1
|
Janecki D, Kao‐Scharf C, Hoffmann A. Discovery and Characterization of Unusual O-Linked Glycosylation of IgG4 Antibody Using LC-MS. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2025; 39:e9969. [PMID: 39663547 PMCID: PMC11635057 DOI: 10.1002/rcm.9969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/27/2024] [Accepted: 12/01/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Consensus is that immunoglobulin IgG4 contains only N-linked glycosylation. The analysis of several batches of commercial biopharmaceutical product Dupixent using top-down intact mass spectrometry revealed that this IgG4 features a small amount of O-linked glycosylation in the Fab region. This is the first report of an O-linked glycosylation in an IgG4 antibody. METHODS Monoclonal antibody solutions were subjected to cation exchange (CEX) and reverse phase (RP) chromatography and/or additional preconcentration/fractionation methods to prepare samples for subsequent analysis. Advanced MS analysis and fragmentation techniques (HCD, ETD, and EThcD) were employed to localize the O-linked glycosylation as well as elucidate the structure of the glycan(s). RESULTS O-linked glycosylation in the IgG4 dupilumab was discovered by intact-MS. The probable location was narrowed down to four sites in the CH1 domain, and the structure of the O-linked glycan was determined to be of Core 1 type. The relative quantities of the modifications were low, but the glycosylation was consistently detected in several batches of Dupixent. CONCLUSIONS We discovered a rare glycosylation modification on dupilumab, an IgG4 antibody. The O-linked glycosylation was characterized and localized in the Fab region.
Collapse
|
2
|
Wang Q, Liu X, Li Y, Wang Z, Fang Z, Wang Y, Guo X, Dong M, Ye M, Jia L. Rational development of functional hydrophilic polymer to characterize site-specific glycan differences between bovine milk and colostrum. Food Chem 2024; 460:140669. [PMID: 39094346 DOI: 10.1016/j.foodchem.2024.140669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
As vastly modified on secreted proteins, N-glycosylation is found on milk proteins and undergo dynamic changes during lactation, characterizing milk protein glycosylation would benefit the elucidation of glycosylation pattern differences between samples. However, their low abundance required specific enrichment. Herein, through rational design and controllable synthesis, we developed a novel multi-functional polymer for the isolation of protein glycosylation. It efficiently separated glycopeptides from complex background inferences with mutual efforts of hydrophilic interaction chromatography (HILIC), metal ion affinity and ion exchange. By fine-tuning Ca2+ as regulators of aldehyde hyaluronic acid (HA) conformation, the grafting density of HA was remarkably improved. Moreover, grafting Ti4+ further enhanced the enrichment performance. Application of this material to characterize bovine milk and colostrum proteins yields 479 and 611 intact glycopeptides, respectively. Comparative analysis unraveled the distinct glycosylation pattern as well the different distribution of glycoprotein abundances between the two samples, offering insights for functional food development.
Collapse
Affiliation(s)
- Qi Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116000, Liaoning, China; State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiaoyan Liu
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanan Li
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhongyu Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng Fang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yan Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xin Guo
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116000, Liaoning, China
| | - Mingming Dong
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116000, Liaoning, China.
| | - Mingliang Ye
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Lingyun Jia
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116000, Liaoning, China.
| |
Collapse
|
3
|
Zhang L, Wang W, Yang Y, Li P, Liu X, Zhu W, Yang W, Wang S, Lin Y, Liu X. Expression and immobilization of novel N-glycan-binding protein for highly efficient purification and enrichment of N-glycans, N-glycopeptides, and N-glycoproteins. Anal Bioanal Chem 2024; 416:6859-6868. [PMID: 39412696 DOI: 10.1007/s00216-024-05583-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/31/2024] [Accepted: 10/01/2024] [Indexed: 11/21/2024]
Abstract
Comprehensive and selective enrichment of N-glycans, N-glycopeptides, and N-glycoproteins prior to analysis is of great significance in N-glycomics research, reducing sample complexity, removing impurity interference, increasing sample abundance and enhancing signal intensity. However, only an Fbs1 (F-box protein that recognizes sugar chain 1) GYR variant (Fg) can enrich these N-glycomolecules solely due to its substantial binding affinity for the core pentasaccharide motif of N-glycans. Stationary phase separation is commonly used to enrich N-glycomolecules efficiently. Herein, DNA encoding the Fg was cloned into pGEX-4T-1, and the protein was expressed with a GST tag, which facilitates the convenient and efficient immobilization of recombinant GST-tagged Fg to GSH agarose resin. The yield of the GST-tagged Fg reached to 0.05 g/L after optimization of the induction condition, and the purified protein exhibited good identification ability and excellent stability for months. In particular, the immobilized GST-tagged Fg can enrich N-glycans released by PNGase F and capture derivatized N-glycans possessing an intact terminal N-acetyl glucosamine (GlcNAc). Validation of immobilized GST-tagged Fg with standard N-glycopeptides and N-glycoproteins revealed its high loading capacity, sensitivity, and selectivity. The novel immobilized GST-tagged Fg is a convenient and efficient enrichment material specific for N-glycans, N-glycopeptides, and N-glycoproteins, suggesting excellent performance and prospects for industrial application.
Collapse
Affiliation(s)
- Liang Zhang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan, 430079, China.
| | - Wenhui Wang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yueqin Yang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan, 430079, China
| | - Pengjie Li
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiang Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wenjie Zhu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Yang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan, 430079, China
| | - Song Wang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan, 430079, China.
| | - Yawei Lin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
| | - Xin Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
4
|
Wang Y, Lei K, Zhao L, Zhang Y. Clinical glycoproteomics: methods and diseases. MedComm (Beijing) 2024; 5:e760. [PMID: 39372389 PMCID: PMC11450256 DOI: 10.1002/mco2.760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Glycoproteins, representing a significant proportion of posttranslational products, play pivotal roles in various biological processes, such as signal transduction and immune response. Abnormal glycosylation may lead to structural and functional changes of glycoprotein, which is closely related to the occurrence and development of various diseases. Consequently, exploring protein glycosylation can shed light on the mechanisms behind disease manifestation and pave the way for innovative diagnostic and therapeutic strategies. Nonetheless, the study of clinical glycoproteomics is fraught with challenges due to the low abundance and intricate structures of glycosylation. Recent advancements in mass spectrometry-based clinical glycoproteomics have improved our ability to identify abnormal glycoproteins in clinical samples. In this review, we aim to provide a comprehensive overview of the foundational principles and recent advancements in clinical glycoproteomic methodologies and applications. Furthermore, we discussed the typical characteristics, underlying functions, and mechanisms of glycoproteins in various diseases, such as brain diseases, cardiovascular diseases, cancers, kidney diseases, and metabolic diseases. Additionally, we highlighted potential avenues for future development in clinical glycoproteomics. These insights provided in this review will enhance the comprehension of clinical glycoproteomic methods and diseases and promote the elucidation of pathogenesis and the discovery of novel diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yujia Wang
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Kaixin Lei
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Lijun Zhao
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Yong Zhang
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
5
|
Xu X, Yin K, Wu R. Systematic Investigation of the Trafficking of Glycoproteins on the Cell Surface. Mol Cell Proteomics 2024; 23:100761. [PMID: 38593903 PMCID: PMC11087972 DOI: 10.1016/j.mcpro.2024.100761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
Glycoproteins located on the cell surface play a pivotal role in nearly every extracellular activity. N-glycosylation is one of the most common and important protein modifications in eukaryotic cells, and it often regulates protein folding and trafficking. Glycosylation of cell-surface proteins undergoes meticulous regulation by various enzymes in the endoplasmic reticulum (ER) and the Golgi, ensuring their proper folding and trafficking to the cell surface. However, the impacts of protein N-glycosylation, N-glycan maturity, and protein folding status on the trafficking of cell-surface glycoproteins remain to be explored. In this work, we comprehensively and site-specifically studied the trafficking of cell-surface glycoproteins in human cells. Integrating metabolic labeling, bioorthogonal chemistry, and multiplexed proteomics, we investigated 706 N-glycosylation sites on 396 cell-surface glycoproteins in monocytes, either by inhibiting protein N-glycosylation, disturbing N-glycan maturation, or perturbing protein folding in the ER. The current results reveal their distinct impacts on the trafficking of surface glycoproteins. The inhibition of protein N-glycosylation dramatically suppresses the trafficking of many cell-surface glycoproteins. The N-glycan immaturity has more substantial effects on proteins with high N-glycosylation site densities, while the perturbation of protein folding in the ER exerts a more pronounced impact on surface glycoproteins with larger sizes. Furthermore, for N-glycosylated proteins, their trafficking to the cell surface is related to the secondary structures and adjacent amino acid residues of glycosylation sites. Systematic analysis of surface glycoprotein trafficking advances our understanding of the mechanisms underlying protein secretion and surface presentation.
Collapse
Affiliation(s)
- Xing Xu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kejun Yin
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
6
|
Liu Y, Lu X, Liu S, Li Y, He X, Chen L, Zhang Y. Electrospun Fiber Membrane with the Dual Affinity of Chelation and Covalent Interactions for the Efficient Enrichment of Glycoproteins. ACS APPLIED BIO MATERIALS 2024; 7:2499-2510. [PMID: 38517141 DOI: 10.1021/acsabm.4c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
As important biomarkers of many diseases, glycoproteins are of great significance to biomedical science. It is essential to develop efficient glycoprotein enrichment platforms and investigate their adsorption mechanism. In this work, a conspicuous enrichment strategy for glycoproteins was developed by using an electrospun fiber membrane wrapped with polydopamine (PDA) and modified with 3-aminophenylboronic acid and nickel ions, named PAN/DA@PDA@APBA/Ni. The enrichment characteristics of PAN/DA@PDA@APBA/Ni toward glycoproteins were explored through adsorption behavior. Thanks to the existence of two sites of interaction (metal ion chelation and boronate affinity), PAN/DA@PDA@APBA/Ni exhibited significant enrichment capacity for glycoproteins, ovalbumin (604.6 mg/g), and human immunoglobulin G (331.0 mg/g). The adsorption kinetic results of glycoprotein ovalbumin on PAN/DA@PDA@APBA/Ni conform to the pseudo-first-order kinetic model in the first adsorption stage, while the second half adsorption stage is more in line with the pseudo-second-order kinetic model. Moreover, the physical characteristics of PAN/DA@PDA@APBA/Ni and subsequent adsorption experiments on electrospun fiber modified with only phenylboronic acid or nickel ions both confirmed two sites of interaction (metal ion chelation and boronate affinity, respectively). Furthermore, a stepwise elution method with dual-affinity interaction was designed and successfully applied to enrich glycoproteins in real biological samples. This work provides an idea for sample pretreatment, especially for the design of dual-affinity materials in glycoproteins enrichment.
Collapse
Affiliation(s)
- Yaqi Liu
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xing Lu
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shiling Liu
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yijun Li
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
- National Demonstration Center for Experimental Chemistry Education (Nankai University), Tianjin 300071, China
| | - Xiwen He
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Langxing Chen
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yukui Zhang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116011, China
| |
Collapse
|
7
|
Balbisi M, Sugár S, Turiák L. Protein glycosylation in lung cancer from a mass spectrometry perspective. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38576136 DOI: 10.1002/mas.21882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/27/2024] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
Lung cancer is a severe disease for which better diagnostic and therapeutic approaches are urgently needed. Increasing evidence implies that aberrant protein glycosylation plays a crucial role in the pathogenesis and progression of lung cancer. Differences in glycosylation patterns have been previously observed between healthy and cancerous samples as well as between different lung cancer subtypes, which suggests untapped diagnostic potential. In addition, understanding the changes mediated by glycosylation may shed light on possible novel therapeutic targets and personalized treatment strategies for lung cancer patients. Mass spectrometry based glycomics and glycoproteomics have emerged as powerful tools for in-depth characterization of changes in protein glycosylation, providing valuable insights into the molecular basis of lung cancer. This paper reviews the literature on the analysis of protein glycosylation in lung cancer using mass spectrometry, which is dominated by manuscripts published over the past 5 years. Studies analyzing N-glycosylation, O-glycosylation, and glycosaminoglycan patterns in tissue, serum, plasma, and rare biological samples of lung cancer patients are highlighted. The current knowledge on the potential utility of glycan and glycoprotein biomarkers is also discussed.
Collapse
Affiliation(s)
- Mirjam Balbisi
- MTA-TTK Lendület (Momentum) Glycan Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
| | - Simon Sugár
- MTA-TTK Lendület (Momentum) Glycan Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Lilla Turiák
- MTA-TTK Lendület (Momentum) Glycan Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
8
|
Zhang J, Miao Y, Jing H, Wu J, Liu C. Facial on-line enrichment of glycoproteins by capillary electrophoresis with boronate-functionalized poly(glycidyl methacrylate) microparticles coated column. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1234:124013. [PMID: 38295722 DOI: 10.1016/j.jchromb.2024.124013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 02/18/2024]
Abstract
A facial and rapid method for glycoproteins enrichment by capillary electrophoresis was developed. The 3-aminophenylboronic acid-functionalized poly(glycidyl methacrylate) microparticles (PGMA@APBA) were attached to the capillary inlet (length of ∼1.5 cm) by electrostatic self-assemble action to prepare a partially coated capillary column. The process is simple and reversible, allowing for easy renewal of the PGMA@APBA coating when its enrichment efficiency decreases. By utilizing the coated column, glycoproteins can be enriched within 2 min. The column exhibits a specific enrichment for glycoproteins and can be consecutively used for approximately 60 runs. The relative standard deviations (RSDs) of peak area of run-to-run (n = 5) and batch-to-batch (n = 3) were 1.5 % and 1.0%, respectively. The method was successfully applied to enrich glycoproteins from 1 × 1012-fold diluted real egg white sample, indicating its practical applicability.
Collapse
Affiliation(s)
- Jian Zhang
- School of Pharmacy, Xi' an Medical University, Xi'an 710021, China; Institute of Medicine, Xi' an Medical University, Xi'an 710021, China
| | - Yanqing Miao
- School of Pharmacy, Xi' an Medical University, Xi'an 710021, China; Institute of Medicine, Xi' an Medical University, Xi'an 710021, China
| | - Hui Jing
- School of Pharmacy, Xi' an Medical University, Xi'an 710021, China; Institute of Medicine, Xi' an Medical University, Xi'an 710021, China
| | - Jingwen Wu
- School of Pharmacy, Xi' an Medical University, Xi'an 710021, China
| | - Chunye Liu
- School of Pharmacy, Xi' an Medical University, Xi'an 710021, China; Institute of Medicine, Xi' an Medical University, Xi'an 710021, China.
| |
Collapse
|
9
|
Xiong F, Zhang T, Ma J, Jia Q. Dual-ligand hydrogen-bonded organic framework: Tailored for mono-phosphopeptides and glycopeptides analysis. Talanta 2024; 266:125068. [PMID: 37574607 DOI: 10.1016/j.talanta.2023.125068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Hydrogen-bonded organic frameworks (HOFs) have emerged as a promising class of materials for applications of separation and enrichment. Utilizing multiple-ligands to construct HOFs is a promising avenue towards the development of structurally stable and functionally diverse frameworks, offering opportunities to create customized binding sites for selective recognition of biomolecules. In recent years, due to the crucial role that protein post-translational modifications (PTMs) play in maintaining protein function and regulating signaling pathways, and the growing recognition of the extensive cross-talk that can occur between PTMs, simultaneous analysis of different types of PTMs represents a requirement of a new generation of enrichment materials. Here, for the first attempt, we report a dual-ligand HOF constructed from borate anion and guanidinium cation for the simultaneous identification of glycopeptides and phosphopeptides, especially mono-phosphopeptides. According to theoretical calculations, the HOF functional sites display a synergistic "matching" effect with mono-phosphopeptides, resulting in a stronger enrichment effect for mono-phosphopeptides as compared to multi-phosphopeptides. Also, due to its high hydrophilicity and boronate affinity, this material can efficiently capture glycoproteins. HOF is set to become an active research direction in the development of highly efficient simultaneous protein enrichment materials, and offers a new approach for comprehensive PTMs analysis.
Collapse
Affiliation(s)
- Fangfang Xiong
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Te Zhang
- China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Jiutong Ma
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
10
|
Ulke J, Schwedler C, Krüger J, Stein V, Geserick P, Kleinridders A, Kappert K. High-fat diet alters N-glycosylation of PTPRJ in murine liver. J Nutr Biochem 2024; 123:109500. [PMID: 37875230 DOI: 10.1016/j.jnutbio.2023.109500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/10/2023] [Accepted: 10/21/2023] [Indexed: 10/26/2023]
Abstract
Protein tyrosine phosphatases (PTPs) regulate multiple signaling pathways. Disruption of tyrosine phosphorylation through imbalanced action between protein tyrosine kinases (RTKs) and PTPs is a hallmark of metabolic disorders, including insulin resistance. A representative member of the receptor-type PTP family, PTPRJ (DEP-1), was previously identified as a negative regulator of insulin signaling and possesses post-translational glycosylation sites. In this regard, it seems of great importance to decipher the structure of PTPRJ's glycosylation, particularly in the context of metabolic disturbances, but this has not been done in detail. Thus, here we aimed at characterizing the glycosylation pattern of PTPRJ in liver. We show that N-glycosylation accounts for up to half of PTPRJ's molecular weight. Applying mass spectrometry, we detected increased levels of high-mannose structures in PTPRJ in liver tissue of obese mice compared to lean littermates. In addition, complex neutral structures without fucose were also elevated in PTPRJ of high-fat diet (HFD) mice. Conversely, complex fucosylated N-glycans as well as sialylated bi- and triantennary N-glycans, were significantly reduced in PTPRJ of HFD-derived liver tissue compared to LFD by ∼two fold (P≤.01, P≤.0001 and P≤.001, respectively). In congruence with these findings, the mannosidase MAN2A1, responsible for the conversion of high-mannose to complex N-glycans, was significantly downregulated under HFD conditions. Here we present for the first time that HFD-induced obesity impacts on the glycosylation pattern of the insulin signaling component PTPRJ in liver. These findings may inspire new research on the glycosylation of PTPs in metabolic diseases and may open up new therapeutic approaches.
Collapse
Affiliation(s)
- Jannis Ulke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Berlin, Germany
| | - Christian Schwedler
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Janine Krüger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Berlin, Germany
| | - Vanessa Stein
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Berlin, Germany
| | - Peter Geserick
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Berlin, Germany
| | - André Kleinridders
- Department of Molecular and Experimental Nutritional Medicine, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Kai Kappert
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Berlin, Germany.
| |
Collapse
|
11
|
Bains RK, Nasseri SA, Liu F, Wardman JF, Rahfeld P, Withers SG. Characterization of a new family of 6-sulfo-N-acetylglucosaminidases. J Biol Chem 2023; 299:105214. [PMID: 37660924 PMCID: PMC10570127 DOI: 10.1016/j.jbc.2023.105214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023] Open
Abstract
Sulfation is widespread in nature and plays an important role in modulating biological function. Among the strategies developed by microbes to access sulfated oligosaccharides as a nutrient source is the production of 6-sulfoGlcNAcases to selectively release 6-sulfoGlcNAc from target oligosaccharides. Thus far, all 6-sulfoGlcNAcases identified have belonged to the large GH20 family of β-hexosaminidases. Ηere, we identify and characterize a new, highly specific non-GH20 6-sulfoGlcNAcase from Streptococcus pneumoniae TIGR4, Sp_0475 with a greater than 110,000-fold preference toward N-acetyl-β-D-glucosamine-6-sulfate substrates over the nonsulfated version. Sp_0475 shares distant sequence homology with enzymes of GH20 and with the newly formed GH163 family. However, the sequence similarity between them is sufficiently low that Sp_0475 has been assigned as the founding member of a new glycoside hydrolase family, GH185. By combining results from site-directed mutagenesis with mechanistic studies and bioinformatics we provide insight into the substrate specificity, mechanism, and key active site residues of Sp_0475. Enzymes of the GH185 family follow a substrate-assisted mechanism, consistent with their distant homology to the GH20 family, but the catalytic residues involved are quite different. Taken together, our results highlight in more detail how microbes can degrade sulfated oligosaccharides for nutrients.
Collapse
Affiliation(s)
- Rajneesh K Bains
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Seyed A Nasseri
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Feng Liu
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jacob F Wardman
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter Rahfeld
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen G Withers
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
12
|
Li M, Xiong Y, Qing G. Innovative Chemical Tools to Address Analytical Challenges of Protein Phosphorylation and Glycosylation. Acc Chem Res 2023; 56:2514-2525. [PMID: 37638729 DOI: 10.1021/acs.accounts.3c00397] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Affiliation(s)
- Minmin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P. R. China
| | - Yuting Xiong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P. R. China
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P. R. China
| |
Collapse
|
13
|
Li Y, Guo W, Zhang Q, Yang B, Zhang Y, Yang Y, Liu G, Pan L, Zhang W, Kong D. Improved analysis ZIC-HILIC-HCD-Orbitrap method for mapping the glycopeptide by mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123852. [PMID: 37633008 DOI: 10.1016/j.jchromb.2023.123852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
Glycosylation is one of the most common post-translational modifications (PTMs). Protein glycosylation analysis is the bottleneck to deeply understand their functions. At present, the LC-MS analysis of glycosylated post-translational modification is mainly focused on the analysis of glycopeptides. However, the factors affecting the identification of glycopeptides were not fully elucidated. In the paper, we have carefully studied the factors, e.g., HILIC materials, search engines, protein amount, gradient duration, extraction solution, etc. According to the results, HILIC materials were the most important factors affecting the glycopeptides identification, and the amphoteric sulfoalkyl betaine stationary phase enriched glycopeptides 6-fold more compared to the amphiphilic ion-bonded fully porous spherical silica stationary phase. We explored the influence of the extraction solutions on glycan identification. Comparing sodium dodecyl sulfate (SDS) and urea (UA), the results showed that N-glycolylneuraminic acid (NeuGc) type of glycan content was found to be increased 1.4-fold in the SDS compared to UA. Besides, we explored the influence of the search engine on glycopeptide identification. Comparing pGlyco3.0 and MSFragger-Glyco, it was observed that pGlyco3.0 outperformed MSFragger-Glyco in identifying glycopeptides. Then, using our optimized method we found that there was a significant difference in the distribution of monosaccharide types in plasma and brain tissue, e.g., the content of NeuAc in brain was 5-fold higher than that in plasma. To importantly, two glycoproteins (Neurexin-2 and SUN domain-containing protein 2) were also found for the first time by our method. In summary, we have comprehensively studied the factors influencing glycopeptide identification than any previous research, and the optimized method could be widely used for identifying the glycoproteins or glycolpeptides biomarkers for disease detection and therapeutic targets.
Collapse
Affiliation(s)
- Yahui Li
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Wenyan Guo
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Qingning Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Bingkun Yang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China; School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Yuyu Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yi Yang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China; The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guangyuan Liu
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Liangyu Pan
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Wei Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China.
| | - Dezhi Kong
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
14
|
Xu S, Wu R. Glycobiology and proteomics: has mass spectrometry moved the field forward? Expert Rev Proteomics 2023; 20:303-307. [PMID: 37667879 PMCID: PMC10841282 DOI: 10.1080/14789450.2023.2255748] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/26/2023] [Indexed: 09/06/2023]
Affiliation(s)
- Senhan Xu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
15
|
Lee JY, Jonus HC, Sadanand A, Branella GM, Maximov V, Suttapitugsakul S, Schniederjan MJ, Shim J, Ho A, Parwani KK, Fedanov A, Pilgrim AA, Silva JA, Schnepp RW, Doering CB, Wu R, Spencer HT, Goldsmith KC. Identification and targeting of protein tyrosine kinase 7 (PTK7) as an immunotherapy candidate for neuroblastoma. Cell Rep Med 2023; 4:101091. [PMID: 37343516 PMCID: PMC10314120 DOI: 10.1016/j.xcrm.2023.101091] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/17/2023] [Accepted: 05/24/2023] [Indexed: 06/23/2023]
Abstract
GD2-targeting immunotherapies have improved survival in children with neuroblastoma, yet on-target, off-tumor toxicities can occur and a subset of patients cease to respond. The majority of neuroblastoma patients who receive immunotherapy have been previously treated with cytotoxic chemotherapy, making it paramount to identify neuroblastoma-specific antigens that remain stable throughout standard treatment. Cell surface glycoproteomics performed on human-derived neuroblastoma tumors in mice following chemotherapy treatment identified protein tyrosine kinase 7 (PTK7) to be abundantly expressed. Furthermore, PTK7 shows minimal expression on pediatric-specific normal tissues. We developed an anti-PTK7 chimeric antigen receptor (CAR) and find PTK7 CAR T cells specifically target and kill PTK7-expressing neuroblastoma in vitro. In vivo, human/murine binding PTK7 CAR T cells regress aggressive neuroblastoma metastatic mouse models and prolong survival with no toxicity. Together, these data demonstrate preclinical efficacy and tolerability for targeting PTK7 and support ongoing investigations to optimize PTK7-targeting CAR T cells for neuroblastoma.
Collapse
Affiliation(s)
- Jasmine Y Lee
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Cancer Biology Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA; Aflac Cancer and Blood Disorders Center at the Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Hunter C Jonus
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Aflac Cancer and Blood Disorders Center at the Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Arhanti Sadanand
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Aflac Cancer and Blood Disorders Center at the Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Gianna M Branella
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Cancer Biology Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA; Aflac Cancer and Blood Disorders Center at the Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Victor Maximov
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Aflac Cancer and Blood Disorders Center at the Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Matthew J Schniederjan
- Department of Pathology and Laboratory Medicine, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Jenny Shim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Aflac Cancer and Blood Disorders Center at the Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Andrew Ho
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Cancer Biology Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA; Aflac Cancer and Blood Disorders Center at the Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Kiran K Parwani
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Cancer Biology Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA; Aflac Cancer and Blood Disorders Center at the Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Andrew Fedanov
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Aflac Cancer and Blood Disorders Center at the Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Adeiye A Pilgrim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Cancer Biology Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA; Aflac Cancer and Blood Disorders Center at the Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Jordan A Silva
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Cancer Biology Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA; Aflac Cancer and Blood Disorders Center at the Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Robert W Schnepp
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Aflac Cancer and Blood Disorders Center at the Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Christopher B Doering
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Aflac Cancer and Blood Disorders Center at the Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - H Trent Spencer
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Aflac Cancer and Blood Disorders Center at the Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Kelly C Goldsmith
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Aflac Cancer and Blood Disorders Center at the Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
16
|
Xu Z, Liu Y, He S, Sun R, Zhu C, Li S, Hai S, Luo Y, Zhao Y, Dai L. Integrative Proteomics and N-Glycoproteomics Analyses of Rheumatoid Arthritis Synovium Reveal Immune-Associated Glycopeptides. Mol Cell Proteomics 2023; 22:100540. [PMID: 37019382 PMCID: PMC10176071 DOI: 10.1016/j.mcpro.2023.100540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/10/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Rheumatoid arthritis (RA) is a typical autoimmune disease characterized by synovial inflammation, synovial tissue hyperplasia, and destruction of bone and cartilage. Protein glycosylation plays key roles in the pathogenesis of RA but in-depth glycoproteomics analysis of synovial tissues is still lacking. Here, by using a strategy to quantify intact N-glycopeptides, we identified 1260 intact N-glycopeptides from 481 N-glycosites on 334 glycoproteins in RA synovium. Bioinformatics analysis revealed that the hyper-glycosylated proteins in RA were closely linked to immune responses. By using DNASTAR software, we identified 20 N-glycopeptides whose prototype peptides were highly immunogenic. We next calculated the enrichment scores of nine types of immune cells using specific gene sets from public single-cell transcriptomics data of RA and revealed that the N-glycosylation levels at some sites, such as IGSF10_N2147, MOXD2P_N404, and PTCH2_N812, were significantly correlated with the enrichment scores of certain immune cell types. Furthermore, we showed that aberrant N-glycosylation in the RA synovium was related to increased expression of glycosylation enzymes. Collectively, this work presents, for the first time, the N-glycoproteome of RA synovium and describes immune-associated glycosylation, providing novel insights into RA pathogenesis.
Collapse
Affiliation(s)
- Zhiqiang Xu
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Siyu He
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Rui Sun
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Chenxi Zhu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuangqing Li
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Shan Hai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yubin Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China.
| |
Collapse
|
17
|
Xu S, Yin K, Wu R. Combining Selective Enrichment and a Boosting Approach to Globally and Site-Specifically Characterize Protein Co-translational O-GlcNAcylation. Anal Chem 2023; 95:4371-4380. [PMID: 36802545 PMCID: PMC9996615 DOI: 10.1021/acs.analchem.2c04779] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Protein O-GlcNAcylation plays extremely important roles in mammalian cells, regulating signal transduction and gene expression. This modification can happen during protein translation, and systematic and site-specific analysis of protein co-translational O-GlcNAcylation can advance our understanding of this important modification. However, it is extraordinarily challenging because normally O-GlcNAcylated proteins are very low abundant and the abundances of co-translational ones are even much lower. Here, we developed a method integrating selective enrichment, a boosting approach, and multiplexed proteomics to globally and site-specifically characterize protein co-translational O-GlcNAcylation. The boosting approach using the TMT labeling dramatically enhances the detection of co-translational glycopeptides with low abundance when enriched O-GlcNAcylated peptides from cells with a much longer labeling time was used as a boosting sample. More than 180 co-translational O-GlcNAcylated proteins were site-specifically identified. Further analyses revealed that among co-translational glycoproteins, those related to DNA binding and transcription are highly overrepresented using the total identified O-GlcNAcylated proteins in the same cells as the background. Compared with the glycosylation sites on all glycoproteins, co-translational sites have different local structures and adjacent amino acid residues. Overall, an integrative method was developed to identify protein co-translational O-GlcNAcylation, which is very useful to advance our understanding of this important modification.
Collapse
Affiliation(s)
- Senhan Xu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Kejun Yin
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
18
|
Sun F, Suttapitugsakul S, Wu R. Systematic characterization of extracellular glycoproteins using mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:519-545. [PMID: 34047389 PMCID: PMC8627532 DOI: 10.1002/mas.21708] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 05/13/2023]
Abstract
Surface and secreted glycoproteins are essential to cells and regulate many extracellular events. Because of the diversity of glycans, the low abundance of many glycoproteins, and the complexity of biological samples, a system-wide investigation of extracellular glycoproteins is a daunting task. With the development of modern mass spectrometry (MS)-based proteomics, comprehensive analysis of different protein modifications including glycosylation has advanced dramatically. This review focuses on the investigation of extracellular glycoproteins using MS-based proteomics. We first discuss the methods for selectively enriching surface glycoproteins and investigating protein interactions on the cell surface, followed by the application of MS-based proteomics for surface glycoprotein dynamics analysis and biomarker discovery. We then summarize the methods to comprehensively study secreted glycoproteins by integrating various enrichment approaches with MS-based proteomics and their applications for global analysis of secreted glycoproteins in different biological samples. Collectively, MS significantly expands our knowledge of extracellular glycoproteins and enables us to identify extracellular glycoproteins as potential biomarkers for disease detection and drug targets for disease treatment.
Collapse
Affiliation(s)
| | | | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
19
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
20
|
Li P, Chen Z, You S, Xu Y, Hao Z, Liu D, Shen J, Zhu B, Dan W, Sun S. Application of StrucGP in medical immunology: site-specific N-glycoproteomic analysis of macrophages. Front Med 2022; 17:304-316. [PMID: 36580234 DOI: 10.1007/s11684-022-0964-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/06/2022] [Indexed: 12/30/2022]
Abstract
The structure of N-glycans on specific proteins can regulate innate and adaptive immunity via sensing environmental signals. Meanwhile, the structural diversity of N-glycans poses analytical challenges that limit the exploration of specific glycosylation functions. In this work, we used THP-1-derived macrophages as examples to show the vast potential of a N-glycan structural interpretation tool StrucGP in N-glycoproteomic analysis. The intact glycopeptides of macrophages were enriched and analyzed using mass spectrometry (MS)-based glycoproteomic approaches, followed by the large-scale mapping of site-specific glycan structures via StrucGP. Results revealed that bisected GlcNAc, core fucosylated, and sialylated glycans (e.g., HexNAc4Hex5Fuc1Neu5Ac1, N4H5F1S1) were increased in M1 and M2 macrophages, especially in the latter. The findings indicated that these structures may be closely related to macrophage polarization. In addition, a high level of glycosylated PD-L1 was observed in M1 macrophages, and the LacNAc moiety was detected at Asn-192 and Asn-200 of PD-L1, and Asn-200 contained Lewis epitopes. The precision structural interpretation of site-specific glycans and subsequent intervention of target glycoproteins and related glycosyltransferases are of great value for the development of new diagnostic and therapeutic approaches for different diseases.
Collapse
Affiliation(s)
- Pengfei Li
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Zexuan Chen
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Shanshan You
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yintai Xu
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Zhifang Hao
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Didi Liu
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jiechen Shen
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Bojing Zhu
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Wei Dan
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Shisheng Sun
- College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
21
|
Lageveen‐Kammeijer GSM, Kuster B, Reusch D, Wuhrer M. High sensitivity glycomics in biomedicine. MASS SPECTROMETRY REVIEWS 2022; 41:1014-1039. [PMID: 34494287 PMCID: PMC9788051 DOI: 10.1002/mas.21730] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 05/15/2023]
Abstract
Many analytical challenges in biomedicine arise from the generally high heterogeneity and complexity of glycan- and glycoconjugate-containing samples, which are often only available in minute amounts. Therefore, highly sensitive workflows and detection methods are required. In this review mass spectrometric workflows and detection methods are evaluated for glycans and glycoproteins. Furthermore, glycomic methodologies and innovations that are tailored for enzymatic treatments, chemical derivatization, purification, separation, and detection at high sensitivity are highlighted. The discussion is focused on the analysis of mammalian N-linked and GalNAc-type O-linked glycans.
Collapse
Affiliation(s)
| | - Bernhard Kuster
- Chair for Proteomics and BioanalyticsTechnical University of MunichFreisingGermany
| | - Dietmar Reusch
- Pharma Technical Development EuropeRoche Diagnostics GmbHPenzbergGermany
| | - Manfred Wuhrer
- Leiden University Medical CenterCenter for Proteomics and MetabolomicsLeidenThe Netherlands
| |
Collapse
|
22
|
Chang D, Zaia J. Methods to improve quantitative glycoprotein coverage from bottom-up LC-MS data. MASS SPECTROMETRY REVIEWS 2022; 41:922-937. [PMID: 33764573 DOI: 10.1002/mas.21692] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/24/2020] [Accepted: 03/11/2021] [Indexed: 05/18/2023]
Abstract
Advances in mass spectrometry instrumentation, methods development, and bioinformatics have greatly improved the ease and accuracy of site-specific, quantitative glycoproteomics analysis. Data-dependent acquisition is the most popular method for identification and quantification of glycopeptides; however, complete coverage of glycosylation site glycoforms remains elusive with this method. Targeted acquisition methods improve the precision and accuracy of quantification, but at the cost of throughput and discoverability. Data-independent acquisition (DIA) holds great promise for more complete and highly quantitative site-specific glycoproteomics analysis, while maintaining the ability to discover novel glycopeptides without prior knowledge. We review additional features that can be used to increase selectivity and coverage to the DIA workflow: retention time modeling, which would simplify the interpretation of complex tandem mass spectra, and ion mobility separation, which would maximize the sampling of all precursors at a giving chromatographic retention time. The instrumentation and bioinformatics to incorporate these features into glycoproteomics analysis exist. These improvements in quantitative, site-specific analysis will enable researchers to assess glycosylation similarity in related biological systems, answering new questions about the interplay between glycosylation state and biological function.
Collapse
Affiliation(s)
- Deborah Chang
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Joseph Zaia
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Shang D, Chen C, Dong X, Cui Y, Qiao Z, Li X, Liang X. Simultaneous enrichment and sequential separation of glycopeptides and phosphopeptides with poly-histidine functionalized microspheres. Front Bioeng Biotechnol 2022; 10:1011851. [PMID: 36277408 PMCID: PMC9582455 DOI: 10.3389/fbioe.2022.1011851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Protein phosphorylation and glycosylation coordinately regulate numerous complex biological processes. However, the main methods to simultaneously enrich them are based on the coordination interactions or Lewis acid-base interactions, which suffer from low coverage of target molecules due to strong intermolecular interactions. Here, we constructed a poly-histidine modified silica (SiO2@Poly-His) microspheres-based method for the simultaneous enrichment, sequential elution and analysis of phosphopeptides and glycopeptides. The SiO2@Poly-His microspheres driven by hydrophilic interactions and multiple hydrogen bonding interactions exhibited high selectivity and coverage for simultaneous enrichment of phosphopeptides and glycopeptides from 1,000 molar folds of bovine serum albumin interference. Furthermore, “on-line deglycosylation” strategy allows sequential elution of phosphopeptides and glycopeptides, protecting phosphopeptides from hydrolysis during deglycosylation and improving the coverage of phosphopeptides. The application of our established method to HT29 cell lysates resulted in a total of 1,601 identified glycopeptides and 694 identified phosphopeptides, which were 1.2-fold and 1.5-fold higher than those obtained from the co-elution strategy, respectively. The SiO2@Poly-His based simultaneous enrichment and sequential separation strategy might have great potential in co-analysis of PTMs-proteomics of biological and clinic samples.
Collapse
Affiliation(s)
- Danyi Shang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Chen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuefang Dong
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
| | - Yun Cui
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Zichun Qiao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiuling Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
- *Correspondence: Xiuling Li, ; Xinmiao Liang,
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
- *Correspondence: Xiuling Li, ; Xinmiao Liang,
| |
Collapse
|
24
|
Guo Y, Jia W, Yang J, Zhan X. Cancer glycomics offers potential biomarkers and therapeutic targets in the framework of 3P medicine. Front Endocrinol (Lausanne) 2022; 13:970489. [PMID: 36072925 PMCID: PMC9441633 DOI: 10.3389/fendo.2022.970489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022] Open
Abstract
Glycosylation is one of the most important post-translational modifications (PTMs) in a protein, and is the most abundant and diverse biopolymer in nature. Glycans are involved in multiple biological processes of cancer initiation and progression, including cell-cell interactions, cell-extracellular matrix interactions, tumor invasion and metastasis, tumor angiogenesis, and immune regulation. As an important biomarker, tumor-associated glycosylation changes have been extensively studied. This article reviews recent advances in glycosylation-based biomarker research, which is useful for cancer diagnosis and prognostic assessment. Truncated O-glycans, sialylation, fucosylation, and complex branched structures have been found to be the most common structural patterns in malignant tumors. In recent years, immunochemical methods, lectin recognition-based methods, mass spectrometry (MS)-related methods, and fluorescence imaging-based in situ methods have greatly promoted the discovery and application potentials of glycomic and glycoprotein biomarkers in various cancers. In particular, MS-based proteomics has significantly facilitated the comprehensive research of extracellular glycoproteins, increasing our understanding of their critical roles in regulating cellular activities. Predictive, preventive and personalized medicine (PPPM; 3P medicine) is an effective approach of early prediction, prevention and personalized treatment for different patients, and it is known as the new direction of medical development in the 21st century and represents the ultimate goal and highest stage of medical development. Glycosylation has been revealed to have new diagnostic, prognostic, and even therapeutic potentials. The purpose of glycosylation analysis and utilization of biology is to make a fundamental change in health care and medical practice, so as to lead medical research and practice into a new era of 3P medicine.
Collapse
Affiliation(s)
- Yuna Guo
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Wenshuang Jia
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Jingru Yang
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| |
Collapse
|
25
|
Sajid MS, Saleem S, Jabeen F, Najam-Ul-Haq M, Ressom HW. Terpolymeric platform with enhanced hydrophilicity via cysteic acid for serum intact glycopeptide analysis. Mikrochim Acta 2022; 189:277. [PMID: 35829791 DOI: 10.1007/s00604-022-05343-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/15/2022] [Indexed: 11/29/2022]
Abstract
A new polymeric (methyl methacrylate/ethylene glycol dimethacrylate/1,2-epoxy-5-hexene) base/matrix has been fabricated and decorated with zwitterionic hydrophilic cysteic acid (Cya) for the enrichment of intact N-glycopeptides from standards and biological samples. Terpolymer-Cya provides good enrichment efficiency, improved hydrophilicity, and selectivity by virtue of better surface area (2.09 × 102 m2/g) provided by terpolymer and the zwitterionic property offered by cysteic acid. Cysteic acid-functionalized polymeric hydrophilic interaction liquid chromatography (HILIC) sorbent enriches 35 and 24 N-linked glycopeptides via SPE (solid phase extraction) mode from tryptic digests of model glycoproteins, i.e., immunoglobulin G (IgG) and horseradish peroxidase (HRP), respectively. Zwitterionic chemistry of cysteine helps in achieving higher selectivity with BSA digest (1:200), and lower detection limit down to 100 attomoles with a complete glycosylation profile of each standard digest. The recovery of 81% and good reproducibility define the application of terpolymer-Cya for complex samples like a serum. Analysis of human serum provides a profile of 807 intact N-linked glycopeptides via nano-liquid chromatography-tandem mass spectrometry (nLC-MS/MS). To the best of our knowledge, this is the highest number of glycopeptides enriched by any HILIC sorbent. Selected glycoproteins are evaluated in link to various cancers including the breast, lung, uterine, and melanoma using single-nucleotide variances (BioMuta). This study represents the complete idea of using an in-house developed strategy as a successful tool to help analyze, relate, and answer glycoprotein-based clinical issues regarding cancers.
Collapse
Affiliation(s)
- Muhammad Salman Sajid
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
- Department of Oncology, Genomics and Epigenomics Shared Resource, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Shafaq Saleem
- Department of Chemistry, The Women University, Kutchery Campus, L.M.Q. Road, Multan, 66000, Pakistan
| | - Fahmida Jabeen
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Najam-Ul-Haq
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Habtom W Ressom
- Department of Oncology, Genomics and Epigenomics Shared Resource, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA.
| |
Collapse
|
26
|
Versloot RA, Lucas FL, Yakovlieva L, Tadema MJ, Zhang Y, Wood TM, Martin NI, Marrink SJ, Walvoort MTC, Maglia G. Quantification of Protein Glycosylation Using Nanopores. NANO LETTERS 2022; 22:5357-5364. [PMID: 35766994 PMCID: PMC9284675 DOI: 10.1021/acs.nanolett.2c01338] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Although nanopores can be used for single-molecule sequencing of nucleic acids using low-cost portable devices, the characterization of proteins and their modifications has yet to be established. Here, we show that hydrophilic or glycosylated peptides translocate too quickly across FraC nanopores to be recognized. However, high ionic strengths (i.e., 3 M LiCl) and low pH (i.e., pH 3) together with using a nanopore with a phenylalanine at its constriction allows the recognition of hydrophilic peptides, and to distinguish between mono- and diglycosylated peptides. Using these conditions, we devise a nanopore method to detect, characterize, and quantify post-translational modifications in generic proteins, which is one of the pressing challenges in proteomic analysis.
Collapse
Affiliation(s)
| | | | - Liubov Yakovlieva
- Chemical
Biology Division, Stratingh Institute for Chemistry, University of Groningen, 9747AG Groningen, The Netherlands
| | - Matthijs Jonathan Tadema
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, The Netherlands
| | - Yurui Zhang
- Biological
Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Thomas M. Wood
- Biological
Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Nathaniel I. Martin
- Biological
Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, The Netherlands
| | - Marthe T. C. Walvoort
- Chemical
Biology Division, Stratingh Institute for Chemistry, University of Groningen, 9747AG Groningen, The Netherlands
| | - Giovanni Maglia
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, The Netherlands
| |
Collapse
|
27
|
Spatial and temporal proteomics reveals the distinct distributions and dynamics of O-GlcNAcylated proteins. Cell Rep 2022; 39:110946. [PMID: 35705054 PMCID: PMC9244862 DOI: 10.1016/j.celrep.2022.110946] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/28/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022] Open
Abstract
Protein O-GlcNAcylation plays critical roles in many cellular events, and its dysregulation is related to multiple diseases. Integrating bioorthogonal chemistry and multiplexed proteomics, we systematically and site specifically study the distributions and dynamics of protein O-GlcNAcylation in the nucleus and the cytoplasm of human cells. The results demonstrate that O-GlcNAcylated proteins with different functions have distinct distribution patterns. The distributions vary site specifically, indicating that different glycoforms of the same protein may have different distributions. Moreover, we comprehensively analyze the dynamics of O-GlcNAcylated and non-modified proteins in these two compartments, respectively, and the half-lives of glycoproteins in different compartments are markedly different, with the median half-life in the cytoplasm being much longer. In addition, glycoproteins in the nucleus are more dramatically stabilized than those in the cytoplasm under the O-GlcNAcase inhibition. The comprehensive spatial and temporal analyses of protein O-GlcNAcylation provide valuable information and advance our understanding of this important modification. Xu et al. systematically and site specifically study the distribution and dynamics of O-GlcNAcylated proteins in the nucleus and the cytoplasm. O-GlcNAcylated proteins with different functions have distinct distribution patterns. The half-lives of glycoproteins in the two cellular compartments are markedly different, with the much longer median half-life in the cytoplasm.
Collapse
|
28
|
Chen Z, Yuan R, Hu S, Yuan W, Sun Z. Roles of the Exosomes Derived From Myeloid-Derived Suppressor Cells in Tumor Immunity and Cancer Progression. Front Immunol 2022; 13:817942. [PMID: 35154134 PMCID: PMC8829028 DOI: 10.3389/fimmu.2022.817942] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/12/2022] [Indexed: 12/23/2022] Open
Abstract
Tumor immunity is involved in malignant tumor progression. Myeloid-derived suppressor cells (MDSCs) play an irreplaceable role in tumor immunity. MDSCs are composed of immature myeloid cells and exhibit obvious immunomodulatory functions. Exosomes released by MDSCs (MDSCs-Exos) have similar effects to parental MDSCs in regulating tumor immunity. In this review, we provided a comprehensive description of the characteristics, functions and mechanisms of exosomes. We analyzed the immunosuppressive, angiogenesis and metastatic effects of MDSCs-Exos in different tumors through multiple perspectives. Immunotherapy targeting MDSCs-Exos has demonstrated great potential in cancers and non-cancerous diseases.
Collapse
Affiliation(s)
- Zhuang Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
29
|
Xie Z, Feng Q, Fang X, Dai X, Yan Y, Ding CF. One-Pot Preparation of Hydrophilic Glucose Functionalized Quantum Dots for Diabetic Serum Glycopeptidome Analysis. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Xu S, Zheng J, Xiao H, Wu R. Simultaneously Identifying and Distinguishing Glycoproteins with O-GlcNAc and O-GalNAc (the Tn Antigen) in Human Cancer Cells. Anal Chem 2022; 94:3343-3351. [PMID: 35132862 DOI: 10.1021/acs.analchem.1c05438] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycoproteins with diverse glycans are essential to human cells, and subtle differences in glycan structures may result in entirely different functions. One typical example is proteins modified with O-linked β-N-acetylglucosamine (O-GlcNAc) and O-linked α-N-acetylgalactosamine (O-GalNAc) (the Tn antigen), in which the two glycans have very similar structures and identical chemical compositions, making them extraordinarily challenging to be distinguished. Here, we developed an effective method benefiting from selective enrichment and the enzymatic specificity to simultaneously identify and distinguish glycoproteins with O-GlcNAc and O-GalNAc. Metabolic labeling was combined with bioorthogonal chemistry for enriching glycoproteins modified with O-GlcNAc and O-GalNAc. Then, the enzymatic reaction with galactose oxidase was utilized to specifically oxidize O-GalNAc, but not O-GlcNAc, generating the different tags between glycopeptides with O-GlcNAc and O-GalNAc that can be easily distinguishable by mass spectrometry (MS). Among O-GlcNAcylated proteins commonly identified in three types of human cells, those related to transcription and RNA binding are highly enriched. Cell-specific features are also revealed. Among glycoproteins exclusively in Jurkat cells, those involved in human T-lymphotropic virus type 1 (HTLV-1) infection are overrepresented, which is consistent with the cell line source and suggests that protein O-GlcNAcylation participated in the response to the virus infection. Furthermore, glycoproteins with the Tn antigen have different subcellular distributions in different cells, which may be attributed to the distinct mechanisms for the formation of protein O-GalNAcylation.
Collapse
Affiliation(s)
- Senhan Xu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jiangnan Zheng
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Haopeng Xiao
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
31
|
Xin M, You S, Xu Y, Shi W, Zhu B, Shen J, Wu J, Li C, Chen Z, Su Y, Shi J, Sun S. Precision glycoproteomics reveals distinctive N-glycosylation in human spermatozoa. Mol Cell Proteomics 2022; 21:100214. [PMID: 35183770 PMCID: PMC8958358 DOI: 10.1016/j.mcpro.2022.100214] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/22/2022] [Accepted: 02/06/2022] [Indexed: 12/21/2022] Open
Abstract
Spermatozoon represents a very special cell type in human body, and glycosylation plays essential roles in its whole life including spermatogenesis, maturation, capacitation, sperm–egg recognition, and fertilization. In this study, by mapping the most comprehensive N-glycoproteome of human spermatozoa using our recently developed site-specific glycoproteomic approaches, we show that spermatozoa contain a number of distinctive glycoproteins, which are mainly involved in spermatogenesis, acrosome reaction and sperm:oocyte membrane binding, and fertilization. Heavy fucosylation is observed on 14 glycoproteins mostly located at extracellular and cell surface regions in spermatozoa but not in other tissues. Sialylation and Lewis epitopes are enriched in the biological process of immune response in spermatozoa, while bisected core structures and LacdiNAc structures are highly expressed in acrosome. These data deepen our knowledge about glycosylation in spermatozoa and lay the foundation for functional study of glycosylation and glycan structures in male infertility. A precision site-specific glycoproteome is documented in human spermatozoa. Distinctive glycoproteins and heavy fucosylation are detected in spermatozoa. Sialylation and Lewis epitopes are related to immune response of spermatozoa. Bisected core structures and LacdiNAc are enriched on acrosome of spermatozoa.
Collapse
|
32
|
Enrichment of IgG and HRP glycoprotein by dipeptide-based polymeric material. Talanta 2022; 241:123223. [PMID: 35030500 DOI: 10.1016/j.talanta.2022.123223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 12/30/2022]
Abstract
Separation, purification, and identification of glycoproteins are essential for understanding their vital roles in biological and pathological processes. However, glycoproteins are difficult to be captured due to their low abundance, strong interference from non-glycosylated proteins. Here, we report a promising dipeptide-based saccharide recognition platform to selectively enrich two typical glycoproteins, named immunoglobin G (IgG) and horseradish peroxidase (HRP). Different from the conventional glycoprotein enrichment method based on boronic acid affinity or hydrophilic interaction with glycans, the present method was established based on affinity between Pro-Glu (PE) dipeptide and mannose, which is a key unit in the pentasaccharide core of the IgG and HRP glycans. The prepared PE homopolymer surface was proved to selectively bind IgG and HRP superior to that of bovine serum albumin (BSA). Benefiting from this feature, selective enrichment of IgG and HRP was achieved from a protein mixture containing 200-fold BSA interference by using polyPE@SiO2 under a dispersive solid-phase extraction (dSPE) mode. High adsorption capacity, controllable and selective adsorption behaviors, as well as satisfactory recovery demonstrated the high potential of the dipeptide-based polymeric material in IgG and HRP enrichment. This study might provide a new insight to solve the challenging problem of glycoprotein separation.
Collapse
|
33
|
Cellular and Molecular Engineering of Glycan Sialylation in Heterologous Systems. Molecules 2021; 26:molecules26195950. [PMID: 34641494 PMCID: PMC8512710 DOI: 10.3390/molecules26195950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 02/05/2023] Open
Abstract
Glycans have been shown to play a key role in many biological processes, such as signal transduction, immunogenicity, and disease progression. Among the various glycosylation modifications found on cell surfaces and in biomolecules, sialylation is especially important, because sialic acids are typically found at the terminus of glycans and have unique negatively charged moieties associated with cellular and molecular interactions. Sialic acids are also crucial for glycosylated biopharmaceutics, where they promote stability and activity. In this regard, heterogenous sialylation may produce variability in efficacy and limit therapeutic applications. Homogenous sialylation may be achieved through cellular and molecular engineering, both of which have gained traction in recent years. In this paper, we describe the engineering of intracellular glycosylation pathways through targeted disruption and the introduction of carbohydrate active enzyme genes. The focus of this review is on sialic acid-related genes and efforts to achieve homogenous, humanlike sialylation in model hosts. We also discuss the molecular engineering of sialyltransferases and their application in chemoenzymatic sialylation and sialic acid visualization on cell surfaces. The integration of these complementary engineering strategies will be useful for glycoscience to explore the biological significance of sialic acids on cell surfaces as well as the future development of advanced biopharmaceuticals.
Collapse
|
34
|
Zhang X, Zhang C, Li N, Pan W, Fu M, Ong'achwa Machuki J, Ge K, Liu Z, Gao F. Gold-Bipyramid-Based Nanothernostics: FRET-Mediated Protein-Specific Sialylation Visualization and Oxygen-Augmenting Phototherapy against Hypoxic Tumor. Anal Chem 2021; 93:12103-12115. [PMID: 34428035 DOI: 10.1021/acs.analchem.1c02625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite several attempts, incorporating biological detection that supplies necessary biological information into therapeutic nanotheranostics for hypoxic tumor treatments is considered to be in its infancy. It is therefore imperative to consolidate biological detection and desirable phototherapy into a single nanosystem for maximizing theranostic advantages. Herein, we develop a versatile nanoprobe through combined fluorescence resonance energy transfer (FRET) and oxygen-augmenting strategy, namely APT, which enables glycosylation detection, O2 self-sufficiency, and collaborative phototherapy. Such APT nanoprobes were constructed by depositing platinum onto gold nano-bipyramids (Au NBPs), linking FITC fluorophore-labeled AS1411 aptamers for introducing FRET donors, and by conjugating G-quadruplex intercalated with TMPyP4 to their surfaces via the SH-DNA chain. By installing FRET acceptors on the glycan of targeted EpCAM glycoprotein using the metabolic glycan labeling and click chemistry, FRET signals appear on the cancerous cell membranes, not normal cells, when donors and acceptors are within an appropriate distance. This actualizes protein-specific glycosylation visualization while revealing glycan-based changes correlated with tumor progression. Interestingly, the deposited platinum scavenges excessive H2O2 as artificial nanoenzymes to transform O2 that alleviates tumor hypoxia and simultaneously elevates singlet oxygen (1O2) for inducing cancer cell apoptosis. Notably, the significant hyperthermia devastation was elicited via APT nanoprobes with phenomenal photothermal therapy (PTT) efficiency (71.8%) for thermally ablating cancer cells, resulting in synergistically enhanced photodynamic-hyperthermia therapy. Consequently, APT nanoprobes nearly actualized thorough tumor ablation while demonstrating highly curative biosafety. This work offers a new paradigm to rationally explore a combined FRET and oxygen-augmenting strategy with a focus on nanotheranostics for hypoxic tumor elimination.
Collapse
Affiliation(s)
- Xing Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.,Department of Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Caiyi Zhang
- The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, 221004 Xuzhou, China
| | - Na Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Wenzhen Pan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Mengying Fu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jeremiah Ong'achwa Machuki
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Kezhen Ge
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Zhao Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.,Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, 221004 Xuzhou, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| |
Collapse
|
35
|
Post-translational modifications in tumor-associated carbonic anhydrases. Amino Acids 2021; 54:543-558. [PMID: 34436666 DOI: 10.1007/s00726-021-03063-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/05/2021] [Indexed: 12/31/2022]
Abstract
Human carbonic anhydrases IX (hCA IX) and XII (hCA XII) are two proteins associated with tumor formation and development. These enzymes have been largely investigated both from a biochemical and a functional point of view. However, limited data are currently available on the characterization of their post-translational modifications (PTMs) and the functional implication of these structural changes in the tumor environment. In this review, we summarize existing literature data on PTMs of hCA IX and hCA XII, such as disulphide bond formation, phosphorylation, O-/N-linked glycosylation, acetylation and ubiquitination, highlighting, when possible, their specific role in cancer pathological processes.
Collapse
|
36
|
Tikhonov A, Smoldovskaya O, Feyzkhanova G, Kushlinskii N, Rubina A. Glycan-specific antibodies as potential cancer biomarkers: a focus on microarray applications. Clin Chem Lab Med 2021; 58:1611-1622. [PMID: 32324152 DOI: 10.1515/cclm-2019-1161] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 03/10/2020] [Indexed: 02/06/2023]
Abstract
Glycosylation is one of the most common posttranslational modifications of proteins and lipids. In the case of tumors, cell transformation accompanied by aberrant glycosylation results in the expression of tumor-associated glycans that promote tumor invasion. As part of the innate immunity, anti-glycan antibodies recognize tumor-associated glycans, and these antibodies can be present in the bloodstream in the early stages of cancer. Recently, anti-glycan antibody profiles have been of interest in various cancer studies. Novel advantages in the field of analytical techniques have simplified the analysis of anti-glycan antibodies and made it easier to have more comprehensive knowledge about their functions. One of the robust approaches for studying anti-glycan antibodies engages in microarray technology. The analysis of glycan microarrays can provide more expanded information to simultaneously specify or suggest the role of antibodies to a wide variety of glycans in the progression of different diseases, therefore making it possible to identify new biomarkers for diagnosing cancer and/or the state of the disease. Thus, in this review, we discuss antibodies to various glycans, their application for diagnosing cancer and one of the most promising tools for the investigation of these molecules, microarrays.
Collapse
Affiliation(s)
- Aleksei Tikhonov
- Laboratory of Biological Microchips, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga Smoldovskaya
- Laboratory of Biological Microchips, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Guzel Feyzkhanova
- Laboratory of Biological Microchips, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay Kushlinskii
- Laboratory of Clinical Biochemistry, Federal State Budgetary Institution «N.N. Blokhin National Medical Research Center of Oncology» оf the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alla Rubina
- Laboratory of Biological Microchips, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
37
|
Fabrication of magnetic dual-hydrophilic metal organic framework for highly efficient glycopeptide enrichment. Anal Bioanal Chem 2021; 413:5267-5278. [PMID: 34331089 DOI: 10.1007/s00216-021-03535-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/07/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Highly selective glycopeptide enrichment is important before mass spectrometry analysis because of the ultra-low abundance of glycopeptides in the peptide mixtures. Herein, a UiO-66-NH2-based magnetic composite was prepared and used for the hydrophilic enrichment of glycopeptides. The composite was modified with phytic acid (PA) molecules by partially replacing 2-aminoterephthalic acid ligands in UiO-66-NH2, with electrostatic interactions also promoting this modification process. Based on the hydrophilicity of both the PA molecules and the UiO-66-NH2 skeleton, the resulting material, denoted as MUiO-66-NH2/PA, showed excellent dual hydrophilicity towards glycopeptide enrichment. Compared with pure UiO-66-NH2, the specific surface area and hydrophilicity of the prepared material were increased, and MUiO-66-NH2/PA exhibited good magnetic responsiveness to facilitate a convenient enrichment procedure. HRP and IgG were used as standard proteins to evaluate the glycopeptide enrichment properties, with 21 and 34 glycopeptides enriched from their tryptic digests. Furthermore, MUiO-66-NH2/PA showed outstanding sensitivity (1 fmol/μL) and selectivity (HRP/BSA = 1:1000), and achieved remarkable glycopeptide enrichment performance for practical human serum samples. Notably, MUiO-66-NH2/PA showed perfect reusability and stability, achieving enrichment performance after five cycles similar to that of the first use. This material can be used for glycopeptide enrichment to obtain further glycosylation information, providing the possibility for cancer treatment.
Collapse
|
38
|
SHANG S, DONG H, LI Y, ZHANG W, LI H, QIN W, QIAN X. [Large-scale enrichment and identification of human urinary N-glycoproteins/ N-glycopeptides]. Se Pu 2021; 39:686-694. [PMID: 34227365 PMCID: PMC9421575 DOI: 10.3724/sp.j.1123.2021.01039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Indexed: 11/25/2022] Open
Abstract
N-Glycosylation of proteins, an important post-translational modification in eukaryotic cells, plays an essential role in the regulation of cell adhesion, migration, signal transduction, and apoptosis. Abnormal changes in protein glycosylation are closely related to the occurrence of many critical diseases, including diabetes, tumors, and neurological, kidney, and inflammatory diseases. A non-invasive type of liquid biopsy, urine sampling has the advantage of reducing the complexity of proteomic analysis. This facilitates the design of large-scale and continuous or multi-time point sampling strategies. However, the dynamic range of urinary protein abundance is relatively large, owing to individual differences and physiological conditions. Currently, there is a lack of specialized research on individual differences, physiological fluctuations, and physiological abundance ranges of urinary N-glycoproteins in large healthy populations. Therefore, it is difficult to accurately distinguish individual differences and normal physiological fluctuations from changes caused by disease; this poses a great challenge in disease marker research. Liquid chromatography-mass spectrometry (LC-MS) is an analytical technique widely used for the large-scale profiling of proteomes in biological systems, and the enrichment of N-glycopeptides is a prerequisite for their detection by MS.In this study, we established an approach based on hydrophilic interaction chromatography (HILIC) by optimizing the activation, cleaning, and elution processes of the enrichment method, for instance through the optimization of particle size and solvent composition, and investigated the identification number, selectivity, and stability of N-glycoprotein/N-glycopeptide enrichment under different experimental conditions. We found that N-glycoproteins and N-glycopeptides were highly enriched in a trifluoroacetic acid system with 5-μm filling particles in the HILIC column. On this basis, we analyzed the levels of N-glycoproteins/N-glycopeptides in urine samples. The consistency of N-glycoprotein/N-glycopeptide levels in urine samples taken from the same healthy person for five consecutive days was investigated by correlation analysis. This analysis revealed that the urinary N-glycoproteome of the same healthy person was relatively stable over a short period of time. Next, urinary samples from 20 healthy male volunteers and 20 healthy female volunteers were enriched for N-glycoproteins/N-glycopeptides, which were profiled by MS through qualitative and quantitative analyses. Screening and functional analysis of differential proteins were then carried out. A total of 1016 N-glycoproteins and 2192 N-glycopeptides were identified in the mid-morning urine samples of the 40 healthy volunteers. A label-free quantitation strategy was used to investigate the fluctuation range of the physiologically abundant urinary N-glycopeptides. The abundance of urinary N-glycopeptides spanned across approximately five orders of magnitude. Subsequently, gender differences in the N-glycosylation levels of urinary proteins were also explored in healthy people. Functional analysis of the N-glycoproteins that exhibited gender differences in abundance was performed. Based on multivariate statistical analysis, 206 differentially expressed proteins (p<0.05, fold change (FC)> 4) were identified. In females, we found 175 significantly down-regulated N-glycoproteins and 31 significantly up-regulated N-glycoproteins with respect to males. The expression levels of N-glycopeptides between the two groups suggested a clear gender difference. To investigate the biological processes and functions of these proteins, gene ontology (GO) analysis was performed on the N-glycoproteins/N-glycopeptides differentially expressed between males and females. Metabolic pathway analysis was also carried out based on the kyoto encyclopedia of genes and genomes (KEGG). Differentially expressed N-glycoproteins were mostly associated with platelet degranulation, extracellular region, and ossification. The top three relevant pathways were glycan biosynthesis and metabolism, metabolism of cofactors and vitamins, and lipid metabolism. Overall, sex may be an important factor for urinary N-glycoproteome differences among normal individuals and should be considered in clinical applications. This study provides relevant information regarding the function and mechanisms of the urinary glycoproteome and the screening of clinical biomarkers.
Collapse
Affiliation(s)
- Shiting SHANG
- 军事科学院军事医学研究院生命组学研究所, 北京蛋白质组研究中心, 蛋白质组学国家重点实验室, 北京 102206
- Institute of Lifeomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing Proteome Research Center, State Key Laboratory of Proteomics, Beijing 102206, China
| | - Hangyan DONG
- 军事科学院军事医学研究院生命组学研究所, 北京蛋白质组研究中心, 蛋白质组学国家重点实验室, 北京 102206
- Institute of Lifeomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing Proteome Research Center, State Key Laboratory of Proteomics, Beijing 102206, China
| | - Yuanyuan LI
- 军事科学院军事医学研究院生命组学研究所, 北京蛋白质组研究中心, 蛋白质组学国家重点实验室, 北京 102206
- Institute of Lifeomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing Proteome Research Center, State Key Laboratory of Proteomics, Beijing 102206, China
| | - Wanjun ZHANG
- 军事科学院军事医学研究院生命组学研究所, 北京蛋白质组研究中心, 蛋白质组学国家重点实验室, 北京 102206
- Institute of Lifeomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing Proteome Research Center, State Key Laboratory of Proteomics, Beijing 102206, China
| | - Hang LI
- 军事科学院军事医学研究院生命组学研究所, 北京蛋白质组研究中心, 蛋白质组学国家重点实验室, 北京 102206
- Institute of Lifeomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing Proteome Research Center, State Key Laboratory of Proteomics, Beijing 102206, China
| | - Weijie QIN
- 军事科学院军事医学研究院生命组学研究所, 北京蛋白质组研究中心, 蛋白质组学国家重点实验室, 北京 102206
- Institute of Lifeomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing Proteome Research Center, State Key Laboratory of Proteomics, Beijing 102206, China
| | - Xiaohong QIAN
- 军事科学院军事医学研究院生命组学研究所, 北京蛋白质组研究中心, 蛋白质组学国家重点实验室, 北京 102206
- Institute of Lifeomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing Proteome Research Center, State Key Laboratory of Proteomics, Beijing 102206, China
| |
Collapse
|
39
|
Yan Y, Han R, Hou Y, Zhang H, Yu J, Gao W, Xu L, Tang K. Bowl-like mesoporous polydopamine with size exclusion for highly selective recognition of endogenous glycopeptides. Talanta 2021; 233:122468. [PMID: 34215103 DOI: 10.1016/j.talanta.2021.122468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 01/01/2023]
Abstract
It has been confirmed that endogenous glycopeptide plays an important role in a variety of pathological and physiological processes. However, direct analysis of endogenous glycopeptide is still a great challenge owing to the low abundance of endogenous glycopeptides and the presence of a large number of interfering substances such as large-sized proteins and heteropeptides in complex biological sample. Herein, we reported a novel bowl-like mesoporous polydopamine nanoparticle modified by carrageenan (denoted as MPDA@PEI@CA) with strong hydrophilicity and size-exclusion effect for high specificity enrichment of endogenous glycopeptides. Thanks to the suitable pore channel structure as well as strong hydrophilic surface, the as-prepared MPDA@PEI@CA nanoparticles exhibited prominent performance in enrichment of N-linked glycopeptide with ultrahigh selectivity (1:5000 M ratio of horseradish peroxidase (HRP) digests/bovine serum albumin (BSA) digests), low detection limit (5 fmol μL-1), outstanding size-exclusion ability (1:1000 mass of HRP/BSA), and unique reusability (five times). 125 N-glycosylation sites of 134 glycopeptides from 65 glycoproteins were identified from 2 μL sample of human serum treated with the MPDA@PEI@CA nanoparticles, which manifested the ability to enrich endogenous N-linked glycopeptides from complex biological samples. These results indicated that the bowl-like MPDA@PEI@CA nanoparticles with novel structure prepared in this work had great potential for glycopeptidome analysis.
Collapse
Affiliation(s)
- Yuyan Yan
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, PR China; Institute of Mass Spectrometry, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Renlu Han
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, PR China; Institute of Mass Spectrometry, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| | - Yafei Hou
- Department of Microelectronic Science and Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Huijun Zhang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, PR China; Institute of Mass Spectrometry, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Jiancheng Yu
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Wenqing Gao
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, PR China; Institute of Mass Spectrometry, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Long Xu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, PR China; Institute of Mass Spectrometry, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Keqi Tang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, PR China; Institute of Mass Spectrometry, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
40
|
Suttapitugsakul S, Tong M, Wu R. Time-Resolved and Comprehensive Analysis of Surface Glycoproteins Reveals Distinct Responses of Monocytes and Macrophages to Bacterial Infection. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:11595-11604. [PMID: 34421137 PMCID: PMC8376197 DOI: 10.1002/ange.202102692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Indexed: 12/26/2022]
Abstract
Glycoproteins on the surface of immune cells play extremely important roles in response to pathogens. Yet, a systematic and time-resolved investigation of surface glycoproteins during the immune response remains to be explored. Integrating selective enrichment of surface glycoproteins with multiplexed proteomics, we globally and site-specifically quantified the dynamics of surface glycoproteins on THP-1 monocytes and macrophages in response to bacterial infection and during the monocyte-to-macrophage differentiation. The time-resolved analysis reveals transient changes and differential remodeling of surface glycoproteins on both cell types, and potential upstream regulators and downstream effects of the regulated glycoproteins. Besides, we identified novel surface glycoproteins participating in the immune response such as APMAP, and site-specific changes of glycoproteins. This study provides unprecedented information to deepen our understanding of glycoproteins and cellular activities.
Collapse
Affiliation(s)
- Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry, and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology Atlanta, GA 30332 (USA)
| | - Ming Tong
- School of Chemistry and Biochemistry, and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology Atlanta, GA 30332 (USA)
| | - Ronghu Wu
- School of Chemistry and Biochemistry, and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology Atlanta, GA 30332 (USA)
| |
Collapse
|
41
|
Suttapitugsakul S, Tong M, Wu R. Time-Resolved and Comprehensive Analysis of Surface Glycoproteins Reveals Distinct Responses of Monocytes and Macrophages to Bacterial Infection. Angew Chem Int Ed Engl 2021; 60:11494-11503. [PMID: 33684247 PMCID: PMC8549569 DOI: 10.1002/anie.202102692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Indexed: 12/17/2022]
Abstract
Glycoproteins on the surface of immune cells play extremely important roles in response to pathogens. Yet, a systematic and time-resolved investigation of surface glycoproteins during the immune response remains to be explored. Integrating selective enrichment of surface glycoproteins with multiplexed proteomics, we globally and site-specifically quantified the dynamics of surface glycoproteins on THP-1 monocytes and macrophages in response to bacterial infection and during the monocyte-to-macrophage differentiation. The time-resolved analysis reveals transient changes and differential remodeling of surface glycoproteins on both cell types, and potential upstream regulators and downstream effects of the regulated glycoproteins. Besides, we identified novel surface glycoproteins participating in the immune response such as APMAP, and site-specific changes of glycoproteins. This study provides unprecedented information to deepen our understanding of glycoproteins and cellular activities.
Collapse
Affiliation(s)
- Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry, and the Petit Institute for
Bioengineering and Bioscience, Georgia Institute of Technology Atlanta, GA 30332
(USA)
| | - Ming Tong
- School of Chemistry and Biochemistry, and the Petit Institute for
Bioengineering and Bioscience, Georgia Institute of Technology Atlanta, GA 30332
(USA)
| | - Ronghu Wu
- School of Chemistry and Biochemistry, and the Petit Institute for
Bioengineering and Bioscience, Georgia Institute of Technology Atlanta, GA 30332
(USA)
| |
Collapse
|
42
|
Simanjuntak Y, Schamoni-Kast K, Grün A, Uetrecht C, Scaturro P. Top-Down and Bottom-Up Proteomics Methods to Study RNA Virus Biology. Viruses 2021; 13:668. [PMID: 33924391 PMCID: PMC8070632 DOI: 10.3390/v13040668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/01/2021] [Accepted: 04/10/2021] [Indexed: 02/06/2023] Open
Abstract
RNA viruses cause a wide range of human diseases that are associated with high mortality and morbidity. In the past decades, the rise of genetic-based screening methods and high-throughput sequencing approaches allowed the uncovering of unique and elusive aspects of RNA virus replication and pathogenesis at an unprecedented scale. However, viruses often hijack critical host functions or trigger pathological dysfunctions, perturbing cellular proteostasis, macromolecular complex organization or stoichiometry, and post-translational modifications. Such effects require the monitoring of proteins and proteoforms both on a global scale and at the structural level. Mass spectrometry (MS) has recently emerged as an important component of the RNA virus biology toolbox, with its potential to shed light on critical aspects of virus-host perturbations and streamline the identification of antiviral targets. Moreover, multiple novel MS tools are available to study the structure of large protein complexes, providing detailed information on the exact stoichiometry of cellular and viral protein complexes and critical mechanistic insights into their functions. Here, we review top-down and bottom-up mass spectrometry-based approaches in RNA virus biology with a special focus on the most recent developments in characterizing host responses, and their translational implications to identify novel tractable antiviral targets.
Collapse
Affiliation(s)
- Yogy Simanjuntak
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (Y.S.); (K.S.-K.); (A.G.)
| | - Kira Schamoni-Kast
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (Y.S.); (K.S.-K.); (A.G.)
| | - Alice Grün
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (Y.S.); (K.S.-K.); (A.G.)
- Centre for Structural Systems Biology, 22607 Hamburg, Germany
| | - Charlotte Uetrecht
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (Y.S.); (K.S.-K.); (A.G.)
- Centre for Structural Systems Biology, 22607 Hamburg, Germany
- European XFEL GmbH, 22869 Schenefeld, Germany
| | - Pietro Scaturro
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (Y.S.); (K.S.-K.); (A.G.)
| |
Collapse
|
43
|
Zhao N, Xing J, Zheng Z, Pi Z, Song F, Liu Z, Liu S. Boronate Affinity-Based Oriented and Double-Shelled Surface Molecularly Imprinted Polymers on 96-Well Microplates for a High-Throughput Pharmacokinetic Study of Rutin and Its Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3972-3981. [PMID: 33755461 DOI: 10.1021/acs.jafc.0c07431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The boronate affinity-based oriented and double-shelled surface molecularly imprinted polymers on 96-well microplates (BDMIPs) were designed and applied to high-specific and high-throughput pharmacokinetic (PK) study of rutin and its metabolites from rat plasma without concentration and redissolution. It integrated the advantages of covalent effects-based boronate affinity, noncovalent effects of ethylene imine polymer (PEI) dendrimer, multiple cavities-based double-shelled layers, and multiparallel wells-based 96-well microplates. Furthermore, ultrahigh-performance liquid chromatography triple quadrupole tandem mass spectrometry (UHPLC-MS/MS) was used to accurately quantify targets. It showed lower limits of detection (LODs) up to 100-fold than the conventional method. And PKs of rutin and trace isoquercetin (IQC) were first reported at the same time. The platform can provide a fast, simple, low-cost, high-selective, high-effective, and high-throughput methodological reference for analysis of large-scale samples in the fields of agriculture and food.
Collapse
Affiliation(s)
- Ningning Zhao
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Institute of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230029, China
| | - Junpeng Xing
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhong Zheng
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zifeng Pi
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Fengrui Song
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Institute of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230029, China
| | - Zhiqiang Liu
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Institute of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230029, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shu Liu
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
44
|
Ma C, Tang R, Wang Y, Ma S, Tang S, Zhang J, Ou J. One-step preparation of cyclen-containing hydrophilic polymeric monolithic materials via epoxy-amine ring-opening reaction and their application in enrichment of N-glycopeptides. Talanta 2021; 225:122049. [PMID: 33592771 DOI: 10.1016/j.talanta.2020.122049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 01/02/2023]
Abstract
Considering the special structure of 1,4,7,10-tetraazacyclododecane (cyclen) which is easy to form complexes with ions, it is beneficial to achieve particular selectivity. Cyclen was selected as a precursor to react with triglycidyl isocyanurate (TGIC), and a novel kind of hydrophilic polymeric monolithic material was facilely prepared via epoxy-amine ring-opening reaction in the presence of a binary porogenic system of acetonitrile (ACN) and polyethylene glycol. The resulting poly (TGIC-co-cyclen) monolithic column was used to separate both nonpolar alkylbenzenes using mobile phase of ACN/H2O (35/65, v/v) and polar phenolic compounds and anilines under the mobile phase of ACN/H2O (60/40, v/v) in reversed-phase capillary liquid chromatography (cLC). It should be pointed that the monolith was further used for separation of a mixture of toluene, DMF, acrylamide and thiourea under the mobile phase of ACN/H2O (95/5, v/v) by hydrophilic interaction chromatography (HILIC). These results indicated that the poly (TGIC-co-cyclen) column exhibited mixed-mode retention mechanism. As a result, the prepared monolithic material was employed for enrichment of glycosylated peptides from the tryptic digest of human immunoglobulin G (IgG) and serum protein tryptic digests. A total of 531 N-glycopeptides and 329 N-glycosylation sites, mapped to 166 glycoproteins, were identified from 2 μL human serum digest. The results indicated the prepared monolith had ability for enriching N-glycopeptides from complex biological samples.
Collapse
Affiliation(s)
- Chen Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Ruizhi Tang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shujuan Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Shouwan Tang
- Department of Chemistry, School of Pharmaceutical and Materials Engineering, Taizhou University, Linhai, 318000, China.
| | - Jing Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Junjie Ou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
45
|
Zhong H, Li Y, Huang Y, Zhao R. Metal-organic frameworks as advanced materials for sample preparation of bioactive peptides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:862-873. [PMID: 33543184 DOI: 10.1039/d0ay02193h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Development of novel affinity materials and separation techniques is crucial for the progress of modern proteomics and peptidomics. Detection of peptides and proteins from complex matrices still remains a challenging task due to the highly complicated biological composition, low abundance of target molecules, and large dynamic range of proteins. As an emerging area of analytical science, metal-organic framework (MOF)-based separation of proteins and peptides is attracting growing interest. This minireview summarizes the recent advances in MOF-based affinity materials for the sample preparation of proteins and peptides. Some newly emerging MOF nanoreactors for the degradation of peptides and proteins are introduced. An update of MOF-based affinity materials for the isolation of glycopeptides, phosphopeptides and low-abundance endogenous peptides in the last two years is focused on. The separation mechanism is discussed along with the chemical structures of MOFs. Finally, the remaining challenges and future development of MOFs in analyzing peptides and proteins in complicated biological samples are discussed.
Collapse
Affiliation(s)
- Huifei Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | |
Collapse
|
46
|
Suttapitugsakul S, Tong M, Sun F, Wu R. Enhancing Comprehensive Analysis of Secreted Glycoproteins from Cultured Cells without Serum Starvation. Anal Chem 2021; 93:2694-2705. [PMID: 33397101 PMCID: PMC8034805 DOI: 10.1021/acs.analchem.0c05126] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glycoproteins secreted by cells play essential roles in the regulation of extracellular activities. Secreted glycoproteins are often reflective of cellular status, and thus glycoproteins from easily accessible bodily fluids can serve as excellent biomarkers for disease detection. Cultured cells have been extensively employed as models in the research fields of biology and biomedicine, and global analysis of glycoproteins secreted from these cells provides insights into cellular activities and glycoprotein functions. However, comprehensive identification and quantification of secreted glycoproteins is a daunting task because of their low abundances compared with the high-abundance serum proteins required for cell growth and proliferation. Several studies employed serum-free media to analyze secreted proteins, but it has been shown that serum starvation, even for a short period of time, can alter protein secretion. To overcome these issues, we developed a method to globally characterize secreted glycoproteins and their N-glycosylation sites from cultured cells by combining selective enrichment of secreted glycoproteins with a boosting approach. The results demonstrated the importance of the boosting sample selection and the boosting-to-sample ratio for improving the coverage of secreted glycoproteins. The method was applied to globally quantify secreted glycoproteins from THP-1 monocytes and macrophages in response to lipopolysaccharides (LPS) and from Hep G2 cells treated with TGF-β without serum starvation. We found differentially secreted glycoproteins in these model systems that showed the cellular response to the immune activation or the epithelial-to-mesenchymal transition. Benefiting from the selective enrichment and the signal enhancement of low-abundance secreted glycoproteins, this method can be extensively applied to study secreted glycoproteins without serum starvation, which will provide a better understanding of protein secretion and cellular activity.
Collapse
Affiliation(s)
- Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ming Tong
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
47
|
Olvera A, Cedeño S, Llano A, Mothe B, Sanchez J, Arsequell G, Brander C. Does Antigen Glycosylation Impact the HIV-Specific T Cell Immunity? Front Immunol 2021; 11:573928. [PMID: 33552045 PMCID: PMC7862545 DOI: 10.3389/fimmu.2020.573928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022] Open
Abstract
It is largely unknown how post-translational protein modifications, including glycosylation, impacts recognition of self and non-self T cell epitopes presented by HLA molecules. Data in the literature indicate that O- and N-linked glycosylation can survive epitope processing and influence antigen presentation and T cell recognition. In this perspective, we hypothesize that glycosylation of viral proteins and processed epitopes contribute to the T cell response to HIV. Although there is some evidence for T cell responses to glycosylated epitopes (glyco-epitopes) during viral infections in the literature, this aspect has been largely neglected for HIV. To explore the role of glyco-epitope specific T cell responses in HIV infection we conducted in silico and ex vivo immune studies in individuals with chronic HIV infection. We found that in silico viral protein segments with potentially glycosylable epitopes were less frequently targeted by T cells. Ex vivo synthetically added glycosylation moieties generally masked T cell recognition of HIV derived peptides. Nonetheless, in some cases, addition of simple glycosylation moieties produced neo-epitopes that were recognized by T cells from HIV infected individuals. Herein, we discuss the potential importance of these observations and compare limitations of the employed technology with new methodologies that may have the potential to provide a more accurate assessment of glyco-epitope specific T cell immunity. Overall, this perspective is aimed to support future research on T cells recognizing glycosylated epitopes in order to expand our understanding on how glycosylation of viral proteins could alter host T cell immunity against viral infections.
Collapse
Affiliation(s)
- Alex Olvera
- IrsiCaixa-AIDS Research Institute, Badalona, Spain.,Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Spain
| | | | - Anuska Llano
- IrsiCaixa-AIDS Research Institute, Badalona, Spain
| | - Beatriz Mothe
- IrsiCaixa-AIDS Research Institute, Badalona, Spain.,Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Spain.,Fundació Lluita contra la Sida, Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Jorge Sanchez
- Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Gemma Arsequell
- Institut de Química Avançada de Catalunya (IQAC-CSIC), Barcelona, Spain
| | - Christian Brander
- IrsiCaixa-AIDS Research Institute, Badalona, Spain.,Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
48
|
Towards structure-focused glycoproteomics. Biochem Soc Trans 2021; 49:161-186. [PMID: 33439247 PMCID: PMC7925015 DOI: 10.1042/bst20200222] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Facilitated by advances in the separation sciences, mass spectrometry and informatics, glycoproteomics, the analysis of intact glycopeptides at scale, has recently matured enabling new insights into the complex glycoproteome. While diverse quantitative glycoproteomics strategies capable of mapping monosaccharide compositions of N- and O-linked glycans to discrete sites of proteins within complex biological mixtures with considerable sensitivity, quantitative accuracy and coverage have become available, developments supporting the advancement of structure-focused glycoproteomics, a recognised frontier in the field, have emerged. Technologies capable of providing site-specific information of the glycan fine structures in a glycoproteome-wide context are indeed necessary to address many pending questions in glycobiology. In this review, we firstly survey the latest glycoproteomics studies published in 2018–2020, their approaches and their findings, and then summarise important technological innovations in structure-focused glycoproteomics. Our review illustrates that while the O-glycoproteome remains comparably under-explored despite the emergence of new O-glycan-selective mucinases and other innovative tools aiding O-glycoproteome profiling, quantitative glycoproteomics is increasingly used to profile the N-glycoproteome to tackle diverse biological questions. Excitingly, new strategies compatible with structure-focused glycoproteomics including novel chemoenzymatic labelling, enrichment, separation, and mass spectrometry-based detection methods are rapidly emerging revealing glycan fine structural details including bisecting GlcNAcylation, core and antenna fucosylation, and sialyl-linkage information with protein site resolution. Glycoproteomics has clearly become a mainstay within the glycosciences that continues to reach a broader community. It transpires that structure-focused glycoproteomics holds a considerable potential to aid our understanding of systems glycobiology and unlock secrets of the glycoproteome in the immediate future.
Collapse
|
49
|
Sun F, Suttapitugsakul S, Wu R. Unraveling the surface glycoprotein interaction network by integrating chemical crosslinking with MS-based proteomics. Chem Sci 2021; 12:2146-2155. [PMID: 34163979 PMCID: PMC8179341 DOI: 10.1039/d0sc06327d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The cell plasma membrane provides a highly interactive platform for the information transfer between the inside and outside of cells. The surface glycoprotein interaction network is extremely important in many extracellular events, and aberrant protein interactions are closely correlated with various diseases including cancer. Comprehensive analysis of cell surface protein interactions will deepen our understanding of the collaborations among surface proteins to regulate cellular activity. In this work, we developed a method integrating chemical crosslinking, an enzymatic reaction, and MS-based proteomics to systematically characterize proteins interacting with surface glycoproteins, and then constructed the surfaceome interaction network. Glycans covalently bound to proteins were employed as “baits”, and proteins that interact with surface glycoproteins were connected using chemical crosslinking. Glycans on surface glycoproteins were oxidized with galactose oxidase (GAO) and sequentially surface glycoproteins together with their interactors (“prey”) were enriched through hydrazide chemistry. In combination with quantitative proteomics, over 300 proteins interacting with surface glycoproteins were identified. Many important domains related to extracellular events were found on these proteins. Based on the protein–protein interaction database, we constructed the interaction network among the identified proteins, in which the hub proteins play more important roles in the interactome. Through analysis of crosslinked peptides, specific interactors were identified for glycoproteins on the cell surface. The newly developed method can be extensively applied to study glycoprotein interactions on the cell surface, including the dynamics of the surfaceome interactions in cells with external stimuli. Proteins interacting with glycoproteins on the cell surface were systematically characterized by integrating chemical crosslinking, enzymatic oxidation, and MS-based proteomics. The surface glycoprotein interaction network was then constructed.![]()
Collapse
Affiliation(s)
- Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology Atlanta Georgia 30332 USA +1-404-894-7452 +1-404-385-1515
| | - Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology Atlanta Georgia 30332 USA +1-404-894-7452 +1-404-385-1515
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology Atlanta Georgia 30332 USA +1-404-894-7452 +1-404-385-1515
| |
Collapse
|
50
|
Saadé J, Biacchi M, Giorgetti J, Lechner A, Beck A, Leize-Wagner E, François YN. Analysis of Monoclonal Antibody Glycopeptides by Capillary Electrophoresis-Mass Spectrometry Coupling (CE-MS). Methods Mol Biol 2021; 2271:97-106. [PMID: 33908002 DOI: 10.1007/978-1-0716-1241-5_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Glycosylation is a crucial posttranslational modification (PTM) that might affect the safety and efficacy of monoclonal antibodies (mAbs). Capillary electrophoresis-mass spectrometry (CE-MS) enables the characterization of the primary structure of mAbs. A bottom-up proteomic workflow is designed to provide detailed information about the glycosylation. In this chapter, we describe the validated experimental protocol applied for the characterization and relative quantification of mAbs N-glycosylation at the glycopeptide level.
Collapse
Affiliation(s)
- Josiane Saadé
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Michael Biacchi
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Jérémie Giorgetti
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Antony Lechner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Alain Beck
- Centre d'Immunologie Pierre Fabre, Saint-Julien-en-Genevois, France
| | - Emmanuelle Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Yannis-Nicolas François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France.
| |
Collapse
|