1
|
Shi H, Yu X, Liu Y, Shi Y, Liu H, Wang H. Construction of luminescent dye@MOF platforms for sensing antibiotics with enhanced selectivity and sensitivity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124804. [PMID: 39003829 DOI: 10.1016/j.saa.2024.124804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The fabrication of luminescent dye@MOF composites has received extensive attentions in the development of realistic sensing applications. Herein, based on two anionic In-MOFs with different pore structure (1 and 2), the charge and size dependent ion-exchange of cationic dyes was investigated, and consequently four luminescent dye@MOF composites (DMASM@1/2 and RhB@1/2) were successfully fabricated and importantly can be regarded as ideal platforms for better understanding of the factors affecting the construction of dye@MOF composites, which may closely related to a well match between the intrinsic properties and size/charge of the fluorescent molecules and the porosity, structure character of the MOF hosts. Furthermore, these four dye@MOF composites were utilized for sensing of different kinds of antibiotics, demonstrating enhanced selectivity and sensitivity. DMASM@1/2 demonstrated excellent selectivity and sensitivity for NFT and NFZ antibiotics, while RhB@1/2 exhibited excellent selectivity and sensitivity for MDZ and DTZ antibiotics. Systematic analysis of the detection mechanism revealed that different energy transfer efficiency and interaction between MOF frameworks and different types of guest dyes led to different selectivity and detection mechanisms for antibiotics. Moreover, high selectivity and sensitivity, low LOD and extraordinary recycling capacity of four dye@MOF composites in the detection of antibiotics promote their excellent prospect in the further practical application.
Collapse
Affiliation(s)
- Han Shi
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Xuan Yu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Yuchen Liu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Yanhui Shi
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Huiyan Liu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Haiying Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, PR China.
| |
Collapse
|
2
|
Geng L, Huang J, Fang M, Wang H, Liu J, Wang G, Hu M, Sun J, Guo Y, Sun X. Recent progress of the research of metal-organic frameworks-molecularly imprinted polymers (MOFs-MIPs) in food safety detection field. Food Chem 2024; 458:140330. [PMID: 38970953 DOI: 10.1016/j.foodchem.2024.140330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/23/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Food safety is an important cornerstone of protecting human health and life. Therefore, it is of great significance to detect possible pollutants in food sensitively and efficiently. Molecularly imprinted polymers (MIPs) and metal-organic frameworks (MOFs) have been widely used in the adsorption and detection of food pollutants. However, traditional MIPs have problems such as uneven loading of the imprinted cavity and slow mass transfer efficiency. While the adsorption of MOFs has low specificity and cannot accurately identify target molecules. Therefore, some researchers have taken advantage of the high specific recognition abilities of MIPs and the large specific surface areas, high porosity and easy functionalization of MOFs to combine MOFs with MIPs, and have achieved a series of important results in the field of food safety detection. This paper reviews the research progress of the application of MOFs-MIPs in the field of food safety detection from 2019 to 2024. It furnishes researchers interested in this domain with a rapid and comprehensive grasp of the latest research status, it also offers them a chance to anticipate future development trends, thereby supporting the continuous advances of MOFs-MIPs in food safety detection.
Collapse
Affiliation(s)
- Lingjun Geng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jingcheng Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Mingxuan Fang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Haifang Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Jingjing Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Guangxian Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Mengjiao Hu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jiashuai Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| |
Collapse
|
3
|
Shen Y, Hong R, He X, Wang C, Wang X, Li S, Zhu X, Gui D. Utilizing excited-state proton transfer fluorescence quenching mechanism, layered rare earth hydroxides enable ultra-sensitive detection of nitroaromatic. J Colloid Interface Sci 2024; 673:564-573. [PMID: 38889547 DOI: 10.1016/j.jcis.2024.06.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/23/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Convenient, rapid, and accurate detection of nitroaromatic organic toxins and harmful substances is of great significance in research. In the present study, two-dimensional layered rare-earth hydroxides (LYH) were used as ion-exchange matrix materials, and the anionic fluorescent dye molecules (HPTS) were successfully introduced into the LYH structures in situ via a simple and effective "plug-and-play" strategy, which gave the compounds ultra-sensitive fluorescence sensing detection of nitrobenzene, p-nitrotoluene and p-nitrophenol (Fluorescence response time < 1 sec, and the LOD for nitrobenzene, p-nitrophenol and p-nitrotoluene reached an impressive 349 ppb, 22 ppb and 98 ppb, respectively). Combined with theoretical calculations, we elucidated in detail the fluorescence quenching response mechanism of the LYH-HPTS towards nitroaromatic. Additionally, we also constructed fluorescent paper sensor, which effectively transformed the LYH-HPTS from theoretical detection to device application. The LYH-HPTS material is not only simple to synthesize, cost-effective and stable, but also has the features of fast response, excellent sensitivity and selectivity, and good reproducibility, which provides a new approach for the rapid and accurate detection of nitroaromatic.
Collapse
Affiliation(s)
- Yexin Shen
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Ran Hong
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China; National Local Joint Engineering Laboratory to Functional Adsorption Material Technology for the Environmental Protection, Jiangsu, Suzhou 215123, PR China
| | - Xin He
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Cong Wang
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Xiuyuan Wang
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Shantao Li
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Xiandong Zhu
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China.
| | - Daxiang Gui
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China.
| |
Collapse
|
4
|
Li W, Liu L, Li X, Ren H, Zhang L, Parvez MK, Al-Dosari MS, Fan L, Liu J. A Ni(II)MOF-based hypersensitive dual-function luminescent sensor towards the 3-nitrotyrosine biomarker and 6-propyl-2-thiouracil antithyroid drug in urine. J Mater Chem B 2024. [PMID: 39432095 DOI: 10.1039/d4tb01618a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Trace detection of bioactive small molecules (BSMs) in body fluids is of great importance for disease diagnosis, drug discovery, and health monitoring. Based on the chiral ligand of 4,4'-(1,2-dihydroxyethane-1,2-diyl)dibenzoic acid (H2L), an achiral 3D porous Ni(II)-MOF, with a trinuclear cluster based (3,9)-c {42·6}3{46·621·89}-xmz net, was constructed under solvothermal conditions. Benefiting from its robust framework and excellent luminescent performance, NiMOF was endowed with remarkable capabilities in efficiently, rapidly, and sensitively detecting the 3-nitrotyrosine (3-NT) biomarker and 6-propyl-2-thiouracil (6-PTU) thyroid drug based on the spectral overlap and photo-induced electron transfer (PET) caused luminescence quenching response. Notably, NiMOF exhibited exceptional performance in quantifying 3-NT and 6-PTU in urine samples, yielding highly satisfactory results. Additionally, an intelligent detection system was crafted to enhance the reliability and practicability of 3-NT/6-PTU detection in urine, based on tandem combinational logic gates. This work not only heralds a promising trajectory in the development of MOF-based luminescent sensors, but also paves the way for the intelligent monitoring of BSMs in real bodily fluids.
Collapse
Affiliation(s)
- Wencui Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, P. R. China.
| | - Liying Liu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, P. R. China.
| | - Xiaoting Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, P. R. China.
| | - Hu Ren
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, P. R. China.
| | - Lu Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, P. R. China.
| | - Mohammad Khalid Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed S Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Liming Fan
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, P. R. China.
| | - Jianqiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523000, P. R. China.
| |
Collapse
|
5
|
Khotchasanthong K, Chinchan K, Kongpatpanich K, Pinyo W, Kielar F, Dungkaew W, Sukwattanasinitt M, Laksee S, Chainok K. Construction of 2D zinc(II) MOFs with tricarboxylate and N-donor mixed ligands for multiresponsive luminescence sensors and CO 2 adsorption. Dalton Trans 2024. [PMID: 39364617 DOI: 10.1039/d4dt01825g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The solvothermal reactions of ZnCl2·6H2O, benzene-1,3,5-tribenzoic acid (H3btb), and N-heterocyclic ancillary imidazole (Im) or aminopyrimidine (a mp) ligands led to the creation of two-dimensional (2D) zinc(II) based metal-organic frameworks (MOFs), (Me2NH2)2[Zn2(btb)2(Im)2]·2DMF·3MeOH (1) and (Me2NH2)2[Zn2(btb)2(amp)]·H2O·2DMF·MeOH (2). The btb3- ligands in 1 and 2 form an anionic 2D layered structure with a (63) honeycomb (hcb) topology by linking to Zn(II) centres through their carboxylate groups. The incorporation of N-heterocyclic auxiliary ligands Im and amp into the hcb nets resulted in the formation of a 2D hydrogen-bonded and covalently pillared bilayer structure featuring two-fold interpenetrating networks. Each of these networks consists of small channels that are occupied by Me2NH2 cations and solvent molecules. Both 1 and 2 emit blue luminescence emissions in the solid state at room temperature and exhibit a great selectivity and sensitivity for the detection of acetone and multiple heavy metal ions including Hg2+, Cu2+, Fe2+, Pb2+, Cr3+, and Fe3+ ions. At 1 bar, activated 1 and 2 demonstrate moderate capacities for adsorbing CO2 at room temperature, with a preference for CO2 over N2. Notably, at higher pressures (up to 20 bar), their activated samples 1 and 2 show a temperature-dependent enhancement of CO2 uptake while retaining good stability.
Collapse
Affiliation(s)
- Kenika Khotchasanthong
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand.
| | - Kunlanit Chinchan
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand.
| | - Kanokwan Kongpatpanich
- School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Waraporn Pinyo
- NSTDA Characterization and Testing Center, Thailand Science Park, Pathum Thani 12120, Thailand
| | - Filip Kielar
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Winya Dungkaew
- Department of Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham 43100, Thailand
| | | | - Sakchai Laksee
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok, 26120, Thailand
| | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand.
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
6
|
Manna K, Boruah R, Natarajan S. Zn, Cd and Cu Coordination Polymers for Metronidazole Sensing and for Ullmann and Chan-Lam Coupling Reactions. Chem Asian J 2024; 19:e202400501. [PMID: 39034642 DOI: 10.1002/asia.202400501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/25/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024]
Abstract
Five compounds, [Zn2(bpe)(BPTA)2(H2O)2] ⋅ 2H2O (1); [Zn(bpe)(BPTA)] (2); [Cd(bpe)(BPTA)H2O] (3); [Cd(BPTA) (bpmh)] ⋅ 2H2O (4); and Cu2(BPTA)2(bpmh)3(H2O)2] ⋅ 2H2O (5) were prepared employing 2,5-bis(prop-2-yn-1-yloxy)terephthalic acid (2, 5 BPTA) as the primary ligand and 1,2-di(pyridin-4-yl)ethane (4, 4' bpe) (1-3) and 1,2-bis(pyridin-3-ylmethylene)hydrazine (bpmh) (4-5) as the secondary ligands. Single crystal studies indicated that the compounds 1, 3 and 5 have two-dimensional layer structures and compounds 2 and 4 three-dimensional structures. The luminescence behaviour of the compounds 2 and 3 were explored for the sensing of metronidazole in aqueous medium. The studies indicated that the compounds can detect metronidazole in ppm level both in solution as well as simple paper strips. The Cu compound 5 was found to lose the coordinated water molecule at 100 °C without any structural change. The coordinatively unsaturated Cu-centre were examined towards the Lewis acidic character by carrying out the Ullmann type C-C homocoupling reaction of the aromatic halide compounds. The compounds, 4 and 5, also have the Lewis basic functionality arising out the =N-N=, aza groups. The bifunctional nature of the coordination polymers (CP) was explored towards the Chan-Lam coupling reaction between phenyl boronic acid and aniline derivatives in the ethanol medium. In both the catalytic reactions, good yields and recyclability were observed. The present studies illustrated the rich diversity that the transition metal containing compounds exhibit in extended framework structures.
Collapse
Affiliation(s)
- Krishna Manna
- Framework solids Laboratory, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Rishika Boruah
- Framework solids Laboratory, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Srinivasan Natarajan
- Framework solids Laboratory, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
7
|
Guo Y, Li L, Xu S, Zhang M, Jiang C. Ion coordination and chelation in Eu-MOFs matrices: Ultrafast fluorescence visual quantification monitoring of antibiotic residues. Talanta 2024; 278:126549. [PMID: 39018758 DOI: 10.1016/j.talanta.2024.126549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Rapid monitoring of trace antibiotics in the field in real time is essential for environment forewarning and human health. High sensitivity and real-time on-site quantitative monitoring of antibiotic residues can be accomplished by integrating portable sensors alongside fluorescent optics to construct an intelligent sensing platform that smoothly eliminates the instability of conventional detection methods. In this study, a ratiometric fluorescence sensor for the ultrasensitive detection of pefloxacin was built employing the photoinduced electron transfer (PET) mechanism from red Eu-MOFs to Mn2+-PEF complex. A visual color change results from the photoinduced electron transfer process from manganese ions to pefloxacin weakening the ligand metal charge transfer (LMCT) process in Eu-MOFs. This enables the ultrafast visible detection of pefloxacin and produces a transient shift in visual color with a detection limit as low as 15.4 nM. For the detection of pefloxacin in water, tomato, and raw pork samples, various sensing devices based on the developed fluorescent probes exhibit good practicability and accuracy. With the development of the ratiometric fluorescence sensing probe, it is now possible to quickly and quantitatively identify pefloxacin residues in the environment, offering a new method for ensuring the safety of food and people's health.
Collapse
Affiliation(s)
- Yujie Guo
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Lingfei Li
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Shihao Xu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Maofeng Zhang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Changlong Jiang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| |
Collapse
|
8
|
Wu N, Bo C, Guo S. Luminescent Ln-MOFs for Chemical Sensing Application on Biomolecules. ACS Sens 2024; 9:4402-4424. [PMID: 39193912 DOI: 10.1021/acssensors.4c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
At present, the application of rare-earth organic frameworks (Ln-MOFs) in fluorescence sensing has entered rapid development and shown great potential in various analytical fields, such as environmental analysis, food analysis, drug analysis, and biological and clinical analysis by utilizing their internal porosity, tunable structural size, and energy transfer between rare-earth ions, ligands, and photosensitizer molecules. In addition, because the luminescence properties of rare-earth ions are highly dependent on the structural details of the coordination environment surrounding the rare-earth ions, and although their excitation lifetimes are long, they are usually not burst by oxygen and can provide an effective platform for chemical sensing. In order to further promote the development of fluorescence sensing technology based on Ln-MOFs, we summarize and review in detail the latest progress of the construction of Ln-MOF materials for fluorescence sensing applications and related sensor components, including design strategies, preparation methods, and modification considerations and initially propose the future development prospects and prospects.
Collapse
Affiliation(s)
- Ning Wu
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Chunmiao Bo
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China
| | - Shengwei Guo
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
| |
Collapse
|
9
|
Boidachenko K, Liberka M, Wang J, Tokoro H, Ohkoshi SI, Chorazy S. Chiral cadmium-amine complexes for stimulating non-linear optical activity and photoluminescence in solids based on aurophilic stacks. JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:14964-14977. [PMID: 39184233 PMCID: PMC11343038 DOI: 10.1039/d4tc01042f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
The design of high-performance optical materials can be realized using coordination polymers (CPs) often supported by non-covalent interactions, such as metallophilicity. The challenge is to control two or more optical effects, e.g., non-linear optics (NLO) and photoluminescence (PL). We present a new strategy for the combination of the NLO effect of second-harmonic generation (SHG) and the visible PL achieved by linking dicyanidoaurate(i) ions, which form luminescent metallophilic stacks, with cadmium(ii) complexes bearing chiral amine ligands, used to break the crystal's symmetry. We report a family of NLO- and PL-active materials based on heterometallic Cd(ii)-Au(i) coordination systems incorporating enantiopure propane-1,2-diamine (pda) ligands (1-S, 1-R), their racemate (2), and enantiopure trans-cyclopentane-1,2-diamine (cpda) ligands (3-S, 3-R). Due to acentric space groups, they exhibit the SHG signal, tunable within the range of 11-24% of the KDP reference, which was correlated with the dipole moments of Cd(ii) units. They show efficient blue PL whose energy and quantum yield, the latter ranging from 0.40 to 0.83, are controlled by Cd(ii) complexes affecting the Au-Au distances and vibrational modes. We prove that chiral Cd(ii)-amine complexes play the role of molecular agents for the stimulation of both the NLO and PL of the materials based on aurophilic stacks.
Collapse
Affiliation(s)
- Kseniia Boidachenko
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2 30-387 Krakow Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11 30-348 Kraków Poland
| | - Michal Liberka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2 30-387 Krakow Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11 30-348 Kraków Poland
| | - Junhao Wang
- Department of Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Ibaraki 305-8573 Japan
| | - Hiroko Tokoro
- Department of Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Ibaraki 305-8573 Japan
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Szymon Chorazy
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2 30-387 Krakow Poland
| |
Collapse
|
10
|
Qin M, Ji W, Huang P, Wu FY, Mao L. Confining Thiolysis of Dinitrophenyl Ether to a Luminescent Metal-Organic Framework with a Large Stokes Shift for Highly Efficient Detection of Hydrogen Sulfide in Rat Brain. Anal Chem 2024; 96:14697-14705. [PMID: 39194639 DOI: 10.1021/acs.analchem.4c03929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule that regulates various physiological and pathological processes in the central nervous system. It is vital to develop an effective method to detect H2S in vivo to elucidate its critical role. However, current fluorescent probes for accurate quantification of H2S still face big challenges due to complicated fabrication, small Stokes shift, unsatisfactory selectivity, and especially delayed response time. Herein, based on simple postsynthetic modification, we present an innovative strategy by confining H2S-triggered thiolysis of dinitrophenyl (DNP) ether within a luminescent metal-organic framework (MOF) to address those issues. Due to the cleavage of the DNP moiety by H2S, the nanoprobe gives rise to a remarkable fluorescence turn-on signal with a large Stokes shift of 190 nm and also provides high selectivity to H2S against various interferents including competing biothiols. In particular, by virtue of the unique structural property of the MOF, it exhibits an ultrafast sensing ability for H2S (only 5 s). Moreover, the fluorescence enhancement efficiency displays a good linear correlation with H2S concentration in the range of 0-160 μM with a detection limit of 0.29 μM. Importantly, these superior sensing performances enable the nanoprobe to measure the basal value and monitor the change of H2S level in the rat brain.
Collapse
Affiliation(s)
- Mengxia Qin
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Wenliang Ji
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Pengcheng Huang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Fang-Ying Wu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
11
|
Wei W, Li X, Zhang YY, Zhang JW. Rational construction of luminescent Eu-doped Y-MOF for ratiometric temperature sensing. RSC Adv 2024; 14:28340-28344. [PMID: 39239281 PMCID: PMC11375508 DOI: 10.1039/d4ra05796a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024] Open
Abstract
Introducing lanthanide(iii) ions into a MOF structure is one of the most effective strategies to construct luminescent MOFs with multiple emission centers for fluorescent applications. In this work, a functionalized Eu3+-doped Y-MOF (Eu@SNNU-325) was constructed by using a cation exchange strategy. The photoluminescence result shows that Eu@SNNU-325 exhibits a unique emission spectrum, namely, the absence of the organic ligand peak and the very strong Y3+/Eu3+ characteristic peaks. Interestingly, the smart luminescent Eu@SNNU-325 as a ratiometric thermometer for temperature sensing has good self-calibrated ability and a high maximum relative sensitivity (S m) value (1.2% K-1 at 260 K). This work presents the construction of a smart Eu3+-functionalized Y-MOF thermometer through a cation exchange strategy, providing a good idea for the future development and design of Y-MOF thermometers.
Collapse
Affiliation(s)
- Wei Wei
- School of Chemistry and Chemical Engineering, Shangqiu Normal University Shangqiu Henan 476000 P. R. China
| | - Xi Li
- School of Chemistry and Chemical Engineering, Shangqiu Normal University Shangqiu Henan 476000 P. R. China
| | - Yong-Ya Zhang
- School of Chemistry and Chemical Engineering, Shangqiu Normal University Shangqiu Henan 476000 P. R. China
| | - Jian-Wei Zhang
- School of Chemistry and Chemical Engineering, Shangqiu Normal University Shangqiu Henan 476000 P. R. China
| |
Collapse
|
12
|
Deng T, He H, Chen H, Peng X, Li H, Yan X, Lei Y, Luo L. Dual-ligand lanthanide metal-organic framework based ratiometric fluorescent platform for visual monitoring of aminoglycoside residues in food samples. Talanta 2024; 276:126200. [PMID: 38735243 DOI: 10.1016/j.talanta.2024.126200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/02/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
Herein, a dual-emission Eu metal-organic framework (Eu-MOF) is prepared and used as the ratiometric fluorescence probe for ultrasensitive detection of aminoglycoside antibiotics (AGs). Due to the strong hydrogen bond interactions between AGs and Eu-MOF, the blue emission is enhanced while the red emission has little fluctuation in Eu-MOF with the addition of AGs, thus a good linear relationship with the logarithm of AGs concentrations from 0.001 to 100 μg/mL can be established for quantitative analysis. Good sensitivity with the detection limit of 0.33 ng/mL for apramycin, 0.32 ng/mL for amikacin and 0.30 ng/mL for kanamycin is achieved. The proposed assay demonstrates good selectivity and applicability for determination of AGs in real milk and honey samples. The Eu-MOF materials are further fabricated as fluorescent test papers for facile visual detection. The as-established ratio fluorescence platform offers a portable and economical way for rapid monitoring AGs residues in complex food samples.
Collapse
Affiliation(s)
- Tingting Deng
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Haibo He
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Huinan Chen
- Department of Physics, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Xitian Peng
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Hongbo Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Xiaoxia Yan
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Yunyi Lei
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Liqiang Luo
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| |
Collapse
|
13
|
Xue YS, Tian ZC, Zhang XY, Wang WJ, Dai JH, Chen RQ, Xu XJ, Wang J. Three coordination polymers based on 4,4'-bis(2-methylimidazol-1-yl)diphenyl ether: Synthesis, structure and selective fluorescent sensing properties. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124340. [PMID: 38676986 DOI: 10.1016/j.saa.2024.124340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Three CPs [Zn2(PDA)2(BMIOPE)2·3H2O]n (1), [Co(Br-BDC)(BMIOPE)]n (2) and [Co(MIP)(BMIOPE)]n (3) were synthesized by solvothermal method based on dual-ligand strategy (H2PDA, Br-H2BDC, BMIOPE and H2MIP are 1,3-phenylenediacetic acid, 5-bromo-isophthalic acid, 4,4'-bis(2-methylimidazol-1-yl)diphenyl ether and 5-methylisophthalic acid, respectively). Complexes 1 and 3 exhibit twofold parallel interwoven sql nets. Complex 2 is 2D layer structure. The luminescence property investigations showed that complexes 1-3 could act as multi-responsive fluorescent sensors to detect UO22+, Cr2O72- and CrO42- and nitrofurantoin (NFT) through fluorescence turn-off process, presenting excellent sensitivity and selectivity. Finally, the possible fluorescent quenching mechanisms of complexes 1-3 toward the above pollutants are also further investigated by employing spectroscopic methods and quantum chemical calculations. The fluorescence lifetime measurements manifest the mechanism of fluorescence quenching is static quenching process.
Collapse
Affiliation(s)
- Yun-Shan Xue
- School of Chemistry & Environmental Engineering, Yancheng Teachers University, Yancheng 224007, PR China.
| | - Zheng-Chen Tian
- School of Chemistry & Environmental Engineering, Yancheng Teachers University, Yancheng 224007, PR China
| | - Xin-Yue Zhang
- School of Chemistry & Environmental Engineering, Yancheng Teachers University, Yancheng 224007, PR China
| | - Wen-Jing Wang
- School of Chemistry & Environmental Engineering, Yancheng Teachers University, Yancheng 224007, PR China
| | - Jia-Hao Dai
- School of Chemistry & Environmental Engineering, Yancheng Teachers University, Yancheng 224007, PR China
| | - Rui-Qi Chen
- School of Chemistry & Environmental Engineering, Yancheng Teachers University, Yancheng 224007, PR China
| | - Xiao-Juan Xu
- School of Chemistry & Environmental Engineering, Yancheng Teachers University, Yancheng 224007, PR China
| | - Jun Wang
- School of Chemistry & Environmental Engineering, Yancheng Teachers University, Yancheng 224007, PR China.
| |
Collapse
|
14
|
Xie HH, Wang LW, Tang SF. Fabrication of a Terbium-Functionalized Cadmium Organic Framework with Proper Energy Levels as a Ratiometric Probe of an Anthrax Biomarker. Inorg Chem 2024; 63:13516-13524. [PMID: 38959250 DOI: 10.1021/acs.inorgchem.4c01644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Anthrax bacillus is a very dangerous zoonotic pathogen that seriously endangers public health. Rapid and accurate qualitative and quantitative detection of its biomarkers, 2,6-dipicolinic acid (DPA), is crucial for the prevention and treatment of this pathogenic bacterium. In this work, a novel Cd-based MOF (TTCA-Cd) has been synthesized from a polycarboxylate ligand, [1,1':2',1″-terphenyl]-4,4',4″,5'-tetracarboxylic acid (H4TTCA), and further doped with Tb(III), forming a dual-emission lanthanide-functionalized MOF hybrid (TTCA-Cd@Tb). TTCA-Cd@Tb can be developed as a high-performance ratiometric fluorescent sensor toward DPA with a very low detection limit of 7.14 nM and high selectivity in a wide detection range of 0-200 μM, demonstrating a big advancement and providing a new option for the detection of DPA.
Collapse
Affiliation(s)
- Hui-Hui Xie
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Road 700, Chengyang District, Qingdao 266109, China
| | - Li-Wen Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Road 700, Chengyang District, Qingdao 266109, China
| | - Si-Fu Tang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Road 700, Chengyang District, Qingdao 266109, China
| |
Collapse
|
15
|
Wang Z, Wang S, Zhang Y, Ma M. Design, Synthesis, and Evaluation of Small Fluorescent Molecules with a 1,1-Dimethylnaphthalen-2-(1 H)-One Core. Molecules 2024; 29:3396. [PMID: 39064974 PMCID: PMC11280428 DOI: 10.3390/molecules29143396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024] Open
Abstract
A series of fluorescent molecules with 1,1-dimethylnaphthalene-2(1H)-one as the core were synthesized to overcome aggregation quenching and emit bright green fluorescence. The low molecular weight of these molecules led to them to smoothly pass through the cell membrane and penetrate deep into the nucleus to emit the corresponding fluorescence. Among them, NC-4-Br and NC-5-3O have good optical and in vitro properties and showed potential for use as fluorescent probes.
Collapse
Affiliation(s)
- Zhengyang Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shuting Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yuexing Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Mingliang Ma
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
16
|
Zhang SN, Wang LL, Xiao TT, Zhang M, Yin XB. Carbon dots with enhanced red emission for ratiometric sensing and encryption applications. Anal Bioanal Chem 2024; 416:3985-3996. [PMID: 38581533 DOI: 10.1007/s00216-024-05252-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 04/08/2024]
Abstract
The excitation-dependent emission properties of carbon dots (Cdots) are extensively reported, but their red emission is often weak, limiting their wider application. Here we introduce ethidium bromide, as a functional precursor with red emission, to enhance the red emission for Cdots, with comparable intensity at a broad wavelength range to multi-emission Cdots (M-Cdots). We found that Cdots prepared with ethidium bromide/ethylenediamine exhibited strong blue and red emission at 440 and 615 nm, with optimal excitation at 360 and 470 nm as M-Cdots, respectively, but the Cdots from single ethidium bromide (EB-Cdots) possessed weak red emission. M-Cdots exhibited a broad absorption band at 478 nm, but a band blue-shifted to 425 nm was observed for EB-Cdots, while no absorption was observed at 478-425 nm for the Cdots prepared with citric acid and ethylenediamine. Thus, we proposed that C=O and C=N formed a π-conjugation structure as the absorption band at 478 nm for the red emission of M-Cdots, as also confirmed with the excitation at 470 nm. Moreover, the π-conjugation structure is fragile and sensitive to harsh conditions, so red emission was difficult to observe for the Cdots prepared with citric acid/ethylenediamine or single ethidium bromide. M-Cdots possess two centers for blue and red emission with different structures. The dual emission was therefore used for ratiometric sensing with dichromate (Cr2O72-) and formaldehyde (HCHO) as the targets using the intensity ratio of the emissions at 615 and 440 nm. Due to the comparable intensity at a broad wavelength range, we designed encryption codes with five excitations at 360, 400, 420, 450, and 470 nm as the inputs, and the emission colors were used for information decoding. Thus, we determined why red emission was difficult to realize for Cdots, and our results could motivate the design of red-emission Cdots for extensive applications.
Collapse
Affiliation(s)
- Sheng-Nan Zhang
- Institute for Frontier Medical Technology, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Lin-Lin Wang
- Institute for Frontier Medical Technology, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Ting-Ting Xiao
- Institute for Frontier Medical Technology, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Min Zhang
- Institute for Frontier Medical Technology, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.
| | - Xue-Bo Yin
- Institute for Frontier Medical Technology, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.
| |
Collapse
|
17
|
Wang L, Huang M, Huang J, Zhang S, Li H, Dong H, Wu XT, Wen Y. Central Metal-Triggered Structural Transformation of a 2D Layered MOF: Mechanistic Studies and Applications. Inorg Chem 2024; 63:12360-12369. [PMID: 38870427 DOI: 10.1021/acs.inorgchem.4c01885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The structural transformation of metal-organic frameworks (MOFs) has attracted increasing interests, which has not only produced various new structures but also served as a fantastic platform for MOF-based kinetic analysis. Multiple reaction conditions have been documented to cause structural transformation; nevertheless, central metal-induced topological alteration of MOFs is rare. Herein, we reported a structural transformation of a 2D layered Cd-MOF driven by Cd(II) ions. After being submerged in the aqueous solution of cadmium nitrate, the twofold interpenetrated 2D network of [Cd(hsb-2)(bdc)·5H2O]n [HSB-W10; bdc: 1,4-benzenedicarboxylate; hsb-2:1,2-bis(4'-pyridylmethylamino)-ethane] was converted into a novel noninterpenetrated 2D network [Cd1.5(hsb-2)(bdc)1.5(H2O)2·H2O]n (HSB-W16). This partial dissolution-recrystallization process was investigated by integrating controlled experiments, 1H NMR spectra, and photographic tracking analysis. Furthermore, a novel strategy combining in situ multicomponent dye encapsulation and central metal-triggered structural transformation was developed for the fabrication of MOF materials with white-light emission. By adopting this strategy, different dye guest molecules were concurrently introduced into the HSB-W16 host matrix, leading to a range of white-light-emitting MOF composites. This work will enable detailed studies of solid-state transformations and demonstrate a promising application prospect for structural transformation.
Collapse
Affiliation(s)
- Liping Wang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Mengyi Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Jinling Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Shuyu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haitao Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyu Dong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yuehong Wen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
18
|
Lu X, Zhang K, Niu X, Ren DD, Zhou Z, Dang LL, Fu HR, Tan C, Ma L, Zang SQ. Encapsulation engineering of porous crystalline frameworks for delayed luminescence and circularly polarized luminescence. Chem Soc Rev 2024; 53:6694-6734. [PMID: 38747082 DOI: 10.1039/d3cs01026k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Delayed luminescence (DF), including phosphorescence and thermally activated delayed fluorescence (TADF), and circularly polarized luminescence (CPL) exhibit common and broad application prospects in optoelectronic displays, biological imaging, and encryption. Thus, the combination of delayed luminescence and circularly polarized luminescence is attracting increasing attention. The encapsulation of guest emitters in various host matrices to form host-guest systems has been demonstrated to be an appealing strategy to further enhance and/or modulate their delayed luminescence and circularly polarized luminescence. Compared with conventional liquid crystals, polymers, and supramolecular matrices, porous crystalline frameworks (PCFs) including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), zeolites and hydrogen-bonded organic frameworks (HOFs) can not only overcome shortcomings such as flexibility and disorder but also achieve the ordered encapsulation of guests and long-term stability of chiral structures, providing new promising host platforms for the development of DF and CPL. In this review, we provide a comprehensive and critical summary of the recent progress in host-guest photochemistry via the encapsulation engineering of guest emitters in PCFs, particularly focusing on delayed luminescence and circularly polarized luminescence. Initially, the general principle of phosphorescence, TADF and CPL, the combination of DF and CPL, and energy transfer processes between host and guests are introduced. Subsequently, we comprehensively discuss the critical factors affecting the encapsulation engineering of guest emitters in PCFs, such as pore structures, the confinement effect, charge and energy transfer between the host and guest, conformational dynamics, and aggregation model of guest emitters. Thereafter, we summarize the effective methods for the preparation of host-guest systems, especially single-crystal-to-single-crystal (SC-SC) transformation and epitaxial growth, which are distinct from conventional methods based on amorphous materials. Then, the recent advancements in host-guest systems based on PCFs for delayed luminescence and circularly polarized luminescence are highlighted. Finally, we present our personal insights into the challenges and future opportunities in this promising field.
Collapse
Affiliation(s)
- Xiaoyan Lu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Kun Zhang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, P. R. China
| | - Xinkai Niu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- Xinjiang Production & Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technology, College of Science, Shihezi University, Shihezi 832003, P. R. China
| | - Dan-Dan Ren
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, P. R. China
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Li-Long Dang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Hong-Ru Fu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Chaoliang Tan
- Department Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, SAR 999077, P. R. China.
| | - Lufang Ma
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|
19
|
Guan Y, Huang X, Xu F, Wang W, Li H, Gong L, Zhao Y, Guo S, Liang H, Qiao Z. Data-Driven and Machine Learning to Screen Metal-Organic Frameworks for the Efficient Separation of Methane. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1074. [PMID: 38998680 PMCID: PMC11243175 DOI: 10.3390/nano14131074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
With the rapid growth of the economy, people are increasingly reliant on energy sources. However, in recent years, the energy crisis has gradually intensified. As a clean energy source, methane has garnered widespread attention for its development and utilization. This study employed both large-scale computational screening and machine learning to investigate the adsorption and diffusion properties of thousands of metal-organic frameworks (MOFs) in six gas binary mixtures of CH4 (H2/CH4, N2/CH4, O2/CH4, CO2/CH4, H2S/CH4, He/CH4) for methane purification. Firstly, a univariate analysis was conducted to discuss the relationships between the performance indicators of adsorbents and their characteristic descriptors. Subsequently, four machine learning methods were utilized to predict the diffusivity/selectivity of gas, with the light gradient boosting machine (LGBM) algorithm emerging as the optimal one, yielding R2 values of 0.954 for the diffusivity and 0.931 for the selectivity. Furthermore, the LGBM algorithm was combined with the SHapley Additive exPlanation (SHAP) technique to quantitatively analyze the relative importance of each MOF descriptor, revealing that the pore limiting diameter (PLD) was the most critical structural descriptor affecting molecular diffusivity. Finally, for each system of CH4 mixture, three high-performance MOFs were identified, and the commonalities among high-performance MOFs were analyzed, leading to the proposals of three design principles involving changes only to the metal centers, organic linkers, or topological structures. Thus, this work reveals microscopic insights into the separation mechanisms of CH4 from different binary mixtures in MOFs.
Collapse
Affiliation(s)
- Yafang Guan
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiaoshan Huang
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Fangyi Xu
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Wenfei Wang
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Huilin Li
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Lingtao Gong
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yue Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing 100191, China
| | - Shuya Guo
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hong Liang
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhiwei Qiao
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
20
|
Sharma A, Kaur N, Singh N. An Encyclopedic Compendium on Chemosensing Supramolecular Metal-Organic Gels. Chem Asian J 2024; 19:e202400258. [PMID: 38629210 DOI: 10.1002/asia.202400258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Chemosensing, an interdisciplinary scientific domain, plays a pivotal role ranging from environmental monitoring to healthcare diagnostics and (inter)national security. Metal-organic gels (MOGs) are recognized for their stability, selectivity, and responsiveness, making them valuable for chemosensing applications. Researchers have explored the development of MOGs based on different metal ions and ligands, allowing for tailored properties and sensitivities, and have even demonstrated their applications as portable sensors such as paper-based test strips for practical use. Herein, several studies related to MOGs development and their applications in the chemosensing field via UV-visible or luminance along with electrochemical approach are presented. These papers explored MOGs as versatile materials with their use in sensing bio or environmental analytes. This review provides a foundational understanding of key concepts, methodologies, and recent advancements in this field, fostering the scientific community.
Collapse
Affiliation(s)
- Arun Sharma
- Department of Chemistry, Indian Institute of Technology Ropar, 140001, Rupnagar, Panjab, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, 160014, Chandigarh, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, 140001, Rupnagar, Panjab, India
| |
Collapse
|
21
|
Chinchan K, Jiajaroen S, Theppitak C, Laksee S, Sukwattanasinitt M, Chainok K. Synthesis, structure and photoluminescence properties of heterometallic-based coordination polymers of trimesic acid. Acta Crystallogr C Struct Chem 2024; 80:230-238. [PMID: 38721808 DOI: 10.1107/s2053229624003528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/19/2024] [Indexed: 06/06/2024] Open
Abstract
Reacting trimesic acid (H3TMA, C9H6O6) with CaCl2 and MCl2 at 110 °C under hydrothermal conditions gave the isostructural heterobimetallic coordination polymers (CPs) catena-poly[[tetraaquazinc(II)]-μ-5-carboxybenzene-1,3-dicarboxylato-[tetraaquacalcium(II)]-μ-5-carboxybenzene-1,3-dicarboxylato], [CaZn(HTMA)2(H2O)8]n, 1, and catena-poly[[tetraaquacobalt(II)]-μ-5-carboxybenzene-1,3-dicarboxylato-[tetraaquacalcium(II)]-μ-5-carboxybenzene-1,3-dicarboxylato], [CaCo(HTMA)2(H2O)8]n, 2. Compounds 1 and 2 crystallize in the monoclinic space group C2/c. The solid-state structures consist of eight-coordinate CaII ions and six-coordinate MII ions. These ions are connected by a doubly deprotonated HTMA2- ligand to create a one-dimensional (1D) zigzag chain. Poly[[decaaquabis(μ3-benzene-1,3,5-tricarboxylato)calcium(II)dizinc(II)] dihydrate], {[CaZn2(TMA)2(H2O)10]·2H2O}n, 3, was found incidentally as a minor by-product during the synthesis of 1 at a temperature of 140 °C. It forms crystals in the orthorhombic space group Ccce. The structure of 3 consists of a two-dimensional (2D) layer composed of [Zn(TMA)] chains that are interconnected by CaII ions. The presence of aromatic carboxylic acid ligands and water molecules, which can form numerous hydrogen bonds and π-π interactions, increases the stability of the three-dimensional (3D) supramolecular architecture of these CPs. Compounds 1 and 2 exhibit thermal stability up to 420 °C, as indicated by the thermogravimetric analysis (TGA) curves. The powder X-ray diffraction (PXRD) data reveal the formation of unidentified phases in methanol and dimethyl sulfoxide, while 1 exhibits chemical stability in a wide range of solvents. The luminescence properties of 1 dispersed in various low molecular weight organic solvents was also examined. The results demonstrate excellent selectivity, sensitivity and recyclability for detecting acetone molecules in aqueous media. Additionally, a possible sensing mechanism is also outlined.
Collapse
Affiliation(s)
- Kunlanit Chinchan
- Thammasat University Research Unit in Multifunctional Crystalline Materials, and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani, 12121, Thailand
| | - Suwadee Jiajaroen
- Thammasat University Research Unit in Multifunctional Crystalline Materials, and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani, 12121, Thailand
| | - Chatphorn Theppitak
- Thammasat University Research Unit in Multifunctional Crystalline Materials, and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani, 12121, Thailand
| | - Sakchai Laksee
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Ongkharak, Nakon Nayok, 26120, Thailand
| | | | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials, and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani, 12121, Thailand
| |
Collapse
|
22
|
Peng L, Guo H, Wu N, Wang M, Hui Y, Ren H, Ren B, Yang W. Fluorescent sensor based on bismuth metal-organic frameworks (Bi-MOFs) mimic enzyme for H 2O 2 detection in real samples and distinction of phenylenediamine isomers. Talanta 2024; 272:125753. [PMID: 38364560 DOI: 10.1016/j.talanta.2024.125753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
Although peroxidase-like nano-enzymes have been widely utilized in biosensors, nano-enzyme based biosensors are seldom used for both quantitative analysis of H2O2 and differentiation of isomers of organic compounds simultaneously. In this study, a dual-functional mimetic enzyme-based fluorescent sensor was constructed using metal-organic frameworks (Bi-MOFs) with exceptional oxidase activity and fluorescence properties. This mimetic enzyme sensor facilitated quantitative analysis of H2O2 and accurate discrimination of phenylenediamine isomers. The sensor exhibited a wide linear range (0.5-400 μM) and low detection limit (0.16 μM) for the detection of H2O2. Moreover, the sensor can also be used for the discrimination of phenylenediamine isomers, in which the presence of o-phenylenediamine (OPD) leads to the appearance of a new fluorescence emission peak at 555 nm, while the presence of p-phenylenediamine (PPD) significantly quenched its fluorescence due to the internal filtration effect. The proposed strategy exhibited a commendable capability in distinguishing phenylenediamine isomers, thereby paving the way for novel applications of MOFs in the field of environmental science.
Collapse
Affiliation(s)
- Liping Peng
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Hao Guo
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China.
| | - Ning Wu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Mingyue Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Yingfei Hui
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Henglong Ren
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Borong Ren
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Wu Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China.
| |
Collapse
|
23
|
Tai S, Zhang C, Shi S, Yang K, Han S, Wu J, Zhang S, Zhang K. Excitation wavelength-dependent lanthanide-disalicylaldehyde coordination hybrid capable of distinguishing D 2O from H 2O. Talanta 2024; 271:125732. [PMID: 38309109 DOI: 10.1016/j.talanta.2024.125732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
The increasing demands in fields of anti-counterfeiting, fluorescence analysis, clinical therapy and LED illumination are urgently eager for more excellent optically switchable luminescent materials with the stable and multimodal fluorescence in single-component matrix. Herein, the lanthanide-disalicylaldehyde coordination hybrid H2Qj4/TbxEuy is proposed as an efficient luminescent matrix to connect terbium sensibilization with ESIPT (excited-state intramolecular proton transfer) effects, and three multi-emission hybrids are finally designed and synthesized by regulating Tb3+ and Eu3+ ratios. Surprisingly, the H2Qj4/Tb0.91Eu0.09 shows the excitation wavelength-dependent luminescence in solution which originates from two energy transfer ways of terbium sensibilization effect. It exhibits green and red lights under the 369 and 394 nm UV lamp, respectively. Three hybrids are further used as lab-on-a-molecule fluorescent probes to perform multianalyte detection for various solvents by selected fluorescent sensing channels. By means of PCA (principal component analysis) and HCA (hierarchical cluster analysis), all of them can successfully detect and discriminate17 common solvents, especially the H2O and D2O. Moreover, the H2Qj4/Tb0.91Eu0.09 also shows the wide linear responses of H2O content in D2O, discrimination of two-component solvent mixtures, hygroscopicity evaluation of D2O and information encryption which will advance the progress of multimodal luminescent materials and multianalyte chemosensors.
Collapse
Affiliation(s)
- Shengdi Tai
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Chengjian Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Shuaibo Shi
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Kang Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Shaolong Han
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Jinyu Wu
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Shishen Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Kun Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China.
| |
Collapse
|
24
|
Xiong Z, Li Y, Yuan Z, Liang J, Wang S, Yang X, Xiang S, Lv Y, Chen B, Zhang Z. Switchable Anisotropic/Isotropic Photon Transport in a Double-Dipole Metal-Organic Framework via Radical-Controlled Energy Transfer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314005. [PMID: 38375769 DOI: 10.1002/adma.202314005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/11/2024] [Indexed: 02/21/2024]
Abstract
Directional control of photon transport at micro/nanoscale holds great potential in developing multifunctional optoelectronic devices. Here, the switchable anisotropic/isotropic photon transport is reported in a double-dipole metal-organic framework (MOF) based on radical-controlled energy transfer. Double-dipole MOF microcrystals with transition dipole moments perpendicular to each other have been achieved by the pillared-layer coordination strategy. The energy transfer between the double dipolar chromophores can be modulated by the photogenerated radicals, which permits the in situ switchable output on both polarization (isotropy/anisotropy state) and wavelength information (blue/red-color emission). On this basis, the original MOF microcrystal with isotropic polarization state displays the isotropic photon transport and similar reabsorption losses at various directions, while the radical-affected MOF microcrystal with anisotropic polarization state shows the anisotropic photon transport with distinct reabsorption losses at different directions, finally leading to the in situ switchable anisotropic/isotropic photon transport. These results offer a novel strategy for the development of MOF-based photonic devices with tunable anisotropic performance.
Collapse
Affiliation(s)
- Zhile Xiong
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Yunbin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Zhen Yuan
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Jiashuai Liang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Shuaiqi Wang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Xue Yang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Yuanchao Lv
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| |
Collapse
|
25
|
Chen B, Mo X, Qu X, Xu Z, Zheng S, Fu H. Multiple-Emitting Luminescent Metal-Organic Framework as an Array-on-a-MOF for Rapid Screening and Discrimination of Nitroaromatics. Anal Chem 2024; 96:6228-6235. [PMID: 38572697 DOI: 10.1021/acs.analchem.3c05282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Fluorescence array technologies have attracted great interest in the sensing field because of their high sensitivity, low cost, and capability of multitarget detection. However, traditional array sensing relies on multiple independent sensors and thus often requires time-consuming and laborious measurement processes. Herein, we introduce a novel fluorescence array strategy of the array-on-a-metal-organic framework (MOF), which integrates multiple array elements into a single MOF matrix to achieve facile sensing and discrimination of multiple target analytes. As a proof-of-concept system, we constructed a luminescent MOF containing three different emitting channels, including a lanthanide ion (europium/Eu3+, red emission), a fluorescent dye (7-hydroxycoumarin-4-acetic acid/HCAA, blue emission), and the MOF itself (UiO-66-type MOF, blue-violet emission). Five structurally similar nitroaromatic compounds (NACs) were chosen as the targets. All three channels of the array-on-a-MOF displayed rapid and stable fluorescence quenching responses to NACs (response equilibrium achieved within 30 s). Different responses were generated for each channel against each NAC due to the various quenching mechanisms, including photoinduced electron transfer, energy competition, and the inner filter effect. Using linear discriminant analysis, the array-on-a-MOF successfully distinguished the five NACs and their mixtures at varying concentrations and demonstrated good sensitivity to quantify individual NACs (detect limit below the advisory concentration in drinking water). Moreover, the array also showed feasibility in the sensing and discrimination of multiple NACs in real water samples. The proposed "array-on-a-MOF" strategy simplifies multitarget discrimination procedures and holds great promise for various sensing applications.
Collapse
Affiliation(s)
- Beining Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Xiaojing Mo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Zhaoyi Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Shourong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| |
Collapse
|
26
|
Li W, Liang Z, Wang P, Ma Q. The luminescent principle and sensing mechanism of metal-organic framework for bioanalysis and bioimaging. Biosens Bioelectron 2024; 249:116008. [PMID: 38245932 DOI: 10.1016/j.bios.2024.116008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
Metal-organic frameworks (MOFs) porous material have obtained more and more attention during the past decade. Among various MOFs materials, luminescent MOFs with specific chemical characteristics and excellent optical properties have been regarded as promising candidates in the research of cancer biomarkers detection and bioimaging. Therefore, the latest advances and the principal biosensing and imaging strategies based on the luminescent MOFs were discussed in this review. The effective synthesis methods of luminescent MOFs were emphasized firstly. Subsequently, the luminescent principle of MOFs has been summarized. Furthermore, the luminescent MOF-based sensing mechanisms have been highlighted to provide insights into the design of biosensors. The designability of LMOFs was suitable for different needs of biorecognition, detection, and imaging. Typical examples of luminescent MOF in the various cancer biomarkers detection and bioimaging were emphatically introduced. Finally, the future outlooks and challenges of luminescent MOF-based biosensing systems were proposed for clinical cancer diagnosis.
Collapse
Affiliation(s)
- Wenyan Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zihui Liang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Peilin Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
27
|
Egger C, Guénée L, Deorukhkar N, Piguet C. Programming heterometallic 4f-4f' helicates under thermodynamic control: the circle is complete. Dalton Trans 2024; 53:6050-6062. [PMID: 38470853 DOI: 10.1039/d4dt00610k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Three non-symmetrical segmental ligand strands L4 can be wrapped around a linear sequence of one Zn2+ and two trivalent lanthanide cations Ln3+ to give quantitatively directional [ZnLn2(L4)3]8+ triple-stranded helicates in the solid state and in solution. NMR speciations in CD3CN show negligible decomplexation at a millimolar concentration and the latter helicate can be thus safely considered as a preorganized C3-symmetrical HHH-[(L43Zn)(LnA)(2-n)(LnB)n]8+ platform in which the thermodynamic properties of (i) lanthanide permutation between the central N9 and the terminal N6O3 binding sites and (ii) exchange processes between homo- and heterolanthanide helicates are easy to access (Ln = La, Eu, Lu). Deviations from statistical distributions could be programmed by exploiting specific site recognition and intermetallic pair interactions. Considering the challenging La3+ : Eu3+ ionic pair, for which the sizes of the two cations differ by only 8%, a remarkable excess (70%) of the heterolanthanide is produced, together with a preference for the formation of the isomer where the largest lanthanum cation lies in the central N9 site ([(La)(Eu)] : [(Eu)(La)] = 9 : 1). This rare design and its rational programming pave the way for the preparation of directional light-converters and/or molecular Q-bits at the (supra)molecular level.
Collapse
Affiliation(s)
- Charlotte Egger
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Laure Guénée
- Laboratory of Crystallography, University of Geneva, 24 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Neel Deorukhkar
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
28
|
Xiao Y, Sun Q, Leng J, Jin S. Time-Resolved Spectroscopy for Dynamic Investigation of Photoresponsive Metal-Organic Frameworks. J Phys Chem Lett 2024:3390-3403. [PMID: 38501970 DOI: 10.1021/acs.jpclett.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Photoresponsive MOFs with precise and adjustable reticular structures are attractive for light conversion applications. Uncovering the photoinduced carrier dynamics lays the essential foundation for the further development and optimization of the MOF material. With the application of time-resolved spectroscopy, photophysical processes including excimer formation, energy transfer/migration, and charge transfer/separation have been widely investigated. However, the identification of distinct photophysical processes in real experimental MOF spectra still remains difficult due to the spectral and dynamic complexity of MOFs. In this Perspective, we summarize the typical spectral features of these photophysical processes and the related analysis methods for dynamic studies performed by time-resolved photoluminescence (TR-PL) and transient absorption (TA) spectroscopy. Based on the recent understanding of excited-state properties of photoresponsive MOFs and the discussion of challenges and future outlooks, this Perspective aims to provide convenience for MOF kinetic analysis and contribute to the further development of photoresponsive MOF material.
Collapse
Affiliation(s)
- Yejun Xiao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qi Sun
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jing Leng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
29
|
Lv Y, Liang J, Xiong Z, Yang X, Li Y, Zhang H, Xiang S, Chen B, Zhang Z. Smart-Responsive HOF Heterostructures with Multiple Spatial-Resolved Emission Modes toward Photonic Security Platform. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309130. [PMID: 37879073 DOI: 10.1002/adma.202309130] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/13/2023] [Indexed: 10/27/2023]
Abstract
Luminescent hydrogen-bonded organic frameworks (HOFs) with the unique dynamics and versatile functional sites hold great potential application in information security, yet most of responsive HOFs focus on the single-component framework with restrained emission control, limiting further applications in advanced confidential information protection. Herein, the first smart-responsive HOF heterostructure with multiple spatial-resolved emission modes for covert photonic security platform is reported. The HOF heterostructures are prepared by integrating different HOFs into a single microwire based on a hydrogen-bond-assisted epitaxial growth method. The distinct responsive behaviors of HOFs permit the heterostructure to simultaneously display the thermochromism via the framework transformation and the acidichromism via the protonation effect, thus generating multiple emission modes. The dual stimuli-controlled spatial-resolved emission modes constitute the fingerprint of a heterostructure, and enable the establishment of the smart-responsive photonic barcode with multiple convert states, which further demonstrate the dynamic coding capability and enhanced security in anticounterfeiting label applications. These results offer a promising route to design function-oriented smart responsive HOF microdevices toward advanced anticounterfeiting applications.
Collapse
Affiliation(s)
- Yuanchao Lv
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Jiashuai Liang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Zhile Xiong
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Xue Yang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Yunbin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Hao Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| |
Collapse
|
30
|
Deng Y, Jiang S, Yan Z, Chu Y, Wu W, Xiao H. Fluorescent Eu-MOF@nanocellulose-based nanopaper for rapid and sensitive detection of uranium (Ⅵ). Anal Chim Acta 2024; 1292:342211. [PMID: 38309843 DOI: 10.1016/j.aca.2024.342211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
Radioactive uranium leaks into natural water bodies mainly in the form of uranyl ions (UO22+), posing ecological and human health risks. Fluorescent europium-based metal-organic frameworks (Eu-MOFs) have been demonstrated to be effective fluorescent sensors for UO22+, but the large size, powder state and poor dispersity limit their further application. In this work, fluorescent Eu-MOFs were in-situ grown on TEMPO-oxidized cellulose nanofibers (TOCNFs), which is the first time that spherical Eu-MOF crystals with sizes below 10 nm were prepared. Fluorescence spectral analysis revealed a nine-fold increase in the fluorescence intensity of TOCNF@Eu-MOF compared to Eu-MOF. The nanocomposites achieved rapid and sensitive fluorescence quenching to UO22+ through the "antenna effect" and unsaturated Lewis basic sites on the ligands binding with UO22+. Moreover, TOCNF@Eu-MOF demonstrated excellent selectivity and anti-interference for UO22+ detection. For the nanopaper-based sensor made from TOCNF@Eu-MOF, the Stern-Volmer quenching constant (KSV) was calculated as 8.21 × 104 M-1, and the lowest limit of detection (LOD) was 6.6 × 10-7 M, significantly lower than the 1.32 × 10-6 M of Eu-MOFs. In addition, the nanopaper exhibited good fluorescence stability and cyclic detection performance, enabling the rapid and convenient detection of UO22+ in the aqueous phase within 30 s by simple dipping.
Collapse
Affiliation(s)
- Yuqing Deng
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China; School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing, 210094, China
| | - Shan Jiang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Zifei Yan
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Youlu Chu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Weibing Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada.
| |
Collapse
|
31
|
Yin SH, Lan BL, Yang YL, Tong YQ, Feng YF, Zhang Z. Multi-analyte fluorescence sensing based on a post-synthetically functionalized two-dimensional Zn-MOF nanosheets featuring excited-state proton transfer process. J Colloid Interface Sci 2024; 657:880-892. [PMID: 38091911 DOI: 10.1016/j.jcis.2023.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/25/2023] [Accepted: 12/07/2023] [Indexed: 01/02/2024]
Abstract
Covalent post-synthetic modification of metal-organic frameworks (MOFs) represents an underexplored but promising avenue for allowing the addition of specific fluorescent recognition elements to produce the novel MOF-based sensory materials with multiple-analyte detection capability. Here, an excited-state proton transfer (ESPT) active sensor 2D-Zn-NS-P was designed and constructed by covalent post-synthetic incorporation of the excited-state tautomeric 2-hydroxypyridine moiety into the ultrasonically exfoliated amino-tagged 2D Zn-MOF nanosheets (2D-Zn-NS). The water-mediated ESPT process facilitates the highly accessible active sites incorporated on the surface of 2D-Zn-NS-P to specifically respond to the presence of water in common organic solvents via fluorescence turn-on behavior, and accurate quantification of trace amount of water in acetonitrile, acetone and ethanol was established using the as-synthesized nanosheet sensor with the detection sensitivity (<0.01% v/v) superior to the conventional Karl Fischer titration. Upon exposure to Fe3+ or Cr2O72-, the intense blue emission of the aqueous colloidal dispersion of 2D-Zn-NS-P was selectively quenched even in the coexistence of common inorganic interferents. The prohibition of the water-mediated ESPT process and local emission, induced by the coordination of ESPT fluorophore with Fe3+ or by Cr2O72- competitively absorbs the excitation energy, was proposed to responsible for the fluorescence turn-off sensing of the respective analytes. The present study offers the attractive prospect to develop the ESPT-based fluorescent MOF nanosheets by covalent post-synthetic modification strategy as multi-functional sensors for detection of target analytes.
Collapse
Affiliation(s)
- Shu-Hui Yin
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Bi-Liu Lan
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Ya-Li Yang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Yu-Qing Tong
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Yan-Fang Feng
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China; College of Pharmacy, Guilin Medical University, Guilin 541199, PR China.
| | - Zhong Zhang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
32
|
Yang X, Liu W, Liu X, Sun Y, Wang X, Shao Y, Liu W. Construction of Multifunctional Luminescent Lanthanide MOFs for Luminescent Sensing of Temperature, Trifluoroacetic Acid Vapor and Explosives. Inorg Chem 2024; 63:3921-3930. [PMID: 38335732 DOI: 10.1021/acs.inorgchem.3c04380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Metal-organic frameworks (MOFs) with multifunctional and tunable optical properties have unique advantages in the field of sensing, and the structure and properties of MOFs are significantly influenced by the ligands. In this study, a Y-type tricarboxylic acid ligand containing amide bonds was synthesized through functional guidance, and three isomorphic and heterogeneous three-dimensional MOFs (Eu-MOF, Tb-MOF, and Gd-MOF) were obtained by solvothermal reaction. Further studies revealed that both the Tb-MOF and Eu-MOF could selectively detect picric acid (PA). The luminescence quenching of the two MOFs by PA was attributed to competing absorption and photoelectron energy transfer mechanisms. In addition, due to the energy transfer between Tb and Rhodamine B, Rhodamine B was encapsulated into Tb-MOF. The obtained material exhibited a linear relationship between the temperature parameters I544/I584 and temperature within the range of 280-400 K, the correlation coefficient (R2) reached an impressive value of 0.999, and the absolute sensitivity of the sample used for temperature sensing was 1.534% K-1. What is more, the material exhibited a good response to trifluoroacetic acid vapor, which suggests the potential of the material for temperature sensing and detection of trifluoroacetic acid vapor. The designed and investigated strategy can also serve as a reference for further research on excellent multifunctional sensors.
Collapse
Affiliation(s)
- Xiaoshan Yang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotope, College of Chemistry and Chemical Engineering, Lanzhou University, 730000 Lanzhou, China
| | - Wei Liu
- Frontiers Science Center for Rare Isotope, School of Nuclear Science and Technology, Institute of National Nuclear Industry, Lanzhou University, 730000 Lanzhou, China
| | - Xueguang Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotope, College of Chemistry and Chemical Engineering, Lanzhou University, 730000 Lanzhou, China
| | - Yiliang Sun
- Frontiers Science Center for Rare Isotope, School of Nuclear Science and Technology, Institute of National Nuclear Industry, Lanzhou University, 730000 Lanzhou, China
| | - Xiaoyan Wang
- Frontiers Science Center for Rare Isotope, School of Nuclear Science and Technology, Institute of National Nuclear Industry, Lanzhou University, 730000 Lanzhou, China
| | - Yongliang Shao
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotope, College of Chemistry and Chemical Engineering, Lanzhou University, 730000 Lanzhou, China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotope, College of Chemistry and Chemical Engineering, Lanzhou University, 730000 Lanzhou, China
| |
Collapse
|
33
|
Pei K, Xu J, Wu D, Qi L, Ma L, Zhang R, Qi W. A fluorescent dual-emitting platform for fluorescent "turn-on" ratiometric detection of ascorbic acid in beverages utilizing luminol-embedded iron-based metal-organic frameworks. Food Chem 2024; 434:137417. [PMID: 37738811 DOI: 10.1016/j.foodchem.2023.137417] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/24/2023]
Abstract
A fluorescent dual-emitting platform for fluorescent "turn-on" ratiometric detection of ascorbic acid in beverages was developed utilizing luminol-embedded iron-based metal-organic frameworks (luminol@Fe-DOBDC MOFs). Luminol@Fe-DOBDC MOFs with fluorescent emissions at 430 nm and 540 nm under excitation wavelength of 365 nm were applied to detect ascorbic acid on the basis of ascorbic acid triggering the reduction of Fe3+ into Fe2+. In the presence of ascorbic acid, fluorescent intensity at 540 nm was increased significantly while fluorescent intensity at 430 nm was changed slightly. Two emission peaks separated by 110 nm can eliminate environmental interferences by built-in self-calibration of ratiometric signal, enhancing the sensitivity and accuracy. The increasing ratiometric fluorescent intensity (I540 nm/I430 nm) has linear relationship with the concentration of ascorbic acid from 0.2 to 30 μM with limit of detection of 70 nM. It is an efficient, sensitive and accurate platform to detect ascorbic acid in commercial beverages using transition-metal-based MOFs.
Collapse
Affiliation(s)
- Kanglin Pei
- College of Chemistry, Chongqing Normal University, Chongqing 401331, PR China
| | - Jianyang Xu
- College of Chemistry, Chongqing Normal University, Chongqing 401331, PR China
| | - Di Wu
- College of Chemistry, Chongqing Normal University, Chongqing 401331, PR China.
| | - Lin Qi
- China Tobacco Hongyunhonghe Tobacco (group) Co., Ltd., Kunming 650231, PR China
| | - Lingyan Ma
- College of Chemistry, Chongqing Normal University, Chongqing 401331, PR China
| | - Renwen Zhang
- College of Chemistry, Chongqing Normal University, Chongqing 401331, PR China
| | - Wenjing Qi
- College of Chemistry, Chongqing Normal University, Chongqing 401331, PR China.
| |
Collapse
|
34
|
Li L, Zhang LL, Zou J, Zou J, Duan LY, Gao Y, Peng G, Huang X, Lu L. Dual-emissive europium doped UiO-66-based ratiometric light-up biosensor for highly sensitive detection of histidinemia biomarker. Anal Chim Acta 2024; 1290:342202. [PMID: 38246745 DOI: 10.1016/j.aca.2024.342202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/04/2023] [Accepted: 01/01/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND Lanthanide metal-organic frameworks (Ln-MOFs) are a kind of emerging crystalline porous materials with high fluorescence and easy-to-tunable properties, making them ideal for sensing applications. However, current Ln-MOFs based fluorescent probes are primarily single-emissive or fluorescence-quenched, which greatly limited the detection performances such as sensitivity, accuracy and repeatability, thereby hindering their applications in efficient target monitoring and related disease diagnosis. To address these issues, the reasonable design of Ln-MOFs equipped with dual fluorescence emissions and light-up mode is urgently needed for a high-performance biosensor. RESULTS A dual-emissive europium doped UiO-66 (Eu@UiO-66-NH2-PMA)-based ratiometric fluorescent biosensing platform was constructed for highly sensitive and selective detection of the histidinemia biomarker-histidine (His). Eu@UiO-66-NH2-PMA (pyromellitic acid abbreviated as PMA) was synthesized utilizing a post-synthetic modification method via coordination interactions between the free -COOH of UiO-66-NH2-PMA and Eu3+, which exhibited characteristic peaks of broad ligand emission and sharp Eu3+ emissions simultaneously. Considering that Cu2+ had the excellent fluorescence quenching ability toward Eu3+ and superior affinity with His, it was deliberately introduced into the Eu@UiO-66-NH2-PMA, acting as active sites for target His responsiveness. The Eu@UiO-66-NH2-PMA/Cu2+/His ternary competition system demonstrated a low detection limit of 74 nM, excellent selectivity and good anti-interference capability that allowed for sensitive analysis of His levels in milk and human serum samples. SIGNIFICANCE Attributing to the superior luminescent properties, good stability and self-calibration capability of Eu@UiO-66-NH2-PMA, the developed ratiometric light-up sensing platform enabled sensitive, selective and credible analysis of His in complex practical samples, which might provide an available tool for food nutrition guideline and diagnostic applications of His related diseases.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, College of Science, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lin-Lin Zhang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jin Zou
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, College of Science, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jiamin Zou
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, College of Science, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lu-Ying Duan
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Yansha Gao
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, College of Science, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Guanwei Peng
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, College of Science, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xigen Huang
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, College of Science, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Limin Lu
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, College of Science, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
35
|
Manquian C, Navarrete A, Vivas L, Troncoso L, Singh DP. Synthesis and Optimization of Ni-Based Nano Metal-Organic Frameworks as a Superior Electrode Material for Supercapacitor. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:353. [PMID: 38392725 PMCID: PMC10892306 DOI: 10.3390/nano14040353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
Metal-organic frameworks (MOFs) are hybrid materials that are being explored as active electrode materials in energy storage devices, such as rechargeable batteries and supercapacitors (SCs), due to their high surface area, controllable chemical composition, and periodic ordering. However, the facile and controlled synthesis of a pure MOF phase without impurities or without going through a complicated purification process (that also reduces the yield) are challenges that must be resolved for their potential industrial applications. Moreover, various oxide formations of the Ni during Ni-MOF synthesis also represent an issue that affects the purity and performance. To resolve these issues, we report the controlled synthesis of nickel-based metal-organic frameworks (NiMOFs) by optimizing different growth parameters during hydrothermal synthesis and by utilizing nickel chloride as metal salt and H2bdt as the organic ligand, in a ratio of 1:1 at 150 °C. Furthermore, the synthesis was optimized by introducing a magnetic stirring stage, and the reaction temperature varied across 100, 150, and 200 °C to achieve the optimized growth of the NiMOFs crystal. The rarely used H2bdt ligand for Ni-MOF synthesis and the introduction of the ultrasonication stage before putting it in the furnace led to the formation of a pure phase without impurities and oxide formation. The synthesized materials were further characterized by powder X-ray diffraction (XRD) technique, scanning electron microscopy (SEM), and UV-vis spectroscopy. The SEM images exhibited the formation of nano NiMOFs having a rectangular prism shape. The average size was 126.25 nm, 176.0 nm, and 268.4 nm for the samples (1:1)s synthesized at 100 °C, 150 °C, and 200 °C, respectively. The electrochemical performances were examined in a three-electrode configuration, in a wide potential window from -0.4 V to 0.55 V, and an electrolyte concentration of 2M KOH was maintained for each measurement. The charge-discharge galvanostatic measurement results in specific capacitances of 606.62 F/g, 307.33 F/g, and 287.42 F/g at a current density of 1 A/g for the synthesized materials at 100 °C, 150 °C, and 200 °C, respectively.
Collapse
Affiliation(s)
- Carolina Manquian
- Department of Metallurgical Engineering, Faculty of Engineering, University of Santiago of Chile (USACH), Av. Lib. Bernardo O’Higgins 3363, Estación Central, Santiago 9170022, Chile; (C.M.); (A.N.)
- Physics Department, Millennium Institute for Research in Optics (MIRO), Faculty of Science, University of Santiago of Chile (USACH), Avenida Victor Jara 3493, Estación Central, Santiago 9170124, Chile;
| | - Alberto Navarrete
- Department of Metallurgical Engineering, Faculty of Engineering, University of Santiago of Chile (USACH), Av. Lib. Bernardo O’Higgins 3363, Estación Central, Santiago 9170022, Chile; (C.M.); (A.N.)
- Physics Department, Millennium Institute for Research in Optics (MIRO), Faculty of Science, University of Santiago of Chile (USACH), Avenida Victor Jara 3493, Estación Central, Santiago 9170124, Chile;
| | - Leonardo Vivas
- Physics Department, Millennium Institute for Research in Optics (MIRO), Faculty of Science, University of Santiago of Chile (USACH), Avenida Victor Jara 3493, Estación Central, Santiago 9170124, Chile;
- Department of Electrical Engineering, Universidad Técnica Federico Santa Maria, Santiago 8940000, Chile
| | - Loreto Troncoso
- Institute of Mechanical Engineering, MIGA Millennium Institute, University Austral of Chile, Valdivia 5090000, Chile;
| | - Dinesh Pratap Singh
- Department of Metallurgical Engineering, Faculty of Engineering, University of Santiago of Chile (USACH), Av. Lib. Bernardo O’Higgins 3363, Estación Central, Santiago 9170022, Chile; (C.M.); (A.N.)
- Physics Department, Millennium Institute for Research in Optics (MIRO), Faculty of Science, University of Santiago of Chile (USACH), Avenida Victor Jara 3493, Estación Central, Santiago 9170124, Chile;
| |
Collapse
|
36
|
Guo Q, Zhang X, Kang Y, Ni Y. Exfoliation of a Coordination Polymer Based on a Linear π-Conjugated Ligand into an Ultrathin Nanosheet for Glyphosate Sensing. Inorg Chem 2024; 63:2977-2986. [PMID: 38279918 DOI: 10.1021/acs.inorgchem.3c03652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Owing to the large-scale consumption of pesticides and their potential threats to the environment and human health, the development of sensing materials for pesticides has attracted considerable attention in recent years. In this work, a novel Cd(II)-based coordination polymer (CP) with the formula [Cd(H2O)2(L)]·DMF (Cd-1, DMF = N,N-dimethylformamide, H2L = 4,4'-[(2,5-dimethoxy-1,4-phenylene)di-2,1-ethenediyl]bis-benzoic acid) was synthesized under solvothermal conditions. Structural analysis revealed that coordination between central Cd2+ cations and the ligand L2- formed two-dimensional (2D) networks, which were further assembled by noncovalent hydrogen bonds into a three-dimensional (3D) supramolecular framework. Through ultrasonic treatment in isopropyl alcohol, Cd-1 was exfoliated to afford an ultrathin CP-based 2D nanosheet (Cd-1-NS) with a thickness of less than 1.8 nm. Compared to the bulk materials, the prepared Cd-1-NS exhibited enhanced fluorescence emission properties and superior sensing performance toward glyphosate (Glyph) in water with high selectivity, sensitivity, anti-interference, fast response, and good recyclability via the turn-off effect. The limit of detection (LOD) of Cd-1-NS for Glyph was as low as 41 nM (7 ppb) in the low-concentration range of 0-2.4 μM. In addition, the Cd-1-NS also showed excellent practicability and reliability for the detection of Glyph in real samples, including lake water, tap water, cabbage, and watermelon skin, and could realize the rapid visualized sensing of Glyph residues on the surfaces of vegetables and fruits.
Collapse
Affiliation(s)
- Qianyu Guo
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu 241002, China
| | - Xiudu Zhang
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu 241002, China
| | - Yanshang Kang
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Maanshan 243099, China
| | - Yonghong Ni
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
37
|
Zhao H, Li H, Zheng J, Yan H, Lu J, Liu H, Hao H, Dou J, Li Y, Wang S. Cd-MOF and Its Ln 3+-Post Modification Products: Regulation of Luminescence Properties and Improved Detection of Uric Acid, Quinine, and Quinidine. Inorg Chem 2024; 63:1962-1973. [PMID: 38236237 DOI: 10.1021/acs.inorgchem.3c03661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
One 3D Cd-MOF, namely, {[(HDMA)2][Cd3(L)2]·5H2O·2DMF}n (LCU-124, LCU indicates Liaocheng University), was synthesized from an ether-containing ligand 1,3-bis(3,5-dicarboxylphenoxy)benzene (H4L). Its Ln3+-postmodified samples, Eu3+@LCU-124 and Tb3+@LCU-124, were obtained through cation exchange of dimethylamine cation (HDMA) with Eu3+ and Tb3+. The successful entry of rare earth into LCU-124 by cation exchange modification was verified by IR, XRD, XPS, EDS mapping, and luminescence spectra. The proportion of Eu3+/Tb3+ was adjusted during the modification process, leading to fluorescent materials with different emissions. Luminescence measurements indicated that these complexes exhibited interesting multiresponsive sensing activities toward biomarkers urine acid (UA), quinine (QN), and quinidine (QND). First, LCU-124 has a pronounced quenching effect toward UA with the detection limit of 31.01 μM. After modification, the visualization of the detection was improved significantly and the detection limit of Eu3+@LCU-124 was reduced to 0.868 μM. Second, when QN and QND were present in the suspensions of Eu3+@LCU-124 and Tb3+@LCU-124, strong blue light emission peaks occurred, while the characteristic emission of Eu3+/Tb3+ decreased, forming ratiometric fluorescent sensors with the detection limit in the range of 0.199-9.49 μM. The fluorescent probes have high selectivity, excellent sensitivity recycling, and fast response time (less than 1 min). Besides, a simple logic gate circuit and a range of luminescent mixed matrix membranes were designed to provide simple and fast detection of above biomarkers. Our work indicated that modification of Eu3+/Tb3+ could improve the detection ability significantly.
Collapse
Affiliation(s)
- Hengyi Zhao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Hongjian Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Jun Zheng
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Hui Yan
- School of Pharmacy, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Jing Lu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Houting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Hongguo Hao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Jianmin Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Yunwu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Suna Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| |
Collapse
|
38
|
Wang Y, Zheng Y, Huo F, Zhang Q, Yang X, Karmaker PG. Ratiometric fluorescence sensor based on europium-organic frameworks for selective and quantitative detection of cerium ions. Anal Chim Acta 2024; 1287:342131. [PMID: 38182353 DOI: 10.1016/j.aca.2023.342131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Due to the unavoidable use of cerium in daily life, the accumulation of cerium in the environment increases health risks for humans. Therefore, it is crucial to develop a chemical sensing technology for the rapid, sensitive, and selective detection of cerium ions. RESULTS In this research work, a novel two-dimensional chain structure of a europium-based metal organic framework (Eu-MOF) [Eu2(tcpa)(Htcpa)2] was synthesized by using 3,4,5,6-tetrachloro-1,2-benzenedicarboxylic acid (H2TCPA) as the ligand and europium nitrate as the metal source. The results of powder X-ray diffraction and thermogravimetric analysis show that the synthesized Eu-MOF has excellent chemical and thermal stability. When the Eu-MOF suspension was excited by ultraviolet light at 292 nm, four fluorescence emissions were observed at 420, 595, 620 and 705 nm. It was particularly interesting that when cerium ions (Ce3+/Ce4+) were added to the Eu-MOF suspension, the fluorescence intensity at 420 nm was enhanced, while the fluorescence at 620 nm was quenched. On this basis, a ratiometric fluorescent sensor for detecting cerium ions was constructed, which has a good linear relationship in the range of 0.05-15 μM and a detection limit of 16 nM. The plausible mechanism of the change in the fluorescence characteristics of Eu-MOF caused by cerium ions was discussed in detail. Through the study of fluorescence lifetime and ultraviolet absorption, it was proven that the mechanism of Ce3+-quenching Eu-MOF fluorescence is the inner filter effect. Photoinduced electron transfer and internal filtering effects lead to fluorescence quenching at 620 nm, while redox reactions lead to fluorescence enhancement of the ligand at 420 nm. SIGNIFICANCE The proposed ratiometric fluorescence sensor was successfully employed for the detection of cerium ions in real water samples, confirming that it can be used as an alternative method for the detection of Ce3+ and Ce4+ in environmental samples.
Collapse
Affiliation(s)
- Yaohui Wang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China
| | - Yi Zheng
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China
| | - Feng Huo
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China; School of Chemistry and Chemical Engineering, Analytical Testing Center, Institute of Micro/Nano Intelligent Sensing, Neijiang Normal University, Neijiang, 641100, China
| | - Qian Zhang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China
| | - Xiupei Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China.
| | - Pran Gopal Karmaker
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China.
| |
Collapse
|
39
|
Zhao K, Liu F, Sun H, Xia P, Qu J, Lu C, Zong S, Zhang R, Xu S, Wang C. A Novel Ion Species- and Ion Concentration-Dependent Anti-Counterfeiting Based on Ratiometric Fluorescence Sensing of CDs@MOF-Nanofibrous Films. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305211. [PMID: 37649153 DOI: 10.1002/smll.202305211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/14/2023] [Indexed: 09/01/2023]
Abstract
Traditional fluorescent anti-counterfeiting labels based on "on-off" fluorescence can be easily cloned. It is important to explore advanced anti-counterfeiting fluorescent labels with high-level security. Here, a pioneering ion species- and ion concentration-dependent anti-counterfeiting technique is developed. By successive loading Cu2+ -sensitive yellow emitted carbon dots (Y-CDs) and Cu2+ non-sensitive blue emitted carbon dots (B-CDs) into metal-organic frameworks (MOFs) and followed by electrospinning, the B&Y-CDs@MOF-nanofibrous films are prepared. The results show that the use of MOF not only avoids the fluorescence quenching of CDs but also improves the fluorescence stability. The fluorescence Cu2+ -sensitivity of the CDs@MOF-nanofibrous films can be regulated by polymer coating or lamination. The fluorescent label consisting of different Cu2+ -sensitivity films will show Cu2+ concentration-dependent decryption information. Only at a specific ion species and concentration (Cu2+ solution of 40-90 µm), the true information can be read out. Less or more concentration (<40 or >90 µm) will lead to false information. The identification of the real information depends on both the species and the concentration. After Cu2+ treatment, the fluorescence of the label can be recovered by ethylenediaminetetraacetic acid disodium (EDTA-2Na) for further recycling. This work will open up a new door for designing high-level fluorescent anti-counterfeiting labels.
Collapse
Affiliation(s)
- Kaitian Zhao
- School of Electronic Science & Engineering, Southeast University, Nanjing, 210096, China
| | - Fan Liu
- School of Electronic Science & Engineering, Southeast University, Nanjing, 210096, China
| | - Hongcan Sun
- School of Electronic Science & Engineering, Southeast University, Nanjing, 210096, China
| | - Pengfei Xia
- School of Electronic Science & Engineering, Southeast University, Nanjing, 210096, China
| | - Junfeng Qu
- School of Electronic Science & Engineering, Southeast University, Nanjing, 210096, China
| | - Changgui Lu
- School of Electronic Science & Engineering, Southeast University, Nanjing, 210096, China
| | - Shenfei Zong
- School of Electronic Science & Engineering, Southeast University, Nanjing, 210096, China
| | - Rong Zhang
- Department of Obstetrics and Gynecology, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210096, China
| | - Shuhong Xu
- School of Electronic Science & Engineering, Southeast University, Nanjing, 210096, China
| | - Chunlei Wang
- School of Electronic Science & Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
40
|
Wang SC, Zhang QS, Wang Z, Guan SQ, Zhang XD, Xiong XH, Pan M. Tetraphenylethylene-Based Hydrogen-Bonded Organic Frameworks (HOFs) with Brilliant Fluorescence. Angew Chem Int Ed Engl 2023; 62:e202315382. [PMID: 37945541 DOI: 10.1002/anie.202315382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023]
Abstract
By synergistically employing four key strategies: (I) introducing tetraphenylethylene groups as the central core unit with aggregation-induced emission (AIE) properties, (II) optimizing the π-conjugated length by extending the building block branches, (III) incorporating flexible groups containing ethylenic bonds, and (IV) applying crystal engineering to attain dense stacking mode and highly twisty conformation, we successfully synthesized a series of hydrogen-bonded organic frameworks (HOFs) exhibiting exceptional one/two-photon excited fluorescence. Notably, when utilizing the fluorescently superior building block L2, HOF-LIFM-7 and HOF-LIFM-8 exhibiting high quantum yields (QY) of 82.1 % and 77.1 %, and ultrahigh two-photon absorption (TPA) cross-sections of 148959.5 GM and 123901.1 GM were achieved. These materials were successfully employed in one and two-photon excited lysosome-targeting cellular imaging. It is believed that this strategy, combining building block optimization and crystal engineering, holds significant potential for guiding the development of outstanding fluorescent HOF materials.
Collapse
Affiliation(s)
- Shi-Cheng Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Qiang-Sheng Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
- Hainan Provincial Key Laboratory of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Zheng Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Shao-Qi Guan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xiao-Dong Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xiao-Hong Xiong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
41
|
Wu K, Liu XY, Cheng PW, Zheng J, Huang YL, Xie M, Liu M, Lu W, Li D. Pyrazine Functionalization in Eu-MOF for Exclusive Ratiometric Luminescence Sensing of PO 43. Inorg Chem 2023. [PMID: 37993990 DOI: 10.1021/acs.inorgchem.3c03142] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Single-emission luminescence sensors are less than satisfactory for complex systems due to their susceptibility to environmental disturbances. Lanthanum-based metal-organic frameworks (Ln-MOFs) with highly stable ratiometric dual-emission are regarded as promising luminescence probes owing to their fascinating ligand-to-metal energy transfer behaviors (also known as the antenna effect). Herein, we report the synthesis of a pair of isostructural europium-based MOFs (termed JNU-219 and JNU-220) by utilizing two X-shaped tetracarboxylate linkers, 4,4',4″,4‴-benzene-2,3,5,6-tetrayl-tetrabenzoate (BTEB) and 4,4',4″,4‴-pyrazine-2,3,5,6-tetrayl-tetrabenzoate (BTTB). Both JNU-219 and JNU-220 present the characteristic red luminescence of Eu3+, yet the pyrazine functionalization of the BTTB linker renders JNU-220 with significantly increased luminescence emission, almost 30 times that of JNU-219. As a result, the detection limit of JNU-220 for the ratiometric luminescence sensing of PO43- was determined to be as low as 0.22 μM, which is far superior to those of other reported MOF materials. Additionally, we demonstrate the excellent stability and reusability of JNU-220, further verifying its potential as a robust ratiometric luminescence probe.
Collapse
Affiliation(s)
- Kun Wu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Xin-Yi Liu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Pei-Wen Cheng
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Ji Zheng
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Yong-Liang Huang
- Department of Chemistry, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Mo Xie
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Maolin Liu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Weigang Lu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| |
Collapse
|
42
|
Zhai X, Kou Y, Liang L, Liang P, Su P, Tang Y. AIE Ligand-Based Luminescent Ln-MOFs for Rapid and Selective Sensing of Tetracycline. Inorg Chem 2023; 62:18533-18542. [PMID: 37897813 DOI: 10.1021/acs.inorgchem.3c02754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
The design of highly stable and dual-emission lanthanide metal-organic frameworks (Ln-MOFs) is promising for practical chemical sensor applications. Rational design and synthesis of photoresponsive organic ligands provide a feasible approach to achieving highly fluorescent dual-emission Ln-MOFs. In this study, a tetraphenylpyrazine-based AIE ligand, H4L, was synthesized and combined with lanthanide ions (including Sm3+, Eu3+, Gd3+, and Tb3+) to fabricate a series of Ln-MOFs named Ln-L. The single-crystal analysis revealed that all Ln-L belonged to the tetragonal space group P4212 and featured a 2-fold interpenetrated 3D structure. Leveraging rational design, Eu-L exhibited a sensitive response to tetracycline, making it a promising fluorescence sensor for tetracycline detection. The experiments demonstrated that Eu-L could rapidly and quantitatively detect tetracycline and its analogs within 30 s. The lowest detection limits for tetracycline, oxytetracycline, and chlortetracycline were 0.43, 0.92, and 0.81 μM, respectively. Additionally, the probe displayed excellent reusability and exceptional selectivity. A plausible sensing mechanism was proposed, supported by both experimental and theoretical analyses. Furthermore, the study discovered that on-site and real-time determination of TCs in aqueous solutions could be achieved by using luminescence test papers and composite films derived from Eu-L.
Collapse
Affiliation(s)
- Xiaoyong Zhai
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yao Kou
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Lijuan Liang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Pengyu Liang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Pingru Su
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yu Tang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, P. R. China
| |
Collapse
|
43
|
Wang ZY, Jiang S, Lv MX, Liu ZW, Chi YX, Bai FY, Xing YH. RhB-Embedded Mn-MOF with Cyclotriphosphazene Skeleton as Dual-Emission Sensor for Putrescine as well as Smart Fluorescent Response of Aromatic Diamines and Nitrophenol. Inorg Chem 2023; 62:18414-18424. [PMID: 37917828 DOI: 10.1021/acs.inorgchem.3c02363] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Luminescent metal-organic framework composites with multiple luminescence emissions have been efficient sensing platforms. Herein, a fluorescent sensor (RhB@1-0.4) with dual-emission fluorescence properties was prepared by introducing rhodamine B (RhB) into the framework of complex 1, [Mn2.5(HCPCP)(H2O)4]·(CH3CN)0.5 [HCPCP = hexa-(4-carboxyl-phenoxy)-cyclotriphosphazene and CH3CN = acetonitrile), which is a novel crystalline two-dimensional (2D) coordinated organic framework material. It is a highly desirable material, realizing a ratiometric fluorescence response to putrescine with a high signal-to-noise ratio, and the detection limit can be as low as 6.8 μM. In addition, RhB@1-0.4 exhibited a better fluorescent sensing performance for aromatic diamines and nitrophenols compared with that of complex 1. It is a potential functionalized MOF material for the application of multichannel fluorescence sensing.
Collapse
Affiliation(s)
- Zi Yang Wang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Shan Jiang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Mei Xin Lv
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Zi Wen Liu
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Yu Xian Chi
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Feng Ying Bai
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Yong Heng Xing
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| |
Collapse
|
44
|
Guo RZ, Mai TH, Yang ZN, Wang HY, Liu HY. A pH-Stable Tb-MOF as Luminescence Sensor for Highly Sensitive Detection of Amino Acids through Diverse Sensing Mechanism. Inorg Chem 2023; 62:18209-18218. [PMID: 37861751 DOI: 10.1021/acs.inorgchem.3c02715] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
A luminescent Tb-MOF with excellent stability and dual-emitting properties was constructed with an amide-functionalized tetracarboxylate ligand. Tb-MOFs were initially assembled on one-dimensional Tb3+ chains, then formed a two-dimensional double-decker layer through the synergistic linking of organic ligands and bridging formic acid anions, and further fabricated the final three-dimensional structure through the connection of the organic ligands. Powder X-ray diffraction experiments revealed that Tb-MOFs not only exhibited excellent stability in water but also maintained structural integrity in the pH range of 2-12. Importantly, this Tb-MOF provided the first example of a metal-organic framework (MOF)-based luminescence sensor that can simultaneously detect two acid amino acids (aspartic and glutamic acids) through a turn-off sensing mechanism and two basic amino acids (lysine and arginine acids) through unusual turn-on and turn-off-on sensing mechanisms. Moreover, high sensitivity, low detection limit, and excellent recyclability of this sensor endow Tb-MOFs with great potential as a highly efficient amino acid fluorescence sensor in chemical detection and biological environments.
Collapse
Affiliation(s)
- Run-Zhong Guo
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Ting-Hui Mai
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Zhen-Ni Yang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Hai-Ying Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Hui-Yan Liu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| |
Collapse
|
45
|
Xu N, Tang Z, Jiang YP, Fang J, Zhang L, Lai X, Sun QJ, Fan JM, Tang XG, Liu QX, Jian JK. Highly Sensitive Ratiometric Fluorescent Flexible Sensor Based on the RhB@ZIF-8@PVDF Mixed-Matrix Membrane for Broad-Spectrum Antibiotic Detection. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37924319 DOI: 10.1021/acsami.3c12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Antibiotics play an essential role in the treatment of various diseases. However, the overuse of antibiotics has led to the pollution of water bodies and food safety, affecting human health. Herein, we report a dual-emission MOF-based flexible sensor for the detection of antibiotics in water, which was prepared by first encapsulating rhodamine B (RhB) by a zeolite imidazolium ester skeleton (ZIF-8) and then blending it with polyvinylidene difluoride (PVDF). The luminescent properties, structural tunability, and flexible porosity of the MOF-based composites were combined with the processability and flexibility of polymers to prepare luminescent membranes. The sensor is capable of dual-emission ratiometric fluorescence sensing of nitrofurantoin (NFT) and oxytetracycline (OTC), exhibiting sensitive detection of fluorescence burst and fluorescence enhancement, respectively, with detection limits of 0.012 μM and 8.9 nM. With the advantages of visual detection, high sensitivity, short detection time, and simplicity, the highly sensitive ratiometric fluorescent flexible sensor has great potential for detecting antibiotics in an aqueous environment. It will further stimulate interest in luminescent MOF-based mixed matrix membranes and their sensing applications.
Collapse
Affiliation(s)
- Nuan Xu
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Zhenhua Tang
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Yan-Ping Jiang
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Junlin Fang
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Li Zhang
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Xiaofang Lai
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Qi-Jun Sun
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Jing-Min Fan
- School of Automation, Guangdong University of Technology, Guangzhou 510006, China
| | - Xin-Gui Tang
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Qiu-Xiang Liu
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Ji-Kang Jian
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| |
Collapse
|
46
|
Velasco E, Zhang G, Teat SJ, Tan K, Ullah S, Thonhauser T, Li J. Luminescent Metal-Organic Framework for the Selective Detection of Aldehydes. Inorg Chem 2023; 62:16435-16442. [PMID: 37767939 DOI: 10.1021/acs.inorgchem.3c02115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The detection of toxic, hazardous chemical species is an important task because they pose serious risks to either the environment or human health. Luminescent metal-organic frameworks (LMOFs) as alternative sensors offer rapid and sensitive detection of chemical species. Interactions between chemical species and LMOFs result in changes in the photoluminescence (PL) profile of the LMOFs which can be readily detected using a simple fluorometer. Herein, we report the use of a robust, Zn-based LMOF, [Zn5(μ3-OH)2(adtb)2(H2O)5·5 DMA] (Zn-adtb, LMOF-341), for the selective detection of benzaldehyde. Upon exposure to benzaldehyde, Zn-adtb experiences significant luminescent quenching, as characterized through PL experiments. Photoluminescent titration experiments reveal that LMOF-341 has a detection limit of 64 ppm and a Ksv value of 179 M-1 for benzaldehyde. Furthermore, we study the guest-host interactions that occur between LMOF-341 and benzaldehyde through in situ Fourier transform infrared and computational modeling employing density functional theory. The results show that benzaldehyde interacts more strongly with LMOF-341 compared to formaldehyde and propionaldehyde. Our combined studies also reveal that the mechanism of luminescence quenching originates from an electron-transfer process.
Collapse
Affiliation(s)
- Ever Velasco
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Guoyu Zhang
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Simon J Teat
- Advanced Light Source Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Kui Tan
- Department of Materials Science & Engineering, University of Texas at Dallas, 800 Campbell Road, Richardson, Texas 75080, United States
| | - Saif Ullah
- Department of Physics and Center for Functional Materials, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, North Carolina 27109, United States
| | - Timo Thonhauser
- Department of Physics and Center for Functional Materials, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, North Carolina 27109, United States
| | - Jing Li
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
47
|
Chen X, Feng X, Zhang Z, Deng X, Dai F, Zhang L, Ng SW. Multifunctional Lanthanide Metal-Organic Frameworks Based on -NH 2 Modified Ligand: Fluorescent Ratio Probe, CrO 42- Ions Adsorption, and Photocatalytic Property. Inorg Chem 2023; 62:16170-16181. [PMID: 37722103 DOI: 10.1021/acs.inorgchem.3c02448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
In response to the growing concern for environmental pollution, two lanthanide compounds {[Ln(L)(H2O)]·4H2O}n (where Ln = Tb and Gd, H3L = 1-amino-2,4,6-benzene tricarboxylic acid) were synthesized using a -NH2 modified ligand and systematically characterized. Both compounds exhibit remarkable fluorescence response, adsorption of CrO42- ions, and photocatalytic degradation properties, as well as exceptional acid-base and thermal stability. Remarkably, the pH-dependent 1-Tb exhibits exceptional performance as a fluorescent probe for detecting Fe3+ and CrO42-/Cr2O72- ions in aqueous solutions, while also serving as a ratiometric fluorescent probe for the detection of Cr3+, offering rapid response, high sensitivity, selectivity, and recoverability advantages in application. Moreover, 1-Tb exhibits excellent detection capabilities and displays effective adsorption of CrO42- ions, with a maximum adsorption capacity of 230.71 mg/g. On the other hand, 1-Gd exhibits superior performance compared to 1-Tb in the photocatalytic degradation of antibiotics. The degradation mechanism is further elucidated by conducting experiments with DFT theoretical calculations.
Collapse
Affiliation(s)
- Xueyi Chen
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Xun Feng
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Zongxin Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Xiangru Deng
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Fei Dai
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Lilei Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Seik Weng Ng
- UCSI University, Cheras 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
48
|
Han Y, Zhao L, Jing H, Song G, Wang Z, Li J, Yang Y. Application of a Metal Cobalt Based on 4,6-Bis(imidazol-1-yl)isophthalicacid Metal-Organic -Framework Materials in Photocatalytic CO 2 Reduction, Antibacterial, and Dye Adsorption. Polymers (Basel) 2023; 15:3848. [PMID: 37765700 PMCID: PMC10537682 DOI: 10.3390/polym15183848] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/28/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
In this paper, the reported MOF ([Co(bimip)(H2O)0.5]·0.5H2O) was employed in photocatalytic CO2 reduction, antibacterial, and dye adsorption experiments. The photocatalytic activity of the MOF for CO2 reduction was systematically investigated. The high average CO generation rate of 3421.59 μmol·g-1·h-1 after 12 h confirms the efficient photocatalytic CO2 reduction ability of the MOF. At the same time, the MOF can completely inhibit the growth of S. aureus and C. albicans within 24 h when its concentration reaches 400 μg/mL and 500 μg/mL, respectively. The MOF has an adsorption capacity for CR. The adsorption rate was 83.42% at 60 min, and the adsorption capacity of the MOF for CR reached 500.00 mg·g-1.
Collapse
Affiliation(s)
| | - Lun Zhao
- College of Chemistry, Changchun Normal University, Changchun 130032, China; (Y.H.); (H.J.); (G.S.); (Z.W.); (J.L.); (Y.Y.)
| | | | | | | | | | | |
Collapse
|
49
|
Yu L, Wang Y, Sun Y, Tang Y, Xiao Y, Wu G, Peng S, Zhou X. Nanoporous Crystalline Materials for the Recognition and Applications of Nucleic Acids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305171. [PMID: 37616525 DOI: 10.1002/adma.202305171] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/12/2023] [Indexed: 08/26/2023]
Abstract
Nucleic acid plays a crucial role in countless biological processes. Hence, there is great interest in its detection and analysis in various fields from chemistry, biology, to medicine. Nanoporous crystalline materials exhibit enormous potential as an effective platform for nucleic acid recognition and application. These materials have highly ordered and uniform pore structures, as well as adjustable surface chemistry and pore size, making them good carriers for nucleic acid extraction, detection, and delivery. In this review, the latest developments in nanoporous crystalline materials, including metal organic frameworks (MOFs), covalent organic frameworks (COFs), and supramolecular organic frameworks (SOFs) for nucleic acid recognition and applications are discussed. Different strategies for functionalizing these materials are explored to specifically identify nucleic acid targets. Their applications in selective separation and detection of nucleic acids are highlighted. They can also be used as DNA/RNA sensors, gene delivery agents, host DNAzymes, and in DNA-based computing. Other applications include catalysis, data storage, and biomimetics. The development of novel nanoporous crystalline materials with enhanced biocompatibility has opened up new avenues in the fields of nucleic acid analysis and therapy, paving the way for the development of sensitive, selective, and cost-effective diagnostic and therapeutic tools with widespread applications.
Collapse
Affiliation(s)
- Long Yu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yuhao Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuqing Sun
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yongling Tang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuxiu Xiao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shuang Peng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
50
|
Zhou YN, Zhao SJ, Leng WX, Zhang X, Liu DY, Zhang JH, Sun ZG, Zhu YY, Zheng HW, Jiao CQ. Dual-Functional Eu-Metal-Organic Framework with Ratiometric Fluorescent Broad-Spectrum Sensing of Benzophenone-like Ultraviolet Filters and High Proton Conduction. Inorg Chem 2023; 62:12730-12740. [PMID: 37529894 DOI: 10.1021/acs.inorgchem.3c01224] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The construction of attractive dual-functional lanthanide-based metal-organic frameworks (Ln-MOFs) with ratiometric fluorescent detection and proton conductivity is significant and challenging. Herein, a three-dimensional (3D) Eu-MOF, namely, [Eu4(HL)2(SBA)4(H2O)6]·9H2O, has been hydrothermally synthesized with a dual-ligand strategy, using (4-carboxypiperidyl)-N-methylenephosphonic acid (H3L = H2O3PCH2-NC5H9-COOH) and 4-sulfobenzoic acid monopotassium salt (KHSBA = KO3SC6H4COOH) as organic linkers. Eu-MOF showed ratiometric fluorescent broad-spectrum sensing of benzophenone-like ultraviolet filters (BP-like UVFs) with satisfactory sensitivity, selectivity, and low limits of detection in water/ethanol (1:1, v/v) solutions and real urine systems. A portable test paper was prepared for the convenience of actual detection. The potential sensing mechanisms were thoroughly analyzed by diversified experiments. The synergistic effect of the forbidden energy transfer from the ligand to Eu3+, the internal filtration effect (IFE), the formation of a complex, and weak interactions between the KHSBA ligand and BP-like UVFs is responsible for the ratiometric sensing effect. Meanwhile, Eu-MOF displayed relatively high proton conductivity of 2.60 × 10-4 S cm-1 at 368 K and 95% relative humidity (RH), making it a potential material for proton conduction. This work provides valuable guidance for the facile and effective design and construction of multifunctional Ln-MOFs with promising performance.
Collapse
Affiliation(s)
- Ya-Nan Zhou
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Si-Jia Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Wen-Xing Leng
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Xu Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Dong-Yan Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Jia-Hui Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Zhen-Gang Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Yan-Yu Zhu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Han-Wen Zheng
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Cheng-Qi Jiao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|