1
|
Li C, Tian Z, Luan G, Bao L, Cui M, Ji Y, Zhang X. Fabrication of Dual-Ligand Zn-MOFs with Asynchronous Fluorescence Response for Efficient Ratiometric/Visual Sensing of Tetracycline Antibiotics in Animal-Derived Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3181-3193. [PMID: 39865711 DOI: 10.1021/acs.jafc.4c08871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The extensive use of tetracyclines in livestock poses health risks due to their residues in animal-derived food; therefore, developing simple detection methods to replace complex traditional approaches is of paramount importance. Here, we developed a dual-ligand zinc-based metal-organic framework material, Zn-BTC-BDC-NH2 (denoted as ZTD), for the detection of tetracyclines. The intrinsic blue fluorescence of ZTD was quenched upon the introduction of tetracyclines due to electron transfer from -NH2 of ZTD to -CO- and -OH groups of tetracycline molecules; meanwhile, the new green fluorescence emission was generated through π-π stacking between aromatic rings and the formation of complexes between Zn2+ and C-O/C═O groups. In real food samples, ZTD exhibited recovery rates ranging from 93.62 to 110.66%, with detection limits as low as 0.011 μmol·L-1. Additionally, a ZTD fluorescence test paper was developed for portable detection. This study presents a novel tetracycline detection method, offering insights into multiligand metal-organic framework preparation and future sensing method design.
Collapse
Affiliation(s)
- Chunhua Li
- College of Quality and Technical Supervision, Hebei University, Baoding 071002, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding 071002, China
| | - Zhehang Tian
- College of Quality and Technical Supervision, Hebei University, Baoding 071002, China
| | - Guanqun Luan
- College of Quality and Technical Supervision, Hebei University, Baoding 071002, China
| | - Luqian Bao
- College of Quality and Technical Supervision, Hebei University, Baoding 071002, China
| | - Mengyao Cui
- College of Quality and Technical Supervision, Hebei University, Baoding 071002, China
| | - Yixin Ji
- College of Quality and Technical Supervision, Hebei University, Baoding 071002, China
| | - Xieyang Zhang
- College of Quality and Technical Supervision, Hebei University, Baoding 071002, China
| |
Collapse
|
2
|
Guo W, Guo Y, Xu H, Li C, Zhang X, Zou X, Sun Z. Ultrasensitive "On-Off" Ratiometric Fluorescence Biosensor Based on RPA-CRISPR/Cas12a for Detection of Staphylococcus aureus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2167-2173. [PMID: 39791925 DOI: 10.1021/acs.jafc.4c12202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Staphylococcus aureus (S. aureus) is a major pathogenic bacterium responsible for bacterial foodborne diseases, making its rapid, specific, and accurate detection crucial. In this study, we develop a ratiometric biosensor based on the recombinase polymerase amplification-clustered regularly interspaced short palindromic repeats/CRISPR associated protein 12a (RPA-CRISPR/Cas12a) system and Eu-metal-organic framework (Eu-MOF) fluorescent nanomaterials for the high-sensitivity detection of S. aureus, combining with RPA for efficient isothermal amplification, this sensor enhances specificity and sensitivity by utilizing the target activation of CRISPR/Cas12a. The Eu-MOF serves a dual function, providing stable red fluorescence as a reference signal and adsorbing FAM-labeled probes for fluorescence quenching, forming a dual-signal system that significantly reduces background interference. This ratiometric design enables accurate and quantitative detection over a wide range (7.9 × 100 to 7.9 × 108 CFU/mL) with a low detection limit of 3 CFU/mL. Overall, with these merits of simplicity, rapid response, high sensitivity, and specificity, this dual-signal biosensor offers a promising method for accurately evaluating S. aureus contamination in food under complex substrate conditions.
Collapse
Affiliation(s)
- Wang Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yiqing Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hong Xu
- Zhenjiang Center for Disease Control and Prevention, Zhenjiang 212013, China
| | - Chen Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinai Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zongbao Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co. Ltd, Shanghai 200436, China
| |
Collapse
|
3
|
Tu X, Yuan J, Xu S, Zhang X. Low background dual-ligand Cu-MOF nanoprobe for plant tissue imaging and fast screening as well as sensitive detection of glyphosate in environmental samples. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136519. [PMID: 39579694 DOI: 10.1016/j.jhazmat.2024.136519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024]
Abstract
The monitoring of glyphosate residue in environmental samples is critically important due to its high environmental risk. Here, we reported a low background dual-ligand and fast response copper-based metal organic framework (Cu-MOF) nanoprobe for imaging glyphosate in plant tissue, rapid screening of glyphosate-contaminated samples, and sensitive detection of glyphosate in environmental samples. The Cu-MOF nanoprobe was prepared with 2-Aminoisophthalic Acid (AIA) and trimesic acid (H3BTC) as ligands, and Cu2+ as a metal node. Thanking to both ligand-to-metal charge transfer (LMCT) and photoinduced electron transfer (PET) effects, the fluorescence of ligand AIA could be fully quenched in Cu-AIA/BTC probe. Upon the addition of glyphosate, it competed with the ligands in Cu-AIA/BTC probe, causing the collapse of MOF structure and the release of ligand AIA with obvious fluorescence recovery. This nanoprobe exhibited a desirable linear response for glyphosate in the concentration range of 0.1-80 μM, with a low detection limit of 33 nM, much lower than the maximum contaminant level (4.1 μM) set by the U.S. Environmental Protection Agency (EPA). Furthermore, it was also successfully applied for plant tissue imaging, fast screening of glyphosate-contaminated samples and monitoring of the degradation of glyphosate on tea leaves and in soil, indicating the broad application prospect of the nanoprobe.
Collapse
Affiliation(s)
- Xiaoyan Tu
- State Key Lab of Geohazard prevention & Geoenvironment protection, College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Jiajia Yuan
- State Key Lab of Geohazard prevention & Geoenvironment protection, College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Shuxia Xu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
| | - Xinfeng Zhang
- State Key Lab of Geohazard prevention & Geoenvironment protection, College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| |
Collapse
|
4
|
Liu X, Li H, Sun J, Shi J, Xu Z, Wang Y. Amino-functionalized HPU-23@Ru@Tb as light-driven oxidase-like nanozyme for colorimetric recognition of Hg 2+ and ratiometric fluorescence sensing of ClO - and PO 43. Mikrochim Acta 2024; 192:45. [PMID: 39739054 DOI: 10.1007/s00604-024-06874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/02/2024] [Indexed: 01/02/2025]
Abstract
A HPU-23@Ru@Tb-NH2 sensor array with light-driven oxidase-mimicking activity and triple-emission fluorescence was developed. It was composed of a Tb3+-functionalized metal organic framework and Ru(bpy)32+ and applied to the simultaneous detection of Hg2+, ClO-, and PO43- via differently responsive channels. HPU-23@Ru@Tb-NH2 had a photoresponsive colorimetric response toward Hg2+ with a LOD as low as 4.18 nM. In addition, the three emissions of the HPU-23@Ru@Tb-NH2 sensor array were influenced by ClO- and PO43- to varying degrees, causing remarkably distinguishable responses for the fluorescence channels to discriminate ClO- and PO43- from each other. The detection limits of ClO- and PO43- were 12.26 µM and 0.197 nM, respectively. Therefore, this work demonstrates the feasibility of multi-emission and multi-mode sensing platform, which is able to combine the advantages of different strategies for solving the problems of various toxic substances coexisting in the environment while meeting the needs of accurate and precise results and no side interferences.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Huijun Li
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Junjun Sun
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Jianchao Shi
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Zhouqing Xu
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Yan Wang
- State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Henan Polytechnic University, Jiaozuo, 454000, China.
- Henan Provincial Research Center for Early Warning and Emergency Engineering of Combustion and Explosion Power Disaster, Henan Polytechnic University, Jiaozuo, 454000, China.
| |
Collapse
|
5
|
Dai H, Xu Z, Yang K, Zhou J, Wang J, Zhang Y, Shen Y, Liu X, Jiang Y, Xu W. A Multifunctional Tb(III)-Based Metal-Organic Framework for Chemical Conversion of CO 2, Fluorescence Sensing of Trace Water and Metamitron. Inorg Chem 2024; 63:24351-24362. [PMID: 39643950 DOI: 10.1021/acs.inorgchem.4c04353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
The utilization of metal-organic frameworks (MOFs) as fluorescent sensors for the detection of environmental and chemical reagent pollutants as well as heterogeneous catalysis for CO2 conversion represents a crucial avenue of research with significant implications for the protection of human health. In this work, a Tb(III)-based three-dimensional metal-organic framework, [Tb(L)·4DMF]n (Tb-MOF) (H3L = 5'-(4-carboxy-3-hydroxyphenyl)-3,3″-dihydroxy-[1,1':3',1″-terphenyl]-4,4″-dicarboxylic acid), has been structurally conformed by single-crystal X-ray crystallography. It possesses a 1D rhombus channel along the [010] direction, featuring a pore size of 6.02 × 9.13 Å. Tb-MOF was proved to be a multifunctional material for a fluorescent sensor and CO2 cycloaddition heterogeneous catalyst material. Fluorescence sensing studies revealed that Tb-MOF demonstrates high sensitivity, selectivity, and favorable regeneration properties, making it an effective chemosensor for detecting the metamitron (MMT) pesticide and trace water in organic solvents. The mechanism of fluorescence quenching by MMT and water was elucidated by a combination of XRD, UV-vis absorption spectra, IR spectra, theoretical calculations, and fluorescence lifetimes. The material was also utilized for the sensing of MMT and water in paper strips. Additionally, the open Tb3+ site as Lewis acidic centers makes Tb-MOF achieve efficiently catalytic conversion for CO2 and epoxides to cyclic carbonates. Moreover, a possible catalytic mechanism for the conversion of carbon dioxide to cyclic carbonates was proposed by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments. It also exhibited recyclability for up to five cycles without noticing an appreciable loss in sensing or catalytic efficiency.
Collapse
Affiliation(s)
- Huan Dai
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, China
| | - Zichen Xu
- Ningbo High School, Ningbo 315600, China
| | - Ke Yang
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, China
| | - Jianchao Zhou
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, China
| | - Jing Wang
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, China
| | - Ya Zhang
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, China
| | - Yudong Shen
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, China
| | - Xiaolan Liu
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, China
| | - Yue Jiang
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, China
| | - Wei Xu
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, China
| |
Collapse
|
6
|
Ma Y, Cao Y, Li M, Zhang W, Qi X, Gao G, Tang B. A Multimode Optical Sensor for Highly Selective and Sensitive Detection of Hypochlorous Acid in Water and Body Fluid. Anal Chem 2024; 96:20123-20131. [PMID: 39629946 DOI: 10.1021/acs.analchem.4c05468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Hypochlorous acid (HClO), as an important reactive oxygen species (ROS), plays a crucial role in our daily life and in biological systems, and its convenient and accurate detection is significant and imperative. In this work, a self-calibrated multimode optical sensor for convenient and accurate HClO detection was elaborately fabricated based on a multifunctional metal-organic framework platform with catalytic active metal nodes, fluorescent responsive bridging ligands, and intrinsic pores for functional molecule accommodation. The sensor shows not only turn-on and ratiometric fluorescence response but also color change in response to HClO. The detection limits are as low as 16.9, 17.3, 66.5, and 63.2 nM for ratiometric fluorometry, absorbance-based colorimetry, and smartphone-based fluorescenceand color analysis, respectively. The accuracy and practicability of this sensor were also demonstrated by the detection of hypochlorous acid in actual water and body fluid samples, and the recovery rates ranged from 97.8 to 103.8%.
Collapse
Affiliation(s)
- Yu Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yanyu Cao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Mengnan Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wanting Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xin Qi
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Guorui Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
- Laoshan Laboratory, Qingdao 266200, P. R. China
| |
Collapse
|
7
|
Kayani KF, Shatery OBA, Mohammed SJ, Ahmed HR, Hamarawf RF, Mustafa MS. Synthesis and applications of luminescent metal organic frameworks (MOFs) for sensing dipicolinic acid in biological and water samples: a review. NANOSCALE ADVANCES 2024; 7:13-41. [PMID: 39583129 PMCID: PMC11579904 DOI: 10.1039/d4na00652f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
The detection of trace quantities of 2,6-dipicolinic acid (DPA) in real-world samples is crucial for early disease diagnosis and routine health monitoring. Metal-organic frameworks (MOFs), recognized for their diverse structural architectures, have emerged as advanced multifunctional hybrid materials. One of the most notable properties of MOFs is their luminescence (L), which can arise from structural ligands, guest molecules, and emissive metal ions. Luminescent MOFs have shown significant promise as platforms for sensor design. This review highlights the application of luminescent MOFs in the detection of DPA in biological and aqueous environments. It provides a comprehensive discussion of the various detection strategies employed in luminescent MOF-based DPA sensors. Additionally, it explores the origins of L in MOFs, their synthesis, and the mechanisms underlying their sensing capabilities. The article also addresses key challenges and limitations in this field, offering practical insights for the development of efficient luminescent MOFs for DPA detection.
Collapse
Affiliation(s)
- Kawan F Kayani
- Department of Chemistry, College of Science, Charmo University Peshawa Street, Chamchamal Sulaimani City 46023 Iraq
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| | - Omer B A Shatery
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| | - Sewara J Mohammed
- Department of Anesthesia, College of Health Sciences, Cihan University Sulaimaniya Sulaymaniyah City Kurdistan Iraq
- Research and Development Center, University of Sulaimani Qlyasan Street, Kurdistan Regional Government Sulaymaniyah 46001 Iraq
| | - Harez Rashid Ahmed
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| | - Rebaz F Hamarawf
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| | - Muhammad S Mustafa
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| |
Collapse
|
8
|
Guo Y, Liang Y, Wang Y, Tan R, Wu T, Li H, Li S, Yang X, Wang S, Qin J, Liang Y. Dual-Response Visual Fluorescent Probes for the Determination of Vanadate and Morphology over a Wide pH Range. Anal Chem 2024; 96:19220-19229. [PMID: 39602163 DOI: 10.1021/acs.analchem.4c01505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Vanadate has become an important indicator for environmental testing due to its high toxicity, mobility, and difficulty in degradation. In addition, depending on its dynamic aggregation, analyzing vanadate is not a single content test; it needs further morphological analysis. Previous research has tended to construct a single functional platform with complicated procedures and expensive equipment, making it difficult to obtain a comprehensive picture of vanadate in a short time. Herein, we constructed a dual-response fluorescent probe EuTAT@Rh B formed by Eu3+, 2-aminoterephthalic acid (TAT), and rhodamine B, which could generate structural changes based on the morphology distribution characteristics of vanadate with pH. In the concentration range from 5 × 10-7 to 2 × 10-4 mol/L, the detection limits (3σ/slope, σ = s/I0) of orthovanadate VO43- and metavanadate VO3- were 1.67 × 10-8 and 2.0 × 10-9 mol/L, respectively. In addition, under 254 nm UV light, the spirolactam ring-controlled structures varied with pH and vanadate concentration, producing different types of photochromic structures, which were able to correspond essentially to the pH range of vanadate morphology distribution. Thus, a window with both vanadate and pH signals was constructed under the dual channels of UV and fluorescence, and we successfully achieved the visual integrated analysis of vanadate. This dual-channel visualization method has the advantages of simplifying the analysis process and improving the detection efficiency, which is of great significance in practical applications and provides a way to identify other polymeric substances.
Collapse
Affiliation(s)
- Yamei Guo
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Yin Liang
- Science and Technology Innovation Center, China GDE Engineering Co., Ltd., Guangzhou 511447, China
| | - Yuan Wang
- Gaoming Water Supply Co., Ltd. of Foshan Water Industry Group, Foshan 528000, PR China
| | - Rixin Tan
- Gaoming Water Supply Co., Ltd. of Foshan Water Industry Group, Foshan 528000, PR China
| | - Teyu Wu
- Gaoming Water Supply Co., Ltd. of Foshan Water Industry Group, Foshan 528000, PR China
| | - Hanjie Li
- Gaoming Water Supply Co., Ltd. of Foshan Water Industry Group, Foshan 528000, PR China
| | - Shushu Li
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Xiao Yang
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Shuqian Wang
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Jinli Qin
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Yong Liang
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
9
|
Yin S, Li Z. A handheld fluorescent platform integrated with a Sm(III)-CdTe quantum dot-based ratiometric nanoprobe for point-of-use determination of phosphate. NANOSCALE 2024; 16:21147-21154. [PMID: 39469792 DOI: 10.1039/d4nr03497j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Phosphate (Pi) is crucial for various physiological processes and aquatic environments, which emphasizes the need for a simple, on-site sensor to promptly detect Pi for human health and environmental conservation. In this study, we propose a dual-emission ratiometric fluorescence sensor for highly sensitive and visual Pi detection. The sensor employs samarium ions (Sm3+) as a core component, with cadmium telluride quantum dots (CdTe QDs) and ofloxacin (OFL) serving as signal carriers. The CdTe-Sm(III)-OFL nanoprobe emits a purple fluorescence resulting from the red fluorescence of CdTe QDs and the blue-green fluorescence of OFL. The fluorescence of OFL is quenched by Sm3+ through fluorescence resonance energy transfer (FRET). Upon Pi interaction, the FRET process is disrupted due to the competitive Pi-Sm3+ binding, which leads to the fluorescence recovery of OFL while the red fluorescence of CdTe remains steady. This enables the construction of a ratiometric fluorescent sensor for Pi detection, manifesting as a color change from purple to blue. The sensor demonstrated a linear response for Pi detection within the range of 0.1-75 μM, with a low detection limit of 17.0 nM. By utilizing the distinct fluorescence responses of various physiological phosphates and employing chemometrics, this innovative dual-emission sensor accurately distinguishes among different physiological phosphates. Furthermore, a portable lab-on-paper device based on CdTe-Sm(III)-OFL, coupled with a smartphone-integrated mini-device, is developed for swift Pi detection using an ordinary smartphone. Analytical performance validated on environmental and biological samples demonstrates the sensor's excellent robustness and adaptability. This study introduces a pioneering approach to fabricate ratiometric fluorescence sensors and customize portable, cost-effective mini-devices for precise target detection, thus opening avenues for advanced sensing strategies in various applications.
Collapse
Affiliation(s)
- Shengnan Yin
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Zheng Li
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| |
Collapse
|
10
|
Chen J, Guo T, Gao H, He T, Li J, Li H, Liu X, Li A. Eu 3+-Doped Mixed-Ligand UiO-66-Type Metal-Organic Framework for Ratiometric Fluorescence Sensing Fluoride Ions with Ultralow Detection Limit. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60278-60287. [PMID: 39455417 DOI: 10.1021/acsami.4c13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Metal-organic frameworks (MOFs) have emerged as a highly promising platform for various sensing applications due to their tunable structures and functionalities. In the present work, a Eu3+-doped mixed-ligand MOF, namely, the Eu3+@UiO-66-IPA, exhibited excellent luminescent properties and high fluorescence stability in aqueous media, displaying dual-emission peaks under 395 and 615 nm excitation that were readily visible to the naked eye. Importantly, the presence of fluoride ions (F-) promoted the "antenna effect" between the ligand and the Eu3+ centers, which significantly enhanced the emission intensity of the Eu3+ characteristic peak. In addition, the addition of F- also inhibited the quenching effect of high-energy O-H bonds existing in the aqueous environment. Notably, Eu3+@UiO-66-IPA demonstrated exceptional selectivity for F- over a range of competing anions, with a remarkable limit of detection as low as 0.22 μM. The developed Eu3+-doped mixed-ligand MOF system offers a highly promising strategy for the simple and accurate sensing of F- in practical applications.
Collapse
Affiliation(s)
- Juan Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Tingting Guo
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Hongyi Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
- Shunde Innovation School, University of Science and Technology Beijing, Shunde 528399, P. R. China
| | - Tao He
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Jie Li
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, P. R. China
| | - Haijian Li
- National Key laboratory of Energetic Materials, Xi'an Modern Chemistry Research Institute, Xi'an 710065, P. R. China
| | - Xinyu Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Ang Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| |
Collapse
|
11
|
Li Y, Li M, Shakoor N, Wang Q, Zhu G, Jiang Y, Wang Q, Azeem I, Sun Y, Zhao W, Gao L, Zhang P, Rui Y. Metal-Organic Frameworks for Sustainable Crop Disease Management: Current Applications, Mechanistic Insights, and Future Challenges. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22985-23007. [PMID: 39380155 DOI: 10.1021/acs.jafc.4c04007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Efficient management of crop diseases and yield enhancement are essential for addressing the increasing food demands due to global population growth. Metal-organic frameworks (MOFs), which have rapidly evolved throughout the 21st century, are notable for their vast surface area, porosity, and adaptability, establishing them as highly effective vehicles for controlled drug delivery. This review methodically categorizes common MOFs employed in crop disease management and details their effectiveness against various pathogens. Additionally, by critically evaluating existing research, it outlines strategic approaches for the design of drug-delivery MOFs and explains the mechanisms through which MOFs enhance disease resistance. Finally, this paper identifies the current challenges in MOF research for crop disease management and suggests directions for future research. Through this in-depth review, the paper seeks to enrich the understanding of MOFs applications in crop disease management and offers valuable insights for researchers and practitioners.
Collapse
Affiliation(s)
- Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Mingshu Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Quanlong Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guikai Zhu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yaqi Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Qibin Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Imran Azeem
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yi Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Weichen Zhao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Li Gao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences Institute of Plant Protection, Beijing 100193, China
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- China Agricultural University Professor Workstation of Tangshan Jinhai New Material Co., Ltd., Tangshan 063305, China
- China Agricultural University Professor Workstation of Wuqiang County, Hengshui 053000, China
| |
Collapse
|
12
|
Li Y, Wang F, Liang M, Sun M, Xia L, Qu F. Fabrication of a two-dimensional bi-lanthanide metal-organic framework as a ratiometric fluorescent sensor based on energy competition. Talanta 2024; 278:126456. [PMID: 38917551 DOI: 10.1016/j.talanta.2024.126456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/09/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Bimetallic lanthanide metal-organic frameworks (bi-Ln-MOFs) exhibit great appeal for ratiometric luminescent sensors due to their unique advantages. Specially, the low-lying energy of the empty 4f band of Ce4+ ions benefits Ce-MOFs with robust and broad fluorescent emission. Therefore, constructing ratiometric sensors based on Ce-MOFs is of significance but remains a challenge. Here, a two-dimensional (2D) bi-Ln-MOF is fabricated using Eu3+/Ce4+ and 5-boronoisophthalic acid (5-bop) via a crystal phase transformation strategy to construct a ratiometric luminescent Hg2+ sensor. Due to the lower energy gap of Ce4+ compared to Eu3+ and the corresponding stronger energy-absorption ability, the Ce4+ in bi-Ln-MOF shows a stronger and broader fluorescent emission than that of Eu3+. The substitution of the boric acid group in the bi-Ln-MOF by Hg2+ amplifies the difference between the two lanthanide ions. Therefore, the fluorescence intensity of Ce4+ increases whereas that of Eu3+ decreases accordingly, a behavior distinct from individual Eu-MOF or Ce-MOF performance. This novel bi-Ln-MOF sensor not only achieves a wide linear response range from 0.5 to 120 μM with a low detection limit of 167 nM for Hg2+, but also demonstrates exceptional selectivity and stability. The intriguing sensing mechanism of energy competition and the novel synthesis approach for 2D bi-Ln-MOF are anticipated to broaden the application possibilities of bi-Ln-MOFs for designing ratiometric sensors.
Collapse
Affiliation(s)
- Yingying Li
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Fang Wang
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Maosheng Liang
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Mengyu Sun
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Lian Xia
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Fengli Qu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China; Department of Pathology, Cancer Hospital of Zhejiang Province, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
13
|
Gao Y, Gu Z, Sun X, Pang J, Gong L, Xia L, Qu F. Dimensional regulation of lanthanide metal-organic frameworks and their application in bacterial detection. Chem Commun (Camb) 2024; 60:10684-10687. [PMID: 39238365 DOI: 10.1039/d4cc02991g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Low-dimensional (LD) lanthanide metal-organic frameworks (Ln-MOFs) have attracted considerable attention in different fields due to their exceptional optical properties and numerous accessible active sites. Through the dimensional regulation effect of dipicolinic acid (DPA), a new LD Ln-MOF crystal is synthesized to monitor nitroreductase (NTR) activity in living bacteria.
Collapse
Affiliation(s)
- Yifan Gao
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu, Shandong 273165, P. R. China.
| | - Zhizhuo Gu
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu, Shandong 273165, P. R. China.
| | - Xiaoling Sun
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu, Shandong 273165, P. R. China.
| | - Jiaying Pang
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu, Shandong 273165, P. R. China.
| | - Liaokuo Gong
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu, Shandong 273165, P. R. China.
| | - Lian Xia
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu, Shandong 273165, P. R. China.
| | - Fengli Qu
- Department of Pathology, Cancer Hospital of Zhejiang Province, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| |
Collapse
|
14
|
Wang Y, An B, Li S, Chen L, Tao L, Fang T, Guan L. A Dy(III) Coordination Polymer Material as a Dual-Functional Fluorescent Sensor for the Selective Detection of Inorganic Pollutants. Molecules 2024; 29:4495. [PMID: 39339490 PMCID: PMC11435080 DOI: 10.3390/molecules29184495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
A Dy(III) coordination polymer (CP), [Dy(spasds)(H2O)2]n (1) (Na2Hspasds = 5-(4-sulfophenylazo)salicylic disodium salt), has been synthesized using a hydrothermal method and characterized. 1 features a 2D layered structure, where the spasda3- anions act as pentadentate ligands, adopting carboxylate, sulfonate and phenolate groups to bridge with four Dy centers in η3-μ1: μ2, η2-μ1: μ1, and monodentate coordination modes, respectively. It possesses a unique (4,4)-connected net with a Schläfli symbol of {44·62}{4}2. The luminescence study revealed that 1 exhibited a broad fluorescent emission band at 392 nm. Moreover, the visual blue color has been confirmed by the CIE plot. 1 can serve as a dual-functional luminescent sensor toward Fe3+ and MnO4- through the luminescence quenching effect, with limits of detection (LODs) of 9.30 × 10-7 and 1.19 × 10-6 M, respectively. The LODs are relatively low in comparison with those of the reported CP-based sensors for Fe3+ and MnO4-. In addition, 1 also has high selectivity and remarkable anti-interference ability, as well as good recyclability for at least five cycles. Furthermore, the potential application of the sensor for the detection of Fe3+ and MnO4- was studied through simulated wastewater samples with different concentrations. The possible sensing mechanisms were investigated using Ultraviolet-Visible (UV-Vis) absorption spectroscopy and density functional theory (DFT) calculations. The results revealed that the luminescence turn-off effects toward Fe3+ and MnO4- were caused by competitive absorption and photoinduced electron transfer (PET), and competitive absorption and inner filter effect (IFE), respectively.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Energy Materials and Electrochemistry Research Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (Y.W.)
| | - Baigang An
- Key Laboratory of Energy Materials and Electrochemistry Research Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (Y.W.)
| | - Si Li
- Shandong Chambroad Petrochemicals Co., Ltd., Binzhou 256500, China
| | - Lijiang Chen
- Shandong Chambroad Petrochemicals Co., Ltd., Binzhou 256500, China
| | - Lin Tao
- Key Laboratory of Energy Materials and Electrochemistry Research Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (Y.W.)
| | - Timing Fang
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Lei Guan
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| |
Collapse
|
15
|
Wang C, Zhang XJ, Zhao LN, Zhang T, Bai FY, Sun LX, Xing YH. Multiple Stimulus Response Material Based on Sr-tcbpe MOF for Mechanochromism, Visualization Labeling, and Etching Toward TNP. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45214-45223. [PMID: 39145439 DOI: 10.1021/acsami.4c10799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The abuse and excessive discharge of organic pollutants such as nitroaromatic compounds (NACs) have become a hot topic of concern for all humanity and society, and the development of fast, effective, and targeted technical means for detecting NACs also faces many challenges. Here, we reported a strontium-based metal-organic framework (MOF) {[Sr2(tcbpe)(H2O)4]}n (Sr-tcbpe), in which tcbpe represents deprotonated 4',4‴,4″‴,4‴‴-(ethene-1,1,2,2-tetrayl)tetrakis(([1,1'biphenyl]-4-carboxylic acid)). In Sr-tcbpe, Sr-O polyhedron and deprotonated tcbpe4- ligand have a staggered connection to form a self-assembled three-dimensional network structure. In addition, it is found that Sr-tcbpe undergoes no luminescent color change when grinding under solvent protection, while mechanochromic fluorescence behavior is observed when grinding directly, leading to luminescent color changes from cyan to green (Sr-tcbpe-G). Additionally, Sr-tcbpe and Sr-tcbpe-G could selectively detect PNP, DNP, and TNP, and Sr-tcbpe achieves visual fluorescence sensing detection toward TNP at a limit of detection as low as 2.25 μM. Moreover, during the detection process, unexpectedly, TNP exhibits a selective etching effect on Sr-tcbpe, which could drill nano holes with different sizes on the surface area of MOF materials to a certain extent, achieving the conversion of chemical energy to mechanical energy. In addition, the successful preparation of a portable sensor Sr-tcbpe@gypsum block provides a platform for the perfect combination of mechanochromic fluorescence behavior and visualization detection toward TNP. It lays the foundation for the practical application of MOF materials in daily life.
Collapse
Affiliation(s)
- Chen Wang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian 116029, P. R. China
| | - Xing-Jing Zhang
- College of Chemistry, Jilin Normal University, Siping 136000, P. R. China
| | - Li Na Zhao
- College of Chemistry, Jilin Normal University, Siping 136000, P. R. China
| | - Ting Zhang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian 116029, P. R. China
| | - Feng-Ying Bai
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian 116029, P. R. China
| | - Li-Xian Sun
- Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Yong-Heng Xing
- College of Chemistry, Jilin Normal University, Siping 136000, P. R. China
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian 116029, P. R. China
| |
Collapse
|
16
|
Xu R, Hu Z, Dong X, Xiao X, Ding Y. Construction of CDs@β-CD@CCM ratiometric fluorescence probe for FRET-based ClO --sensing. NANOTECHNOLOGY 2024; 35:465501. [PMID: 39146959 DOI: 10.1088/1361-6528/ad6fa8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
β-Cyclodextrin (β-CD)-functionalized carbon quantum dots (CDs) loaded with curcumin (CCM) were used for ClO-sensing with high sensitivity and selectivity. This fluorescence resonance energy transfer (FRET)-based sensor was created through attaching CCM to the CDs via β-CD linker. CCM could get into the interior of β-CD triggering the FRET from CDs to CCM, providing an 'off' state of the CDs. However, the effect of FRET was weakened by the ClO-, because the o-methoxyphenol structure from CCM was oxidized to be benzoquinone. The fluorescence intensity of CDs@β-CD@CCM at 440 nm can be heightened and 520 nm from CCM can decrease along with the increased ClO-. Therefore, a ratiometric fluorescence probe for ClO-sensing is successfully constructed. It conforms to a polynomial curve equation which is I440/I520= -0.0268 + 0.0315 CClO-+ 0.0055[CClO-]2(R2= 0.9958) between 0 and 18.4μM ClO-. Furthermore, we also obtain excellent results using this spectrophotometric method for ClO--sensing in pure water and commercial disinfectants, which afford potential in the environment monitoring area. We expect this sensing platform could be helpful in other analogous probes in relevant fields.
Collapse
Affiliation(s)
- Ruoqian Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Zhongfei Hu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Xuemei Dong
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Xuan Xiao
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Yujie Ding
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
- Intelligent Equipment Quality and Reliability Key Laboratory of Anhui Province, Wuhu, Anhui 241000, People's Republic of China
| |
Collapse
|
17
|
Deng T, He H, Chen H, Peng X, Li H, Yan X, Lei Y, Luo L. Dual-ligand lanthanide metal-organic framework based ratiometric fluorescent platform for visual monitoring of aminoglycoside residues in food samples. Talanta 2024; 276:126200. [PMID: 38735243 DOI: 10.1016/j.talanta.2024.126200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/02/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
Herein, a dual-emission Eu metal-organic framework (Eu-MOF) is prepared and used as the ratiometric fluorescence probe for ultrasensitive detection of aminoglycoside antibiotics (AGs). Due to the strong hydrogen bond interactions between AGs and Eu-MOF, the blue emission is enhanced while the red emission has little fluctuation in Eu-MOF with the addition of AGs, thus a good linear relationship with the logarithm of AGs concentrations from 0.001 to 100 μg/mL can be established for quantitative analysis. Good sensitivity with the detection limit of 0.33 ng/mL for apramycin, 0.32 ng/mL for amikacin and 0.30 ng/mL for kanamycin is achieved. The proposed assay demonstrates good selectivity and applicability for determination of AGs in real milk and honey samples. The Eu-MOF materials are further fabricated as fluorescent test papers for facile visual detection. The as-established ratio fluorescence platform offers a portable and economical way for rapid monitoring AGs residues in complex food samples.
Collapse
Affiliation(s)
- Tingting Deng
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Haibo He
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Huinan Chen
- Department of Physics, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Xitian Peng
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences, Wuhan, 430064, PR China
| | - Hongbo Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Xiaoxia Yan
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Yunyi Lei
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Liqiang Luo
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| |
Collapse
|
18
|
Li W, Liang Z, Wang P, Li Z, Ma Q. Dual-ligand Eu-MOF/CuS@Au Heterostructure Array-based ECL Sensor for MiRNA-128 Detection in Glioblastoma Tissues. Biosens Bioelectron 2024; 258:116356. [PMID: 38705073 DOI: 10.1016/j.bios.2024.116356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
In this work, the dual-ligand lanthanide metal-organic framework (MOF)-based electrochemiluminescence (ECL) sensor was constructed for the detection of miRNA-128 in glioblastoma (GBM) diagnosis. The luminescent Eu-MOF (EuBBN) was synthesized with terephthalic acid (BDC) and 2-amino terephthalic acid (BDC-NH2) as dual-ligand. Due to the antenna effect, EuBBN with conjugated-π structure exhibited strong luminescent signal and high quantum efficiency, which can be employed as ECL nanoprobe. Furthermore, the novel plasmonic CuS@Au heterostructure array has been prepared. The localized surface plasmon resonance coupling effect of the CuS@Au heterostructure array can amplify the ECL signal of EuBBN significantly. The EuBBN/CuS@Au heterostructure array-based sensing system has been prepared for the detection of miRNA-128 with a wide linear range from 1 fM to 1 nM and a detection limit of 0.24 fM. Finally, miRNA-128 in the clinic GBM tissue sample has been analysis for the distinguish of tumor grade successfully. The results demonstrated that the dual-ligand MOF/CuS@Au heterostructure array-based ECL sensor can provide important support for the development of GBM diagnosis.
Collapse
Affiliation(s)
- Wenyan Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zihui Liang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Peilin Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhenrun Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
19
|
Jiang Y, Du Z, Qiu H, Lin X, Yang Y, Zeng C. Regulation of the Metal Center in Lanthanide Nanoparticles to Achieve Multifunctional Sensing. Anal Chem 2024; 96:12692-12700. [PMID: 39058516 DOI: 10.1021/acs.analchem.4c01495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Development of a multifunctional sensor is highly desirable. In this work, traces of a carcinoid cancer biomarker of 5-hydroxyindole-3-acetic acid (5-HIAA) in real human urine can be detected by lanthanide nanoparticle Eu-CFC (CFC = 7-chloro-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid) and the sensing devices of the test paper and agarose gel, achieving an ultralow LOD of 0.8 × 10-3 ppm within a sensing time of 2.0 min. Interestingly, by metal center regulation of Tb and Eu codoping, nanoparticle TbEu2-CFC shows high-sensitivity and low-LOD (0.019% v/v) sensing of water in ethanol. The sensing mechanisms are revealed by both experiments and quantum chemical studies.
Collapse
Affiliation(s)
- Yefei Jiang
- Department of Chemistry and Materials and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, PR China
| | - Ziyi Du
- Department of Chemistry and Materials and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, PR China
| | - Hongdeng Qiu
- Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Xiaoming Lin
- Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, No. 378 Outer Ring West Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Yangyi Yang
- School of Materials Science and Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Chenghui Zeng
- Department of Chemistry and Materials and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, PR China
| |
Collapse
|
20
|
Jin Q, Hou Y, Zhu D, Yu Y, Ren Y. Oxolinic Acid Generated Green Fluorescence Based on a Terbium-Functionalized Covalent Organic Framework. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13596-13602. [PMID: 38888331 DOI: 10.1021/acs.langmuir.4c01141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Oxolinic acid (OXO), a classic environmental contaminant, has a terrible detrimental effect on human health. The exploration of efficient strategies to detect and detecting OXO has remarkable significance. Herein, we reported a novel terbium(III)-functionalized covalent organic framework (Bpy-DhBt-COF@Tb3+) by fixing Tb3+ on the bipyridine-connecting COF (Bpy-DhBt-COF) as a turn-on fluorescent switch toward OXO for the first time. In this platform, Tb3+ acts as the specific recognition units for OXO and the response signal, while Bpy-DhBt-COF acts as the safehaven for Tb3+. Once introducing OXO to Bpy-DhBt-COF@Tb3+, OXO can instead water molecules coordinate with Tb3+ and sensitize Tb3+ instantly, thereby producing a significant fluorescence signal. Profiting from the excellent porosity of Bpy-DhBt-COF@Tb3+, it can obtain optimal response toward OXO only within 10 s with an ultrasensitive detection limit of 12.5 nM. Furthermore, Bpy-DhBt-COF@Tb3+ displayed outstanding selectivity toward OXO than other general quinolones. Based on these, a Tb3+-based COF was explored for the first time for the turn-on fluorescence detection of an OXO with rapid response, high sensitivity, and outstanding selectivity. In this work, we not only exhibit the attractive performance of Tb3+-functionalized COF to detect OXO but also propose a prospect strategy for creating other fluorescent sensors for multiple targets.
Collapse
Affiliation(s)
- Qianqian Jin
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Yuzhen Hou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dandan Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Yanxin Yu
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Yanbiao Ren
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| |
Collapse
|
21
|
Gao YY, He J, Li XH, Li JH, Wu H, Wen T, Li J, Hao GF, Yoon J. Fluorescent chemosensors facilitate the visualization of plant health and their living environment in sustainable agriculture. Chem Soc Rev 2024; 53:6992-7090. [PMID: 38841828 DOI: 10.1039/d3cs00504f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Globally, 91% of plant production encounters diverse environmental stresses that adversely affect their growth, leading to severe yield losses of 50-60%. In this case, monitoring the connection between the environment and plant health can balance population demands with environmental protection and resource distribution. Fluorescent chemosensors have shown great progress in monitoring the health and environment of plants due to their high sensitivity and biocompatibility. However, to date, no comprehensive analysis and systematic summary of fluorescent chemosensors used in monitoring the correlation between plant health and their environment have been reported. Thus, herein, we summarize the current fluorescent chemosensors ranging from their design strategies to applications in monitoring plant-environment interaction processes. First, we highlight the types of fluorescent chemosensors with design strategies to resolve the bottlenecks encountered in monitoring the health and living environment of plants. In addition, the applications of fluorescent small-molecule, nano and supramolecular chemosensors in the visualization of the health and living environment of plants are discussed. Finally, the major challenges and perspectives in this field are presented. This work will provide guidance for the design of efficient fluorescent chemosensors to monitor plant health, and then promote sustainable agricultural development.
Collapse
Affiliation(s)
- Yang-Yang Gao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jie He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Xiao-Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jian-Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Hong Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Ting Wen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jun Li
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea.
| |
Collapse
|
22
|
Li Y, Zhang M, Wang Y, Guan L, Zhao D, Hao X, Guo Y. A Zn(II) Coordination Polymer for Fluorescent Turn-Off Selective Sensing of Heavy Metal Cation and Toxic Inorganic Anions. Molecules 2024; 29:2943. [PMID: 38931007 PMCID: PMC11206703 DOI: 10.3390/molecules29122943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
A novel coordination polymer [Zn(atyha)2]n (1) (Hatyha = 2-(2-aminothiazole-4-yl)-2- hydroxyiminoacetic acid) was constructed by hydrothermal reaction of Zn2+ with Hatyha ligand. CP 1 exhibits a 2D (4,4)-connected topological framework with Schläfli symbol of {44·62}, where atyha- anions serve as tridentate ligands, bridging with Zn2+ through carboxylate, thiazole and oxime groups. CP 1 displays a strong ligand-based photoluminescence at 390 nm in the solid state, and remains significantly structurally stable in water. Interestingly, it can be utilized as a fluorescent probe for selective and sensitive sensing of Fe3+, Cr2O72- and MnO4- through the fluorescent turn-off effect with limit of detection (LOD) of 3.66 × 10-6, 2.38 × 10-5 and 2.94 × 10-6 M, respectively. Moreover, the efficient recyclability for detection of Fe3+ and Cr2O72- is better than that for MnO4-. The mechanisms of fluorescent quenching involve reversible overlap of UV-Vis absorption bands of the analytes (Fe3+, Cr2O72- and MnO4-) with fluorescence excitation and emission bands for CP 1, respectively.
Collapse
Affiliation(s)
| | | | | | - Lei Guan
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | | | | | | |
Collapse
|
23
|
Jia Z, Yu M, Wang W, Ghazimirsaeid S, Qu Y, Zhang M. An Oxidative Cleavage-Based Cruciform DNA Nanostructure for In Vivo Hypochlorous Acid Visualization to Monitor Intestinal Inflammation. Anal Chem 2024; 96:9621-9628. [PMID: 38820543 DOI: 10.1021/acs.analchem.4c01272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Ulcerative colitis is a persistent inflammatory bowel disease characterized by inflammation and ulceration in the colon and gastrointestinal tract. It was indicated that the generation of hypochlorous acid (HClO) through the enzymatic activity of myeloperoxidase is significantly linked to ulcerative colitis. In this study, by assembling two hairpins (Hpa and Hpb) onto a quadrivalent cruciform DNA nanostructure, a novel HClO-activatable fluorescent probe was developed based on DNA nanomaterials (denoted MHDNA), which is sensitive, economic, simple, and stable. In the presence of HClO, the Trigger (T) was liberated from the MHDNA probe through a hydrolysis reaction between HClO and phosphorothioate (PS), which is modified on the MHDNA probe and has proved to exhibit particular susceptibility to the HClO. The liberated T subsequently initiated the opening of Hpa and Hpb to facilitate the catalyzed hairpin assembly (CHA) reaction, resulting in the changes of fluorescence and releasing T for recycled signal amplification to achieve sensitive detection of HClO (with a limit of detection 9.83 nM). Additionally, the MHDNA-based spatial-confinement effect shortens the physical distance between Hpa and Hpb and yields a high local concentration of the two reactive hairpins, achieving more rapid reaction kinetics in comparison to conventional CHA methods. Inspirationally, the MHDNA probe was effectively utilized for imaging HClO in ulcerative colitis mice, yielding valuable diagnostic insights for ulcerative colitis.
Collapse
Affiliation(s)
- Zhenzhen Jia
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Mengdi Yu
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Wenlong Wang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | | | - Yong Qu
- Internal Medicine of Integrated Chinese and Western Medicine, XD Group Hospital, Xi'an, Shaanxi 710077, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
24
|
Kumar A, Kataria R. MOFs as versatile scaffolds to explore environmental contaminants based on their luminescence bustle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172129. [PMID: 38569964 DOI: 10.1016/j.scitotenv.2024.172129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Metal-Organic Frameworks (MOFs) with luminescent properties hold significant promise for environmental remediation. This review critically examines recent research on these materials design, synthesis, and applications, mainly focusing on their role in combating environmental pollutants. Through a comprehensive analysis of metal ions, ligands, and framework compositions, the review discusses the importance of tailored design and synthesis approaches in achieving desired luminescent characteristics. Key findings highlight the effectiveness of luminous MOFs as fluorescent sensors for a wide range of contaminants, including heavy metals, reactive species, antibiotics, and explosives. Considering all this, the review discusses future research needs and opportunities in the field of luminous MOFs. It emphasizes the importance of developing multifunctional materials, refining design methodologies, exploring sensing mechanisms, and ensuring environmental compatibility, scalability, and affordability. By providing insights into the current state of research and outlining future directions, this review is a valuable resource for researchers seeking to address environmental challenges using MOF-based solutions.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India; Department of Chemistry, University Institute of Sciences, Chandigarh University, Mohali 140301, India
| | - Ramesh Kataria
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India.
| |
Collapse
|
25
|
Luo Z, Hu C, Dai W, Chen G, Zhan L, Huang C, Li Y. Dual-emission Tb-based coordination polymer as a ratiometric fluorescence probe for the detection of phosphate. Mikrochim Acta 2024; 191:317. [PMID: 38724862 DOI: 10.1007/s00604-024-06408-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/03/2024] [Indexed: 06/11/2024]
Abstract
A simple, sensitive dual-emission probe was developed for the detection of phosphate (Pi). The probe Tb-BTB/DPA was synthesized by mixing dual-ligand, 1,3,5-tri(4-carboxyphenyl) benzene (H3BTB) and dipicolinic acid (DPA), with metal ions Tb3+ in ethanol-water solution at 40℃ for 2 h. Tb-BTB/DPA exhibits two emission peaks, the emission at 362 nm is attributed to H3BTB, an energy transfer between Tb3+ nodes, and DPA further enhances the fluorescence of Tb3+ at 544 nm. Pi competes with ligand H3BTB to coordinate Tb3+, resulting in partial collapse of the Tb-BTB/DPA structure and interrupting the electron transfer between H3BTB and Tb3+. Therefore, the emission at 362 nm is enhanced, while the emission at 544 nm is unchanged, and a ratiometric fluorescence method is developed to detect Pi. Tb-BTB/DPA exhibits good linearity within the Pi concentration range (0.1-50 µmol/L), and the detection limit was 25.8 nmol/L. This study provides a new way to prepare probes with dual emission sensing properties.
Collapse
Affiliation(s)
- Zilan Luo
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Congyi Hu
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Wenjie Dai
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Gaoxu Chen
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Lei Zhan
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Chengzhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, People's Republic of China.
| | - Yuanfang Li
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
26
|
Liang M, Gao Y, Sun X, Kong RM, Xia L, Qu F. Metal-organic framework-based ratiometric point-of-care testing for quantitative visual detection of nitrite. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134021. [PMID: 38490146 DOI: 10.1016/j.jhazmat.2024.134021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Nitrite (NO2-) is categorized as a carcinogenic substance and is subjected to severe limitations in water and food. To safeguard the public's health, developing fast and convenient methods for determination of NO2- is of significance. Point-of-care testing (POCT) affords demotic measurement of NO2- and shows huge potential in future technology beyond those possible with traditional methods. Here, a novel ratiometric fluorescent nanoprobe (Ru@MOF-NH2) is developed by integrating UiO-66-NH2 with tris(2,2'-bipyridyl)ruthenium(II) ([Ru(bpy)3]2+) through a one-pot approach. The special diazo-reaction between the amino group of UiO-66-NH2 and NO2- is responsible for the report signal (blue emission) with high selectivity and the red emission from [Ru(bpy)3]2+ offers the reference signal. The proposed probe shows obviously distinguishable color change from blue to red towards NO2- via naked-eye. Moreover, using a smartphone as the detection device to read color hue, ultra-sensitive quantitative detection of NO2- is achieved with a low limit of detection at 0.6 μΜ. The accuracy and repeatability determined in spiked samples through quantitative visualization is in the range of 105 to 117% with a coefficient of variation below 4.3%. This POCT sensing platform presents a promising strategy for detecting NO2- and expands the potential applications for on-site monitoring in food and environment safety assessment.
Collapse
Affiliation(s)
- Maosheng Liang
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Yifan Gao
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Xiaoling Sun
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Rong-Mei Kong
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Lian Xia
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu, Shandong 273165, PR China.
| | - Fengli Qu
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu, Shandong 273165, PR China
| |
Collapse
|
27
|
Chen TL, Kong XJ, Dong XX, Mao ZJ, Kong FF, Xiao Q. A novel ratiometric sensor for fluorimetric and visual dual-mode detection of Al 3+ in environmental water based on the target-regulated formation of Eu MOFs. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2702-2706. [PMID: 38625145 DOI: 10.1039/d4ay00324a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Herein, a novel ratiometric sensor for fluorimetric and smartphone-assisted visual detection of Al3+ in environmental water was developed based on the target-regulated formation of Eu metal-organic frameworks (Eu MOFs). By employing 2-[4-(2-hydroxyethyl) piperazin-1-yl] ethanesulfonic acid (Hepes), Eu3+ and tetracycline (TC) as raw materials, Eu MOFs with red emission were facilely synthesized through the coordination of Eu3+ with Hepes and TC. However, upon the introduction of Al3+, a higher affinity of TC towards Al3+ resulted in the formation of a TC-Al3+ complex with green fluorescence and inhibited the generation of Eu MOFs. This led to an increase in green fluorescence and a decrease in red fluorescence accompanied by the fluorescence color of the solution changing from red to green under the illumination of the UV lamp. Thus, a ratiometric sensor for fluorimetric and the smartphone-assisted visual detection of Al3+ was established. The ratiometric sensor exhibited high sensitivity for Al3+ detection with a detection limit of 0.14 μM for fluorescence detection and 1.21 μM for visual detection. Additionally, the proposed strategy was successfully applied to detect Al3+ in the environmental water samples with satisfactory results, indicating great application prospects for environmental monitoring.
Collapse
Affiliation(s)
- Tao-Li Chen
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Xiang-Juan Kong
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Xin-Xin Dong
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Zhi-Jie Mao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Fang-Fang Kong
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Qiang Xiao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| |
Collapse
|
28
|
Yu G, Kuang H, Xu C, Sun M, Hao C. Tri-mode Responses to Reactive Oxygen Species In Vivo by Chiral Vanadium-Based Nanoparticles. Anal Chem 2024; 96:5677-5685. [PMID: 38533607 DOI: 10.1021/acs.analchem.4c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Reactive oxygen species (ROS) are closely associated with the redox balance of the physiological environment, and monitoring ROS can aid in the early diagnosis of many diseases, including cancer. In this study, chiral vanadium trioxide/vanadium nitride (V2O3/VN) nanoparticles (NPs) modified with an organic dye (cyanine 3 [Cy3]) were prepared for ROS sensing. Chiral V2O3/VN NPs were prepared with the "ligand-induced chirality" strategy and showed a g-factor of up to 0.12 at a wavelength of 512 nm. To the best of our knowledge, this g-factor is the highest value of all chiral ceramic nanomaterials. The very high g-factor of the nanoprobe confers very high sensitivity, because the higher g-factor, the higher sensitivity. In the presence of ROS, V3+ in the chiral V2O3/VN nanoprobe undergoes a redox reaction to form V2O5, reducing the circular dichroism and absorbance signals, whereas the fluorescence signal of Cy3 is restored. With this nanoprobe, the limits of detection for the circular dichroic and fluorescence signals in living cells are 0.0045 nmol/106 and 0.018 nmol/106 cells, respectively. This chiral nanoprobe can also monitor ROS levels in vivo by fluorescence. This strategy provides an innovative approach to the detection of ROS and is expected to promote the wider application of chiral nanomaterials for biosensing.
Collapse
Affiliation(s)
- Guangbo Yu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
29
|
Luo Q, Wang L, Wu S, Lin L, Yu X, Potapov A, Sun Y, Zhang Y, Zhu M. Highly sensitive sensing of DPA by lanthanide metal-organic frameworks and detection of fiber membranes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123849. [PMID: 38241931 DOI: 10.1016/j.saa.2024.123849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/14/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
The detection of 2,6-pyridinecarboxylic acid (DPA), as a biomarker of Bacillus anthracis, has attracted wide attention. In previous reports of DPA detection, fluorescent probes may not have high specificity. Therefore, the rational design and development of fluorescent sensors with excellent performance is of great significance for the detection of DPA. In this study, two novel lanthanide metal-organic frameworks (Ln-MOFs) were synthesized by hydrothermal method using 3-polyfluorobiphenyl-3 ', 4,5 ' -tricarboxylic acid (H2FPTA) as ligand. Studies have shown that Ln-MOFs can detect DPA in real time, with detection limits of 0.54 μM and 0.67 μM, respectively, and have a high recovery rate (95 % -108 %) in fetal bovine serum. As a self-calibration sensor, other substances in the blood can be clearly distinguished by a two-dimensional fluorescence code diagram. After the Ln-MOFs were spun into nanofiber membranes, they responded quickly to DPA. This increases practicability and provides a promising idea for the development of simple and efficient ratio sensors.
Collapse
Affiliation(s)
- Qiongli Luo
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, PR China
| | - Lei Wang
- Center of Physical Chemistry Test, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, PR China
| | - Shuangyan Wu
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, PR China
| | - Lin Lin
- Department of Pharmacology, Shenyang medical colleges, Shenyang 110034, PR China
| | - Xiaolin Yu
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Andrei Potapov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Yaguang Sun
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, PR China
| | - Ying Zhang
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, PR China.
| | - Mingchang Zhu
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, PR China.
| |
Collapse
|
30
|
Wei J, Liu Z, Gu Q, Sun J, Jin H. A smartphone-intergrated dual-emission fluorescent nanoprobe for visual and ratiometric detection of anthrax biomarkers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123785. [PMID: 38134652 DOI: 10.1016/j.saa.2023.123785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/02/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
A novel dual-emission fluorescent nanoprobe based on rare-earth nanosheets was fabricated to detect 2,6-pyridine dicarboxylic acid (DPA), which is the biomarker of Bacillus anthracis. 2-amino terephthalic acid (BDC-NH2) and surfactant sodium dodecyl sulfate (SDS) were co-intercalated into layered europium hydroxide (LEuH) to prepare the organic/inorganic composite, which was delaminated to obtain the rare-earth nanosheets. The ratio detection of DPA is possible due to the antenna effect between DPA and Eu3+. The nanoprobe shows high accuracy and sensitivity due to the large specific surface area of the rare-earth nanosheets. The limit of detection (LOD) is 4.4 nM for DPA in the range of 0-20 μM. In addition, a more convenient and faster smartphone-based visual detection platform was established based on the obvious color change. This work offers an effective way for developing visual sensing platforms, which opens a new path for designing fluorescent probes with superior sensing capabilities.
Collapse
Affiliation(s)
- Jiaxin Wei
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| | - Zikang Liu
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| | - Qingyang Gu
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China.
| | - Jia Sun
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| | - Haibo Jin
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China; Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
| |
Collapse
|
31
|
Song Q, Wang L, Zhang J, Liu Y, Zhang X, Kong X. Fabrication of Eu-MOFs rod-shaped nanospheres with dual emissions for ratiometric fluorescence detecting Hg 2+ in water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124013. [PMID: 38394880 DOI: 10.1016/j.saa.2024.124013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/29/2023] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
The incorporation of novel nanostructure has been proven to significantly improve the performance of fluorescence-based sensors in terms of sensitivity, selectivity, and detection capability. Herein, a lanthanide metal-organic framework (BTC-Eu-BDC-NH2) with dual ligands of 2-aminobenzoic acid (BDC-NH2) and 1,3,5-benzene tricarboxylic acid (BTC) has been prepared for ratiometric fluorescent detection of Hg2+ through the rational one-step synthetic approach. Through adjusting the ratio of two ligands, this dual-ligands strategy not only provided two independent emissions at peaks of 435 nm and 615 nm to resist the influence of external conditions, but also introduced the visual detection with an obvious color change. Moreover, the specific rod-shaped nanospheres morphology substantially enlarged the surface area of BTC-Eu-BDC-NH2 to ensure good dispersion and rapid response during sensing. Upon the addition of Hg2+, the fluorescence at 435 nm of BTC-Eu-BDC-NH2 was obviously quenched because of the interaction between Hg2+ and -NH2 from the ligand, while the red fluorescence at 615 nm remains almost unchanged. As a result, the synthesized BTC-Eu-BDC-NH2 showed excellent performances for visual sensing detection of Hg2+ with a clear luminescent color conversion from blue to red, and the detecting range was 0-40 μM with a low detection limit of 67 nM. Finally, the developed sensor was applied to actual tap water, and a handy sensing kit was constructed by hydrogel with BTC-Eu-BDC-NH2, demonstrating its potential practical applications.
Collapse
Affiliation(s)
- Qiang Song
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, PR China; Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266061, PR China
| | - Liang Wang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, PR China
| | - Jing Zhang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266061, PR China
| | - Yan Liu
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266061, PR China
| | - Xiaoyin Zhang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266061, PR China.
| | - Xiangfeng Kong
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266061, PR China.
| |
Collapse
|
32
|
Zhao H, Li H, Zheng J, Yan H, Lu J, Liu H, Hao H, Dou J, Li Y, Wang S. Cd-MOF and Its Ln 3+-Post Modification Products: Regulation of Luminescence Properties and Improved Detection of Uric Acid, Quinine, and Quinidine. Inorg Chem 2024; 63:1962-1973. [PMID: 38236237 DOI: 10.1021/acs.inorgchem.3c03661] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
One 3D Cd-MOF, namely, {[(HDMA)2][Cd3(L)2]·5H2O·2DMF}n (LCU-124, LCU indicates Liaocheng University), was synthesized from an ether-containing ligand 1,3-bis(3,5-dicarboxylphenoxy)benzene (H4L). Its Ln3+-postmodified samples, Eu3+@LCU-124 and Tb3+@LCU-124, were obtained through cation exchange of dimethylamine cation (HDMA) with Eu3+ and Tb3+. The successful entry of rare earth into LCU-124 by cation exchange modification was verified by IR, XRD, XPS, EDS mapping, and luminescence spectra. The proportion of Eu3+/Tb3+ was adjusted during the modification process, leading to fluorescent materials with different emissions. Luminescence measurements indicated that these complexes exhibited interesting multiresponsive sensing activities toward biomarkers urine acid (UA), quinine (QN), and quinidine (QND). First, LCU-124 has a pronounced quenching effect toward UA with the detection limit of 31.01 μM. After modification, the visualization of the detection was improved significantly and the detection limit of Eu3+@LCU-124 was reduced to 0.868 μM. Second, when QN and QND were present in the suspensions of Eu3+@LCU-124 and Tb3+@LCU-124, strong blue light emission peaks occurred, while the characteristic emission of Eu3+/Tb3+ decreased, forming ratiometric fluorescent sensors with the detection limit in the range of 0.199-9.49 μM. The fluorescent probes have high selectivity, excellent sensitivity recycling, and fast response time (less than 1 min). Besides, a simple logic gate circuit and a range of luminescent mixed matrix membranes were designed to provide simple and fast detection of above biomarkers. Our work indicated that modification of Eu3+/Tb3+ could improve the detection ability significantly.
Collapse
Affiliation(s)
- Hengyi Zhao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Hongjian Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Jun Zheng
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Hui Yan
- School of Pharmacy, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Jing Lu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Houting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Hongguo Hao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Jianmin Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Yunwu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Suna Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| |
Collapse
|
33
|
Qiao Y, Sun C, Jian J, Zhou T, Xue X, Shi J, Zhao L, Liao G. Multifunctional Luminescent 3D Ln-MOFs with High Sensitivity for Trace Detection of Micronutrients. Inorg Chem 2024; 63:2060-2071. [PMID: 38232754 DOI: 10.1021/acs.inorgchem.3c03838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The synthesis of two versatile fluorescent metal-organic frameworks (MOFs), [Eu(4-NCP)(1,4-bdc)]n·0.5H2O (1) and [Eu(4-NCP)(4,4'-bpdc)]n·0.75H2O (2) (HNCP = 2-(4-carboxyphenyl)imidazo(4,5-f)-(1,10)phenanthroline, 1,4-H2bdc = benzene-1,4-dicarboxylic acid, 4,4'-H2bpdc = 4,4'-biphenyldicarboxylic acid), was carried out using a hydrothermal method. These MOFs were characterized through various advanced technologies to determine their structural information. The results indicate that both MOFs exhibited 3D network structures with specific topologies. Furthermore, these MOFs demonstrated exceptional thermal stabilities and adsorption capabilities. Additionally, complex 2 was utilized for studying the fluorescence sensing properties of various micronutrients including metal ions, nitro aromatic compounds, and biological small molecules. Notably, complex 2 showed promising potential as a multifunctional sensor for selectively detecting Fe3+, nitrobenzene, and ascorbic acid in aqueous solutions through fluorescence quenching with low limits of detection (LODs ∼ 10-7 M) and high quenching constants (Ksv ∼ 103 M-1). Moreover, the detection mechanism of complex 2 was further investigated by using experimental methods and DFT calculations.
Collapse
Affiliation(s)
- Yu Qiao
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Siping 136000, China
| | - Chang Sun
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Siping 136000, China
| | - Juan Jian
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Siping 136000, China
| | - Tianyu Zhou
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Siping 136000, China
| | - Xiangxin Xue
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Siping 136000, China
| | - Jinghui Shi
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Siping 136000, China
| | - Lina Zhao
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Siping 136000, China
| | - Guangfu Liao
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
34
|
Wang Y, Zheng Y, Huo F, Zhang Q, Yang X, Karmaker PG. Ratiometric fluorescence sensor based on europium-organic frameworks for selective and quantitative detection of cerium ions. Anal Chim Acta 2024; 1287:342131. [PMID: 38182353 DOI: 10.1016/j.aca.2023.342131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Due to the unavoidable use of cerium in daily life, the accumulation of cerium in the environment increases health risks for humans. Therefore, it is crucial to develop a chemical sensing technology for the rapid, sensitive, and selective detection of cerium ions. RESULTS In this research work, a novel two-dimensional chain structure of a europium-based metal organic framework (Eu-MOF) [Eu2(tcpa)(Htcpa)2] was synthesized by using 3,4,5,6-tetrachloro-1,2-benzenedicarboxylic acid (H2TCPA) as the ligand and europium nitrate as the metal source. The results of powder X-ray diffraction and thermogravimetric analysis show that the synthesized Eu-MOF has excellent chemical and thermal stability. When the Eu-MOF suspension was excited by ultraviolet light at 292 nm, four fluorescence emissions were observed at 420, 595, 620 and 705 nm. It was particularly interesting that when cerium ions (Ce3+/Ce4+) were added to the Eu-MOF suspension, the fluorescence intensity at 420 nm was enhanced, while the fluorescence at 620 nm was quenched. On this basis, a ratiometric fluorescent sensor for detecting cerium ions was constructed, which has a good linear relationship in the range of 0.05-15 μM and a detection limit of 16 nM. The plausible mechanism of the change in the fluorescence characteristics of Eu-MOF caused by cerium ions was discussed in detail. Through the study of fluorescence lifetime and ultraviolet absorption, it was proven that the mechanism of Ce3+-quenching Eu-MOF fluorescence is the inner filter effect. Photoinduced electron transfer and internal filtering effects lead to fluorescence quenching at 620 nm, while redox reactions lead to fluorescence enhancement of the ligand at 420 nm. SIGNIFICANCE The proposed ratiometric fluorescence sensor was successfully employed for the detection of cerium ions in real water samples, confirming that it can be used as an alternative method for the detection of Ce3+ and Ce4+ in environmental samples.
Collapse
Affiliation(s)
- Yaohui Wang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China
| | - Yi Zheng
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China
| | - Feng Huo
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China; School of Chemistry and Chemical Engineering, Analytical Testing Center, Institute of Micro/Nano Intelligent Sensing, Neijiang Normal University, Neijiang, 641100, China
| | - Qian Zhang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China
| | - Xiupei Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China.
| | - Pran Gopal Karmaker
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China.
| |
Collapse
|
35
|
Li Y, Lu H, Xu S. The construction of dual-emissive ratiometric fluorescent probes based on fluorescent nanoparticles for the detection of metal ions and small molecules. Analyst 2024; 149:304-349. [PMID: 38051130 DOI: 10.1039/d3an01711g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
With the rapid development of fluorescent nanoparticles (FNPs), such as CDs, QDs, and MOFs, the construction of FNP-based probes has played a key role in improving chemical sensors. Ratiometric fluorescent probes exhibit distinct advantages, such as resistance to environmental interference and achieving visualization. Thus, FNP-based dual-emission ratiometric fluorescent probes (DRFPs) have rapidly developed in the field of metal ion and small molecule detection in the past few years. In this review, firstly we introduce the fluorescence sensing mechanisms; then, we focus on the strategies for the fabrication of DRFPs, including hybrid FNPs, single FNPs with intrinsic dual emission and target-induced new emission, and DRFPs based on auxiliary nanoparticles. In the section on hybrid FNPs, methods to assemble two types of FNPs, such as chemical bonding, electrostatic interaction, core satellite or core-shell structures, coordination, and encapsulation, are introduced. In the section on single FNPs with intrinsic dual emission, methods for the design of dual-emission CDs, QDs, and MOFs are discussed. Regarding target-induced new emission, sensitization, coordination, hydrogen bonding, and chemical reaction induced new emissions are discussed. Furthermore, in the section on DRFPs based on auxiliary nanoparticles, auxiliary nanomaterials with the inner filter effect and enzyme mimicking activity are discussed. Finally, the existing challenges and an outlook on the future of DRFP are presented. We sincerely hope that this review will contribute to the quick understanding and exploration of DRFPs by researchers.
Collapse
Affiliation(s)
- Yaxin Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| | - Hongzhi Lu
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| | - Shoufang Xu
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| |
Collapse
|
36
|
Ameen SSM, Qader IB, Qader HA, Algethami FK, Abdulkhair BY, Omer KM. Dual-state dual emission from precise chemically engineered bi-ligand MOF free from encapsulation and functionalization with self-calibration model for visual detection. Mikrochim Acta 2023; 191:62. [PMID: 38157071 DOI: 10.1007/s00604-023-06148-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
Synthesis of dual-state dual emitting metal-organic frameworks (DSDE-MOFs) is uncommon and challenging. Additionally, DSDE-MOFs can fulfil the expanding need for on-site detection due to their stability and self-reference for a variety of non-analyte variables. In the present work, a novel intrinsic DSDE of chemically engineered bi-ligand Eu-based MOF (UoZ-1) was designed. The prepared UoZ-1 spherical particles were small-sized around 10-12 nm and displayed blue (425 nm) and red fluorescence (620 nm) at both states, dispersed in liquid and in solid state, when excited at 250 nm. A ratiometry platform was developed since the red emission was quenched by the addition of folic acid and the blue emission was almost remained unaffected. In the fluorometric ratiometric-mode, a dynamic linear range was recorded from 10 to 200 µM with LOD about 0.4 µM. Visual-based detection with assistance of smartphone was developed for quantification based on RGB analysis using Color Grab App. In the visual-mode, LOD as small as 2.3 µM was recorded. By utilizing the intrinsic dual-emitting UoZ-1, highly stable, recyclable, sensitive, and selective on-site visual detection of folic acid can be achieved. UoZ-1, a DSDE-MOF with no encapsulation or functionalization requirements, exhibits great potential for diverse applications.
Collapse
Affiliation(s)
| | - Idrees B Qader
- Department of Pharmaceutical Chemistry, College of Pharmacy, Hawler Medical University, 44001, Erbil, Kurdistan Region, Iraq
| | - Hemn A Qader
- Department of Pharmaceutical Chemistry, College of Pharmacy, Hawler Medical University, 44001, Erbil, Kurdistan Region, Iraq
| | - Faisal K Algethami
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
| | - Babiker Y Abdulkhair
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
| | - Khalid M Omer
- Department of Chemistry, College of Science University of Sulaimani, Qliasan Street, Slemani City, 460002, Kurdistan Region, Iraq.
| |
Collapse
|
37
|
Kayani KF, Mohammad NN, Kader DA, Mohammed SJ, Shukur DA, Alshatteri AH, Al‐Jaf SH, Abdalkarim KA, Hassan HQ. Ratiometric Lanthanide Metal‐Organic Frameworks (MOFs) for Smartphone‐Assisted Visual Detection of Food Contaminants and Water: A Review. ChemistrySelect 2023; 8. [DOI: 10.1002/slct.202303472] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2025]
Abstract
AbstractDeveloping a reliable portable biosensor is crucial for ensuring food safety and human health. This involves accurately detecting contaminants in food and water at their source. Smartphone cameras have recently become useful for capturing color or fluorescence changes that occur when a probe interacts with specific molecules on paper or in a chemical solution. Ratiometric designs, which self‐calibrate and minimize the impact of environmental changes, are gaining popularity. These designs rely on color changes or fluorescence shifts, which are easily assessable with smartphones. This overview highlights advances in ratiometric optical sensing using Metal‐organic frameworks (MOFs) with lanthanide components coupled with smartphones. These advancements allow contaminants in food and water to be visually identified. The article explains the principles, properties, and applications of color changes for visual detection in food safety. Using lanthanide metal‐organic frameworks with smartphones offers a potent method to detect contaminants, enhancing food safety and safeguarding human health.
Collapse
Affiliation(s)
- Kawan F. Kayani
- Department of Chemistry College of Science University of Sulaimani Qliasan St 46002 Sulaimani City, Kurdistan Region Iraq
| | - Nian N. Mohammad
- Department of Chemistry College of Science University of Sulaimani Qliasan St 46002 Sulaimani City, Kurdistan Region Iraq
- Department of Medical Laboratory Science College of Science Komar University of Science and Technology Sulaimani 46001 Iraq
| | - Dana A. Kader
- Department of Chemistry College of Education University of Sulaimani Old Campus 46001 Kurdistan Region Iraq E-mail: address
| | - Sewara J. Mohammed
- Department of Chemistry College of Science University of Sulaimani Qliasan St 46002 Sulaimani City, Kurdistan Region Iraq
- Anesthesia Department College of Health Sciences Cihan University Sulaimaniya Sulaimani 46001 Kurdistan Region Iraq
| | - Dana A. Shukur
- Department of Nanoscience and Applied Chemistry College of Science Charmo University Peshawa Street Chamchamal Sulaymaniyah 46023 Iraq
| | - Azad H. Alshatteri
- Department of Chemistry University of Garmian Darbandikhan Road 46021 Kalar City-Sulaimaniyah Province, Kurdistan of Iraq
| | - Sabah H. Al‐Jaf
- Department of Chemistry University of Garmian Darbandikhan Road 46021 Kalar City-Sulaimaniyah Province, Kurdistan of Iraq
| | - Karzan A. Abdalkarim
- Department of Chemistry College of Science University of Sulaimani Qliasan St 46002 Sulaimani City, Kurdistan Region Iraq
| | - Hanar Q. Hassan
- Department of Chemistry College of Science University of Sulaimani Qliasan St 46002 Sulaimani City, Kurdistan Region Iraq
| |
Collapse
|
38
|
Xu J, Zhou X, He H, Li S, Ma C. A turn-on fluorescence strategy for hypochlorous acid detection based on DNAzyme-assisted cyclic signal amplification. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123243. [PMID: 37562215 DOI: 10.1016/j.saa.2023.123243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/24/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Hypochlorous acid (HClO) is a crucial active oxygen component and one of the innate immunity's barrier substances in the body. Abnormal fluctuations in HClO concentration can lead to increased oxidative stress, cellular dysfunction, and the onset of various diseases. Thus, developing convenient, affordable, efficient, and sensitive methods to monitor HClO concentration in healthcare and pathophysiology research is highly significant. In this study, we developed a novel fluorescence strategy for HClO detection based on nucleic acid oxidative cleavage and Pb2+-dependent DNAzyme. By introducing a phosphorothioate site in the hairpin-structured nucleic acid sequence, the nucleic acid probe specifically recognized HClO and underwent oxidative cleavage. Upon cleavage, the enzyme strand is liberated, forming DNAzyme. This DNAzyme then cleaves the substrate strand, liberating the initially quenched fluorescent dyes and generating a turn-on fluorescent signal. The enzyme strand produced by the oxidative cleavage of HClO can be repeatedly utilized, thus realizing the cyclic signal amplification to reduce background noise. We verified the detection mechanism of this strategy through stepwise fluorescence spectroscopy analysis and electrophoresis. Under optimal experimental conditions, the method achieved a detection limit of 5.38 nM and a linear range of 1 nM-800 nM. This method demonstrated exceptional performance in actual biological sample testing and presented an exciting opportunity for expanded utilization in clinical diagnosis and medical research.
Collapse
Affiliation(s)
- Jiaqi Xu
- School of Life Sciences, Central South University, Changsha 410013, China; Xiangya Hospital, Central South University, Changsha 410013, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xi Zhou
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Hailun He
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Shanni Li
- School of Life Sciences, Central South University, Changsha 410013, China.
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
39
|
Wang G, Chen K, Wang H, Chen C, Wang X. A smartphone-based visual ratiometric fluoroprobe for rapid and sensitive detection hypochlorous acid based on dual-emission metal organic frameworks. Talanta 2023; 265:124897. [PMID: 37413723 DOI: 10.1016/j.talanta.2023.124897] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/20/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
Herein, we designed/developed a mixed fluorescence system with europium metal-organic framework (EDB) and zinc metal-organic framework (ZBNB). At the 270-nm excitation wavelength, the EDB-ZBNB dually emitted at 425 and 615 nm and displayed blue solution under 365-nm UV lamp. When HOCl was fortified, the 425-nm blue emission dropped progressively, while the 615-nm red emission was relatively stable. Upon addition of ClO-, the shortened fluorescence lifetime demonstrated that the quenched 425-nm fluorescence of ZBNB was owing to the occurrence of dynamic quenching effect. Besides, amino groups are protonated in water to form -NH3+, which interact with ClO- to form hydrogen bonds, reduce the distance between -NH3+ and ClO-, produce energy transfer and result in fluorescence quenching. The ratiometric fluoroprobe provided a significant color change from blue to red, making HOCl detection visual and rapid. This fluorescent probe overcome the disadvantage of conventional redox-based fluorescent probes that can be interfered by MnO4- and other oxidants with stronger oxidizing capacity than free ClO-. Furthermore, a smartphone-based portable sensing platform was developed based on EDB-ZBNB. By using a "Thingidentify" software on smartphone, the sensing platform was used to detect HOCl in waters with a low detection limit of 28.0 nM and the fortified recoveries of 98.87-103.60%. Thus, this study provides a novel and promising platform for the detection of free ClO- in monitoring water quality.
Collapse
Affiliation(s)
- Guixin Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Kun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Chunyang Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
40
|
Zhao B, Liu X, Fan J, Luo L, Zhang X, Li R, Feng X. An intelligent smartphone-test strip detection platform for rapid and on-site sensing of benzoyl peroxide in flour samples. Talanta 2023; 265:124877. [PMID: 37385188 DOI: 10.1016/j.talanta.2023.124877] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Benzoyl peroxide (BPO) is a commonly used flour whitener, but its excessive usage can have adverse effects on human health, such as nutrient loss, vitamin deficiencies and certain diseases. In this study, a europium metal organic framework (Eu-MOF) fluorescence probe was prepared, which exhibited a strong fluorescence emission at 614 nm upon excitation at 320 nm, with a high quantum yield of 8.11%. The red fluorescence of the probe could be effectively quenched by BPO through the inner filter effect (IFE) and photoinduced electron transfer (PET) mechanism. The detection process offered several advantages, including a wide linear range of 0-0.95 mM, a low detection limit of 66 nM and a fast fluorescence response of 2 min. Furthermore, an intelligent detection platform was designed to enhance the practical application of the detection method. This platform combined the portability and visuality of a traditional test strip with the color recognition capability of a smartphone, allowing for the visualization and quantitative detection of BPO in a convenient and user-friendly manner. The detection platform was successfully applied to the analysis of BPO in real flour samples with satisfactory recoveries (99.79%-103.94%), suggesting a promising strategy for the rapid and on-site detection of BPO in food samples.
Collapse
Affiliation(s)
- Beibei Zhao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471022, China; College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China
| | - Xinfang Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China.
| | - Jinling Fan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471022, China
| | - Lei Luo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471022, China
| | - Xiaoyu Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471022, China.
| | - Rongfang Li
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China
| | - Xun Feng
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China
| |
Collapse
|
41
|
Wang Q, Dong J, Li Z, Wang X, He Y, Chen B, Zhao D. Dual-Emitting Mixed-Lanthanide Metal-Organic Framework for Ratiometric and Quantitative Visual Detection of 2,6-Pyridine Dicarboxylic Acid. Inorg Chem 2023; 62:14439-14447. [PMID: 37595269 DOI: 10.1021/acs.inorgchem.3c02374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
The detection of the major biomarker of Bacillus anthracis, 2,6-dipicolinic acid (DPA), has attracted great interest in recent years. In this work, mixed-lanthanide metal-organic frameworks (M'LnMOFs), TbxEu1-x-cppa (cppa = 5-(5-carboxypyridin-3-yl)isophthalic acid), with different Tb/Eu ratios, were solvothermally synthesized. The results reveal that ratiometric fluorescent probe [Tb0.533Eu0.467-(Hcppa)1.5(H2O)(DMF)]·3H2O is water and acid-base stable and exhibits excellent sensitivity (LOD = 2.286 μM), high selectivity, and fast response (<2 min) for the detection of DPA. Due to the blocked energy transfer from Tb3+ to Eu3+ and the inner filter effect upon the addition of DPA, the fluorescent probe shows a distinct color change from orange-red to green. Furthermore, the visual detection of DPA was realized by identifying the RGB values of MOF-based agarose hydrogel films via a smartphone, highlighting the practical application of the fluorescent probe for DPA detection under aqueous solution conditions.
Collapse
Affiliation(s)
- Qin Wang
- Key Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Jiangnan Dong
- Key Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Zhangjian Li
- Key Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Xinyi Wang
- Key Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Yabing He
- Key Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Banglin Chen
- Key Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Dian Zhao
- Key Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| |
Collapse
|
42
|
Xia X. Fabrication of CdS quantum dots with egg white and application in the assay of hypochlorous acid and myeloperoxidase activity and inhibition. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4260-4267. [PMID: 37591805 DOI: 10.1039/d3ay01148h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The myeloperoxidase (MPO)/H2O2-Cl- enzymatic reaction system and its product hypochlorous acid (HOCl) are closely related to many disease processes, and new methods to detect the levels of HOCl and MPO are being focused on. MPO is the only known enzyme for the catalytic production of HOCl in biological systems; therefore, monitoring the HOCl levels is a selective and direct readout of MPO activity. This study reported a simple and efficient fluorescence assay of HOCl and MPO activity and inhibition. Highly fluorescent CdS quantum dots (CdS QDs) were prepared in one pot where NaOH-pretreated egg white served as a stabilizer. These CdS QDs exhibit strong green emission centered at ca. 550 nm and enable rapid and selective fluorescence response to HOCl with a linear detection range of 8.0-250 μM and a limit of detection (LOD) of 2.5 μM. Moreover, the CdS QDs were further applied for sensing MPO based on the fluorescence quenching exerted by its reaction product HOCl. Detection of MPO is accomplished with a linear range from 0.1 to 40 mU mL-1 (1 U is the MPO concentration for catalysis of 1 micromolar substrate per minute) and a LOD of 0.06 mU mL-1. The developed synthesis method can be applied to large-scale synthesis of CdS QDs, and the strategy to sense HOCl and MPO activity and inhibition has potential biomedical applications such as clinical diagnosis and drug screening.
Collapse
Affiliation(s)
- Xiaodong Xia
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, PR China.
| |
Collapse
|
43
|
Feng J, Kong C, Chen Y, Cen P, Ding Y, Guo Y, Zhang F, Liu X. Lanthanide-MOFs as multi-responsive photoluminescence sensor for sensitively detecting Fe 3+, Cr 2O 72- and nitrofuran antibiotics. RSC Adv 2023; 13:26196-26202. [PMID: 37671001 PMCID: PMC10475880 DOI: 10.1039/d3ra03817c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/16/2023] [Indexed: 09/07/2023] Open
Abstract
Fast and selective detection of contaminants plays a key role in meeting human health and environmental concerns. Herein, two groups of isostructural lanthanide MOFs, [Ln(Hpta)(oxalic acid)]·H2O (1-Eu, 2-Gd) and [Ln(pta)(oxalic acid)0.5(H2O)2]·2H2O (3-Eu, 4-Gd) (H2pta = 2-(4-pyridyl)-terephthalic acid, C2O4- = oxalic acid), were synthesized by solvothermal method. Single crystal X-ray diffraction reveals that 1 and 2 are 3D neutral frameworks, while 3 and 4 consist of 2D layers with parallelogram holes and stack into 3D networks through O-H⋯N and O-H⋯O hydrogen bonding interactions. All complexes remain crystalline and stable below 400 °C, suggesting preeminent thermostability. Noteworthily, only 3 shows excellent chemical stability in water and organic solvent. Therefore, the solid-state fluorescence spectrum was used to characterize 3 which exhibited intense red luminescence. The N active sites in the pore channels of 3 are conducive to displaying a distinct quenching effect for Fe3+ cations in aqueous solutions, Cr2O72- anions in DMF and DMA solutions, and nitrofuran antibiotics in the DMF solvent. Overall, 3 is a prospective luminescent sensor for detecting Fe3+, Cr2O72- and nitrofuran antibiotics.
Collapse
Affiliation(s)
- Jingjuan Feng
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Cunding Kong
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Yunhui Chen
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Peipei Cen
- College of Public Health, College of Basic Medical Science, Ningxia Medical University YinChuan 750021 China
| | - Yi Ding
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Yan Guo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Fengyuan Zhang
- College of Public Health, College of Basic Medical Science, Ningxia Medical University YinChuan 750021 China
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| |
Collapse
|
44
|
Wang M, Guan J, Liu S, Chen K, Gao Z, Liu Q, Chen X. Dual-ligand lanthanide metal-organic framework probe for ratiometric fluorescence detection of mercury ions in wastewater. Mikrochim Acta 2023; 190:359. [PMID: 37605047 DOI: 10.1007/s00604-023-05944-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023]
Abstract
By serving dipyridylic acid (DPA) and 2,5-dihydroxyterephthalic acid (DHTA) as the biligands, a novel lanthanide (Eu3+) metal-organic framework (MOF) namely Eu-DHTA/DPA was prepared for specific Hg2+ fluorescence determination. The dual-ligand approach can endows the resulting luminescent MOF with dual emission of ratiometric fluorescence and uniform size. Eu3+ produces intense red fluorescence when activated by the ligand DPA, while the other ligand DHTA produces yellow fluorescence. Under 273 nm excitation, the presence of Hg2+ in the monitoring environment causes an increase in the intensity of the DHTA fluorescence peak at 559 nm and a decrease in the intensity of the Eu3+ fluorescence peak at 616 nm. Hg2+ effectively quenches the fluorescence emission of the central metal Eu3+ in Eu-DHTA/DPA at 616 nm through a dynamic quenching effect. This recognition process occurs due to the coordination of Hg2+ with ligands such as benzene rings, carboxyl groups, and pyridine N in three-dimensional space. Hg2+ was detected by measuring the ratio between two fluorescence peaks (I559 nm/I616 nm) within the range 2-20 μM, achieving a remarkably low detection limit of 40 nM. The established ratiometric fluorescence method has been successfully applied to the determination of Hg2+ in industrial wastewater of complex composition. The method plays a crucial role in the rapid and sensitive monitoring of Hg2+ in real environmental samples. The recoveries ranged from 92.82% to 112.67% (n = 3) with relative standard deviations (RSD) below 4.8%. This study offers a convenient and effective method for constructing probes for Hg2+ monitoring, with practical applications in environmental monitoring.
Collapse
Affiliation(s)
- Meng Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Jianping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Shenghong Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Kecen Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Ziyi Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China.
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, Hunan, China
| |
Collapse
|
45
|
Hu JJ, Xie KL, Xiong TZ, Wang MM, Wen HR, Peng Y, Liu SJ. Stable Europium(III) Metal-Organic Framework Demonstrating High Proton Conductivity and Fluorescence Detection of Tetracyclines. Inorg Chem 2023. [PMID: 37452746 DOI: 10.1021/acs.inorgchem.3c01468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
A europium(III) metal-organic framework (MOF), namely, {[[(CH3)2NH2]3Eu2(DTTP-2OH)2(HCOO)(H2O)]·4H2O}n (Eu-MOF, H4DTTP-2OH = 2',5'-dihydroxy-[1,1':4',1″-terphenyl]-3,3″,5,5″-tetracarboxylic acid) has been assembled through solvothermal method. The Eu-MOF is a three-dimensional (3D) (4,4,8)-connected topological framework with binuclear Eu(III) clusters as secondary building units, in which a richly ordered hydrogen bonding network formed among the free H2O molecules, dimethylamine cations, and phenolic hydroxyl groups provides a potential pathway for proton conduction. The proton conductivity reaches the category of superionic conductors (σ > 10-4 S cm-1) at room temperature with a maximum conductivity of 1.91 × 10-3 S cm-1 at 60 °C and 98% RH. Moreover, it also can be used as a fluorescence sensor in aqueous solution with detection limits of 0.14 μM for tetracycline, 0.13 μM for oxytetracycline and 0.11 μM for doxycycline. These results pave new methods for constructing MOFs with high proton conductivity and responsive fluorescence.
Collapse
Affiliation(s)
- Jun-Jie Hu
- School of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Kang-Le Xie
- School of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Tian-Zheng Xiong
- School of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Miao-Miao Wang
- School of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Yan Peng
- School of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| |
Collapse
|
46
|
Xiao F, Wang Y, Li Q, Yang D, Yang Y. Fluorescence detection of dopamine based on the peroxidase-like activity of Fe 3O 4-MWCNTs@Hemin. Mikrochim Acta 2023; 190:259. [PMID: 37306766 DOI: 10.1007/s00604-023-05796-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/11/2023] [Indexed: 06/13/2023]
Abstract
A novel Fe3O4-MWCNTs@Hemin nanocomposite was synthesized using hemin and Fe3O4 with multi-walled carbon nanotubes (MWCNTs) by one-step hydrothermal methods. The as-prepared Fe3O4-MWCNTs@Hemin nanocomposites exhibited excellent peroxidase-like activities in the activation of H2O2. The mechanisms, kinetics, and catalytic performances of Fe3O4-MWCNTs@Hemin were systematically studied. Fe3O4-MWCNTs@Hemin can oxidize dopamine (DA) to dopaquinone in the presence of H2O2, and the intermediate products dopaquinone can further react with β-naphthol to generate a highly fluorescent derivative at 415 nm excitation wavelength. Therefore, an innovative fluorescence platform for the detection of DA was developed. The fluorescence intensity increased linearly with DA concentration in the range 0.33 to 107 μM, with a low detection limit of 0.14 μM. Due to the excellent activity, substrate universality, fast response, high selectivity, and sensitivity of Fe3O4-MWCNTs@Hemin, the proposed fluorescence method was used to analyze complex biological blood samples with a satisfactory result. It demonstrated the significant potential for developing effective and dependable fluorescent analytical platforms for preserving human health.
Collapse
Affiliation(s)
- Feijian Xiao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Yijie Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Qiulan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| |
Collapse
|
47
|
Ren Y, Ma Z, Gao T, Liang Y. Advance Progress on Luminescent Sensing of Nitroaromatics by Crystalline Lanthanide-Organic Complexes. Molecules 2023; 28:molecules28114481. [PMID: 37298958 DOI: 10.3390/molecules28114481] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Water environment pollution is becoming an increasingly serious issue due to industrial pollutants with the rapid development of modern industry. Among many pollutants, the toxic and explosive nitroaromatics are used extensively in the chemical industry, resulting in environmental pollution of soil and groundwater. Therefore, the detection of nitroaromatics is of great significance to environmental monitoring, citizen life and homeland security. Lanthanide-organic complexes with controllable structural features and excellent optical performance have been rationally designed and successfully prepared and used as lanthanide-based sensors for the detection of nitroaromatics. This review will focus on crystalline luminescent lanthanide-organic sensing materials with different dimensional structures, including the 0D discrete structure, 1D and 2D coordination polymers and the 3D framework. Large numbers of studies have shown that several nitroaromatics could be detected by crystalline lanthanide-organic-complex-based sensors, for instance, nitrobenzene (NB), nitrophenol (4-NP or 2-NP), trinitrophenol (TNP) and so on. The various fluorescence detection mechanisms were summarized and sorted out in the review, which might help researchers or readers to comprehensively understand the mechanism of the fluorescence detection of nitroaromatics and provide a theoretical basis for the rational design of new crystalline lanthanide-organic complex-based sensors.
Collapse
Affiliation(s)
- Yixia Ren
- Laboratory of New Energy and New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China
| | - Zhihu Ma
- Laboratory of New Energy and New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China
| | - Ting Gao
- Laboratory of New Energy and New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China
| | - Yucang Liang
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| |
Collapse
|
48
|
Zhang Z, Zhou J, Chen X, Fang F, Wang S, Zhang S, Du L, Zhao Q. SCSC Transformation and Post-Synthesis Modification of MOFs with Proton Conduction and Ratiometric Fluorescence-Sensing Properties. Inorg Chem 2023; 62:5972-5983. [PMID: 37015890 DOI: 10.1021/acs.inorgchem.2c04400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
The modification of metal-organic framework (MOF) materials to facilitate their practical applications is an extremely challenging and meaningful topic. In this work, two stepwise modification strategies for MOFs were conducted. First, we have demonstrated a single-crystal-to-single-crystal (SCSC) transformation from a microporous three-dimensional (3D) MOF to a two-dimensional (2D) coordination polymer (CP). The centrosymmetric [Cd(3-bpdb)(MeO-ip)]n (1) transforms into a chiral [Cd2(3-bpdb)(MeO-ip)2(CH3OH)2]n (2), which is triggered by the reaction time with methanol that acts as a structure-directing agent. The conversion relationship of 1 to 2 at different reaction times was studied in detail. Density functional theory (DFT) calculations clearly state that the irreversible formation of 2 is thermodynamically favorable. Intriguingly, 2 exhibits good proton conduction of 1.34 × 10-3 S cm-1 under 363 K and 98% relative humidity (RH) due to unique H-bond network characteristics. To the best of our knowledge, there are very few cases of 3D to 2D SCSC transformation stimulated by reaction time. The results have important implications for understanding the SCSC transformation mechanism and synthetic chemistry. On the other hand, the lanthanide3+-functionalized hybrids (Ln3+-MOF), Ln3+@1, were continuously prepared by incorporating luminescent Ln3+ ions into the structure of 1 through encapsulating post-synthesis modification (PSM). Tb3+@1 exhibits double emission in water and shows visual ratiometric fluorescence behavior for sensing glutamic acid (Glu), tryptophan (Trp), and Al3+, which is more reliable and accurate than single emission. Our work may not only provide new insights into the multiple modification of MOF materials but also promote the practical application of such materials.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Jie Zhou
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Xue Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Fang Fang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Shuyu Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Suoshu Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Lin Du
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Qihua Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| |
Collapse
|
49
|
Zhang MY, Yi FY, Guo QZ, Luo FL, Liu LJ, Guo JF. A ratiometric luminescence sensing platform based on lanthanide-based silica nanoparticles for selective and sensitive detection of Fe 3+ and Cu 2+ ions. Dalton Trans 2023; 52:3300-3307. [PMID: 36847192 DOI: 10.1039/d3dt00119a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Detection of Fe(III) and Cu(II) in water is highly desirable because their abnormal levels can cause serious harm to human health and environmental safety. In this work, a ratiometric luminescence sensing platform based on lanthanide-based silica nanoparticles was constructed for the detection of Fe3+ and Cu2+ ions. The terbium-silica nanoparticles (named SiO2@Tb) with dual-emission signals were successfully prepared by grafting Tb3+ ions onto trimellitic anhydride (TMA) functionalized silica nanospheres. It can serve as a ratiometric fluorescent probe for the detection of Fe3+ and Cu2+ ions in water with the green emission of Tb3+ ions as a response signal and the blue emission of silica nanospheres as the reference signal. Significantly, an easy-to-differentiate color change for visual detection was also realized. SiO2@Tb shows high sensitivity even in very low concentration regions towards the sensing of Fe3+ and Cu2+ with low detection limits of 0.75 μM and 0.91 μM, respectively. Moreover, the mechanism for the luminescence quenching of SiO2@Tb was systematically investigated, and was attributed to the synergetic effect of the absorption competition quenching (ACQ) mechanism and cation exchange. This study demonstrates that SiO2@Tb can be employed as a promising fluorescent probe for the detection of Fe3+ and Cu2+ ions, and the combination of lanthanide ions with silica nanoparticles is an effective strategy to construct a ratiometric fluorescent sensing platform for the determination of analytes in environmental detection.
Collapse
Affiliation(s)
- Meng-Yao Zhang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Feng-Ying Yi
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Qing-Zhong Guo
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Fa-Liang Luo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Lan-Jun Liu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China. .,School of Civil Engineering and Architecture, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Jun-Fang Guo
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
50
|
Jiang W, Wei S, Zhang R. A novel ratiometric fluorescence probe for the detection of copper (II) and silver(I) based on assembling dye-doped silica core-shell nanoparticles with gold nanoclusters. Mikrochim Acta 2023; 190:105. [PMID: 36843138 DOI: 10.1007/s00604-023-05677-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/28/2023] [Indexed: 02/28/2023]
Abstract
A creatively designed and constructed a multifunctional ratiometric fluorescence probe is reported by assembling glutathione (GSH)-protected gold nanoclusters (AuNCs) with fluorescein-doped mesoporous silica nanoparticle (FS) for the detection of Cu2+ and Ag+ ions, which could eliminate most interferences by self-calibration. Under the excitation at 450 nm, the fluorescence connected with AuNCs can rapidly respond by quenching or enhancement, respectively, for Cu2+ and Ag+ ions, while the fluorescein isothiocyante (FITC) fluorescence served as reference with negligible change. The fluorescence intensity ratio showed good linear relationships with Cu2+ and Ag+ concentrations in the range 0.5-10 μM and 0.1-8 μM, respectively. The detection limits were as low as 140 nM and 60 nM for Cu2+ and Ag+ ions, respectively. The color change induced by fluorescent intensity ratio variation could also be employed for visual discrimination. The AuNC-embedded FS (FS-Au) nanoprobe was successfully used for Cu2+ and Ag+ ion determination in drinking water and intracellular Cu2+ imaging, which exhibits promising prospects in cost-effective and rapid determination of both Cu2+ and Ag+ with good sensitivity and selectivity.
Collapse
Affiliation(s)
- Wenjing Jiang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Shuang Wei
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Ruirui Zhang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
| |
Collapse
|