1
|
Liu Y, Wang S, Chai Y, Yuan R, Li H, Liu H. A "super-off" photoelectrochemical biosensor based on Cu-BTC nanozyme quenching strategy for the detection of dibutyl phthalate plasticizer. Talanta 2025; 284:127241. [PMID: 39581106 DOI: 10.1016/j.talanta.2024.127241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
Ultrasensitive detection of phthalic acid (PAEs) is an extremely critical mission in environmental monitoring. We designed a "super-off" photoelectrochemical (PEC) biosensor by using MoO3/Bi2MoO6 as photoanode and copper(II) benzene-1,3,5-tricarboxylate (Cu-BTC) nanozyme as highly efficient signal quencher. It was found that the PEC signal of MoO3/Bi2MoO6 photoelectric material is very sensitive to the concentration of co-reactor H2O2. Therefore, a target-triggered endonuclease-assisted recycle was employed to convert the target DBP into amount of output DNA, which can trigger the assembly of DNA nanonet for the immobilization of Cu-BTC nanozyme. Thanks to the peroxidase-like activity of Cu-BTC, a "super off" photocurrent was observed due to the consumption of electron donor H2O2 in the electrolyte. Compared with the traditional quenching strategies such as steric hindrance and light energy competition, this enzymatic reaction on the electrode interfaces is more effective to induce the distinct decrease of photocurrent for analysis. Ultimately, the constructed PEC sensor exhibited a broad linear range from 1 fM to 100 nM and a detection threshold of 0.3 fM. This work highlights the significance of using peroxide-mimic enzyme as a signal amplifier in PEC sensing platform for environmental monitoring.
Collapse
Affiliation(s)
- Yajuan Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Shuai Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Hongbo Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Hongyan Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
2
|
Yu F, Huang M, Wang R, Hao C, Zhu Y. Single-atom ruthenium nanozyme-induced signal amplification strategy in photoelectrochemical aptasensor for ultrasensitive detection of chloramphenicol. Biosens Bioelectron 2025; 268:116917. [PMID: 39522467 DOI: 10.1016/j.bios.2024.116917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
To develop ultrasensitive and rapid antibiotics residue detection method is crucial for ensuring food safety and protecting human health. Herein, a novel photoelectrochemical (PEC) aptasensor integrated with single-atom ruthenium (Ru) nanozyme-mediated catalytic precipitation as a valuable signal amplification strategy, have been established for ultrasensitive chloramphenicol (CAP) detection. Particularly, the exceptional peroxidase-mimicking activity of single-atom Ru nanozyme is responsible for accelerating the oxidation of 4-chloro-1-naphthol (4-CN) to produce insoluble precipitate on the electrode, which in turn causes a notable reduction in the photocurrent. Whereas, when CAP is present, the aptamer is liberated away the electrode because of its potent affinity with CAP, resulting in an elevation of the photocurrent signal, enhancing the detection sensitivity. Importantly, the signal amplification strategy combines the effective photoactive material of Au nanoparticles/CdS quantum dot/TiO2 composites, a PEC aptasensor for determination of CAP with an ultralow detection limit of 4.12 pM is achieved in a self-powered mode with great selectivity and accuracy. This work proposes a novel reasonable approach utilizing high-activity single-atom nanozyme to induce signal amplification strategy for the advancement of single-atom nanozyme in ultrasensitive PEC biosensor, and further creates new avenues for ultrasensitive detection beyond antibiotics residue.
Collapse
Affiliation(s)
- Fan Yu
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| | - Mao Huang
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| | - Rui Wang
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| | - Chun Hao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China; Institute of Molecular Science, Shanxi University, 030006, Taiyuan, China
| | - Yanyan Zhu
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
3
|
Ma J, Shen YZ, Gong J, Azat S, Ji ZP, Hu XY, Xu Q. Dual-mode sensing platform for Bisphenol A detection via bifunctional CsPbBr 3@Cu-MOF assisted fluorescence and colorimetric analysis. Anal Chim Acta 2024; 1332:343354. [PMID: 39580167 DOI: 10.1016/j.aca.2024.343354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Bisphenol A (BPA) has been identified as an endocrine disruptor with numerous detrimental effects on human health. There is an urgent need to develop fluorescence/colorimetric dual-mode sensing approaches with expanded detection linear range, increased accuracy, and enhanced application flexibility for BPA detection. The utilization of fluorescence and colorimetric signals in point-of-care applications and real-time sensitive sensing further highlights the significance of developing novel and efficient fluorescence/colorimetric dual-mode sensing platform with high-efficiency probes. RESULTS Herein, a fluorescence and colorimetric dual-mode aptasensor was developed by using CsPbBr3@Cu-MOF as the aptamer immobilization matrix and signal generator. CsPbBr3 was functionalized with Cu-MOF using a simple two-step strategy. This strategy involved in-situ formation and modified ligand-assisted precipitation technique with 4,4'-bipyridine (4,4-Bpy) serving as the bifunctional linker. The resulting CsPbBr3@Cu-MOF exhibited improved stability in water and enhanced fluorescence. Additionally, it functioned as peroxidase mimetic to oxidize 3,3',5,5'-tetramethyl benzidine (TMB), leading to a colorimetric change from colorless to blue. In the presence of BPA, aptamers were removed from CsPbBr3@Cu-MOF. Consequently, the fluorescence and peroxidase-activity of CsPbBr3@Cu-MOF were recovered, resulting in the enhanced fluorescence intensity and color change of TMB. Using this system, the proposed aptasensor demonstrated detection ranges of 1.0-80.0 nM with a LOD of 0.60 nM for the colorimetric method, and a linearity range of 0.1-100 nM with a LOD of 0.02 nM for the fluorescence method. SIGNIFICANCE The obtained CsPbBr3@Cu-MOF composites showed excellent fluorescence properties, good peroxidase-like activity, and aqueous stability. Furthermore, the proposed dual-mode aptasensor demonstrated simplicity, cost-effectiveness and good anti-interference abilities. This can be extended to the construction of other dual-mode sensors by changing aptamers and provides novel insights on the potential applications of perovskites in bioanalysis.
Collapse
Affiliation(s)
- Junyi Ma
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Ying-Zhuo Shen
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Jianxiao Gong
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Seitkhan Azat
- Laboratory of Engineering Profile, Satbayev University, Almaty, 050013, Kazakhstan
| | - Zheng Ping Ji
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Xiao-Ya Hu
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Qin Xu
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| |
Collapse
|
4
|
Su L, Wang G, Zhao L, Deng Y, Guo Y, Xiao Y, Wang H, Dong C, Fan L. Ultrasensitive monitoring of PCB77 in environmental samples using a visible-driven photoelectrochemical sensing platform coupling with exonuclease I assisted in target recycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173982. [PMID: 38889816 DOI: 10.1016/j.scitotenv.2024.173982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Due to the urgent need for detecting trace amounts of 3,3',4,4'-tetrachlorobiphenyl (PCB77) in the environment, we have developed an efficient and visible-driven photoelectrochemical (PEC) sensing platform based on carbon quantum dots (CQDs) modified titanium dioxide nanorods (TiO2 NRs), coupling with exonuclease I (Exo I) assisted in target recycling for significant signal amplification. CQDs/TiO2 NRs with high visible-light absorption ability and electron-hole separation efficiency is used as photoactive substrate for anchoring anti-PCB77 aptamer and its complementary DNA (cDNA). With the addition of PCB77, the specific interaction between PCB77 and its aptamer forces aptamer to separate from the electrode surface, resulting in an increase in photocurrent density. Adding Exo I in the test system, a self-catalytic target cycle was motivated, which significantly increased the PEC signal by more than twice, achieving signal amplification. The relationship between the photocurrent density changes and the concentrations of PCB77 are utilized to achieve quantitative detection of PCB77. The designed PEC sensing platform has good analytical performance with a detection limit as low as 0.33 pg L-1, high selectivity and stability. Moreover, the PEC sensor is successfully used to evaluate the content of PBC77 in the environment samples. The established sensing platform provides a simple and efficient method for detecting trace amounts of PCB77 in the environment.
Collapse
Affiliation(s)
- Lining Su
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guizhen Wang
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Linlin Zhao
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yuan Deng
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yujing Guo
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Yong Xiao
- National Key Laboratory of High Efficiency and Low Carbon Utilization of Coal, Institute of Coal Chemistry, CAS, Taiyuan 030001, PR China
| | - Huanwen Wang
- Faculty of Material and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Chuan Dong
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Lifang Fan
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
5
|
Huang A, Dong X, Shen G, He L, Cai C, Liu Q, Niu Q, Xu C. Target Recognition-Triggered Interfacial Electron Transfer Model: Toward Signal-On Photoelectrochemical Aptasensing for Efficient Detection of Staphylococcus aureus Using Ti 3C 2T x-Au NBPs/ZnO NR Composites. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20526-20536. [PMID: 39302020 DOI: 10.1021/acs.langmuir.4c02104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Staphylococcus aureus (S. aureus) is one of the most common foodborne pathogens worldwide, which poses a great threat to public health. It is of utmost importance to develop rapid, simple, and sensitive methods for the determination of S. aureus. A signal-on photoelectrochemical (PEC) aptasensor is constructed herein based on titanium carbide (Ti3C2Tx)-Au nanobipyramids (NBPs)/ZnO nanoarrays (NRs). The reliability and capability of the PEC aptasensor make it suitable for the sensitive and selective determination of S. aureus. First, the electrostatically self-assembled Ti3C2Tx-Au NBP nanomaterial was coated on the ZnO NR surface by a spin-coating method. On the one hand, Ti3C2Tx-Au NBPs can broaden the spectral absorption of ZnO NRs, resulting in Ti3C2Tx-Au NBPs/ZnO NR composites that exhibit a wide range of absorption from the ultraviolet to the infrared region. On the other hand, Ti3C2Tx can reduce the agglomeration of nanoparticles, while Au NBPs can effectively fix the aptamer through the Au-S bond. Specifically, the experimental results show that when S. aureus is present, the Au NBPs-aptamer-S. aureus complex is shed from the electrode surface, altering the interfacial electron transfer model and reducing the steric hindrance. Consequently, an amplified photocurrent signal for the quantitative determination of S. aureus is obtained. Under optimal experimental conditions, a linear correlation is observed between the current response of the aptasensor and the logarithm of the S. aureus concentration (ranging from 1.0 to 1.0 × 106 CFU/mL), with an impressive detection limit as low as 0.5 CFU/mL. Furthermore, the aptasensor has been successfully employed for the detection of S. aureus in milk, with the recovery of 93.0%-99.0%. Hence, this research offers a novel approach for the detection of foodborne pathogens and other noxious substances.
Collapse
Affiliation(s)
- Ao Huang
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiuxiu Dong
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Guanghui Shen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Lilong He
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chaoyang Cai
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qian Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qijian Niu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chunxiang Xu
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
6
|
Yang H, Tu C, Hao Y, Li Y, Wang J, Yang J, Zhang L, Zhang Y, Yu J. Near-infrared light-driven lab-on-paper cathodic photoelectrochemical aptasensing for di(2-ethylhexyl)phthalate based on AgInS 2/Cu 2O/FeOOH photocathode. Talanta 2024; 276:126193. [PMID: 38735244 DOI: 10.1016/j.talanta.2024.126193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/08/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
Di(2-ethylhexyl)phthalate (DEHP) is commonly released from plastics in aqueous environment, which can disrupt endocrine system and cause adverse effects on public health. There is a pressing need to highly sensitive detect DEHP. Herein, a near-infrared (NIR) light-driven lab-on-paper cathodic photoelectrochemical aptasensing platform integrated with AgInS2/Cu2O/FeOOH photocathode and "Y"-like ternary conjugated DNA nanostructure-mediated "ON-OFF" catalytic switching of hemin monomer-to-dimer was established for ultrasensitive DEHP detection. Profiting from the collaborative roles of the effective photosensitization of NIR-response AgInS2 and the fast hole extraction of FeOOH, the NIR light-activated AgInS2/Cu2O/FeOOH photocathode generated a markedly enhanced photocathodic signal. The dual hemin-labelled "Y"-like ternary conjugated DNA nanostructures made the hemin monomers separated in space and they maintained highly active to catalyze in situ generation of electron acceptors (O2). The hemin monomers were relocated in close proximity with the help of target-induced allosteric change of DNA nanostructures, which could spontaneously dimerize into catalytically inactive hemin dimers and fail to mediate electron acceptors generation, resulting in a decreased photocathodic signal. Therefore, the ultrasensitive DEHP detection was realized with a linear response range of 1 pM-500 nM and a detection limit of 0.39 pM. This work rendered a promising prototype to construct powerful paper-based photocathodic aptasensing system for sensitive and accurate screening of DEHP in aqueous environment.
Collapse
Affiliation(s)
- Hongmei Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, PR China
| | - Chuanyi Tu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yuxin Hao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yuheng Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Jing Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Jiajie Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, PR China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| |
Collapse
|
7
|
Gao H, Kuang X, An B, Liu J, Xu K, Ma H, Leng D, Liu X, Wei Q, Ju H. Highly sensitive photoelectrochemical biosensing detection of early cardiac injury enabled by novel self-assembled Bi 2O 3/MgIn 2S 4 photoelectrode coupled with ZnSnO 3 quencher. Talanta 2024; 276:126272. [PMID: 38776780 DOI: 10.1016/j.talanta.2024.126272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
The development of photoelectrochemical (PEC) biosensors plays a critical role in enabling timely intervention and personalized treatment for cardiac injury. Herein, a novel approach is presented for the fabrication of highly sensitive PEC biosensor employing Bi2O3/MgIn2S4 heterojunction for the ultrasensitive detection of heart fatty acid binding protein (H-FABP). The Bi2O3/MgIn2S4 heterojunction, synthesized through in-situ growth of MgIn2S4 on Bi2O3 nanoplates, offers superior attributes including a larger specific surface area and more homogeneous distribution, leading to enhanced sensing sensitivity. The well-matched valence and conduction bands of Bi2O3 and MgIn2S4 effectively suppress the recombination of photogenerated carriers and facilitate electron transfer, resulting in a significantly improved photocurrent signal response. And the presence of the secondary antibody marker (ZnSnO3) introduces steric hindrance that hinders electron transfer between ascorbic acid and the photoelectrode, leading to a reduction in photocurrent signal. Additionally, the competition between the ZnSnO3 marker and the Bi2O3/MgIn2S4 heterojunction material for the excitation light source further diminishes the photocurrent signal response. After rigorous repeatability and selectivity tests, the PEC biosensor exhibited excellent performance, and the linear detection range of the biosensor was determined to be 0.05 pg/mL to 100 ng/mL with a remarkable detection limit of 0.029 pg/mL (S/N = 3).
Collapse
Affiliation(s)
- Haiyang Gao
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Xuan Kuang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Bing An
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Jinjie Liu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Kun Xu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Dongquan Leng
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Xuejing Liu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Huangxian Ju
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing, 210023, PR China
| |
Collapse
|
8
|
Shen YZ, Xie WZ, Wang Z, Ning KP, Ji ZP, Li HB, Hu XY, Ma C, Qin X. A generalizable sensing platform based on molecularly imprinted polymer-aptamer double recognition and nanoenzyme assisted photoelectrochemical-colorimetric dual-mode detection. Biosens Bioelectron 2024; 254:116201. [PMID: 38507928 DOI: 10.1016/j.bios.2024.116201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Developing highly sensitive and selective methods that incorporate specific recognition elements is crucial for detecting small molecules because of the limited availability of small molecule antibodies and the challenges in obtaining sensitive signals. In this study, a generalizable photoelectrochemical-colorimetric dual-mode sensing platform was constructed based on the synergistic effects of a molecularly imprinted polymer (MIP)-aptamer sandwich structure and nanoenzymes. The MIP functionalized peroxidase-like Fe3O4 (Fe3O4@MIPs) and alkaline phosphatase mimic Zr-MOF labeled aptamer (Zr-mof@Apt) were used as the recognition elements. By selectively accumulating dibutyl phthalate (DBP), a small molecule target model, on Fe3O4@MIPs, the formation of Zr-MOF@Apt-DBP- Fe3O4@MIPs sandwich structure was triggered. Fe3O4@MIPs oxidized TMB to form blue-colored oxTMB. However, upon selective accumulation of DBP, the catalytic activity of Fe3O4@MIPs was inhibited, resulting in a lighter color that was detectable by the colorimetric method. Additionally, Zr-mof@Apt effectively catalyzed the hydrolysis of L-Ascorbic acid 2-phosphate sesquimagnesium salt hydrate (AAPS), generating ascorbic acid (AA) that could neutralize the photogenerated holes to decrease the photocurrent signals for PEC sensing and reduce oxTMB for colorimetric testing. The dual-mode platform showed strong linearity for different concentrations of DBP from 1.0 pM to 10 μM (PEC) and 0.1 nM to 0.5 μM (colorimetry). The detection limits were 0.263 nM (PEC) and 30.1 nM (colorimetry) (S/N = 3), respectively. The integration of dual-signal measurement mode and sandwich recognition strategy provided a sensitive and accurate platform for the detection of small molecules.
Collapse
Affiliation(s)
- Ying-Zhuo Shen
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Wen Zheng Xie
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Zheng Wang
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Kang Ping Ning
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Zheng Ping Ji
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Hong Bo Li
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China; School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Xiao-Ya Hu
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Cheng Ma
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Xu Qin
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| |
Collapse
|
9
|
Meng X, Huang A, Li Y, Dong X, You T. Highly sensitive and selective photoelectrochemical detection of bis(2-ethylhexyl)phthalate on broad-spectrum responsive and interfacial electronic interaction induced p-n BiOI/ZnO nanoarrays heterojunction. Biosens Bioelectron 2024; 251:116121. [PMID: 38373373 DOI: 10.1016/j.bios.2024.116121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/12/2024] [Accepted: 02/08/2024] [Indexed: 02/21/2024]
Abstract
Bis(2-ethylhexyl)phthalate (DEHP), an endocrine disruptor, shows carcinogenic, teratogenic, mutagenic and estrogenic effects. It is easy to release from plastic materials and migrate to soil environment, causing serious pollution and posing a great threat to human health. In our work, a photoelectrochemical (PEC) sensing platform for DEHP detection was constructed using BiOI/ZnO nanoarrays (NRs) as the transducer species and the DEHP aptamers as the biological recognition elements. ZnO NRs with three-dimensional and large diameter area were prepared by hydrothermal method to increase the light absorption capacity. Coupling BiOI in a narrow band gap with ZnO NRs strengthened visible-light absorption, while promoting charge carrier separation and transportation. This was attributed to the generation of an internal electric field between BiOI and ZnO NRs, exhibiting obvious photocurrent response. The as-developed PEC sensing platform demonstrated great sensing performance for detection of DEHP. Furthermore, the photocurrent varied and the logarithm of DEHP concentration showed a linear relationship from 1.0 × 10-11 to 5.0 × 10-7 mol/L, and the limit of detection was estimated to be 3.8 × 10-12 mol/L. In the meantime, while evaluating its usage in real soil samples, satisfying outcomes were realized. Thus, the as-proposed PEC sensing platform provided a potential device to monitor DEHP in the environment.
Collapse
Affiliation(s)
- Xiangle Meng
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Ao Huang
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yuye Li
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xiuxiu Dong
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, Henan, 471003, China.
| |
Collapse
|
10
|
Ritz AJ, Stuehr OM, Comer DN, Lazenby RA. Controlling Gold Morphology Using Electrodeposition for the Preparation of Electrochemical Aptamer-Based Sensors. ACS APPLIED BIO MATERIALS 2024; 7:1925-1935. [PMID: 38369768 DOI: 10.1021/acsabm.3c01254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Nanostructuring of gold surfaces to enhance electroactive surface area has proven to significantly enhance the performance of electrochemical aptamer-based (E-AB) sensors, particularly for electrodes on the microscale. Unlike for sensors fabricated on polished gold surfaces, predicting the behavior of E-AB sensors on surfaces with varied gold morphologies becomes more intricate due to the effects of surface roughness and the shapes and sizes of surface features on supporting a self-assembled monolayer. In this study, we explored the impact of gold morphology characteristics on sensor performance, evaluating parameters such as signal change in response to the addition of the target analyte, aptamer probe packing density, and continuous sensing ability. Our findings reveal that surface area enhancement can either enhance or diminish sensor performance for gold nanostructured E-AB sensors, contingent upon the surface morphology. In particular, our results indicate that the aptamer packing density and target analyte signal change results are heavily dependent on gold nanostructure size and features. Sensing surfaces with larger nanoparticle diameters, which were prepared using electrodeposition at a constant potential, had a reduced aptamer packing density and exhibited diminished sensor performance. However, the equivalent packing density of polished electrodes did not yield the equivalent signal change. Other surfaces that were prepared using pulsed waveform electrodeposition achieved optimal signal change with a deposition time, tdep, of 120 s, and increased deposition time with enhanced electroactive surface area resulted in minimized signal changes and more rapid sensor degradation. By investigating sensing surfaces with varied morphologies, we have demonstrated that enhancing the electroactive surface does not always enhance the signal change of the sensor, and aptamer packing density alone does not dictate observed signal change trends. We anticipate that understanding how electrodeposition techniques enhance or diminish sensor performance will pave the way for further exploration of nanostructure-aptamer relationships, contributing to the future development of optimized, miniaturized electrochemical aptamer-based sensors for continuous, in vivo sensing.
Collapse
Affiliation(s)
- Amanda J Ritz
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Olivia M Stuehr
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Danté N Comer
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Robert A Lazenby
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
11
|
Tu W, Zhu L, Cai T, Li Z, Dai Z. Integrating multiple probes for simplifying signal-on photoelectrochemical biosensing of microRNA with ultrasensitivity and wide detection range based on biofunctionalized porous ferroferric oxide and hypotoxic quaternary semiconductor. Biosens Bioelectron 2024; 243:115781. [PMID: 37883844 DOI: 10.1016/j.bios.2023.115781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/23/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
A facile and signal-on photoelectrochemical (PEC) biosensing strategy was designed based on hypotoxic Cu2ZnSnS4 NPs nanoparticles (NPs) and biofunctionalized Fe3O4 NPs that integrated recognition units with signal elements, without the need for immobilization of probes on the electrode. Cu2ZnSnS4 NPs were used as the PEC substrate to produce intensive and stable photocurrent. The porous magnetic Fe3O4 NPs displayed favorable loading capacity for CdS QDs and easy biofunctionalization by negatively charged capture DNA (cDNA). cDNA sealed the pore of Fe3O4 NPs, avoiding the escape of CdS QDs as a PEC sensitizer. After hybridizing with target microRNA (miRNA), cDNA split away off Fe3O4 NPs whose porous channel might open and release sealed CdS QDs (signal element), resulting in a dramatical enhancement of PEC response. Herein, miRNA hardly contacted with CdS QDs, effectively avoiding harm to the target miRNA. This proposed strategy simplified procedures of assembly and made the biorecognition process sufficient for promoting a stationary quantity of probes, which was expected to obtain satisfactory performance for bioassay. Using miRNA-155 as a model analyte and combining with duplex-specific nuclease (DSN)-assisted amplification, a simplified and signal-on PEC biosensing platform for miRNA-155 with wonderful performance was proposed. DSN-assisted amplification further promoted PEC signal increment, leading to ulteriorly improving sensitivity (detection limit of 0.17 fM) and linear range (6.5 orders of magnitude) for miRNA-155 assay. Moreover, the developed PEC biosensing platform exhibited satisfactory stability, excellent specificity, and favorable accuracy for miRNA-155, which would have a promising prospect for monitoring miRNA expression in tumor cells.
Collapse
Affiliation(s)
- Wenwen Tu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Lingling Zhu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Tingting Cai
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Zijun Li
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Zhihui Dai
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China; School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, PR China.
| |
Collapse
|
12
|
Labra-Vázquez P, Gressier M, Rioland G, Menu MJ. A review on solution- and vapor-responsive sensors for the detection of phthalates. Anal Chim Acta 2023; 1282:341828. [PMID: 37923401 DOI: 10.1016/j.aca.2023.341828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023]
Abstract
Phthalic acid esters, largely referred to as phthalates, are today acknowledged as important pollutants used in the manufacture of polyvinyl chloride (PVC)-based plastics, whose use extends to almost every aspect of modern life. The risk of exposure to phthalates is particularly relevant as high concentrations are regularly found in drinking water, food-contact materials and medical devices, motivating an immense body of research devoted to methods for their detection in liquid samples. Conversely, phthalate vapors have only recently been acknowledged as potentially important atmospheric pollutants and as early fire indicators; additionally, deposition of these vapors can pose significant problems to the proper functioning of spacecraft and diverse on-board devices, leading to major space agencies recognizing the need of developing vapor-responsive phthalate sensors. In this manuscript we present a literature survey on solution- and vapor-responsive sensors and analytical assays for the detection of phthalates, providing a detailed analysis of a vast array of analytical data to offer a clear idea on the analytical performance (limits of detection and quantification, linear range) and advantages provided by each class of sensor covered in this review (electrochemical, optical and vapor-responsive) in the context of their potential real-life applications; the manuscript also gives detailed fundamental information on the various physicochemical responses exploited by these sensors and assays that could potentially be harnessed by new researchers entering the field.
Collapse
Affiliation(s)
- Pablo Labra-Vázquez
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, Cedex 9, France.
| | - Marie Gressier
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, Cedex 9, France
| | - Guillaume Rioland
- Centre National d'Etudes Spatiales, DTN/QE/LE, 31401, Toulouse, France
| | - Marie-Joëlle Menu
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, Cedex 9, France.
| |
Collapse
|
13
|
Shen Y, Zeng X, Chen M, Du Y, Cheng J, Xie Q. Photoelectrochemical aptasensing of lincomycin based on a AgI-carboxylated multiwalled carbon nanotubes-BiOI Z-scheme heterojunction. Anal Chim Acta 2023; 1278:341753. [PMID: 37709479 DOI: 10.1016/j.aca.2023.341753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/02/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
Lincomycin (LIN) is a common antibiotic that is widely used in animal husbandry and other fields, and the residual problem caused by its abuse has attracted widespread attention. Herein, a novel AgI-carboxylated multiwalled carbon nanotubes (cMWCNT)-BiOI Z-scheme heterojunction material was synthesized via a one-pot hydrothermal method, modified on a fluorine-doped tin oxide (FTO) electrode surface, and used for detecting LIN. The photocurrent on the AgI-cMWCNT-BiOI/FTO photoelectrode is 4.6 times that on the control AgI-BiOI/FTO photoelectrode. An amino-functionalized LIN aptamer was fixed on the AgI-cMWCNT-BiOI/FTO photoelectrode by the cross-linking reaction between chitosan and glutaraldehyde, and then Ru(NH3)63+ was electrostatically attached to the LIN aptamer to increase the photocurrent response to the LIN binding. When LIN binds competitively with Ru(NH3)63+ to the aptamer, the photocurrent signal can be quantitatively decreased. Under optimized conditions, the anodic photocurrent at 0 V vs KCl-saturated calomel electrode in 0.1 M phosphate buffer (pH 7.0) containing 0.100 M ascorbic acid was linear with the common logarithm of LIN concentration from 10.0 pM to 500 nM, with a limit of detection of 2.8 pM (S/N = 3). Satisfactory recovery results were obtained in the analysis of cow milk samples.
Collapse
Affiliation(s)
- Yuru Shen
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Xingyu Zeng
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Mingjian Chen
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Yun Du
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Jun Cheng
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Qingji Xie
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
14
|
Xu BF, Li Q, Qu P, Xin XR, Wang AJ, Mei LP, Song P, Feng JJ. Magnetic-assisted exciton-plasmon interactions modulated Bi 2S 3 nanorods@MoS 2 nanosheets heterojunction: towards a split-type photoelectrochemical sensing of profenofos. Mikrochim Acta 2023; 190:350. [PMID: 37574467 DOI: 10.1007/s00604-023-05927-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023]
Abstract
A split-type photoelectrochemical (PEC) sensor was designed for the detection of profenofos (PFF) depending on the magnetic-assisted exciton-plasmon interactions (EPI) between the semiconductor substrate and Au NPs. The core-shell Bi2S3 nanorods@MoS2 nanosheets (Bi2S3 NRs@MoS2 NSs) heterostructure nanomaterial with fascinating performance was synthesized and used as the photovoltaic conversion substrate and signal molecules absorption platform. The PEC sensor is operated by co-incubating with the released Au NPs-cDNA from the surface of magnetic beads, originating from the target-triggered DNA double-stranded structure opening event. Due to the strong EPI effects, the photocurrent of Bi2S3 NRs@MoS2 NSs decreased and varied with the PFF concentrations. The proposed PEC sensor exhibited outstanding analytical performances, including a wide linear range (1.0 pg mL-1~1.0 μg mL-1), low detection limitation (0.23 pg mL-1, at 3 σ/m), excellent specificity, high stability, and applicability. Overall, this work provides a new signal strategy for PEC biosensors and extends its application in environmental analysis.
Collapse
Affiliation(s)
- Ben-Fang Xu
- College of Geography and Environmental Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Chemistry and Materials Sciences, College of Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China
| | - Qianan Li
- College of Geography and Environmental Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Chemistry and Materials Sciences, College of Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China
| | - Ping Qu
- Zhejiang Jinhua Ecological and Environmental Monitoring Center, Jinhua, 321015, China
| | - Xiao-Ru Xin
- College of Geography and Environmental Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Chemistry and Materials Sciences, College of Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Chemistry and Materials Sciences, College of Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China
| | - Li-Ping Mei
- College of Geography and Environmental Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Chemistry and Materials Sciences, College of Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China.
| | - Pei Song
- College of Geography and Environmental Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Chemistry and Materials Sciences, College of Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China.
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China.
| | - Jiu-Ju Feng
- College of Geography and Environmental Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Chemistry and Materials Sciences, College of Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
15
|
Deng L, Huang F, Zhang A, Wang T, Yang M, Li X, Chen X. One-Step Ultrasonic Preparation of Stable Bovine Serum Albumin-Perovskite for Fluorescence Analysis of L-Ascorbic Acid and Alkaline Phosphatase. BIOSENSORS 2023; 13:770. [PMID: 37622856 PMCID: PMC10452432 DOI: 10.3390/bios13080770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023]
Abstract
Halide lead perovskite has attracted increased attention due to its excellent optical properties. However, the poor stability of the halide lead perovskite nanocrystals has been a major obstacle to their application in biosensing. Here, we proposed a method to synthesize CsPbBr3/BSA NCs perovskite using bovine serum albumin (BSA) as a zwitterion ligand. Then, a fluorescent sensor for alkaline phosphatase determination based on CsPbBr3/BSA NCs was successfully built via the interaction of L-ascorbic acid (AA) with BSA on the perovskite surface. Under optimal conditions, the sensor showed a linear concentration range from 50 to 500 μM with a detection limit of 28 μM (signal-to-noise ratio of 3) for AA, and demonstrated a linear concentration range from 40 to 500 U/L with a detection limit of 15.5 U/L (signal-to-noise ratio of 3) for alkaline phosphatase (ALP). In addition, the proposed fluorescent biosensor exhibited good selectivity and recovery in the determination of ALP in human serum. This strategy offers an innovative way for enhancing the water stability of lead halide perovskite and promoting their application in biosensing areas.
Collapse
Affiliation(s)
- Lei Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; (L.D.); (F.H.); (A.Z.); (T.W.)
| | - Feng Huang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; (L.D.); (F.H.); (A.Z.); (T.W.)
| | - Aomei Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; (L.D.); (F.H.); (A.Z.); (T.W.)
| | - Tingting Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; (L.D.); (F.H.); (A.Z.); (T.W.)
| | - Minghui Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; (L.D.); (F.H.); (A.Z.); (T.W.)
- Furong Labratory, Changsha 410083, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410083, China
| | - Xiaoqing Li
- Furong Labratory, Changsha 410083, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410083, China
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiang Chen
- Furong Labratory, Changsha 410083, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410083, China
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
16
|
Yang J, Zeng H, Chai Y, Yuan R, Liu H. Ultrasensitive photoelectrochemical biosensor amplified by target induced assembly of cruciform DNA nanostructure for the detection of dibutyl phthalate. Anal Chim Acta 2023; 1262:341242. [PMID: 37179065 DOI: 10.1016/j.aca.2023.341242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
In this work, an ultra-sensitive signal quenched photoelectrochemical (PEC) aptasensor for dibutyl phthalate (DBP) detection was constructed by using a target induced cruciform DNA structure as signal amplifier and g-C3N4/SnO2 composite as signal indicator. Impressively, the designed cruciform DNA structure shows high signal amplification efficiency due to the reduced reaction steric hindrance because of its mutually separated and repelled tails, multiple recognition domains, and a fixed direction for the sequential identification of the target. Therefore, the fabricated PEC biosensor demonstrated a low detection limit of 0.3 fM for DBP in a wide linear range of 1 fM to 1 nM. This work offered a novel nucleic acid signal amplification approach for enhancing the sensitivity of PEC sensing platforms for the detection of phthalates (PAEs)-based plasticizer, laying the foundation for its utilization in the determine of real environmental pollutants.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Hongmei Zeng
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Hongyan Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
17
|
Su T, Mi Z, Xia Y, Jin D, Xu Q, Hu X, Shu Y. A wearable sweat electrochemical aptasensor based on the Ni-Co MOF nanosheet-decorated CNTs/PU film for monitoring of stress biomarker. Talanta 2023; 260:124620. [PMID: 37148688 DOI: 10.1016/j.talanta.2023.124620] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/15/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023]
Abstract
Monitoring cortisol, a hormone released by the adrenal cortex in response to stress, is essential to evaluate the endocrine response to stress stimuli. While the current cortisol sensing methods require large laboratory settings, complex assay, and professional personnel. Herein, a novel flexible and wearable electrochemical aptasensor based on a Ni-Co metal-organic frameworks (MOF) nanosheet-decorated carbon nanotubes (CNTs)/polyurethane (PU) film is developed for rapid and reliable detection of cortisol in sweat. First, the CNTs/PU (CP) film was prepared by a modified wet spinning technology, and the CNTs/polyvinyl alcohol (PVA) solution was thermally deposited on the surface of CP film to form the highly flexible CNTs/PVA/CP (CCP) film with excellent conductivity. Then aminated Ni-Co MOF nanosheet prepared by a facile solvothermal method was conjugated with streptavidin and modified on the CCP film. Biofunctional MOF can effectively capture cortisol aptamer due to its excellent specific surface area. In addition, the MOF with peroxidase activity can catalytic oxidization of hydroquinone (HQ) by hydrogen peroxide (H2O2), which could amplify the peak current signal. The catalytic activity of Ni-Co MOF was substantially suppressed in the HQ/H2O2 system due to the formation of the aptamer-cortisol complex, which reduced the current signal, thereby realizing highly sensitive and selective detection of cortisol. The sensor has a linear range of 0.1-100 ng/mL and a detection limit of 0.032 ng/mL. Meanwhile, the sensor showed high accuracy for cortisol detection under mechanical deformation conditions. More importantly, the prepared MOF/CCP film based three-electrode was assembled with the polydimethylsiloxane (PDMS) substrate, and the sweat-cloth was used as the sweat collection channel to fabricate a wearable sensor patch for monitoring of cortisol in volunteers' sweat in the morning and evening. This flexible and non-invasive sweat cortisol aptasensor shows great potential for quantitative stress monitoring and management.
Collapse
Affiliation(s)
- Tong Su
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Ziyi Mi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Youyuan Xia
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Dangqin Jin
- Department of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou 225127, PR China
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Yun Shu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| |
Collapse
|
18
|
Zi Y, Hu Y, Pu J, Wang M, Huang W. Recent Progress in Interface Engineering of Nanostructures for Photoelectrochemical Energy Harvesting Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208274. [PMID: 36776020 DOI: 10.1002/smll.202208274] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/19/2023] [Indexed: 05/11/2023]
Abstract
With rapid and continuous consumption of nonrenewable energy, solar energy can be utilized to meet the energy requirement and mitigate environmental issues in the future. To attain a sustainable society with an energy mix predominately dependent on solar energy, photoelectrochemical (PEC) device, in which semiconductor nanostructure-based photocatalysts play important roles, is considered to be one of the most promising candidates to realize the sufficient utilization of solar energy in a low-cost, green, and environmentally friendly manner. Interface engineering of semiconductor nanostructures has been qualified in the efficient improvement of PEC performances including three basic steps, i.e., light absorption, charge transfer/separation, and surface catalytic reaction. In this review, recently developed interface engineering of semiconductor nanostructures for direct and high-efficiency conversion of sunlight into available forms (e.g., chemical fuels and electric power) are summarized in terms of their atomic constitution and morphology, electronic structure and promising potential for PEC applications. Extensive efforts toward the development of high-performance PEC applications (e.g., PEC water splitting, PEC photodetection, PEC catalysis, PEC degradation and PEC biosensors) are also presented and appraised. Last but not least, a brief summary and personal insights on the challenges and future directions in the community of next-generation PEC devices are also provided.
Collapse
Affiliation(s)
- You Zi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Yi Hu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Junmei Pu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Mengke Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Weichun Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| |
Collapse
|
19
|
Shen YZ, Wang Z, Ning K, Ren C, Yang D, Hu XY, Xu Q. Ultrasensitive alkaline phosphatase activity assay based on controllable signal probe production coupled with the cathodic photoelectrochemical analysis. Food Chem 2023; 421:136177. [PMID: 37094400 DOI: 10.1016/j.foodchem.2023.136177] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
A highly sensitive and selective split-type perovskite-based photoelectrochemical (PEC) platform was developed for measuring alkaline phosphatase (ALP) activity in milk and serum samples. ALP in the test sample hydrolyzed 2-phosphate sesquimagnesium salt hydrate (AAPS) in a 96-microwell plate to produce ascorbic acid (AA), a PEC electron donor. The resulting AA, which could preferentially annihilate the photogenerated holes, indirectly reflects ALP activity. The PEC used a cetyltrimethylammonium bromide (CTAB)-functionalized CH3NH3PbI3 (CTAB@CH3NH3PbI3) film as the cathode to monitor the controlled AA production. Due to the excellent photoelectric characteristics of the CH3NH3PbI3 perovskite and the split-type assay, excellent sensitivity and selectivity for ALP detection were obtained. Under the optimum experimental conditions, ALP activity with a limit of detection (LOD) of 2.6 × 10-4 U/L in a linear dynamic range of 10-3 ∼ 102 U/L was obtained. With its sensitive, rapid, and high-throughput detection capabilities, this split-type and label-free PEC platform has great potential for use in food and biomedical analysis.
Collapse
Affiliation(s)
- Ying-Zhuo Shen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Zheng Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Kangping Ning
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chuanli Ren
- Department of Laboratory Medicine, Clinical Medical College, Yangzhou University, Yangzhou 225002, China
| | - Dandan Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Xiao-Ya Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
20
|
Deng L, Ma F, Yang M, Li X, Chen X. A halide perovskite/lead sulfide heterostructure with enhanced photoelectrochemical performance for the sensing of alkaline phosphatase (ALP). Chem Commun (Camb) 2023; 59:1361-1364. [PMID: 36649093 DOI: 10.1039/d2cc06142b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
For the construction of halide perovskite-based photoelectrochemical (PEC) biosensors in aqueous solution, the balance between retaining the excellent photoelectric performances of the halide perovskite and the protective modification of the halide perovskite has always been a challenging problem. In this work, a simple and sensitive photoelectrochemical biosensor based on inorganic halide perovskite CsPbBr3 as the photoactive material for the detection of alkaline phosphatase (ALP) was reported. The substrate sodium thiophosphate (Na3SPO3) can be catalyzed by ALP to produce hydrogen sulfide (H2S), which can react with the lead site on the surface of the CsPbBr3 film to form lead sulfide (PbS), resulting in a stable heterostructure and enhanced photocurrent intensity. The possible mechanism of enhanced photocurrent response of CsPbBr3/PbS heterojunctions was studied in detail. This work paves a new way for applying halide perovskites in different biosensor designs.
Collapse
Affiliation(s)
- Lei Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, P. R. China.
| | - Fanghui Ma
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, P. R. China.
| | - Minghui Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, P. R. China. .,National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, Hunan Province, 410083, P. R. China
| | - Xiaoqing Li
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410000, P. R. China. .,National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, Hunan Province, 410083, P. R. China
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410000, P. R. China. .,National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, Hunan Province, 410083, P. R. China
| |
Collapse
|
21
|
Wang C, Zhu K, Yu J, Shi P. Complementary DNA Significantly Enhancing Signal Response and Sensitivity of a Molecular Beacon Probe to Aflatoxin B1. BIOSENSORS 2023; 13:195. [PMID: 36831960 PMCID: PMC9953557 DOI: 10.3390/bios13020195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
This paper reported an improved molecular beacon method for the rapid detection of aflatoxin B1 (AFB1), a natural mycotoxin with severe carcinogenicity. With the assistance of a complementary DNA (cDNA) chain, the molecular beacon which consists of a DNA aptamer flanked by FAM and BHQ1 displayed a larger fluorescent response to AFB1, contributing to the sensitive detection of AFB1. Upon optimization of some key experimental factors, rapid detection of AFB1 ranging from 1 nM to 3 μM, within 20 min, was realized by using this method. A limit of detection (LoD) of 1 nM was obtained, which was lower than the LoD (8 nM) obtained without cDNA assistance. This aptamer-based molecular beacon detection method showed advantages in easy operation, rapid analysis and larger signal response. Good specificity and anti-interference ability were demonstrated. This method showed potential in real-sample analysis.
Collapse
Affiliation(s)
- Chao Wang
- College of Medicine, Linyi University, Linyi 276005, China
| | - Kexiao Zhu
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Jie Yu
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Pengfei Shi
- College of Medicine, Linyi University, Linyi 276005, China
| |
Collapse
|
22
|
Huang L, Liang Z, Zhang F, Luo H, Liang R, Han F, Wu Z, Han D, Shen J, Niu L. Upconversion NaYF 4:Yb/Er–TiO 2–Ti 3C 2 Heterostructure-Based Near-Infrared Light-Driven Photoelectrochemical Biosensor for Highly Sensitive and Selective d-Serine Detection. Anal Chem 2022; 94:16246-16253. [DOI: 10.1021/acs.analchem.2c04101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Likun Huang
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Zhishan Liang
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Fang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
| | - Hui Luo
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Ruilian Liang
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Fangjie Han
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Zhifang Wu
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Dongxue Han
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
- Guangzhou Provincial Key Laboratory of Psychoactive Substance Monitoring and Safety, Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, P. R. China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
| | - Li Niu
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, CAS Center for Excellence in Nanoscience, Changchun Institute of Applied Chemistry, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| |
Collapse
|
23
|
Zhou M, Huang H, Zhao X, Cheng Z, Deng W, Tan Y, Xie Q. A Novel Signaling Strategy for an Ultrasensitive Photoelectrochemical Immunoassay Based on Electro-Fenton Degradation of Liposomes on a Photoelectrode. Anal Chem 2022; 94:13913-13920. [PMID: 36166257 DOI: 10.1021/acs.analchem.2c02827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A signaling strategy can directly determine the analytical performance and application scope of photoelectrochemical (PEC) immunoassays, so it is of great significance to develop an effective signaling strategy. The electro-Fenton reaction has been extensively used to degrade organic pollutants, but it has not been applied to PEC immunoassays. Herein, we report a novel signaling strategy for a PEC immunoassay based on electro-Fenton degradation of liposomes (Lip) on a photoelectrode. Lip vesicles are coated on Au@TiO2 core-shell photoactive material, which can prevent ascorbic acid (AA) from scavenging photogenerated holes. In the presence of a target, the immunomagnetic bead labels are converted to Fe3+ for electro-Fenton reaction, and hydroxyl radicals generated by the electro-Fenton reaction can degrade the Lip vesicles on the photoelectrode. Because of the degradation of Lip vesicles, photogenerated holes can be scavenged more effectively by AA, leading to an increase in photocurrent. Based on the electro-Fenton-regulated interface electron transfer, the sensitive "signal on" PEC immunoassay of a carcinoembryonic antigen is achieved, which features a dynamic range from 0.05 to 5 × 104 pg mL-1 and a detection limit of 0.01 pg mL-1. Our work provides a novel and efficient PEC immunoassay platform by introducing the electro-Fenton reaction into PEC analysis.
Collapse
Affiliation(s)
- Min Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Hui Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Xiao Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Zhong Cheng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
24
|
Xu J, Zeng R, Huang L, Qiu Z, Tang D. Dual-Signaling Photoelectrochemical Biosensor Based on Biocatalysis-Induced Vulcanization of Bi 2MoO 6 Nanosheets. Anal Chem 2022; 94:11441-11448. [PMID: 35922420 DOI: 10.1021/acs.analchem.2c02848] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A magnetic-assisted photoelectrochemical (PEC) and colorimetric (CL) dual-modal biosensing platform with high precision was established to monitor prostate-specific antigen (PSA) based on Bi2MoO6 nanosheets (BMO) by coupling the aptamer-guided hybridization chain reaction (HCR) with the hydrolysate-induced vulcanization reaction of Bi2MoO6 nanosheets. Upon addition of PSA, trigger DNA (tDNA) was released by the interaction between the target analyte and the aptamer and then further hybridized with anchor DNA (aDNA) conjugated on magnetic beads (MBs). The as-released tDNA initiated the target-assisted HCR in the presence of two alternating hairpin sequences (Bio-H1 and Bio-H2) to produce nicked long double-stranded DNA on the surface of MBs, where numerous alkaline phosphatase (ALP) enzymes could assemble with MBs through the biotin-avidin reaction, resulting in the hydrolysis of sodium thiophosphate (TP) to H2S. The as-produced H2S reacted with BMO to form vulcanized BMO (BMO-S), thus leading to obvious enhanced PEC performance under visible light with the color change from light yellow to brown. Having optimized the test conditions, the magnetic-assisted biosensing system holds a good quantitative diagnosis sensitivity area in a range of 5.0 pg mL-1-100 ng mL-1 with a calculated detection limit down to 3.5 pg mL-1. Meanwhile, a visual colorimetric assay on basis of the change in the color of the materials was also realized. Given the exceptional performance of the constructed biosensor, it may possess great promise as an advanced bioanalytical tool for practical applications.
Collapse
Affiliation(s)
- Jianhui Xu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Ruijin Zeng
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Lingting Huang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Zhenli Qiu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
25
|
Zhang C, Zhou J, Ma T, Guo W, Wei D, Tan Y, Deng Y. Advances in application of sensors for determination of phthalate esters. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|