2023] [Indexed: 06/24/2023]
Abstract
Focal adhesion kinase (FAK) relays integrin signaling from outside to inside cells and contributes to cell adhesion and motility. However, the spatiotemporal dynamics of FAK activity in single FAs is unclear due to the lack of a robust FAK reporter, which limits our understanding of these essential biological processes. Here we have engineered a genetically encoded FAK activity sensor, dubbed FAK-separation of phases-based activity reporter of kinase (SPARK), which visualizes endogenous FAK activity in living cells and vertebrates. Our work reveals temporal dynamics of FAK activity during FA turnover. Most importantly, our study unveils polarized FAK activity at the distal tip of newly formed single FAs in the leading edge of a migrating cell. By combining FAK-SPARK with DNA tension probes, we show that tensions applied to FAs precede FAK activation and that FAK activity is proportional to the strength of tension. These results suggest tension-induced polarized FAK activity in single FAs, advancing the mechanistic understanding of cell migration.
Collapse
Affiliation(s)
- Xiaoquan Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | | | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Xiaokun Shu
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
18
|
Rajasooriya T, Ogasawara H, Dong Y, Mancuso JN, Salaita K. Force-Triggered Self-Destructive Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305544. [PMID: 37724392 PMCID: PMC10764057 DOI: 10.1002/adma.202305544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/22/2023] [Indexed: 09/20/2023]
Abstract
Self-destructive polymers (SDPs) are defined as a class of smart polymers that autonomously degrade upon experiencing an external trigger, such as a chemical cue or optical excitation. Because SDPs release the materials trapped inside the network upon degradation, they have potential applications in drug delivery and analytical sensing. However, no known SDPs that respond to external mechanical forces have been reported, as it is fundamentally challenging to create mechano-sensitivity in general and especially so for force levels below those required for classical force-induced bond scission. To address this challenge, the development of force-triggered SDPs composed of DNA crosslinked hydrogels doped with nucleases is described here. Externally applied piconewton forces selectively expose enzymatic cleavage sites within the DNA crosslinks, resulting in rapid polymer self-degradation. The synthesis and the chemical and mechanical characterization of DNA crosslinked hydrogels, as well as the kinetics of force-triggered hydrolysis, are described. As a proof-of-concept, force-triggered and time-dependent rheological changes in the polymer as well as encapsulated nanoparticle release are demonstrated. Finally, that the kinetics of self-destruction are shown to be tuned as a function of nuclease concentration, incubation time, and thermodynamic stability of DNA crosslinkers.
Collapse
Affiliation(s)
| | | | - Yixiao Dong
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | | | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
19
|
Lupfer C, Seitel S, Skarsetz O, Walther A. Mechano-Activated Self-Immolation of Hydrogels via Signal Amplification. Angew Chem Int Ed Engl 2023; 62:e202309236. [PMID: 37574444 DOI: 10.1002/anie.202309236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
Cellular organisms possess intricate mechano-adaptive systems that enable them to sense forces and process them with (bio)chemical circuits for functional adaptation. Inspired by such processes, this study introduces a hydrogel system capable of mechanically activated and chemically transduced self-destruction. Our judiciously designed hydrogels can mechanically generate radicals that are processed and amplified in a self-propagating radical de-crosslinking reaction, ultimately leading to mechanically triggered self-immolation. We put such systems to work in mechano-induced debonding, and in a bilayer actuator, where swelling-induced bending generates sufficient force for selective degradation of one layer, leading to autonomous self-regulation associated with unbending. Our work helps define design criteria for molecularly controlled adaptive and self-regulating materials with embodied mechano-chemical information processing, and showcases their potential for adhesives and soft robotics.
Collapse
Affiliation(s)
- Claudius Lupfer
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55218, Mainz, Germany
| | - Sebastian Seitel
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55218, Mainz, Germany
| | - Oliver Skarsetz
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55218, Mainz, Germany
| | - Andreas Walther
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55218, Mainz, Germany
| |
Collapse
|
20
|
Abstract
All cells in the body are exposed to physical force in the form of tension, compression, gravity, shear stress, or pressure. Cells convert these mechanical cues into intracellular biochemical signals; this process is an inherent property of all cells and is essential for numerous cellular functions. A cell's ability to respond to force largely depends on the array of mechanical ion channels expressed on the cell surface. Altered mechanosensing impairs conscious senses, such as touch and hearing, and unconscious senses, like blood pressure regulation and gastrointestinal (GI) activity. The GI tract's ability to sense pressure changes and mechanical force is essential for regulating motility, but it also underlies pain originating in the GI tract. Recent identification of the mechanically activated ion channels Piezo1 and Piezo2 in the gut and the effects of abnormal ion channel regulation on cellular function indicate that these channels may play a pathogenic role in disease. Here, we discuss our current understanding of mechanically activated Piezo channels in the pathogenesis of pancreatic and GI diseases, including pancreatitis, diabetes mellitus, irritable bowel syndrome, GI tumors, and inflammatory bowel disease. We also describe how Piezo channels could be important targets for treating GI diseases.
Collapse
|
21
|
Kim Y, Tram LTH, Kim KA, Kim BC. Defining Integrin Tension Required for Chemotaxis of Metastatic Breast Cancer Cells in Confinement. Adv Healthc Mater 2023; 12:e2202747. [PMID: 37256848 DOI: 10.1002/adhm.202202747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 05/21/2023] [Indexed: 06/02/2023]
Abstract
Cancer metastasis is affected by chemical factors and physical cues. From cell adhesion to migration, mechanical tension applied to integrin expresses on the cell membrane and physical confinement significantly regulates cancer cell behaviors. Despite the physical interplay between integrins in cells and ligands in the tumor microenvironment, quantitative analysis of integrin tension during cancer cell migration in microconfined spaces remains elusive owing to the limited experimental tools. Herein, a platform termed microconfinement tension gauge tether to monitor spatial integrin tension with single-molecule precision by analyzing the epithelial-growth-factor-induced chemotaxis of metastatic human breast cancer cells in microfluidic channels is developed. The results reveal that the metastatic cancer cells exert the strongest integrin tension in the range of 54-100 pN at the leading edges of cells during chemokinetic migration on a planar surface, while the cells exert the strongest integrin tension exceeding 100 pN at the cell rear when entering microconfinement. Further analysis demonstrates that cells undergo mesenchymal migration under high integrin tension and less confinement, which is converted to amoeboid migration under low integrin tension or high confinement. In summary, the results identify a basic mechanism underlying the mechanical interactions between integrin tension and microenvironment that determines cancer invasion and metastasis.
Collapse
Affiliation(s)
- Young Kim
- Department of Nano-bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Le Thi Hong Tram
- Department of Nano-bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Kyung Ah Kim
- Department of Nano-bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Byoung Choul Kim
- Department of Nano-bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| |
Collapse
|
22
|
Sun F, Li H, Hu Y, Zhang M, Wang W, Chen W, Liu Z. Exploring Mechanical Responses of Cells to Geometric Information Using Micropatterned DNA-Based Molecular Tension Probes. ACS NANO 2023; 17:18584-18595. [PMID: 37713214 DOI: 10.1021/acsnano.3c07088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The geometric shape of a cell is strongly influenced by the cytoskeleton, which, in turn, is regulated by integrin-mediated cell-extracellular matrix (ECM) interactions. To investigate the mechanical role of integrin in the geometrical interplay between cells and the ECM, we proposed a single-cell micropatterning technique combined with molecular tension fluorescence microscopy (MTFM), which allows us to characterize the mechanical properties of cells with prescribed geometries. Our results show that the curvature is a key geometric cue for cells to differentiate shapes in a membrane-tension- and actomyosin-dependent manner. Specifically, curvatures affect the size of focal adhesions (FAs) and induce a curvature-dependent density and spatial distribution of strong integrins. In addition, we found that the integrin subunit β1 plays a critical role in the detection of geometric information. Overall, the integration of MTFM and single-cell micropatterning offers a robust approach for investigating the nexus between mechanical cues and cellular responses, holding potential for advancing our understanding of mechanobiology.
Collapse
Affiliation(s)
- Feng Sun
- TaiKang Center for Life and Medical Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Hongyun Li
- TaiKang Center for Life and Medical Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yuru Hu
- TaiKang Center for Life and Medical Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Mengsheng Zhang
- TaiKang Center for Life and Medical Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Wenxu Wang
- TaiKang Center for Life and Medical Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Wei Chen
- TaiKang Center for Life and Medical Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Zheng Liu
- TaiKang Center for Life and Medical Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
23
|
Son YJ, Keum C, Kim M, Jeong G, Jin S, Hwang HW, Kim H, Lee K, Jeon H, Kim H, Pahk KJ, Jang HW, Sun JY, Han HS, Lee KH, Ok MR, Kim YC, Jeong Y. Selective Cell-Cell Adhesion Regulation via Cyclic Mechanical Deformation Induced by Ultrafast Nanovibrations. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37751467 DOI: 10.1021/acsami.3c08941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The adoption of dynamic mechanomodulation to regulate cellular behavior is an alternative to the use of chemical drugs, allowing spatiotemporal control. However, cell-selective targeting of mechanical stimuli is challenging due to the lack of strategies with which to convert macroscopic mechanical movements to different cellular responses. Here, we designed a nanoscale vibrating surface that controls cell behavior via selective repetitive cell deformation based on a poroelastic cell model. The vibrating indentations induce repetitive water redistribution in the cells with water redistribution rates faster than the vibrating rate; however, in the opposite case, cells perceive the vibrations as a one-time stimulus. The selective regulation of cell-cell adhesion through adjusting the frequency of nanovibration was demonstrated by suppression of cadherin expression in smooth muscle cells (fast water redistribution rate) with no change in vascular endothelial cells (slow water redistribution rate). This technique may provide a new strategy for cell-type-specific mechanical stimulation.
Collapse
Affiliation(s)
- Young Ju Son
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Changjoon Keum
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Minsoo Kim
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Goeen Jeong
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Soyeong Jin
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Hae Won Hwang
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyewon Kim
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Kyungwoo Lee
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hojeong Jeon
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Hojun Kim
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ki Joo Pahk
- Department of Biomedical Engineering, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong-Yun Sun
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyung-Seop Han
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Kwan Hyi Lee
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Myoung-Ryul Ok
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Yu-Chan Kim
- Center for Biomaterials, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Youngdo Jeong
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of HY-KIST Bio-convergence, Hanyang University, Seoul 04763, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
24
|
Hu Y, Duan Y, Salaita K. DNA Nanotechnology for Investigating Mechanical Signaling in the Immune System. Angew Chem Int Ed Engl 2023; 62:e202302967. [PMID: 37186502 PMCID: PMC11336604 DOI: 10.1002/anie.202302967] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Indexed: 05/17/2023]
Abstract
Immune recognition occurs at specialized cell-cell junctions when immune cells and target cells physically touch. In this junction, groups of receptor-ligand complexes assemble and experience molecular forces that are ultimately generated by the cellular cytoskeleton. These forces are in the range of piconewton (pN) but play crucial roles in immune cell activation and subsequent effector responses. In this minireview, we will review the development of DNA based molecular tension sensors and their applications in mapping and quantifying mechanical forces experienced by immunoreceptors including T-cell receptor (TCR), Lymphocyte function-associated antigen (LFA-1), and the B-cell receptor (BCR) among others. In addition, we will highlight the use of DNA as a mechanical gate to manipulate mechanotransduction and decipher how mechanical forces regulate antigen discrimination and receptor signaling.
Collapse
Affiliation(s)
- Yuesong Hu
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Yuxin Duan
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
25
|
Rashid SA, Dong Y, Ogasawara H, Vierengel M, Essien ME, Salaita K. All-Covalent Nuclease-Resistant and Hydrogel-Tethered DNA Hairpin Probes Map pN Cell Traction Forces. ACS APPLIED MATERIALS & INTERFACES 2023; 15:33362-33372. [PMID: 37409737 PMCID: PMC10360067 DOI: 10.1021/acsami.3c04826] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023]
Abstract
Cells sense and respond to the physical properties of their environment through receptor-mediated signaling, a process known as mechanotransduction, which can modulate critical cellular functions such as proliferation, differentiation, and survival. At the molecular level, cell adhesion receptors, such as integrins, transmit piconewton (pN)-scale forces to the extracellular matrix, and the magnitude of the force plays a critical role in cell signaling. The most sensitive approach to measuring integrin forces involves DNA hairpin-based sensors, which are used to quantify and map forces in living cells. Despite the broad use of DNA hairpin sensors to study a variety of mechanotransduction processes, these sensors are typically anchored to rigid glass slides, which are orders of magnitude stiffer than the extracellular matrix and hence modulate native biological responses. Here, we have developed nuclease-resistant DNA hairpin probes that are all covalently tethered to PEG hydrogels to image cell traction forces on physiologically relevant substrate stiffness. Using HeLa cells as a model cell line, we show that the molecular forces transmitted by integrins are highly sensitive to the bulk modulus of the substrate, and cells cultured on the 6 and 13 kPa gels produced a greater number of hairpin unfolding events compared to the 2 kPa substrates. Tension signals are spatially colocalized with pY118-paxillin, confirming focal adhesion-mediated probe opening. Additionally, we found that integrin forces are greater than 5.8 pN but less than 19 pN on 13 kPa gels. This work provides a general strategy to integrate molecular tension probes into hydrogels, which can better mimic in vivo mechanotransduction.
Collapse
Affiliation(s)
- Sk Aysha Rashid
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Yixiao Dong
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Hiroaki Ogasawara
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Maia Vierengel
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Mark Edoho Essien
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Khalid Salaita
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
26
|
Holland EN, Lobaccaro D, Fu J, García AJ. Impact of adhesive area on cellular traction force and spread area. J Biomed Mater Res A 2023; 111:609-617. [PMID: 36808220 PMCID: PMC10023502 DOI: 10.1002/jbm.a.37518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023]
Abstract
Cells integrate endogenous and exogenous mechanical forces to sense and respond to environmental signals. In particular, cell-generated microscale traction forces regulate cellular functions and impact macroscale tissue function and development. Many groups have developed tools for measuring cellular traction forces, including microfabricated post array detectors (mPADs). mPADs are a powerful tool that provides direct traction force measurements through imaging post deflections and utilizing Bernoulli-Euler beam theory. In this technical note, we investigated how mPADs presenting two different top surface areas but similar effective stiffness influence cellular spread area and traction forces for murine embryonic fibroblasts and human mesenchymal stromal cells. When focal adhesion size was restricted via mPAD top surface area, we observed a decrease in both cell spread area and cell traction forces as the mPAD top surface area decreased, but the traction force-cell area linear relationship was maintained, which is indicative of cell contractility. We conclude that the mPAD top surface area is an important parameter to consider when utilizing mPADs to measure cellular traction forces. Furthermore, the slope of the traction force-cell area linear relationship provides a useful metric to characterize cell contractility on mPADs.
Collapse
Affiliation(s)
- Elijah N. Holland
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Deborah Lobaccaro
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jianping Fu
- Department of Mechanical Engineering, Department of Biomedical Engineering, Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Andrés J. García
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
27
|
Chen YC, Li Y, Yan CCS, Hsu CP, Cheng PL, Tu HL. DNA tension assays reveal that force-dependent integrin activation regulates neurite outgrowth in primary cortical neurons. BIOMATERIALS ADVANCES 2023; 150:213431. [PMID: 37116456 DOI: 10.1016/j.bioadv.2023.213431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/30/2023]
Abstract
Biomechanical inputs are ubiquitously present in biological systems and are known to regulate various cell functions. In particular, neural cell development is sensitive to mechanical regulation, as these cells reside in one of the softest microenvironments in the body. To fully characterize and comprehend how mechanical force modulates early neuronal processes, we prepared substrates functionalized with DNA probes displaying integrin ligands, including cRGD and laminin, to quantify integrin-mediated molecular tension during neurite initiation in primary cortical neurons. Our live-cell imaging analysis reveals that integrin-mediated tension force is highly dynamic and distributed across the cell body, with the overall tension signal gradually increasing during neurite outgrowth. Notably, we detected a consistent level of mechanical force (amplitude = 4.7-12 piconewtons, pN) for cell integrin-ligand interactions. Further quantifications reveal that neurons exhibit faster cell spreading and neurite outgrowth upon interacting with ligands functionalized with 4.7 pN relative to 12 pN probes. These findings indicate that the magnitude of integrin-mediated mechanical feedback regulates neuronal activity during early neuritogenesis. Additionally, we observed that mechanical tension is correlated with calcium signaling, since inhibiting calcium influx substantially reduced mechanical tension. Thus, our findings support that the magnitude of integrin-mediated mechanical feedback regulates neuronal activity during early neuritogenesis and that mechanical force is an essential element complementing well-known biochemical regulatory mechanisms orchestrating the integrin activation machinery and controlled neurite outgrowth in cortical neurons.
Collapse
Affiliation(s)
- Ying-Chi Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Ying Li
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | | | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| | - Pei-Lin Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan.
| | - Hsiung-Lin Tu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
28
|
Metze F, Sant S, Meng Z, Klok HA, Kaur K. Swelling-Activated, Soft Mechanochemistry in Polymer Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3546-3557. [PMID: 36848262 PMCID: PMC10018775 DOI: 10.1021/acs.langmuir.2c02801] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/26/2023] [Indexed: 06/12/2023]
Abstract
Swelling in polymer materials is a ubiquitous phenomenon. At a molecular level, swelling is dictated by solvent-polymer interactions, and has been thoroughly studied both theoretically and experimentally. Favorable solvent-polymer interactions result in the solvation of polymer chains. For polymers in confined geometries, such as those that are tethered to surfaces, or for polymer networks, solvation can lead to swelling-induced tensions. These tensions act on polymer chains and can lead to stretching, bending, or deformation of the material both at the micro- and macroscopic scale. This Invited Feature Article sheds light on such swelling-induced mechanochemical phenomena in polymer materials across dimensions, and discusses approaches to visualize and characterize these effects.
Collapse
|
29
|
Zhou P, Ding L, Yan Y, Wang Y, Su B. Recent advances in label-free imaging of cell-matrix adhesions. Chem Commun (Camb) 2023; 59:2341-2351. [PMID: 36744880 DOI: 10.1039/d2cc06499e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cell-matrix adhesions play an essential role in mediating and regulating many biological processes. The adhesion receptors, typically transmembrane integrins, provide dynamic correlations between intracellular environments and extracellular matrixes (ECMs) by bi-directional signaling. In-depth investigations of cell-matrix adhesion and integrin-mediated cell adhesive force are of great significance in biology and medicine. The emergence of advanced imaging techniques and principles has facilitated the understanding of the molecular composition and structure dynamics of cell-matrix adhesions, especially the label-free imaging methods that can be used to study living cell dynamics without immunofluorescence staining. This highlight article aims to give an overview of recent developments in imaging cell-matrix adhesions in a label-free manner. Electrochemiluminescence microscopy (ECLM) and surface plasmon resonance microscopy (SPRM) are briefly introduced and their applications in imaging analysis of cell-matrix adhesions are summarized. Then we highlight the advances in mapping cell-matrix adhesion force based on molecular tension probes and fluorescence microscopy (collectively termed as MTFM). The biomaterials including polyethylene glycol (PEG), peptides and DNA for constructing tension probes in MTFM are summarized. Finally, the outlook and perspectives on the further developments of cell-matrix adhesion imaging are presented.
Collapse
Affiliation(s)
- Ping Zhou
- Key Laboratory of Excited-State Materials of Zhejiang Province, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Lurong Ding
- Key Laboratory of Excited-State Materials of Zhejiang Province, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Yajuan Yan
- Key Laboratory of Excited-State Materials of Zhejiang Province, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Yafeng Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Bin Su
- Key Laboratory of Excited-State Materials of Zhejiang Province, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
30
|
Optical Tweezers to Force Information out of Biological and Synthetic Systems One Molecule at a Time. BIOPHYSICA 2022. [DOI: 10.3390/biophysica2040047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the last few decades, in vitro single-molecule manipulation techniques have enabled the use of force and displacement as controlled variables in biochemistry. Measuring the effect of mechanical force on the real-time kinetics of a biological process gives us access to the rates, equilibrium constants and free-energy landscapes of the mechanical steps of the reaction; this information is not accessible by ensemble assays. Optical tweezers are the current method of choice in single-molecule manipulation due to their versatility, high force and spatial and temporal resolutions. The aim of this review is to describe the contributions of our lab in the single-molecule manipulation field. We present here several optical tweezers assays refined in our laboratory to probe the dynamics and mechano-chemical properties of biological molecular motors and synthetic molecular devices at the single-molecule level.
Collapse
|
31
|
Liu J, Li M, Zuo X. DNA Nanotechnology-Empowered Live Cell Measurements. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204711. [PMID: 36124715 DOI: 10.1002/smll.202204711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The systematic analysis and precise manipulation of a variety of biomolecules should lead to unprecedented findings in fundamental biology. However, conventional technology cannot meet the current requirements. Despite this, there has been progress as DNA nanotechnology has evolved to generate DNA nanostructures and circuits over the past four decades. Many potential applications of DNA nanotechnology for live cell measurements have begun to emerge owing to the biocompatibility, nanometer addressability, and stimulus responsiveness of DNA. In this review, the DNA nanotechnology-empowered live cell measurements which are currently available are summarized. The stability of the DNA nanostructures, in a cellular microenvironment, which is crucial for accomplishing precise live cell measurements, is first summarized. Thereafter, measurements in the extracellular and intracellular microenvironment, in live cells, are introduced. Finally, the challenges that are innate to, and the further developments that are possible in this nascent field are discussed.
Collapse
Affiliation(s)
- Jiangbo Liu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
32
|
Tan Y, Hu X, Hou Y, Chu Z. Emerging Diamond Quantum Sensing in Bio-Membranes. MEMBRANES 2022; 12:957. [PMID: 36295716 PMCID: PMC9609316 DOI: 10.3390/membranes12100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Bio-membranes exhibit complex but unique mechanical properties as communicative regulators in various physiological and pathological processes. Exposed to a dynamic micro-environment, bio-membranes can be seen as an intricate and delicate system. The systematical modeling and detection of their local physical properties are often difficult to achieve, both quantitatively and precisely. The recent emerging diamonds hosting quantum defects (i.e., nitrogen-vacancy (NV) center) demonstrate intriguing optical and spin properties, together with their outstanding photostability and biocompatibility, rendering them ideal candidates for biological applications. Notably, the extraordinary spin-based sensing enable the measurements of localized nanoscale physical quantities such as magnetic fields, electrical fields, temperature, and strain. These nanoscale signals can be optically read out precisely by simple optical microscopy systems. Given these exclusive properties, NV-center-based quantum sensors can be widely applied in exploring bio-membrane-related features and the communicative chemical reaction processes. This review mainly focuses on NV-based quantum sensing in bio-membrane fields. The attempts of applying NV-based quantum sensors in bio-membranes to investigate diverse physical and chemical events such as membrane elasticity, phase change, nanoscale bio-physical signals, and free radical formation are fully overviewed. We also discuss the challenges and future directions of this novel technology to be utilized in bio-membranes.
Collapse
Affiliation(s)
- Yayin Tan
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Xinhao Hu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Yong Hou
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, China
- Joint Appointment with School of Biomedical Sciences, The University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
33
|
Yang H, Hou C, Xiao W, Qiu Y. The role of mechanosensitive ion channels in the gastrointestinal tract. Front Physiol 2022; 13:904203. [PMID: 36060694 PMCID: PMC9437298 DOI: 10.3389/fphys.2022.904203] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanosensation is essential for normal gastrointestinal (GI) function, and abnormalities in mechanosensation are associated with GI disorders. There are several mechanosensitive ion channels in the GI tract, namely transient receptor potential (TRP) channels, Piezo channels, two-pore domain potassium (K2p) channels, voltage-gated ion channels, large-conductance Ca2+-activated K+ (BKCa) channels, and the cystic fibrosis transmembrane conductance regulator (CFTR). These channels are located in many mechanosensitive intestinal cell types, namely enterochromaffin (EC) cells, interstitial cells of Cajal (ICCs), smooth muscle cells (SMCs), and intrinsic and extrinsic enteric neurons. In these cells, mechanosensitive ion channels can alter transmembrane ion currents in response to mechanical forces, through a process known as mechanoelectrical coupling. Furthermore, mechanosensitive ion channels are often associated with a variety of GI tract disorders, including irritable bowel syndrome (IBS) and GI tumors. Mechanosensitive ion channels could therefore provide a new perspective for the treatment of GI diseases. This review aims to highlight recent research advances regarding the function of mechanosensitive ion channels in the GI tract. Moreover, it outlines the potential role of mechanosensitive ion channels in related diseases, while describing the current understanding of interactions between the GI tract and mechanosensitive ion channels.
Collapse
Affiliation(s)
- Haoyu Yang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Chaofeng Hou
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
- *Correspondence: Yuan Qiu,
| |
Collapse
|
34
|
Mustapha F, Sengupta K, Puech PH. May the force be with your (immune) cells: an introduction to traction force microscopy in Immunology. Front Immunol 2022; 13:898558. [PMID: 35990636 PMCID: PMC9389945 DOI: 10.3389/fimmu.2022.898558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/28/2022] [Indexed: 11/21/2022] Open
Abstract
For more than a couple of decades now, "force" has been recognized as an important physical parameter that cells employ to adapt to their microenvironment. Whether it is externally applied, or internally generated, cells use force to modulate their various actions, from adhesion and migration to differentiation and immune function. T lymphocytes use such mechano-sensitivity to decipher signals when recognizing cognate antigens presented on the surface of antigen presenting cells (APCs), a critical process in the adaptive immune response. As such, many techniques have been developed and used to measure the forces felt/exerted by these small, solitary and extremely reactive cells to decipher their influence on diverse T cell functions, primarily activation. Here, we focus on traction force microscopy (TFM), in which a deformable substrate, coated with the appropriate molecules, acts as a force sensor on the cellular scale. This technique has recently become a center of interest for many groups in the "ImmunoBiophysics" community and, as a consequence, has been subjected to refinements for its application to immune cells. Here, we present an overview of TFM, the precautions and pitfalls, and the most recent developments in the context of T cell immunology.
Collapse
Affiliation(s)
- Farah Mustapha
- Laboratory Adhesion Inflammation (LAI), INSERM, CNRS, Aix Marseille University, Marseille, France
- Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), CNRS, Aix Marseille University, Marseille, France
- Turing Center for Living Systems (CENTURI), Marseille, France
| | - Kheya Sengupta
- Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), CNRS, Aix Marseille University, Marseille, France
- Turing Center for Living Systems (CENTURI), Marseille, France
| | - Pierre-Henri Puech
- Laboratory Adhesion Inflammation (LAI), INSERM, CNRS, Aix Marseille University, Marseille, France
- Turing Center for Living Systems (CENTURI), Marseille, France
| |
Collapse
|
35
|
Wang MS, Hu Y, Sanchez EE, Xie X, Roy NH, de Jesus M, Winer BY, Zale EA, Jin W, Sachar C, Lee JH, Hong Y, Kim M, Kam LC, Salaita K, Huse M. Mechanically active integrins target lytic secretion at the immune synapse to facilitate cellular cytotoxicity. Nat Commun 2022; 13:3222. [PMID: 35680882 PMCID: PMC9184626 DOI: 10.1038/s41467-022-30809-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 05/19/2022] [Indexed: 01/25/2023] Open
Abstract
Cytotoxic lymphocytes fight pathogens and cancer by forming immune synapses with infected or transformed target cells and then secreting cytotoxic perforin and granzyme into the synaptic space, with potent and specific killing achieved by this focused delivery. The mechanisms that establish the precise location of secretory events, however, remain poorly understood. Here we use single cell biophysical measurements, micropatterning, and functional assays to demonstrate that localized mechanotransduction helps define the position of secretory events within the synapse. Ligand-bound integrins, predominantly the αLβ2 isoform LFA-1, function as spatial cues to attract lytic granules containing perforin and granzyme and induce their fusion with the plasma membrane for content release. LFA-1 is subjected to pulling forces within secretory domains, and disruption of these forces via depletion of the adaptor molecule talin abrogates cytotoxicity. We thus conclude that lymphocytes employ an integrin-dependent mechanical checkpoint to enhance their cytotoxic power and fidelity.
Collapse
Affiliation(s)
- Mitchell S Wang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pharmacology Program, Weill-Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Yuesong Hu
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Elisa E Sanchez
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Biochemistry and Molecular Biology Program, Weill-Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Xihe Xie
- Neuroscience Program, Weill-Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Nathan H Roy
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Miguel de Jesus
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin Y Winer
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elizabeth A Zale
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Weiyang Jin
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Chirag Sachar
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Joanne H Lee
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Yeonsun Hong
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Minsoo Kim
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Lance C Kam
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Morgan Huse
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
36
|
Chang Chien CY, Chou SH, Lee HH. Integrin molecular tension required for focal adhesion maturation and YAP nuclear translocation. Biochem Biophys Rep 2022; 31:101287. [PMID: 35669986 PMCID: PMC9162951 DOI: 10.1016/j.bbrep.2022.101287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022] Open
Abstract
Focal adhesions (FAs) provide the cells linkages to extracellular matrix (ECM) at sites of integrins binding and transmit mechanical forces between the ECM and the actin cytoskeleton. Cells sense and respond to physical stimuli from their surrounding environment through the activation of mechanosensitive signaling pathways, a process called mechanotransduction. In this study, we used RGD-peptide conjugated DNA tension gauge tethers (TGTs) with different tension tolerance (Ttol) to determine the molecular forces required for FA maturation in different sizes and YAP nuclear translocation. We found that the limitation of FA sizes in cells seeded on TGTs with different Ttol were less than 1 μm, 2 μm, 3 μm, and 6 μm for Ttol values of 43 pN, 50 pN, 54 pN, and 56 pN, respectively. This suggests that the molecular tension across integrins increases gradually as FA size increases throughout FA maturation. For YAP nuclear translocation, significant YAP nuclear localization was observed only in the cells seeded on the TGTs with Ttol ≥ 54 pN, but not on TGTs with Ttol ≤ 50 pN, suggesting a threshold of molecular force across integrins for YAP nuclear translocation lies in the range of 50 pN–54 pN. Defining forces required for FA maturation and YAP nuclear translocation. Integrin tension enhances gradually with the increase of FA size. Forces required for YAP nuclear translocation lies in the range of 50–54 pN.
Collapse
Affiliation(s)
- Cheng-Yu Chang Chien
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taiwan
| | - Shih-Hua Chou
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taiwan
| | - Hsiao-Hui Lee
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Taiwan
| |
Collapse
|
37
|
Poisson J, Hudson ZM. Luminescent Surface‐Tethered Polymer Brush Materials. Chemistry 2022; 28:e202200552. [DOI: 10.1002/chem.202200552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Jade Poisson
- Department of Chemistry The University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Zachary M. Hudson
- Department of Chemistry The University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| |
Collapse
|
38
|
Nishiuchi T, Aibara S, Yamakado T, Kimura R, Saito S, Sato H, Kubo T. Sterically Frustrated Aromatic Enes with Various Colors Originating from Multiple Folded and Twisted Conformations in Crystal Polymorphs. Chemistry 2022; 28:e202200286. [PMID: 35333427 DOI: 10.1002/chem.202200286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 12/11/2022]
Abstract
Overcrowded ethylenes composed of 10-methyleneanthrone and two bulky aromatic rings contain a twisted carbon-carbon double (C=C) bond as well as a folded anthrone unit. As such, they are unique frustrated aromatic enes (FAEs). Various colored crystals of these FAEs, obtained in different solvents, correspond to multiple metastable conformations of the FAEs with various twist and fold angles of the C=C bond, as well as various dihedral angles of attached aryl units with respect to the C=C bond. The relationships between color and these parameters associated with conformational features around the C=C bond were elucidated in experimental and computational studies. Owing to the fact that they are separated by small energy barriers, the variously colored conformations in the FAE crystal change in response to various external stimuli, such as mechanical grinding, hydrostatic pressure and thermal heating.
Collapse
Affiliation(s)
- Tomohiko Nishiuchi
- Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Seito Aibara
- Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Takuya Yamakado
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto, 606-8502, Japan
| | - Ryo Kimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto, 606-8502, Japan
| | - Shohei Saito
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto, 606-8502, Japan
| | - Hiroyasu Sato
- Rigaku Corporation, 3-9-12 Matsubara, Akishima, Tokyo, 196-8666, Japan
| | - Takashi Kubo
- Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives, ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
39
|
Yang L, Conley BM, Rathnam C, Cho HY, Pongkulapa T, Conklin B, Lee KB. Predictive Biophysical Cue Mapping for Direct Cell Reprogramming Using Combinatorial Nanoarrays. ACS NANO 2022; 16:5577-5586. [PMID: 35301847 DOI: 10.1021/acsnano.1c10344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biophysical cues, such as nanotopographies of extracellular matrix (ECM), are key cell regulators for direct cell reprogramming. Therefore, high-throughput methods capable of systematically screening a wide range of biophysical cue-regulated cell reprogramming are increasingly needed for tissue engineering and regenerative medicine. Here, we report the development of a dynamic laser interference lithography (DIL) to generate large-scale combinatorial biophysical cue (CBC) arrays with diverse micro/nanostructures at higher complexities than most current arrays. Using CBC arrays, a high-throughput cell mapping method is further demonstrated for the systematic investigation of biophysical cue-mediated direct cell reprogramming. This CBC array-based high-throughput cell screening approach facilitates the rapid identification of unconventional hierarchical nanopatterns that induce the direct reprogramming of human fibroblasts into neurons through epigenetic modulation mechanisms. In this way, we successfully demonstrate DIL for generating highly complex CBC arrays and establish CBC array-based cell screening as a valuable strategy for systematically investigating the role of biophysical cues in cell reprogramming.
Collapse
Affiliation(s)
- Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers University, the State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Brian M Conley
- Department of Chemistry and Chemical Biology, Rutgers University, the State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Christopher Rathnam
- Department of Chemistry and Chemical Biology, Rutgers University, the State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Hyeon-Yeol Cho
- Department of Chemistry and Chemical Biology, Rutgers University, the State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Thanapat Pongkulapa
- Department of Chemistry and Chemical Biology, Rutgers University, the State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Brandon Conklin
- Department of Chemistry and Chemical Biology, Rutgers University, the State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers University, the State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
40
|
Rashid SA, Blanchard AT, Combs JD, Fernandez N, Dong Y, Cho HC, Salaita K. DNA Tension Probes Show that Cardiomyocyte Maturation Is Sensitive to the Piconewton Traction Forces Transmitted by Integrins. ACS NANO 2022; 16:5335-5348. [PMID: 35324164 PMCID: PMC11238821 DOI: 10.1021/acsnano.1c04303] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cardiac muscle cells (CMCs) are the unit cells that comprise the heart. CMCs go through different stages of differentiation and maturation pathways to fully mature into beating cells. These cells can sense and respond to mechanical cues through receptors such as integrins which influence maturation pathways. For example, cell traction forces are important for the differentiation and development of functional CMCs, as CMCs cultured on varying substrate stiffness function differently. Most work in this area has focused on understanding the role of bulk extracellular matrix stiffness in mediating the functional fate of CMCs. Given that stiffness sensing mechanisms are mediated by individual integrin receptors, an important question in this area pertains to the specific magnitude of integrin piconewton (pN) forces that can trigger CMC functional maturation. To address this knowledge gap, we used DNA adhesion tethers that rupture at specific thresholds of force (∼12, ∼56, and ∼160 pN) to test whether capping peak integrin tension to specific magnitudes affects CMC function. We show that adhesion tethers with greater force tolerance lead to functionally mature CMCs as determined by morphology, twitching frequency, transient calcium flux measurements, and protein expression (F-actin, vinculin, α-actinin, YAP, and SERCA2a). Additionally, sarcomeric actinin alignment and multinucleation were significantly enhanced as the mechanical tolerance of integrin tethers was increased. Taken together, the results show that CMCs harness defined pN integrin forces to influence early stage development. This study represents an important step toward biophysical characterization of the contribution of pN forces in early stage cardiac differentiation.
Collapse
Affiliation(s)
- Sk Aysha Rashid
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Aaron T Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, Georgia 30332, United States
| | - J Dale Combs
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Natasha Fernandez
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 1405 Clifton Road NE, Atlanta, Georgia 30322, United States
| | - Yixiao Dong
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Hee Cheol Cho
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 1405 Clifton Road NE, Atlanta, Georgia 30322, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Khalid Salaita
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
41
|
Molecular sensors for detection of tumor-stroma crosstalk. Adv Cancer Res 2022; 154:47-91. [PMID: 35459472 DOI: 10.1016/bs.acr.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In most solid tumors, malignant cells coexist with non-cancerous host tissue comprised of a variety of extracellular matrix components and cell types, notably fibroblasts, immune cells, and endothelial cells. It is becoming increasingly evident that the non-cancerous host tissue, often referred to as the tumor stroma or the tumor microenvironment, wields tremendous influence in the proliferation, survival, and metastatic ability of cancer cells. The tumor stroma has an active biological role in the transmission of signals, such as growth factors and chemokines that activate oncogenic signaling pathways by autocrine and paracrine mechanisms. Moreover, the constituents of the stroma define the mechanical properties and the physical features of solid tumors, which influence cancer progression and response to therapy. Inspired by the emerging importance of tumor-stroma crosstalk and oncogenic physical forces, numerous biosensors, or advanced imaging and analysis techniques have been developed and applied to investigate complex and challenging questions in cancer research. These techniques facilitate measurements and biological readouts at scales ranging from subcellular to tissue-level with unprecedented level of spatial and temporal precision. Here we examine the application of biosensor technology for studying the complex and dynamic multiscale interactions of the tumor-host system.
Collapse
|
42
|
Ayad MA, Mahon T, Patel M, Cararo-Lopes MM, Hacihaliloglu I, Firestein BL, Boustany NN. Förster resonance energy transfer efficiency of the vinculin tension sensor in cultured primary cortical neuronal growth cones. NEUROPHOTONICS 2022; 9:025002. [PMID: 35651869 PMCID: PMC9150715 DOI: 10.1117/1.nph.9.2.025002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
Significance: Interaction of neurons with their extracellular environment and the mechanical forces at focal adhesions and synaptic junctions play important roles in neuronal development. Aim: To advance studies of mechanotransduction, we demonstrate the use of the vinculin tension sensor (VinTS) in primary cultures of cortical neurons. VinTS consists of TS module (TSMod), a Förster resonance energy transfer (FRET)-based tension sensor, inserted between vinculin's head and tail. FRET efficiency decreases with increased tension across vinculin. Approach: Primary cortical neurons cultured on glass coverslips coated with poly-d-lysine and laminin were transfected with plasmids encoding untargeted TSMod, VinTS, or tail-less vinculinTS (VinTL) lacking the actin-binding domain. The neurons were imaged between day in vitro (DIV) 5 to 8. We detail the image processing steps for calculation of FRET efficiency and use this system to investigate the expression and FRET efficiency of VinTS in growth cones. Results: The distribution of fluorescent constructs was similar within growth cones at DIV 5 to 8. The mean FRET efficiency of TSMod ( 28.5 ± 3.6 % ) in growth cones was higher than the mean FRET efficiency of VinTS ( 24.6 ± 2 % ) and VinTL ( 25.8 ± 1.8 % ) ( p < 10 - 6 ). While small, the difference between the FRET efficiency of VinTS and VinTL was statistically significant ( p < 10 - 3 ), suggesting that vinculin is under low tension in growth cones. Two-hour treatment with the Rho-associated kinase inhibitor Y-27632 did not affect the mean FRET efficiency. Growth cones exhibited dynamic changes in morphology as observed by time-lapse imaging. VinTS FRET efficiency showed greater variance than TSMod FRET efficiency as a function of time, suggesting a greater dependence of VinTS FRET efficiency on growth cone dynamics compared with TSMod. Conclusions: The results demonstrate the feasibility of using VinTS to probe the function of vinculin in neuronal growth cones and provide a foundation for studies of mechanotransduction in neurons using this tension probe.
Collapse
Affiliation(s)
- Marina A. Ayad
- Rutgers University, Department of Biomedical Engineering, Piscataway, New Jersey, United States
| | - Timothy Mahon
- Rutgers University, Department of Biomedical Engineering, Piscataway, New Jersey, United States
| | - Mihir Patel
- Rutgers University, Department of Cell Biology and Neuroscience, Piscataway, New Jersey, United States
| | - Marina M. Cararo-Lopes
- Rutgers University, Department of Cell Biology and Neuroscience, Piscataway, New Jersey, United States
| | - Ilker Hacihaliloglu
- Rutgers University, Department of Biomedical Engineering, Piscataway, New Jersey, United States
| | - Bonnie L. Firestein
- Rutgers University, Department of Cell Biology and Neuroscience, Piscataway, New Jersey, United States
| | - Nada N. Boustany
- Rutgers University, Department of Biomedical Engineering, Piscataway, New Jersey, United States
| |
Collapse
|
43
|
Wang L, Chen W, Li H, Xiong C, Sun F, Liu X, Hu Y, Wang W, Zhong W, Liu Z. Exploring Integrin-Mediated Force Transmission during Confined Cell Migration by DNA-Based Tension Probes. Anal Chem 2022; 94:4570-4575. [PMID: 35257583 DOI: 10.1021/acs.analchem.1c04962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mechanical forces have profound effects on the morphology and migration of cells in a two-dimensional environment. However, cells in vivo mostly migrate in three-dimensional space while physically constrained, and the mechanism by which cellular dynamic forces drive migration in this confined environment is unclear. Here, we present a method of fabricating microfluidic chips with integrated DNA-based tension probes to measure spatiotemporal variations in integrin-mediated force exerted during confined cell migration. Using this developed device, we measured the spatial locations, magnitudes, and temporal characteristics of integrin-ligand tension signals in motile cells in different microchannels and found that cells exerted less force and underwent increasingly transitory integrin-ligand interactions when migrating in confined spaces. This study demonstrates that the described method provides insights into understanding the migratory machinery of cells in geometrically confined environment that better mimics physiological conditions.
Collapse
Affiliation(s)
- Liang Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Wei Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Hongyun Li
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Chaohui Xiong
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Feng Sun
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yuru Hu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Wenxu Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Wenqun Zhong
- Hospital of Stomatology, Wuhan University, Wuhan 430072, China
| | - Zheng Liu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
44
|
Ma VPY, Hu Y, Kellner AV, Brockman JM, Velusamy A, Blanchard AT, Evavold BD, Alon R, Salaita K. The magnitude of LFA-1/ICAM-1 forces fine-tune TCR-triggered T cell activation. SCIENCE ADVANCES 2022; 8:eabg4485. [PMID: 35213231 PMCID: PMC8880789 DOI: 10.1126/sciadv.abg4485] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 12/15/2021] [Indexed: 05/15/2023]
Abstract
T cells defend against cancer and viral infections by rapidly scanning the surface of target cells seeking specific peptide antigens. This key process in adaptive immunity is sparked upon T cell receptor (TCR) binding of antigens within cell-cell junctions stabilized by integrin (LFA-1)/intercellular adhesion molecule-1 (ICAM-1) complexes. A long-standing question in this area is whether the forces transmitted through the LFA-1/ICAM-1 complex tune T cell signaling. Here, we use spectrally encoded DNA tension probes to reveal the first maps of LFA-1 and TCR forces generated by the T cell cytoskeleton upon antigen recognition. DNA probes that control the magnitude of LFA-1 force show that F>12 pN potentiates antigen-dependent T cell activation by enhancing T cell-substrate engagement. LFA-1/ICAM-1 mechanical events with F>12 pN also enhance the discriminatory power of the TCR when presented with near cognate antigens. Overall, our results show that T cells integrate multiple channels of mechanical information through different ligand-receptor pairs to tune function.
Collapse
Affiliation(s)
| | - Yuesong Hu
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Anna V. Kellner
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA 30332, USA
| | - Joshua M. Brockman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA 30332, USA
| | - Arventh Velusamy
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Aaron T. Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA 30332, USA
| | - Brian D. Evavold
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Ronen Alon
- Department of Immunology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA 30332, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
45
|
Yamakado T, Saito S. Ratiometric Flapping Force Probe That Works in Polymer Gels. J Am Chem Soc 2022; 144:2804-2815. [PMID: 35108003 DOI: 10.1021/jacs.1c12955] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polymer gels have recently attracted attention for their application in flexible devices, where mechanically robust gels are required. While there are many strategies to produce tough gels by suppressing nanoscale stress concentration on specific polymer chains, it is still challenging to directly verify the toughening mechanism at the molecular level. To solve this problem, the use of the flapping molecular force probe (FLAP) is promising because it can evaluate the nanoscale forces transmitted in the polymer chain network by ratiometric analysis of a stress-dependent dual fluorescence. A flexible conformational change of FLAP enables real-time and reversible responses to the nanoscale forces at the low force threshold, which is suitable for quantifying the percentage of the stressed polymer chains before structural damage. However, the previously reported FLAP only showed a negligible response in solvated environments because undesirable spontaneous planarization occurs in the excited state, even without mechanical force. Here, we have developed a new ratiometric force probe that functions in common organogels. Replacement of the anthraceneimide units in the flapping wings with pyreneimide units largely suppresses the excited-state planarization, leading to the force probe function under wet conditions. The FLAP-doped polyurethane organogel reversibly shows a dual-fluorescence response under sub-MPa compression. Moreover, the structurally modified FLAP is also advantageous in the wide dynamic range of its fluorescence response in solvent-free elastomers, enabling clearer ratiometric fluorescence imaging of the molecular-level stress concentration during crack growth in a stretched polyurethane film.
Collapse
Affiliation(s)
- Takuya Yamakado
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shohei Saito
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
46
|
Sun W, Gao X, Lei H, Wang W, Cao Y. Biophysical Approaches for Applying and Measuring Biological Forces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105254. [PMID: 34923777 PMCID: PMC8844594 DOI: 10.1002/advs.202105254] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 05/13/2023]
Abstract
Over the past decades, increasing evidence has indicated that mechanical loads can regulate the morphogenesis, proliferation, migration, and apoptosis of living cells. Investigations of how cells sense mechanical stimuli or the mechanotransduction mechanism is an active field of biomaterials and biophysics. Gaining a further understanding of mechanical regulation and depicting the mechanotransduction network inside cells require advanced experimental techniques and new theories. In this review, the fundamental principles of various experimental approaches that have been developed to characterize various types and magnitudes of forces experienced at the cellular and subcellular levels are summarized. The broad applications of these techniques are introduced with an emphasis on the difficulties in implementing these techniques in special biological systems. The advantages and disadvantages of each technique are discussed, which can guide readers to choose the most suitable technique for their questions. A perspective on future directions in this field is also provided. It is anticipated that technical advancement can be a driving force for the development of mechanobiology.
Collapse
Affiliation(s)
- Wenxu Sun
- School of SciencesNantong UniversityNantong226019P. R. China
| | - Xiang Gao
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
| | - Hai Lei
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023P. R. China
| | - Wei Wang
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
| | - Yi Cao
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023P. R. China
| |
Collapse
|
47
|
Baek KY, Kim S, Koh HR. Molecular Tension Probes to Quantify Cell-Generated Mechanical Forces. Mol Cells 2022; 45:26-32. [PMID: 35114645 PMCID: PMC8819489 DOI: 10.14348/molcells.2022.2049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 11/27/2022] Open
Abstract
Living cells generate, sense, and respond to mechanical forces through their interaction with neighboring cells or extracellular matrix, thereby regulating diverse cellular processes such as growth, motility, differentiation, and immune responses. Dysregulation of mechanosensitive signaling pathways is found associated with the development and progression of various diseases such as cancer. Yet, little is known about the mechanisms behind mechano-regulation, largely due to the limited availability of tools to study it at the molecular level. The recent development of molecular tension probes allows measurement of cellular forces exerted by single ligandreceptor interaction, which has helped in revealing the hitherto unknown mechanistic details of various mechanosensitive processes in living cells. Here, we provide an introductory overview of two methods based on molecular tension probes, tension gauge tether (TGT), and molecular tension fluorescence microscopy (MTFM). TGT utilizes the irreversible rupture of double-stranded DNA tether upon application of force in the piconewton (pN) range, whereas MTFM utilizes the reversible extension of molecular springs such as polymer or single-stranded DNA hairpin under applied pN forces. Specifically, the underlying principle of how molecular tension probes measure cell-generated mechanical forces and their applications to mechanosensitive biological processes are described.
Collapse
Affiliation(s)
- Kyung Yup Baek
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea
| | - Seohyun Kim
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea
| | - Hye Ran Koh
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
48
|
Kotani R, Yokoyama S, Nobusue S, Yamaguchi S, Osuka A, Yabu H, Saito S. Bridging pico-to-nanonewtons with a ratiometric force probe for monitoring nanoscale polymer physics before damage. Nat Commun 2022; 13:303. [PMID: 35027559 PMCID: PMC8758707 DOI: 10.1038/s41467-022-27972-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023] Open
Abstract
Understanding the transmission of nanoscale forces in the pico-to-nanonewton range is important in polymer physics. While physical approaches have limitations in analyzing the local force distribution in condensed environments, chemical analysis using force probes is promising. However, there are stringent requirements for probing the local forces generated before structural damage. The magnitude of those forces corresponds to the range below covalent bond scission (from 200 pN to several nN) and above thermal fluctuation (several pN). Here, we report a conformationally flexible dual-fluorescence force probe with a theoretically estimated threshold of approximately 100 pN. This probe enables ratiometric analysis of the distribution of local forces in a stretched polymer chain network. Without changing the intrinsic properties of the polymer, the force distribution was reversibly monitored in real time. Chemical control of the probe location demonstrated that the local stress concentration is twice as biased at crosslinkers than at main chains, particularly in a strain-hardening region. Due to the high sensitivity, the percentage of the stressed force probes was estimated to be more than 1000 times higher than the activation rate of a conventional mechanophore.
Collapse
Affiliation(s)
- Ryota Kotani
- Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Soichi Yokoyama
- Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Shunpei Nobusue
- Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan
| | | | - Atsuhiro Osuka
- Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Hiroshi Yabu
- WPI-Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai, 980-8577, Japan.
| | - Shohei Saito
- Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan.
- PRESTO, Japan Science and Technology Agency, Kyoto, 606-8502, Japan.
| |
Collapse
|
49
|
Beshay PE, Cortes-Medina MG, Menyhert MM, Song JW. The biophysics of cancer: emerging insights from micro- and nanoscale tools. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100056. [PMID: 35156093 PMCID: PMC8827905 DOI: 10.1002/anbr.202100056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer is a complex and dynamic disease that is aberrant both biologically and physically. There is growing appreciation that physical abnormalities with both cancer cells and their microenvironment that span multiple length scales are important drivers for cancer growth and metastasis. The scope of this review is to highlight the key advancements in micro- and nano-scale tools for delineating the cause and consequences of the aberrant physical properties of tumors. We focus our review on three important physical aspects of cancer: 1) solid mechanical properties, 2) fluid mechanical properties, and 3) mechanical alterations to cancer cells. Beyond posing physical barriers to the delivery of cancer therapeutics, these properties are also known to influence numerous biological processes, including cancer cell invasion and migration leading to metastasis, and response and resistance to therapy. We comment on how micro- and nanoscale tools have transformed our fundamental understanding of the physical dynamics of cancer progression and their potential for bridging towards future applications at the interface of oncology and physical sciences.
Collapse
Affiliation(s)
- Peter E Beshay
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210
| | | | - Miles M Menyhert
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
50
|
García-Calvo J, López-Andarias J, Maillard J, Mercier V, Roffay C, Roux A, Fürstenberg A, Sakai N, Matile S. HydroFlipper membrane tension probes: imaging membrane hydration and mechanical compression simultaneously in living cells. Chem Sci 2022; 13:2086-2093. [PMID: 35308858 PMCID: PMC8849034 DOI: 10.1039/d1sc05208j] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/22/2022] [Indexed: 12/29/2022] Open
Abstract
HydroFlippers are introduced as the first fluorescent membrane tension probes that report simultaneously on membrane compression and hydration. The probe design is centered around a sensing cycle that couples the mechanical planarization of twisted push–pull fluorophores with the dynamic covalent hydration of their exocyclic acceptor. In FLIM images of living cells, tension-induced deplanarization is reported as a decrease in fluorescence lifetime of the dehydrated mechanophore. Membrane hydration is reported as the ratio of the photon counts associated to the hydrated and dehydrated mechanophores in reconvoluted lifetime frequency histograms. Trends for tension-induced decompression and hydration of cellular membranes of interest (MOIs) covering plasma membrane, lysosomes, mitochondria, ER, and Golgi are found not to be the same. Tension-induced changes in mechanical compression are rather independent of the nature of the MOI, while the responsiveness to changes in hydration are highly dependent on the intrinsic order of the MOI. These results confirm the mechanical planarization of push–pull probes in the ground state as most robust mechanism to routinely image membrane tension in living cells, while the availability of simultaneous information on membrane hydration will open new perspectives in mechanobiology. HydroFlippers respond to membrane compression and hydration in the same fluorescence lifetime imaging microscopy histogram: the responses do not correlate.![]()
Collapse
Affiliation(s)
- José García-Calvo
- School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Javier López-Andarias
- School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Jimmy Maillard
- School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Vincent Mercier
- School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Chloé Roffay
- School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Aurélien Roux
- School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Alexandre Fürstenberg
- School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Naomi Sakai
- School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|