1
|
Lin Y, Dervisevic M, Yoh HZ, Guo K, Voelcker NH. Tailoring Design of Microneedles for Drug Delivery and Biosensing. Mol Pharm 2025; 22:678-707. [PMID: 39813711 DOI: 10.1021/acs.molpharmaceut.4c01266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Microneedles (MNs) are emerging as versatile tools for both therapeutic drug delivery and diagnostic monitoring. Unlike hypodermic needles, MNs achieve these applications with minimal or no pain and customizable designs, making them suitable for personalized medicine. Understanding the key design parameters and the challenges during contact with biofluids is crucial to optimizing their use across applications. This review summarizes the current fabrication techniques and design considerations tailored to meet the distinct requirements for drug delivery and biosensing applications. We further underscore the current state of theranostic MNs that integrate drug delivery and biosensing and propose future directions for advancing MNs toward clinical use.
Collapse
Affiliation(s)
- Yuexi Lin
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Muamer Dervisevic
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Hao Zhe Yoh
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Keying Guo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Faculty of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Materials Science and Engineering, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
2
|
Qin Y, Cui F, Lu Y, Yang P, Gou W, Tang Z, Lu S, Zhou HS, Luo G, Lyu X, Zhang Q. Toward precision medicine: End-to-end design and construction of integrated microneedle-based theranostic systems. J Control Release 2025; 377:354-375. [PMID: 39577466 DOI: 10.1016/j.jconrel.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/24/2024]
Abstract
With the growing demand for precision medicine and advancements in microneedle technology, microneedle-based drug delivery systems have evolved into integrated theranostic platforms. However, the development of these systems is currently limited by the absence of clear conclusions and standardized construction strategies. The end-to-end concept offers an innovative approach to theranostic systems by creating a seamless process that integrates target sampling, sensing, analysis, and on-demand drug delivery. This approach optimizes each step based on data from the others, effectively eliminating the traditional separation between drug delivery and disease monitoring. Furthermore, by incorporating artificial intelligence and machine learning, these systems can enhance reliability and efficiency in disease management, paving the way for more personalized and effective healthcare solutions. Based on the concept of end-to-end and recent advancements in theranostic systems, nanomaterials, electronic components, micro-composites, and data science, we propose a modular strategy for constructing integrated microneedle-based theranostic systems by detailing the methods and functions of each critical component, including monitoring, decision-making, and on-demand drug delivery units, though the total number of units might vary depending on the specific application. Notably, decision-making units are emerging trends for fully automatic and seamless systems and featured for integrated microneedle-based theranostic systems, which serve as a bridge of real-time monitoring, on-demand drug delivery, advanced electronic engineering, and data science for personalized disease management and remote medical application. Additionally, we discuss the challenges and prospects of integrated microneedle-based theranostic systems for precision medicine and clinical application.
Collapse
Affiliation(s)
- Yiming Qin
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Department of Dermatology and Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feiyun Cui
- School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Yifei Lu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Peng Yang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Weiming Gou
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Zixuan Tang
- School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Shan Lu
- School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - H Susan Zhou
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| | - Xiaoyan Lyu
- Department of Dermatology and Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qing Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
3
|
Hulimane Shivaswamy R, Binulal P, Benoy A, Lakshmiramanan K, Bhaskar N, Pandya HJ. Microneedles as a Promising Technology for Disease Monitoring and Drug Delivery: A Review. ACS MATERIALS AU 2025; 5:115-140. [PMID: 39802146 PMCID: PMC11718548 DOI: 10.1021/acsmaterialsau.4c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 01/16/2025]
Abstract
The delivery of molecules, such as DNA, RNA, peptides, and certain hydrophilic drugs, across the epidermal barrier poses a significant obstacle. Microneedle technology has emerged as a prominent area of focus in biomedical research because of its ability to deliver a wide range of biomolecules, vaccines, medicines, and other substances through the skin. Microneedles (MNs) form microchannels by disrupting the skin's structure, which compromises its barrier function, and facilitating the easy penetration of drugs into the skin. These devices enhance the administration of many therapeutic substances to the skin, enhancing their stability. Transcutaneous delivery of medications using a microneedle patch offers advantages over conventional drug administration methods. Microneedles containing active substances can be stimulated by different internal and external factors to result in the regulated release of the substances. To achieve efficient drug administration to the desired location, it is necessary to consider the design of needles with appropriate optimized characteristics. The choice of materials for developing and manufacturing these devices is vital in determining the pharmacodynamics and pharmacokinetics of drug delivery. This article provides the most recent update and overview of the numerous microneedle systems that utilize different activators to stimulate the release of active components from the microneedles. Further, it discusses the materials utilized for producing microneedles and the design strategies important in managing the release of drugs. An explanation of the commonly employed fabrication techniques in biomedical applications and electronics, particularly for integrated microneedle drug delivery systems, is discussed. To successfully implement microneedle technology in clinical settings, it is essential to comprehensively assess several factors, such as biocompatibility, drug stability, safety, and production cost. Finally, an in-depth review of these criteria and the difficulties and potential future direction of microneedles in delivering drugs and monitoring diseases is explored.
Collapse
Affiliation(s)
| | - Pranav Binulal
- Department of Electronic
Systems Engineering, Indian Institute of
Science, Bangalore 560012, India
| | - Aloysious Benoy
- Department of Electronic
Systems Engineering, Indian Institute of
Science, Bangalore 560012, India
| | - Kaushik Lakshmiramanan
- Department of Electronic
Systems Engineering, Indian Institute of
Science, Bangalore 560012, India
| | - Nitu Bhaskar
- Department of Electronic
Systems Engineering, Indian Institute of
Science, Bangalore 560012, India
| | - Hardik Jeetendra Pandya
- Department of Electronic
Systems Engineering, Indian Institute of
Science, Bangalore 560012, India
| |
Collapse
|
4
|
Duan H, Peng S, He S, Tang S, Goda K, Wang CH, Li M. Wearable Electrochemical Biosensors for Advanced Healthcare Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411433. [PMID: 39588557 PMCID: PMC11727287 DOI: 10.1002/advs.202411433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/13/2024] [Indexed: 11/27/2024]
Abstract
Recent advancements in wearable electrochemical biosensors have opened new avenues for on-body and continuous detection of biomarkers, enabling personalized, real-time, and preventive healthcare. While glucose monitoring has set a precedent for wearable biosensors, the field is rapidly expanding to include a wider range of analytes crucial for disease diagnosis, treatment, and management. In this review, recent key innovations are examined in the design and manufacturing underpinning these biosensing platforms including biorecognition elements, signal transduction methods, electrode and substrate materials, and fabrication techniques. The applications of these biosensors are then highlighted in detecting a variety of biochemical markers, such as small molecules, hormones, drugs, and macromolecules, in biofluids including interstitial fluid, sweat, wound exudate, saliva, and tears. Additionally, the review also covers recent advances in wearable electrochemical biosensing platforms, such as multi-sensory integration, closed-loop control, and power supply. Furthermore, the challenges associated with critical issues are discussed, such as biocompatibility, biofouling, and sensor degradation, and the opportunities in materials science, nanotechnology, and artificial intelligence to overcome these limitations.
Collapse
Affiliation(s)
- Haowei Duan
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Shuhua Peng
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Shuai He
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Shi‐Yang Tang
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Keisuke Goda
- Department of ChemistryThe University of TokyoTokyo113‐0033Japan
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
- Institute of Technological SciencesWuhan UniversityHubei430072China
| | - Chun H. Wang
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Ming Li
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| |
Collapse
|
5
|
Zou S, Peng G, Ma Z. Surface-Functionalizing Strategies for Multiplexed Molecular Biosensing: Developments Powered by Advancements in Nanotechnologies. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:2014. [PMID: 39728549 DOI: 10.3390/nano14242014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Multiplexed biosensing methods for simultaneously detecting multiple biomolecules are important for investigating biological mechanisms associated with physiological processes, developing applications in life sciences, and conducting medical tests. The development of biosensors, especially those advanced biosensors with multiplexing potentials, strongly depends on advancements in nanotechnologies, including the nano-coating of thin films, micro-nano 3D structures, and nanotags for signal generation. Surface functionalization is a critical process for biosensing applications, one which enables the immobilization of biological probes or other structures that assist in the capturing of biomolecules. During this functionalizing process, nanomaterials can either be the objects of surface modification or the materials used to modify other base surfaces. These surface-functionalizing strategies, involving the coordination of sensor structures and materials, as well as the associated modifying methods, are largely determinative in the performance of biosensing applications. This review introduces the current studies on biosensors with multiplexing potentials and focuses specifically on the roles of nanomaterials in the design and functionalization of these biosensors. A detailed description of the paradigms used for method selection has been set forth to assist understanding and accelerate the application of novel nanotechnologies in the development of biosensors.
Collapse
Affiliation(s)
- Shangjie Zou
- Center for Cell Lineage Technology and Engineering, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Guangdun Peng
- Center for Cell Lineage Technology and Engineering, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhiqiang Ma
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| |
Collapse
|
6
|
Rabiee N, Rabiee M. Wearable Aptasensors. Anal Chem 2024; 96:19160-19182. [PMID: 39604058 DOI: 10.1021/acs.analchem.4c05004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
This Perspective explores the revolutionary advances in wearable aptasensor (WA) technology, which combines wearable devices and aptamer-based detection systems for personalized, real-time health monitoring. The devices leverage the specificity and sensitivity of aptamers to target specific molecules, offering broad applications from continuous glucose tracking to early diagnosis of diseases. The integration of data analytics and artificial intelligence (AI) allows early risk prediction and guides preventive health measures. While challenges in miniaturization, power efficiency, and data security persist, these devices hold significant potential to democratize healthcare and reshape patient-doctor interactions.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Mohammad Rabiee
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 165543, Iran
| |
Collapse
|
7
|
Zhong G, Liu Q, Wang Q, Qiu H, Li H, Xu T. Fully integrated microneedle biosensor array for wearable multiplexed fitness biomarkers monitoring. Biosens Bioelectron 2024; 265:116697. [PMID: 39182414 DOI: 10.1016/j.bios.2024.116697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Fitness monitoring has become increasingly important in modern lifestyles; the current fitness monitoring always relies on physical sensors, making it challenging to detect pertinent issues at a deeper level when exercising. Here, we report a fully integrated wearable microneedle sensor that simultaneously measures fitness related biomarkers (e.g., glucose, lactate, and alcohol) during physical exercise. Such a sensor integrates a biocompatible 3D-printed microneedle array that can comfortably access skin interstitial fluid and a small circuit for signal processing and calibration, and wireless communication. The microneedle array features good biocompatibility and highly sensitive biochemical sensors that can detect even the slightest variations within the biomarkers of this fluid. On-body experimental results indicate that such a sensor can monitor fitness-related biomarkers across multiple subjects and support multi-day monitoring, with results showing a good correlation with commercial devices. The data was transmitted to a smartphone via Bluetooth and uploaded to cloud platforms for further health assessment. This study has the potential to boost intelligent wearable devices in sports health.
Collapse
Affiliation(s)
- Geng Zhong
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, PR China
| | - Qingzhou Liu
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, 518060, PR China.
| | - Qiyu Wang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, PR China
| | - Haoji Qiu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, PR China
| | - Hanlin Li
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, PR China
| | - Tailin Xu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, PR China.
| |
Collapse
|
8
|
Keyvani F, GhavamiNejad P, Saleh MA, Soltani M, Zhao Y, Sadeghzadeh S, Shakeri A, Chelle P, Zheng H, Rahman FA, Mahshid S, Quadrilatero J, Rao PPN, Edginton A, Poudineh M. Integrated Electrochemical Aptamer Biosensing and Colorimetric pH Monitoring via Hydrogel Microneedle Assays for Assessing Antibiotic Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309027. [PMID: 39250329 PMCID: PMC11538706 DOI: 10.1002/advs.202309027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/27/2024] [Indexed: 09/11/2024]
Abstract
Current methods for therapeutic drug monitoring (TDM) have a long turnaround time as they involve collecting patients' blood samples followed by transferring the samples to medical laboratories where sample processing and analysis are performed. To enable real-time and minimally invasive TDM, a microneedle (MN) biosensor to monitor the levels of two important antibiotics, vancomycin (VAN) and gentamicin (GEN) is developed. The MN biosensor is composed of a hydrogel MN (HMN), and an aptamer-functionalized flexible (Flex) electrode, named HMN-Flex. The HMN extracts dermal interstitial fluid (ISF) and transfers it to the Flex electrode where sensing of the target antibiotics happens. The HMN-Flex performance is validated ex vivo using skin models as well as in vivo in live rat animal models. Data is leveraged from the HMN-Flex system to construct pharmacokinetic profiles for VAN and GEN and compare these profiles with conventional blood-based measurements. Additionally, to track pH and monitor patient's response during antibiotic treatment, an HMN is developed that employs a colorimetric method to detect changes in the pH, named HMN-pH assay, whose performance has been validated both in vitro and in vivo. Further, multiplexed antibiotic and pH detection is achieved by simultaneously employing the HMN-pH and HMN-Flex on live animals.
Collapse
Affiliation(s)
- Fatemeh Keyvani
- Department of Electrical and Computer EngineeringFaculty of EngineeringUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Peyman GhavamiNejad
- Department of Electrical and Computer EngineeringFaculty of EngineeringUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Mahmoud Ayman Saleh
- Department of BioengineeringMcGill University815 Sherbrooke St. WMontrealQuebecH3A 0C3Canada
| | - Mohammad Soltani
- Department of Electrical and Computer EngineeringFaculty of EngineeringUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Yusheng Zhao
- School of PharmacyUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Sadegh Sadeghzadeh
- Department of Electrical and Computer EngineeringFaculty of EngineeringUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Arash Shakeri
- School of PharmacyUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Pierre Chelle
- School of PharmacyUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Hanjia Zheng
- Department of Electrical and Computer EngineeringFaculty of EngineeringUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Fasih A. Rahman
- Department of Kinesiology and Health SciencesUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Sarah Mahshid
- Department of BioengineeringMcGill University815 Sherbrooke St. WMontrealQuebecH3A 0C3Canada
| | - Joe Quadrilatero
- Department of Kinesiology and Health SciencesUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Praveen P. N. Rao
- School of PharmacyUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Andrea Edginton
- School of PharmacyUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Mahla Poudineh
- Department of Electrical and Computer EngineeringFaculty of EngineeringUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| |
Collapse
|
9
|
Li C, Zhu Z, Yao J, Chen Z, Huang Y. Perspectives in Aptasensor-Based Portable Detection for Biotoxins. Molecules 2024; 29:4891. [PMID: 39459259 PMCID: PMC11510259 DOI: 10.3390/molecules29204891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Biotoxins are pervasive in food and the environment, posing significant risk to human health. The most effective strategy to mitigate the risk arising from biotoxin exposure is through their specific and sensitive detection. Aptasensors have emerged as pivotal tools, leveraging aptamers as biorecognition elements to transduce the specificity of aptamer-target interactions into quantifiable signals for analytical applications, thereby facilitating the meticulous detection of biotoxins. When integrated with readily portable devices such as lateral flow assays (LFAs), personal glucose meters (PGMs), smartphones, and various meters measuring parameters like pH and pressure, aptasensors have significantly advanced the field of biotoxin monitoring. These commercially available devices enable precise, in situ, and real-time analysis, offering great potential for portable biotoxin detection in food and environmental matrices. This review highlights the recent progress in biotoxin monitoring using portable aptasensors, discussing both their potential applications and the challenges encountered. By addressing these impediments, we anticipate that a portable aptasensor-based detection system will open new avenues in biotoxin monitoring in the future.
Collapse
Affiliation(s)
- Congying Li
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China
| | - Ziyuan Zhu
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China
| | - Jiahong Yao
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China
| | - Zhe Chen
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, China
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong 030600, China
- China Institute for Radiation Protection, Taiyuan 030000, China
| | - Yishun Huang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China
- Institute of Analytical Technology and Smart Instruments, Xiamen Huaxia University, Xiamen 361024, China
| |
Collapse
|
10
|
Zhang X, Wang Y, He X, Yang Y, Chen X, Li J. Advances in microneedle technology for biomedical detection. Biomater Sci 2024; 12:5134-5149. [PMID: 39225488 DOI: 10.1039/d4bm00794h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microneedles have recently emerged as a groundbreaking technology in the field of biomedical detection. Notable for their small size and ability to penetrate the superficial layers of the skin, microneedles provide an innovative platform for localized and real-time detection. This review explores the integration of various detection methods with microneedle technology, focusing particularly on its applications in biomedical contexts. First, the common detection methods, such as colorimetric, electrochemical, spectrometric, and fluorescence methods, combined with microneedle technology, are summarized. Then we showcase exemplary uses of microneedle technology in biomedical detection, including the monitoring of blood glucose levels, evaluating infection statuses in skin wounds, facilitating point-of-care testing, and identifying biomarkers in the interstitial fluid of the skin. Microneedle-based detection, with its painless, minimally invasive, and biocompatible approach, holds significant promise for enhancing biological assays. Finally, the review concludes by assessing the future potential and challenges of microneedle detection technology, underscoring its transformative capacity to advance personalized medicine and revolutionize healthcare practices.
Collapse
Affiliation(s)
- Xinmei Zhang
- College of Medicine, Southwest Jiaotong University, Chengdu 610003, China.
| | - Yuemin Wang
- College of Medicine, Southwest Jiaotong University, Chengdu 610003, China.
| | - Xinyu He
- College of Medicine, Southwest Jiaotong University, Chengdu 610003, China.
| | - Yan Yang
- The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Xingyu Chen
- College of Medicine, Southwest Jiaotong University, Chengdu 610003, China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
11
|
Grace Tetteh M, Gupta S, Kumar M, Trollman H, Salonitis K, Jagtap S. Pharma 4.0: A deep dive top management commitment to successful Lean 4.0 implementation in Ghanaian pharma manufacturing sector. Heliyon 2024; 10:e36677. [PMID: 39296213 PMCID: PMC11408067 DOI: 10.1016/j.heliyon.2024.e36677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/09/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
The primary aim of this study is to assess the significance of top management commitment in the context of Lean 4.0 implementation within the pharmaceutical manufacturing industry in Ghana. The study seeks to understand and evaluate the overall effectiveness and achievements associated with adopting Lean 4.0. Employing a positivist mindset, the research utilizes an explanatory quantitative research design and a survey technique. Data collected from 181 employees of pharmaceutical companies in Ghana undergo analysis using SmartPLS (version 4) and IBM SPSS version 26. The study employs a combination of descriptive statistics to summarise data characteristics and inferential statistics to test various hypotheses related to Lean 4.0 adoption. The analysis reveals that the successful integration of lean methods and Industry 4.0 technologies requires meticulous management. Simultaneously, individual implementations of lean principles and Industry 4.0 technologies positively impact business performance. Surprisingly, the study does not observe a substantial positive influence of Lean 4.0 on corporate performance, suggesting that immediate improvements in efficiency or profitability may not result from the adoption of this framework. This research contributes to the field by highlighting the need for careful management in integrating lean methods and Industry 4.0 technologies. It also emphasizes the positive impacts of lean principles and Industry 4.0 technology on business performance. The unexpected finding regarding the lack of immediate improvements in corporate efficiency or profitability with Lean 4.0 adoption prompts considerations of initial implementation challenges or the organization's need for time to adapt to this integrated approach.
Collapse
Affiliation(s)
- Michelle Grace Tetteh
- Sustainable Manufacturing Systems Centre, Cranfield University, Cranfield, MK43 0AL, UK
| | - Sumit Gupta
- Department of Mechanical Engineering, A.S.E.T., Amity University, Uttar Pradesh, Noida, 201313, India
| | - Mukesh Kumar
- National Institute of Technology Patna, Patna, 800005, India
| | - Hana Trollman
- School of Business, University of Leicester, Leicester, LE2 1RQ, UK
| | | | - Sandeep Jagtap
- Sustainable Manufacturing Systems Centre, Cranfield University, Cranfield, MK43 0AL, UK
- Department of Industrial Management and Logistics, Faculty of Engineering, Lund University, Lund, Sweden
| |
Collapse
|
12
|
Mack J, Murray R, Lynch K, Arroyo-Currás N. 3D-printed electrochemical cells for multi-point aptamer-based drug measurements. SENSORS & DIAGNOSTICS 2024; 3:1533-1541. [PMID: 39157417 PMCID: PMC11325214 DOI: 10.1039/d4sd00192c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/03/2024] [Indexed: 08/20/2024]
Abstract
Electrochemical aptamer-based (E-AB) sensors achieve detection and quantitation of biomedically relevant targets such as small molecule drugs and protein biomarkers in biological samples. E-ABs are usually fabricated on commercially available macroelectrodes which, although functional for rapid sensor prototyping, can be costly and are not compatible with the microliter sample volumes typically available in biorepositories for clinical validation studies. Seeking to develop a multi-point sensing platform for sensor validation in sample volumes characteristic of clinical studies, we report a protocol for in-house assembly of 3D-printed E-ABs. We employed a commercially available 3D stereolithographic printer (FormLabs, $5k USD) for electrochemical cell fabrication and directly embedded electrodes within the 3D-printed cell structure. This approach offers a reproducible and reusable electrode fabrication process resulting in four independent and simultaneous measurements for statistically weighted results. We demonstrate compatibility with aptamer sequences binding antibiotics and antineoplastic agents. We also demonstrate a proof-of-concept validation of serum vancomycin measurements using clinical samples. Our results demonstrate that 3D-printing can be used in conjunction with E-ABs for accessible, rapid, and statistically meaningful validation of E-AB sensors in biological matrices.
Collapse
Affiliation(s)
- John Mack
- Biochemistry, Cellular and Molecular Biology Program, Johns Hopkins University School of Medicine 316 Hunterian Building, 725 North Wolfe Street Baltimore MD 21205 USA +1 443 287 4798
| | - Raygan Murray
- Biochemistry, Cellular and Molecular Biology Program, Johns Hopkins University School of Medicine 316 Hunterian Building, 725 North Wolfe Street Baltimore MD 21205 USA +1 443 287 4798
| | - Kenedi Lynch
- Amgen Scholars Program, Krieger School of Arts and Sciences, Johns Hopkins University Baltimore MD 21218 USA
| | - Netzahualcóyotl Arroyo-Currás
- Biochemistry, Cellular and Molecular Biology Program, Johns Hopkins University School of Medicine 316 Hunterian Building, 725 North Wolfe Street Baltimore MD 21205 USA +1 443 287 4798
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine Baltimore MD 21205 USA
| |
Collapse
|
13
|
Nguyen TNH, Horowitz LF, Krilov T, Lockhart E, Kenerson HL, Gujral TS, Yeung RS, Arroyo-Currás N, Folch A. Label-free, real-time monitoring of cytochrome C drug responses in microdissected tumor biopsies with a multi-well aptasensor platform. SCIENCE ADVANCES 2024; 10:eadn5875. [PMID: 39241078 PMCID: PMC11378948 DOI: 10.1126/sciadv.adn5875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/31/2024] [Indexed: 09/08/2024]
Abstract
Functional assays on intact tumor biopsies can complement genomics-based approaches for precision oncology, drug testing, and organs-on-chips cancer disease models by capturing key therapeutic response determinants, such as tissue architecture, tumor heterogeneity, and the tumor microenvironment. Most of these assays rely on fluorescent labeling, a semiquantitative method best suited for single-time-point assays or labor-intensive immunostaining analysis. Here, we report integrated aptamer electrochemical sensors for on-chip, real-time monitoring of cytochrome C, a cell death indicator, from intact microdissected tissues with high affinity and specificity. The platform features a multi-well sensor layout and a multiplexed electronic setup. The aptasensors measure increases in cytochrome C in the supernatant of mouse or human microdissected tumors after exposure to various drug treatments. Because of the sensor's high affinity, it primarily tracks rising concentrations of cytochrome C, capturing dynamic changes during apoptosis. This approach could help develop more advanced cancer disease models and apply to other complex in vitro disease models, such as organs-on-chips and organoids.
Collapse
Affiliation(s)
- Tran N. H. Nguyen
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Lisa F. Horowitz
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Timothy Krilov
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Ethan Lockhart
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Heidi L. Kenerson
- Department of Surgery, University of Washington, Seattle, WA 98105, USA
| | - Taranjit S. Gujral
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98105, USA
| | - Raymond S. Yeung
- Department of Surgery, University of Washington, Seattle, WA 98105, USA
| | | | - Albert Folch
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
14
|
Gupta V, Pham A, Dick JE. Planar Disk μ-Aptasensors by Monolayer Assembly in a Dissolving Microdroplet. Anal Chem 2024. [PMID: 39152900 DOI: 10.1021/acs.analchem.4c01043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Electrochemical aptamer-based sensors provide a highly modular platform for real-time monitoring of small molecules. Their ability to selectively recognize target molecules in complex environments like biological fluids makes them an attractive technology for the analysis of micro- and nanoscale systems. The signal-to-noise of the measurement depends on the electroactive surface (i.e., how many aptamers one can place), which has previously precluded miniaturization of aptamer-based sensors to planar disk ultramicroelectrodes (r ∼ 5-10 μm). Here, we employ a concentration enrichment strategy based on the active dissolution of an aqueous, aptamer-containing microdroplet on an ultramicroelectrode submerged in an organic continuous phase (1,2-dichloroethane). We show consistent voltammetric signal increase as a function of droplet lifetime, indicating the successful immobalization of the thiol-terminated aminoglycoside aptamers to the electrode surface. We observe a diagnostic methylene blue peak and 10-fold increase in current magnitude as compared to bare microelectrodes. We report robust sensor behavior with a linear dynamic range extending from milli- to micromolar concentrations of kanamycin in buffer. This research offers a successful method for optimized electrochemical aptamer-based sensor fabrication and miniaturization on ultramicroelectrodes without the need for electrode surface area enhancement.
Collapse
Affiliation(s)
- Vanshika Gupta
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - AnhThu Pham
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
15
|
Xue R, Deng F, Guo T, Epps A, Lovell NH, Shivdasani MN. Needle-Shaped Biosensors for Precision Diagnoses: From Benchtop Development to In Vitro and In Vivo Applications. BIOSENSORS 2024; 14:391. [PMID: 39194620 DOI: 10.3390/bios14080391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
To achieve the accurate recognition of biomarkers or pathological characteristics within tissues or cells, in situ detection using biosensor technology offers crucial insights into the nature, stage, and progression of diseases, paving the way for enhanced precision in diagnostic approaches and treatment strategies. The implementation of needle-shaped biosensors (N-biosensors) presents a highly promising method for conducting in situ measurements of clinical biomarkers in various organs, such as in the brain or spinal cord. Previous studies have highlighted the excellent performance of different N-biosensor designs in detecting biomarkers from clinical samples in vitro. Recent preclinical in vivo studies have also shown significant progress in the clinical translation of N-biosensor technology for in situ biomarker detection, enabling highly accurate diagnoses for cancer, diabetes, and infectious diseases. This article begins with an overview of current state-of-the-art benchtop N-biosensor designs, discusses their preclinical applications for sensitive diagnoses, and concludes by exploring the challenges and potential avenues for next-generation N-biosensor technology.
Collapse
Affiliation(s)
- Ruier Xue
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Tyree Foundation Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia
| | - Fei Deng
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Tyree Foundation Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia
| | - Tianruo Guo
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Tyree Foundation Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia
| | - Alexander Epps
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Nigel H Lovell
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Tyree Foundation Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia
| | - Mohit N Shivdasani
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Tyree Foundation Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
16
|
Hack T, Bisarra J, Chung S, Kummari S, Hall DA. Mitigating Medication Tampering and Diversion via Real-Time Intravenous Opioid Quantification. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:756-770. [PMID: 38814775 DOI: 10.1109/tbcas.2024.3405815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Opioid tampering and diversion pose a serious problem for hospital patients with potentially life-threatening consequences. The ongoing opioid crisis has resulted in medications used for pain management and anesthesia, such as fentanyl and morphine, being stolen, substituted with a different substance, and abused. This work aims to mitigate tampering and diversion through analytical verification of the administered drug before it enters the patient. We present an electrochemical-based sensor and miniaturized wireless potentiostat that enable real-time intravenous (IV) monitoring of opioids, specifically fentanyl and morphine. The proposed system is connected to an IV drip system during surgery or post-operation recovery. Measurement results of two opioids are presented, including calibration curves and data on the sensor performance concerning pH, temperature, interference, reproducibility, and long-term stability. Finally, we demonstrate real-time fluidic measurements connected to a flow cell to simulate IV administration and a blind study classified using a machine-learning algorithm. The system achieves limits of detection (LODs) of 1.26 µg/mL and 2.75 µg/mL for fentanyl and morphine, respectively, while operating with >1-month battery lifetime due to an optimized ultra-low power 36 µA sleep mode.
Collapse
|
17
|
Ausri IR, Sadeghzadeh S, Biswas S, Zheng H, GhavamiNejad P, Huynh MDT, Keyvani F, Shirzadi E, Rahman FA, Quadrilatero J, GhavamiNejad A, Poudineh M. Multifunctional Dopamine-Based Hydrogel Microneedle Electrode for Continuous Ketone Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402009. [PMID: 38847967 DOI: 10.1002/adma.202402009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/05/2024] [Indexed: 06/18/2024]
Abstract
Diabetic ketoacidosis (DKA), a severe complication of type 1 diabetes (T1D), is triggered by production of large quantities of ketone bodies, requiring patients with T1D to constantly monitor their ketone levels. Here, a skin-compatible hydrogel microneedle (HMN)-continuous ketone monitoring (HMN-CKM) device is reported. The sensing mechanism relies on the catechol-quinone chemistry inherent to the dopamine (DA) molecules that are covalently linked to the polymer structure of the HMN patch. The DA serves the dual-purpose of acting as a redox mediator for measuring the byproduct of oxidation of 3-beta-hydroxybutyrate (β-HB), the primary ketone bodies; while, also facilitating the formation of a crosslinked HMN patch. A universal approach involving pre-oxidation and detection of the generated catechol compounds is introduced to correlate the sensor response to the β-HB concentrations. It is further shown that real-time tracking of a decrease in ketone levels of T1D rat model is possible using the HMN-CKM device, in conjunction with a data-driven machine learning model that considers potential time delays.
Collapse
Affiliation(s)
- Irfani Rahmi Ausri
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Sadegh Sadeghzadeh
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Subhamoy Biswas
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Hanjia Zheng
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Peyman GhavamiNejad
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Michelle Dieu Thao Huynh
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Fatemeh Keyvani
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Erfan Shirzadi
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Fasih A Rahman
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Joe Quadrilatero
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Amin GhavamiNejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Mahla Poudineh
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
18
|
Bakhshandeh F, Zheng H, Barra NG, Sadeghzadeh S, Ausri I, Sen P, Keyvani F, Rahman F, Quadrilatero J, Liu J, Schertzer JD, Soleymani L, Poudineh M. Wearable Aptalyzer Integrates Microneedle and Electrochemical Sensing for In Vivo Monitoring of Glucose and Lactate in Live Animals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313743. [PMID: 38752744 DOI: 10.1002/adma.202313743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/13/2024] [Indexed: 06/19/2024]
Abstract
Continuous monitoring of clinically relevant biomarkers within the interstitial fluid (ISF) using microneedle (MN)-based assays, has the potential to transform healthcare. This study introduces the Wearable Aptalyzer, an integrated system fabricated by combining biocompatible hydrogel MN arrays for ISF extraction with an electrochemical aptamer-based biosensor for in situ monitoring of blood analytes. The use of aptamers enables continuous monitoring of a wide range of analytes, beyond what is possible with enzymatic monitoring. The Wearable Aptalyzer is used for real-time and multiplexed monitoring of glucose and lactate in ISF. Validation experiments using live mice and rat models of type 1 diabetes demonstrate strong correlation between the measurements collected from the Wearable Aptalyzer in ISF and those obtained from gold-standard techniques for blood glucose and lactate, for each analyte alone and in combination. The Wearable Aptalyzer effectively addresses the limitations inherent in enzymatic detection methods as well as solid MN biosensors and the need for reliable and multiplexed bioanalytical monitoring in vivo.
Collapse
Affiliation(s)
- Fatemeh Bakhshandeh
- Department of Engineering Physics, McMaster University Hamilton, Hamilton, L8S 4L8, Ontario, Canada
| | - Hanjia Zheng
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Nicole G Barra
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4L8, Ontario, Canada
| | - Sadegh Sadeghzadeh
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Irfani Ausri
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Payel Sen
- Department of Engineering Physics, McMaster University Hamilton, Hamilton, L8S 4L8, Ontario, Canada
| | - Fatemeh Keyvani
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Fasih Rahman
- Department of Kinesiology and Health Science, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Joe Quadrilatero
- Department of Kinesiology and Health Science, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4L8, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, L8S 4L8, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, L8S 4L8, Ontario, Canada
| | - Leyla Soleymani
- Department of Engineering Physics, McMaster University Hamilton, Hamilton, L8S 4L8, Ontario, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, L8S 4L8, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, L8S 4L8, Ontario, Canada
| | - Mahla Poudineh
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, N2L 3W4, ON, Canada
| |
Collapse
|
19
|
Ye C, Lukas H, Wang M, Lee Y, Gao W. Nucleic acid-based wearable and implantable electrochemical sensors. Chem Soc Rev 2024; 53:7960-7982. [PMID: 38985007 PMCID: PMC11308452 DOI: 10.1039/d4cs00001c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The rapid advancements in nucleic acid-based electrochemical sensors for implantable and wearable applications have marked a significant leap forward in the domain of personal healthcare over the last decade. This technology promises to revolutionize personalized healthcare by facilitating the early diagnosis of diseases, monitoring of disease progression, and tailoring of individual treatment plans. This review navigates through the latest developments in this field, focusing on the strategies for nucleic acid sensing that enable real-time and continuous biomarker analysis directly in various biofluids, such as blood, interstitial fluid, sweat, and saliva. The review delves into various nucleic acid sensing strategies, emphasizing the innovative designs of biorecognition elements and signal transduction mechanisms that enable implantable and wearable applications. Special perspective is given to enhance nucleic acid-based sensor selectivity and sensitivity, which are crucial for the accurate detection of low-level biomarkers. The integration of such sensors into implantable and wearable platforms, including microneedle arrays and flexible electronic systems, actualizes their use in on-body devices for health monitoring. We also tackle the technical challenges encountered in the development of these sensors, such as ensuring long-term stability, managing the complexity of biofluid dynamics, and fulfilling the need for real-time, continuous, and reagentless detection. In conclusion, the review highlights the importance of these sensors in the future of medical engineering, offering insights into design considerations and future research directions to overcome existing limitations and fully realize the potential of nucleic acid-based electrochemical sensors for healthcare applications.
Collapse
Affiliation(s)
- Cui Ye
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| | - Heather Lukas
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| | - Minqiang Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| | - Yerim Lee
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
20
|
Wang Z, Xiao M, Li Z, Wang X, Li F, Yang H, Chen Y, Zhu Z. Microneedle Patches-Integrated Transdermal Bioelectronics for Minimally Invasive Disease Theranostics. Adv Healthc Mater 2024; 13:e2303921. [PMID: 38341619 DOI: 10.1002/adhm.202303921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Wearable epidermal electronics with non- or minimally-invasive characteristics can collect, transduce, communicate, and interact with accessible physicochemical health indicators on the skin. However, due to the stratum corneum layer, rich information about body health is buried under the skin stratum corneum layer, for example, in the skin interstitial fluid. Microneedle patches are typically designed with arrays of special microsized needles of length within 1000 µm. Such characteristics potentially enable the access and sample of biomolecules under the skin or give therapeutical treatment painlessly and transdermally. Integrating microneedle patches with various electronics allows highly efficient transdermal bioelectronics, showing their great promise for biomedical and healthcare applications. This comprehensive review summarizes and highlights the recent progress on integrated transdermal bioelectronics based on microneedle patches. The design criteria and state-of-the-art fabrication techniques for such devices are initially discussed. Next, devices with different functions, including but not limited to health monitoring, drug delivery, and therapeutical treatment, are highlighted in detail. Finally, key issues associated with current technologies and future opportunities are elaborated to sort out the state of recent research, point out potential bottlenecks, and provide future research directions.
Collapse
Affiliation(s)
- Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Min Xiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Xinghao Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Fangjie Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Huayuan Yang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- Health Industry Innovation Center, Xin-Huangpu Joint Innovation Institute of Chinese Medicine, 81 Xiangxue Middle Avenue, Huangpu District, Guangzhou, Guangdong Province, 510799, China
| |
Collapse
|
21
|
Pei S, Babity S, Sara Cordeiro A, Brambilla D. Integrating microneedles and sensing strategies for diagnostic and monitoring applications: The state of the art. Adv Drug Deliv Rev 2024; 210:115341. [PMID: 38797317 DOI: 10.1016/j.addr.2024.115341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/23/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Microneedles (MNs) offer minimally-invasive access to interstitial fluid (ISF) - a potent alternative to blood in terms of monitoring physiological analytes. This property is particularly advantageous for the painless detection and monitoring of drugs and biomolecules. However, the complexity of the skin environment, coupled with the inherent nature of the analytes being detected and the inherent physical properties of MNs, pose challenges when conducting physiological monitoring using this fluid. In this review, we discuss different sensing mechanisms and highlight advancements in monitoring different targets, with a particular focus on drug monitoring. We further list the current challenges facing the field and conclude by discussing aspects of MN design which serve to enhance their performance when monitoring different classes of analytes.
Collapse
Affiliation(s)
- Shihao Pei
- Faculté de pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada
| | - Samuel Babity
- Faculté de pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada
| | - Ana Sara Cordeiro
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, United Kingdom.
| | - Davide Brambilla
- Faculté de pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada.
| |
Collapse
|
22
|
Bedir T, Kadian S, Shukla S, Gunduz O, Narayan R. Additive manufacturing of microneedles for sensing and drug delivery. Expert Opin Drug Deliv 2024; 21:1053-1068. [PMID: 39049741 DOI: 10.1080/17425247.2024.2384696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION Microneedles (MNs) are miniaturized, painless, and minimally invasive platforms that have attracted significant attention over recent decades across multiple fields, such as drug delivery, disease monitoring, disease diagnosis, and cosmetics. Several manufacturing methods have been employed to create MNs; however, these approaches come with drawbacks related to complicated, costly, and time-consuming fabrication processes. In this context, employing additive manufacturing (AM) technology for MN fabrication allows for the quick production of intricate MN prototypes with exceptional precision, providing the flexibility to customize MNs according to the desired shape and dimensions. Furthermore, AM demonstrates significant promise in the fabrication of sophisticated transdermal drug delivery systems and medical devices through the integration of MNs with various technologies. AREAS COVERED This review offers an extensive overview of various AM technologies with great potential for the fabrication of MNs. Different types of MNs and the materials utilized in their fabrication are also discussed. Recent applications of 3D-printed MNs in the fields of transdermal drug delivery and biosensing are highlighted. EXPERT OPINION This review also mentions the critical obstacles, including drug loading, biocompatibility, and regulatory requirements, which must be resolved to enable the mass-scale adoption of AM methods for MN production, and future trends.
Collapse
Affiliation(s)
- Tuba Bedir
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, Turkey
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul, Turkey
| | - Sachin Kadian
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Shubhangi Shukla
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Oguzhan Gunduz
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, Turkey
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul, Turkey
| | - Roger Narayan
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
23
|
Verrinder E, Gerson J, Leung K, Kippin TE, Plaxco KW. Dual-Frequency, Ratiometric Approaches to EAB Sensor Interrogation Support the Calibration-Free Measurement of Specific Molecules In Vivo. ACS Sens 2024; 9:3205-3211. [PMID: 38775190 DOI: 10.1021/acssensors.4c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Electrochemical aptamer-based (EAB) sensors represent the first molecular measurement technology that is both (1) independent of the chemical reactivity of the target, and thus generalizable to many targets and (2) able to function in an accurate, drift-corrected manner in situ in the living body. Signaling in EAB sensors is generated when an electrode-bound aptamer binds to its target ligand, altering the rate of electron transfer from an attached redox reporter and producing an easily detectable change in peak current when the sensor is interrogated using square wave voltammetry. Due to differences in the microscopic surface area of the interrogating electrodes, the baseline peak currents obtained from EAB sensors, however, can be highly variable. To overcome this, we have historically performed single-point calibration using measurements performed in a single sample of known target concentration. Here, however, we explore approaches to EAB sensor operation that negate the need to perform even single-point calibration of individual sensors. These are a ratiometric approach employing the ratio of the peak currents observed at two distinct square wave frequencies, and a kinetic differential measurement approach that employs the difference between peak currents seen at the two frequencies. Using in vivo measurements of vancomycin and phenylalanine as our test bed, we compared the output of these methods with that of the same sensor when single-point calibration was employed. Doing so we find that both methods support accurately drift-corrected measurements in vivo in live rats, even when employing rather crudely handmade devices. By removing the need to calibrate each individual sensor in a sample of known target concentration, these interrogation methods should significantly simplify the use of EAB sensors for in vivo applications.
Collapse
Affiliation(s)
- Elsi Verrinder
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Julian Gerson
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Kaylyn Leung
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Tod E Kippin
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Biological Engineering Graduate Program, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
24
|
Chen J, Xia F, Ding X, Zhang D. Universal Covalent Grafting Strategy of an Aptamer on a Carbon Fiber Microelectrode for Selective Determination of Dopamine In Vivo. Anal Chem 2024; 96:10322-10331. [PMID: 38801718 DOI: 10.1021/acs.analchem.4c01167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The chemical information on brain science provided by electrochemical sensors is critical for understanding brain chemistry during physiological and pathological processes. A major challenge is the selectivity of electrochemical sensors in vivo. This work developed a universal covalent grafting strategy of an aptamer on a carbon fiber microelectrode (CFE) for selective determination of dopamine in vivo. The universal strategy was proposed by oxidizing poly(tannic acid) (pTA) to form an oxidized state (pTAox) and then coupling a nucleophilic sulfhydryl molecule of the dopamine-binding mercapto-aptamer with the o-quinone moiety of pTAox based on click chemistry for the interfacial functionalization of the CFE surface. It was found that the universal strategy proposed could efficiently graft the aptamer on a glassy carbon electrode, which was verified by using electroactive 6-(ferrocenyl) hexanethiol as a redox reporter. The amperometric method using a fabricated aptasensor for the determination of dopamine was developed. The linear range of the aptasensor for the determination of dopamine was 0.2-20 μM with a sensitivity of 0.09 nA/μM and a limit of detection of 88 nM (S/N = 3). The developed method has high selectivity originating from the specific recognition of the aptamer in concert with the cation-selective action of pTA and could be easily applicable to probe dopamine dynamics in the brain. Furthermore, complex vesicle fusion modes were first observed at the animal level. This work demonstrated that the covalently grafted immobilization strategy proposed is promising and could be extended to the in vivo analysis of other neurochemicals.
Collapse
Affiliation(s)
- Jiatao Chen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Fuyun Xia
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Xiuting Ding
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Dongdong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China
| |
Collapse
|
25
|
Chung J, Billante A, Flatebo C, Leung KK, Gerson J, Emmons N, Kippin TE, Sepunaru L, Plaxco KW. Effects of storage conditions on the performance of an electrochemical aptamer-based sensor. SENSORS & DIAGNOSTICS 2024; 3:1044-1050. [PMID: 38882472 PMCID: PMC11170682 DOI: 10.1039/d4sd00066h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/11/2024] [Indexed: 06/18/2024]
Abstract
The electrochemical aptamer-based (EAB) sensor platform is the only molecular monitoring approach yet reported that is (1) real time and effectively continuous, (2) selective enough to deploy in situ in the living body, and (3) independent of the chemical or enzymatic reactivity of its target, rendering it adaptable to a wide range of analytes. These attributes suggest the EAB platform will prove to be an important tool in both biomedical research and clinical practice. To advance this possibility, here we have explored the stability of EAB sensors upon storage, using retention of the target recognizing aptamer, the sensor's signal gain, and the affinity of the aptamer as our performance metrics. Doing so we find that low-temperature (-20 °C) storage is sufficient to preserve sensor functionality for at least six months without the need for exogenous preservatives.
Collapse
Affiliation(s)
- Julia Chung
- Interdepartmental Program in Biomolecular Science and Engineering, University of California Santa Barbara Santa Barbara California 93106 USA
| | - Adriana Billante
- Department of Chemistry and Biochemistry, University of California Santa Barbara Santa Barbara California 93106 USA
| | - Charlotte Flatebo
- Institute for Collaborative Biotechnologies, University of California Santa Barbara Santa Barbara California 93106 USA
| | - Kaylyn K Leung
- Department of Chemistry and Biochemistry, University of California Santa Barbara Santa Barbara California 93106 USA
- Center for Bioengineering, University of California Santa Barbara Santa Barbara California 93106 USA
| | - Julian Gerson
- Center for Bioengineering, University of California Santa Barbara Santa Barbara California 93106 USA
- Department of Psychological and Brain Sciences, University of California Santa Barbara Santa Barbara California 93106 USA
| | - Nicole Emmons
- Center for Bioengineering, University of California Santa Barbara Santa Barbara California 93106 USA
- Department of Psychological and Brain Sciences, University of California Santa Barbara Santa Barbara California 93106 USA
| | - Tod E Kippin
- Interdepartmental Program in Biomolecular Science and Engineering, University of California Santa Barbara Santa Barbara California 93106 USA
- Department of Psychological and Brain Sciences, University of California Santa Barbara Santa Barbara California 93106 USA
| | - Lior Sepunaru
- Department of Chemistry and Biochemistry, University of California Santa Barbara Santa Barbara California 93106 USA
| | - Kevin W Plaxco
- Interdepartmental Program in Biomolecular Science and Engineering, University of California Santa Barbara Santa Barbara California 93106 USA
- Department of Chemistry and Biochemistry, University of California Santa Barbara Santa Barbara California 93106 USA
- Institute for Collaborative Biotechnologies, University of California Santa Barbara Santa Barbara California 93106 USA
- Center for Bioengineering, University of California Santa Barbara Santa Barbara California 93106 USA
| |
Collapse
|
26
|
Leung KK, Gerson J, Emmons N, Heemstra JM, Kippin TE, Plaxco KW. The Use of Xenonucleic Acids Significantly Reduces the In Vivo Drift of Electrochemical Aptamer-Based Sensors. Angew Chem Int Ed Engl 2024; 63:e202316678. [PMID: 38500260 DOI: 10.1002/anie.202316678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/09/2024] [Accepted: 03/17/2024] [Indexed: 03/20/2024]
Abstract
Electrochemical aptamer-based sensors support the high-frequency, real-time monitoring of molecules-of-interest in vivo. Achieving this requires methods for correcting the sensor drift seen during in vivo placements. While this correction ensures EAB sensor measurements remain accurate, as drift progresses it reduces the signal-to-noise ratio and precision. Here, we show that enzymatic cleavage of the sensor's target-recognizing DNA aptamer is a major source of this signal loss. To demonstrate this, we deployed a tobramycin-detecting EAB sensor analog fabricated with the DNase-resistant "xenonucleic acid" 2'O-methyl-RNA in a live rat. In contrast to the sensor employing the equivalent DNA aptamer, the 2'O-methyl-RNA aptamer sensor lost very little signal and had improved signal-to-noise. We further characterized the EAB sensor drift using unstructured DNA or 2'O-methyl-RNA oligonucleotides. While the two devices drift similarly in vitro in whole blood, the in vivo drift of the 2'O-methyl-RNA-employing device is less compared to the DNA-employing device. Studies of the electron transfer kinetics suggested that the greater drift of the latter sensor arises due to enzymatic DNA degradation. These findings, coupled with advances in the selection of aptamers employing XNA, suggest a means of improving EAB sensor stability when they are used to perform molecular monitoring in the living body.
Collapse
Affiliation(s)
- Kaylyn K Leung
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Julian Gerson
- Department of Psychological and Brain Sciences, University of California, Santa Barbara
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Nicole Emmons
- Department of Psychological and Brain Sciences, University of California, Santa Barbara
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jennifer M Heemstra
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Tod E Kippin
- Department of Psychological and Brain Sciences, University of California, Santa Barbara
- Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
27
|
Wu Y, Shi J, Kippin TE, Plaxco KW. Codeposition Enhances the Performance of Electrochemical Aptamer-Based Sensors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8703-8710. [PMID: 38616608 DOI: 10.1021/acs.langmuir.4c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Electrochemical aptamer-based (EAB) sensors, a minimally invasive means of performing high-frequency, real-time measurement of drugs and biomarkers in situ in the body, have traditionally been fabricated by depositing their target-recognizing aptamer onto an interrogating gold electrode using a "sequential" two-step method involving deposition of the thiol-modified oligonucleotide (typically for 1 h) followed by incubation in mercaptohexanol solution (typically overnight) to complete the formation of a stable, self-assembled monolayer. Here we use EAB sensors targeting vancomycin, tryptophan, and phenylalanine to show that "codeposition", a less commonly employed EAB fabrication method in which the thiol-modified aptamer and the mercaptohexanol diluent are deposited on the electrode simultaneously and for as little as 1 h, improves the signal gain (relative change in signal upon the addition of high concentrations of the target) of the vancomycin and tryptophan sensors without significantly reducing their stability. In contrast, the gain of the phenylalanine sensor is effectively identical irrespective of the fabrication approach employed. This sensor, however, appears to employ binding-induced displacement of the redox reporter rather than binding-induced folding as its signal transduction mechanism, suggesting in turn a mechanism for the improvement observed for the other two sensors. Codeposition thus not only provides a more convenient means of fabricating EAB sensors but also can improve their performance.
Collapse
Affiliation(s)
- Yuyang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Jinyuan Shi
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Tod E Kippin
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, United States
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106, United States
- Biological Engineering Graduate Program, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Biological Engineering Graduate Program, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
28
|
Campuzano S, Barderas R, Moreno-Casbas MT, Almeida Á, Pingarrón JM. Pursuing precision in medicine and nutrition: the rise of electrochemical biosensing at the molecular level. Anal Bioanal Chem 2024; 416:2151-2172. [PMID: 37420009 PMCID: PMC10951035 DOI: 10.1007/s00216-023-04805-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023]
Abstract
In the era that we seek personalization in material things, it is becoming increasingly clear that the individualized management of medicine and nutrition plays a key role in life expectancy and quality of life, allowing participation to some extent in our welfare and the use of societal resources in a rationale and equitable way. The implementation of precision medicine and nutrition are highly complex challenges which depend on the development of new technologies able to meet important requirements in terms of cost, simplicity, and versatility, and to determine both individually and simultaneously, almost in real time and with the required sensitivity and reliability, molecular markers of different omics levels in biofluids extracted, secreted (either naturally or stimulated), or circulating in the body. Relying on representative and pioneering examples, this review article critically discusses recent advances driving the position of electrochemical bioplatforms as one of the winning horses for the implementation of suitable tools for advanced diagnostics, therapy, and precision nutrition. In addition to a critical overview of the state of the art, including groundbreaking applications and challenges ahead, the article concludes with a personal vision of the imminent roadmap.
Collapse
Affiliation(s)
- Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Rodrigo Barderas
- UFIEC, Instituto de Salud Carlos III, Majadahonda, 28220, Madrid, Spain
| | - Maria Teresa Moreno-Casbas
- Nursing and Healthcare Research Unit (Investén-isciii), Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network for Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Ángeles Almeida
- Instituto de Biología Funcional y Genómica, CSIC, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca, Hospital Universitario de Salamanca, CSIC, Universidad de Salamanca, Salamanca, Spain
| | - José M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| |
Collapse
|
29
|
Li J, Wei M, Gao B. A Review of Recent Advances in Microneedle-Based Sensing within the Dermal ISF That Could Transform Medical Testing. ACS Sens 2024; 9:1149-1161. [PMID: 38478049 DOI: 10.1021/acssensors.4c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Interstitial fluid (ISF) has attracted extensive attention in an extremely wide range of areas due to its unique advantages, such as portability, high precision, comfortable operation, and superior stability. In recent years, the microneedle (MN) technique has been considered to be an excellent tool for extracting ISF because it is painless and noninvasive. Recent reports have shown that MN has good application prospects in ISF extraction. In this review, we provide comprehensive and in-depth insight into integrated MN devices for ISF detection, covering the basic structure as well as the fabrication of integrated MN devices and various applications in ISF extraction. Challenges and prospects are highlighted, with a discussion on how to transition such MN-integrated devices toward personalized healthcare monitoring systems.
Collapse
Affiliation(s)
- Jun Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Meng Wei
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Bingbing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
30
|
Hu Y, Chatzilakou E, Pan Z, Traverso G, Yetisen AK. Microneedle Sensors for Point-of-Care Diagnostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306560. [PMID: 38225744 PMCID: PMC10966570 DOI: 10.1002/advs.202306560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/20/2023] [Indexed: 01/17/2024]
Abstract
Point-of-care (POC) has the capacity to support low-cost, accurate and real-time actionable diagnostic data. Microneedle sensors have received considerable attention as an emerging technique to evolve blood-based diagnostics owing to their direct and painless access to a rich source of biomarkers from interstitial fluid. This review systematically summarizes the recent innovations in microneedle sensors with a particular focus on their utility in POC diagnostics and personalized medicine. The integration of various sensing techniques, mostly electrochemical and optical sensing, has been established in diverse architectures of "lab-on-a-microneedle" platforms. Microneedle sensors with tailored geometries, mechanical flexibility, and biocompatibility are constructed with a variety of materials and fabrication methods. Microneedles categorized into four types: metals, inorganics, polymers, and hydrogels, have been elaborated with state-of-the-art bioengineering strategies for minimally invasive, continuous, and multiplexed sensing. Microneedle sensors have been employed to detect a wide range of biomarkers from electrolytes, metabolites, polysaccharides, nucleic acids, proteins to drugs. Insightful perspectives are outlined from biofluid, microneedles, biosensors, POC devices, and theragnostic instruments, which depict a bright future of the upcoming personalized and intelligent health management.
Collapse
Affiliation(s)
- Yubing Hu
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Eleni Chatzilakou
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Zhisheng Pan
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Giovanni Traverso
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Ali K. Yetisen
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
31
|
Wolfe M, Cramer A, Webb S, Goorskey E, Chushak Y, Mirau P, Arroyo-Currás N, Chávez JL. Rational Approach to Optimizing Conformation-Switching Aptamers for Biosensing Applications. ACS Sens 2024; 9:717-725. [PMID: 38270529 PMCID: PMC10897929 DOI: 10.1021/acssensors.3c02004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/01/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024]
Abstract
The utilization of structure-switching aptamers (SSAs) has enabled the development of novel sensing platforms for the sensitive and continuous detection of molecules. De novo development of SSAs, however, is complex and laborious. Here we describe a rational approach to SSA optimization that simultaneously improves aptamer binding affinity and introduces target-dependent conformation-switching for compatibility with real-world biosensor applications. Key structural features identified from NMR and computational modeling were used to optimize conformational switching in the presence of target, while large-scale, microarray-based mutation analysis was used to map regions of the aptamer permissive to mutation and identify combinations of mutations with stronger binding affinity. Optimizations were carried out in a relevant biofluid to ensure a seamless transition of the aptamer to a biosensing platform. Initial proof-of-concept for this approach is demonstrated with a cortisol binding aptamer but can easily be translated to other relevant aptamers. Cortisol is a hormone correlated with the stress response that has been associated with various medical conditions and is present at quantifiable levels in accessible biofluids. The ability to continuously track levels of stress in real-time via cortisol monitoring, which can be enabled by the aptamers reported here, is crucial for assessing human health and performance.
Collapse
Affiliation(s)
- Monica Wolfe
- 711th
Human Performance Wing, Air Force Research Laboratory, WPAFB, Ohio 45433, United States
- UES,
Inc., Dayton, Ohio 45433, United States
| | - Alyssa Cramer
- 711th
Human Performance Wing, Air Force Research Laboratory, WPAFB, Ohio 45433, United States
- UES,
Inc., Dayton, Ohio 45433, United States
| | - Sean Webb
- 711th
Human Performance Wing, Air Force Research Laboratory, WPAFB, Ohio 45433, United States
- UES,
Inc., Dayton, Ohio 45433, United States
| | - Eva Goorskey
- 711th
Human Performance Wing, Air Force Research Laboratory, WPAFB, Ohio 45433, United States
| | - Yaroslav Chushak
- 711th
Human Performance Wing, Air Force Research Laboratory, WPAFB, Ohio 45433, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, WPAFB, Ohio 45433, United States
| | - Peter Mirau
- Materials
and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Ohio 45433, United States
| | - Netzahualcóyotl Arroyo-Currás
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Jorge L. Chávez
- 711th
Human Performance Wing, Air Force Research Laboratory, WPAFB, Ohio 45433, United States
| |
Collapse
|
32
|
Poudineh M. Microneedle Assays for Continuous Health Monitoring: Challenges and Solutions. ACS Sens 2024; 9:535-542. [PMID: 38350235 DOI: 10.1021/acssensors.3c02279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Continuous health monitoring aims to reduce hospitalization and the need for constant supervision of the patients. For an outpatient monitoring device to be effective, it must meet certain criteria: it should demand minimal patient involvement, be reliable, be connected, remain stable with infrequent replacements, be cost-efficient, be compatible with humans, and ultimately be self-powered. Microneedle (MN) technology, designed for transdermal biosensing, offers a promising solution for meeting a wide range of these demands in the field of continuous health monitoring. A variety of MN platforms have been developed to facilitate this crucial function. Our focus in this Perspective is on the significant challenges linked to MN-based biosensors. These challenges include ensuring skin compatibility, the effective integration of biorecognition elements into the MN systems, and the durability concerns of these sensors in enabling extended periods of continuous monitoring. Tackling these hurdles could pave the way for more effective and reliable MN-based health monitoring solutions in the future.
Collapse
Affiliation(s)
- Mahla Poudineh
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
33
|
Duan H, Tang SY, Goda K, Li M. Enhancing the sensitivity and stability of electrochemical aptamer-based sensors by AuNPs@MXene nanocomposite for continuous monitoring of biomarkers. Biosens Bioelectron 2024; 246:115918. [PMID: 38086309 DOI: 10.1016/j.bios.2023.115918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023]
Abstract
Electrochemical aptamer-based (E-AB) sensors offer exciting potential for real-time tracking of various biomarkers, such as proteins and small molecules, due to their exceptional selectivity and adaptability. However, most E-AB sensors rely on planar gold structures, which inherently limit their sensitivity and operational stability for continuous monitoring of biomarkers. Although gold nanostructures have recently enhanced E-AB sensor performance, no studies have explored the combination of gold nanostructure with other types of nanomaterials for continuous molecular monitoring. To fill this gap, we employed gold nanoparticles and MXene Ti3C2 (AuNPs@MXene), a versatile nanocomposite, in designing an E-AB sensor targeted at vascular endothelial growth factor (VEGF), a crucial human signaling protein. Remarkably, the AuNPs@MXene nanocomposite achieved over thirty-fold and half-fold increases in active surface area compared to bare and AuNPs-modified gold electrodes, respectively, significantly elevating the analytical capabilities of E-AB sensors during continuous operation. After a systematic optimization and characterization process, the newly developed E-AB sensor, powered by AuNPs@MXene nanocomposite, demonstrated both enhanced stability and heightened sensitivity. Overall, our findings open new avenues for the incorporation of nanocomposites in E-AB sensor design, enabling the creation of more sensitive and durable real-time monitoring systems.
Collapse
Affiliation(s)
- Haowei Duan
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Shi-Yang Tang
- School of Electronics and Computer Science, University of Southampton, Southampton, SO16 1BJ, UK
| | - Keisuke Goda
- Department of Chemistry, University of Tokyo, Tokyo, 113-0033, Japan; Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA; Institute of Technological Sciences, Wuhan University, Hubei, 430072, China
| | - Ming Li
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia; School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
34
|
Nguyen TNH, Horowitz L, Krilov T, Lockhart E, Kenerson HL, Yeung RS, Arroyo-Currás N, Folch A. Label-Free, Real-Time Monitoring of Cytochrome C Responses to Drugs in Microdissected Tumor Biopsies with a Multi-Well Aptasensor Platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578278. [PMID: 38352494 PMCID: PMC10862797 DOI: 10.1101/2024.01.31.578278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Functional assays on intact tumor biopsies can potentially complement and extend genomics-based approaches for precision oncology, drug testing, and organs-on-chips cancer disease models by capturing key determinants of therapeutic response, such as tissue architecture, tumor heterogeneity, and the tumor microenvironment. Currently, most of these assays rely on fluorescent labeling, a semi-quantitative method best suited to be a single-time-point terminal assay or labor-intensive terminal immunostaining analysis. Here, we report integrated aptamer electrochemical sensors for on-chip, real-time monitoring of increases of cytochrome C, a cell death indicator, from intact microdissected tissues with high affinity and specificity. The platform features a multi-well sensor layout and a multiplexed electronic setup. The aptasensors measure increases in cytochrome C in the supernatant of mouse or human microdissected tumors after exposure to various drug treatments. Since the aptamer probe can be easily exchanged to recognize different targets, the platform could be adapted for multiplexed monitoring of various biomarkers, providing critical information on the tumor and its microenvironment. This approach could not only help develop more advanced cancer disease models but also apply to other complex in vitro disease models, such as organs-on-chips and organoids.
Collapse
|
35
|
Liu Y, Mack JO, Shojaee M, Shaver A, George A, Clarke W, Patel N, Arroyo-Currás N. Analytical Validation of Aptamer-Based Serum Vancomycin Monitoring Relative to Automated Immunoassays. ACS Sens 2024; 9:228-235. [PMID: 38110361 PMCID: PMC10826698 DOI: 10.1021/acssensors.3c01868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023]
Abstract
The practice of monitoring therapeutic drug concentrations in patient biofluids can significantly improve clinical outcomes while simultaneously minimizing adverse side effects. A model example of this practice is vancomycin dosing in intensive care units. If dosed correctly, vancomycin can effectively treat methicillin-resistant streptococcus aureus (MRSA) infections. However, it can also induce nephrotoxicity or fail to kill the bacteria if dosed too high or too low, respectively. Although undeniably important to achieve effectiveness, therapeutic drug monitoring remains inconvenient in practice due primarily to the lengthy process of sample collection, transport to a centralized facility, and analysis using costly instrumentation. Adding to this workflow is the possibility of backlogs at centralized clinical laboratories, which is not uncommon and may result in additional delays between biofluid sampling and concentration measurement, which can negatively affect clinical outcomes. Here, we explore the possibility of using point-of-care electrochemical aptamer-based (E-AB) sensors to minimize the time delay between biofluid sampling and drug measurement. Specifically, we conducted a clinical agreement study comparing the measurement outcomes of E-AB sensors to the benchmark automated competitive immunoassays for vancomycin monitoring in serum. Our results demonstrate that E-ABs are selective for free vancomycin─the active form of the drug, over total vancomycin. In contrast, competitive immunoassays measure total vancomycin, including both protein-bound and free drug. Accounting for these differences in a pilot study consisting of 85 clinical samples, we demonstrate that the E-AB vancomycin measurement achieved a 95% positive correlation rate with the benchmark immunoassays. Therefore, we conclude that E-AB sensors could provide clinically useful stratification of patient samples at trough sampling to guide effective vancomycin dose recommendations.
Collapse
Affiliation(s)
- Yu Liu
- ZiO
Health Ltd., The Tower,
St George Wharf, London SW82BW, U.K.
| | - John O. Mack
- Biochemistry,
Cellular and Molecular Biology Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Maryam Shojaee
- ZiO
Health Ltd., The Tower,
St George Wharf, London SW82BW, U.K.
| | - Alexander Shaver
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Ankitha George
- ZiO
Health Ltd., The Tower,
St George Wharf, London SW82BW, U.K.
| | - William Clarke
- Department
of Pathology, Johns Hopkins University School
of Medicine, Baltimore, Maryland 21205, United States
| | - Neel Patel
- ZiO
Health Ltd., The Tower,
St George Wharf, London SW82BW, U.K.
| | - Netzahualcóyotl Arroyo-Currás
- Biochemistry,
Cellular and Molecular Biology Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
36
|
Molinero-Fernandez Á, Wang Q, Xuan X, Konradsson-Geuken Å, Crespo GA, Cuartero M. Demonstrating the Analytical Potential of a Wearable Microneedle-Based Device for Intradermal CO 2 Detection. ACS Sens 2024; 9:361-370. [PMID: 38175931 PMCID: PMC10825866 DOI: 10.1021/acssensors.3c02086] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
Monitoring of carbon dioxide (CO2) body levels is crucial under several clinical conditions (e.g., human intensive care and acid-base disorders). To date, painful and risky arterial blood punctures have been performed to obtain discrete CO2 measurements needed in clinical setups. Although noninvasive alternatives have been proposed to assess CO2, these are currently limited to benchtop devices, requiring trained personnel, being tedious, and providing punctual information, among other disadvantages. To the best of our knowledge, the literature and market lack a wearable device for real-time, on-body monitoring of CO2. Accordingly, we have developed a microneedle (MN)-based sensor array, labeled as CO2-MN, comprising a combination of potentiometric pH- and carbonate (CO32-)-selective electrodes together with the reference electrode. The CO2-MN is built on an epidermal patch that allows it to reach the stratum corneum of the skin, measuring pH and CO32- concentrations directly into the interstitial fluid (ISF). The levels for the pH-CO32- tandem are then used to estimate the PCO2 in the ISF. Assessing the response of each individual MN, we found adequate response time (t95 < 5s), sensitivity (50.4 and -24.6 mV dec-1 for pH and CO32-, respectively), and stability (1.6 mV h-1 for pH and 2.1 mV h-1 for CO32-). We validated the intradermal measurements of CO2 at the ex vivo level, using pieces of rat skin, and then, with in vivo assays in anesthetized rats, showing the suitability of the CO2-MN wearable device for on-body measurements. A good correlation between ISF and blood CO2 concentrations was observed, demonstrating the high potential of the developed MN sensing technology as an alternative to blood-based analysis in the near future. Moreover, these results open new horizons in the noninvasive, real-time monitoring of CO2 as well as other clinically relevant gases.
Collapse
Affiliation(s)
- Águeda Molinero-Fernandez
- Department
of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-114 28 Stockholm, Sweden
- UCAM-SENS, Universidad
Católica San Antonio de Murcia,
UCAM HiTech, Avda. Andres
Hernandez Ros 1, 30107 Murcia, Spain
| | - Qianyu Wang
- Department
of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-114 28 Stockholm, Sweden
| | - Xing Xuan
- Department
of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-114 28 Stockholm, Sweden
- UCAM-SENS, Universidad
Católica San Antonio de Murcia,
UCAM HiTech, Avda. Andres
Hernandez Ros 1, 30107 Murcia, Spain
| | - Åsa Konradsson-Geuken
- Section
of Neuropharmacology and Addiction Research, Department of Pharmaceutical
Biosciences, Uppsala University, Uppsala 753 10, Sweden
| | - Gastón A. Crespo
- Department
of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-114 28 Stockholm, Sweden
- UCAM-SENS, Universidad
Católica San Antonio de Murcia,
UCAM HiTech, Avda. Andres
Hernandez Ros 1, 30107 Murcia, Spain
| | - María Cuartero
- Department
of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-114 28 Stockholm, Sweden
- UCAM-SENS, Universidad
Católica San Antonio de Murcia,
UCAM HiTech, Avda. Andres
Hernandez Ros 1, 30107 Murcia, Spain
| |
Collapse
|
37
|
Reynoso M, Chang AY, Wu Y, Murray R, Suresh S, Dugas Y, Wang J, Arroyo-Currás N. 3D-printed, aptamer-based microneedle sensor arrays using magnetic placement on live rats for pharmacokinetic measurements in interstitial fluid. Biosens Bioelectron 2024; 244:115802. [PMID: 37939414 DOI: 10.1016/j.bios.2023.115802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Molecular monitoring in the dermal interstitial fluid (ISF) is an attractive approach to painlessly screen markers of health and disease status on the go. One promising strategy for accessing ISF involves the use of wearable patches containing microneedle sensor arrays. To date, such microneedle sensors have been fabricated via various manufacturing strategies based on injection molding, machining, and advanced lithography to name a few. Our groups previously reported 3D-printed microneedles as a convenient and scalable approach to sensor fabrication that, when combined with aptamer-based molecular measurements, can support continuous molecular monitoring in ISF. However, the original platform suffered from poor patch stability when deployed on the skin of rodents in vivo. We identified that this problem was due to the rheological properties of the rodent skin, which can contract post microneedle placement, physically pushing the microneedles out of the skin. This sensor retraction caused a loss of electrical contact between working and reference needles, irreversibly damaging the sensors. To address this problem, we report here an innovative approach that allows magnetic placement of microneedle sensor arrays on the skin of live rodents, affixing the patches under light pressure that prevents needle retraction. Using this strategy, we achieved sensor signaling baselines that drift at rates comparable to those seen with other in vivo deployments of electrochemical, aptamer-based sensors. We illustrate real-time pharmacokinetic measurements in live Sprague-Dawley rats using SLA-printed, aptamer-functionalized microneedles and demonstrate their ability to support drift correction via kinetic differential measurements. We also discuss future prospects and challenges.
Collapse
Affiliation(s)
- Maria Reynoso
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, United States
| | - An-Yi Chang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, United States
| | - Yao Wu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States
| | - Raygan Murray
- Biochemistry, Cellular and Molecular Biology Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States
| | - Smrithi Suresh
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, United States
| | - Yuma Dugas
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, United States.
| | - Netzahualcóyotl Arroyo-Currás
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States; Biochemistry, Cellular and Molecular Biology Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States.
| |
Collapse
|
38
|
Traipop S, Jesadabundit W, Khamcharoen W, Pholsiri T, Naorungroj S, Jampasa S, Chailapakul O. Nanomaterial-based Electrochemical Sensors for Multiplex Medicinal Applications. Curr Top Med Chem 2024; 24:986-1009. [PMID: 38584544 DOI: 10.2174/0115680266304711240327072348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024]
Abstract
This review explores the advancements in nanomaterial-based electrochemical sensors for the multiplex detection of medicinal compounds. The growing demand for efficient and selective detection methods in the pharmaceutical field has prompted significant research into the development of electrochemical sensors employing nanomaterials. These materials, defined as functional materials with at least one dimension between 1 and 100 nanometers, encompass metal nanoparticles, polymers, carbon-based nanocomposites, and nano-bioprobes. These sensors are characterized by their enhanced sensitivity and selectivity, playing a crucial role in simultaneous detection and offering a comprehensive analysis of multiple medicinal complexes within a single sample. The review comprehensively examines the design, fabrication, and application of nanomaterial- based electrochemical sensors, focusing on their ability to achieve multiplex detection of various medicinal substances. Insights into the strategies and nanomaterials employed for enhancing sensor performance are discussed. Additionally, the review explores the challenges and future perspectives of this evolving field, highlighting the potential impact of nanomaterial-based electrochemical sensors on the advancement of medicinal detection technologies.
Collapse
Affiliation(s)
- Surinya Traipop
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Whitchuta Jesadabundit
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wisarut Khamcharoen
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Thailand
| | - Tavechai Pholsiri
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sarida Naorungroj
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sakda Jampasa
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
39
|
Mobed A, Abdi B, Masoumi S, Mikaeili M, Shaterian E, Shaterian H, Kazemi ES, Shirafkan M. Advances in human reproductive biomarkers. Clin Chim Acta 2024; 552:117668. [PMID: 37992849 DOI: 10.1016/j.cca.2023.117668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Reproductive biomarkers are important regulators in women, especially during pregnancy and childbirth. Because of their essential role in women's health, the discovery and quantification of reproductive biomarkers is of great clinical importance. Nowadays, there are many detection strategies to detect these biomarkers, including VEGF, human chorionic gonadotropin (hCG), etc. Consider the limitations and problems of conventional diagnostic methods, new methods are being developed, one of the most important being methods based on nanotechnology. This review includes a review of methods for diagnosing reproductive biomarkers, ranging from mainstream to nanotechnology-based methods. The bulk of this article is an in-depth introduction to the latest advances in biosensor and nanosensor research for the detection and quantitative identification of reproductive biomarkers.
Collapse
Affiliation(s)
- Ahmad Mobed
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bita Abdi
- Department of Obstetrics and Gynecology, Alzahra Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Masoumi
- Deparment of Medical Biotechnology, National institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Mikaeili
- The faculty of medical sciences of the Islamic Azad University, Tabriz Branch, Iran
| | - Elham Shaterian
- The faculty of medical sciences of the Islamic Azad University, Tabriz Branch, Iran
| | - Hamed Shaterian
- The faculty of medical sciences of the Islamic Azad University, Tabriz Branch, Iran
| | - Esmat Sadat Kazemi
- Department of Obstetrics and Gynecology, Alzahra Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mahdiye Shirafkan
- Division of Pharmacology and toxicology Department of Basic Sciences, Faculty of Veterinary Medicine University of Tabriz, Tabriz, Iran
| |
Collapse
|
40
|
Watkins Z, McHenry A, Heikenfeld J. Wearing the Lab: Advances and Challenges in Skin-Interfaced Systems for Continuous Biochemical Sensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:223-282. [PMID: 38273210 DOI: 10.1007/10_2023_238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Continuous, on-demand, and, most importantly, contextual data regarding individual biomarker concentrations exemplify the holy grail for personalized health and performance monitoring. This is well-illustrated for continuous glucose monitoring, which has drastically improved outcomes and quality of life for diabetic patients over the past 2 decades. Recent advances in wearable biosensing technologies (biorecognition elements, transduction mechanisms, materials, and integration schemes) have begun to make monitoring of other clinically relevant analytes a reality via minimally invasive skin-interfaced devices. However, several challenges concerning sensitivity, specificity, calibration, sensor longevity, and overall device lifetime must be addressed before these systems can be made commercially viable. In this chapter, a logical framework for developing a wearable skin-interfaced device for a desired application is proposed with careful consideration of the feasibility of monitoring certain analytes in sweat and interstitial fluid and the current development of the tools available to do so. Specifically, we focus on recent advancements in the engineering of biorecognition elements, the development of more robust signal transduction mechanisms, and novel integration schemes that allow for continuous quantitative analysis. Furthermore, we highlight the most compelling and promising prospects in the field of wearable biosensing and the challenges that remain in translating these technologies into useful products for disease management and for optimizing human performance.
Collapse
Affiliation(s)
- Zach Watkins
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA.
| | - Adam McHenry
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Jason Heikenfeld
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
41
|
Ostertag BJ, Ross AE. Editors' Choice-Review-The Future of Carbon-Based Neurochemical Sensing: A Critical Perspective. ECS SENSORS PLUS 2023; 2:043601. [PMID: 38170109 PMCID: PMC10759280 DOI: 10.1149/2754-2726/ad15a2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Carbon-based sensors have remained critical materials for electrochemical detection of neurochemicals, rooted in their inherent biocompatibility and broad potential window. Real-time monitoring using fast-scan cyclic voltammetry has resulted in the rise of minimally invasive carbon fiber microelectrodes as the material of choice for making measurements in tissue, but challenges with carbon fiber's innate properties have limited its applicability to understudied neurochemicals. Here, we provide a critical review of the state of carbon-based real-time neurochemical detection and offer insight into ways we envision addressing these limitations in the future. This piece focuses on three main hinderances of traditional carbon fiber based materials: diminished temporal resolution due to geometric properties and adsorption/desorption properties of the material, poor selectivity/specificity to most neurochemicals, and the inability to tune amorphous carbon surfaces for specific interfacial interactions. Routes to addressing these challenges could lie in methods like computational modeling of single-molecule interfacial interactions, expansion to tunable carbon-based materials, and novel approaches to synthesizing these materials. We hope this critical piece does justice to describing the novel carbon-based materials that have preceded this work, and we hope this review provides useful solutions to innovate carbon-based material development in the future for individualized neurochemical structures.
Collapse
Affiliation(s)
- Blaise J. Ostertag
- University of Cincinnati, Department of Chemistry, Cincinnati, Ohio 45221-0172, United States of America
| | - Ashley E. Ross
- University of Cincinnati, Department of Chemistry, Cincinnati, Ohio 45221-0172, United States of America
| |
Collapse
|
42
|
Rousseau CR, Kumakli H, White RJ. Perspective-Assessing Electrochemical, Aptamer-Based Sensors for Dynamic Monitoring of Cellular Signaling. ECS SENSORS PLUS 2023; 2:042401. [PMID: 38152504 PMCID: PMC10750225 DOI: 10.1149/2754-2726/ad15a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/29/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023]
Abstract
Electrochemical, aptamer-based (E-AB) sensors provide a generalizable strategy to quantitatively detect a variety of targets including small molecules and proteins. The key signaling attributes of E-AB sensors (sensitivity, selectivity, specificity, and reagentless and dynamic sensing ability) make them well suited to monitor dynamic processes in complex environments. A key bioanalytical challenge that could benefit from the detection capabilities of E-AB sensors is that of cell signaling, which involves the release of molecular messengers into the extracellular space. Here, we provide a perspective on why E-AB sensors are suited for this measurement, sensor requirements, and pioneering examples of cellular signaling measurements.
Collapse
Affiliation(s)
- Celeste R. Rousseau
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States of America
| | - Hope Kumakli
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States of America
| | - Ryan J. White
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States of America
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio 45221, United States of America
| |
Collapse
|
43
|
Sun H, Zheng Y, Shi G, Haick H, Zhang M. Wearable Clinic: From Microneedle-Based Sensors to Next-Generation Healthcare Platforms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207539. [PMID: 36950771 DOI: 10.1002/smll.202207539] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The rapid development of wearable biosensing calls for next-generation devices that allow continuous, real-time, and painless monitoring of health status along with responsive medical treatment. Microneedles have exhibited great potential for the direct access of dermal interstitial fluid (ISF) in a minimally invasive manner. Recent studies of microneedle-based devices have evolved from conventional off-line detection to multiplexed, wireless, and integrated sensing. In this review, the classification and fabrication techniques of microneedles are first introduced, and then the representative examples of microneedles for transdermal monitoring with different sensing modalities are summarized. State-of-the-art advances in therapeutic and closed-loop systems are presented to formulate guidelines for the development of next-generation microneedle-based healthcare platforms. The potential challenges and prospects are discussed to pave a new avenue toward pragmatic applications in the real world.
Collapse
Affiliation(s)
- Hongyi Sun
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China
| | - Youbin Zheng
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, 320003, Israel
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, 320003, Israel
| | - Min Zhang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
44
|
Friedel M, Thompson IAP, Kasting G, Polsky R, Cunningham D, Soh HT, Heikenfeld J. Opportunities and challenges in the diagnostic utility of dermal interstitial fluid. Nat Biomed Eng 2023; 7:1541-1555. [PMID: 36658344 DOI: 10.1038/s41551-022-00998-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 12/06/2022] [Indexed: 01/21/2023]
Abstract
The volume of interstitial fluid (ISF) in the human body is three times that of blood. Yet, collecting diagnostically useful ISF is more challenging than collecting blood because the extraction of dermal ISF disrupts the delicate balance of pressure between ISF, blood and lymph, and because the triggered local inflammation further skews the concentrations of many analytes in the extracted fluid. In this Perspective, we overview the most meaningful differences in the make-up of ISF and blood, and discuss why ISF cannot be viewed generally as a diagnostically useful proxy for blood. We also argue that continuous sensing of small-molecule analytes in dermal ISF via rapid assays compatible with nanolitre sample volumes or via miniaturized sensors inserted into the dermis can offer clinically advantageous utility, particularly for the monitoring of therapeutic drugs and of the status of the immune system.
Collapse
Affiliation(s)
- Mark Friedel
- Novel Device Laboratory, Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Ian A P Thompson
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Gerald Kasting
- The James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| | - Ronen Polsky
- Nano and Micro Sensors, Sandia National Laboratories, Albuquerque, NM, USA
| | - David Cunningham
- Department of Chemistry and Physics, Southeast Missouri State University, Cape Girardeau, MO, USA
| | - Hyongsok Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
- Department of Radiology, Stanford University, Stanford, CA, USA.
| | - Jason Heikenfeld
- Novel Device Laboratory, Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
45
|
Parrilla M, Detamornrat U, Domínguez-Robles J, Tunca S, Donnelly RF, De Wael K. Wearable Microneedle-Based Array Patches for Continuous Electrochemical Monitoring and Drug Delivery: Toward a Closed-Loop System for Methotrexate Treatment. ACS Sens 2023; 8:4161-4170. [PMID: 37856156 DOI: 10.1021/acssensors.3c01381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Wearable devices based on microneedle (MN) technology have recently emerged as tools for in situ transdermal sensing or delivery in interstitial fluid (ISF). Particularly, MN-based electrochemical sensors allow the continuous monitoring of analytes in a minimally invasive manner through ISF. Exogenous small molecules found in ISF such as therapeutic drugs are ideal candidates for MN sensors due to their correlation with blood levels and their relevance for the optimal management of personalized therapies. Herein, a hollow MN array patch is modified with conductive pastes and functionalized with cross-linked chitosan to develop an MN-based voltammetric sensor for continuous monitoring of methotrexate (MTX). Interestingly, the chitosan coating avoids biofouling while enabling the adsorption of MTX at the electrode's surface for sensitive analysis. The MN sensor exhibits excellent analytical performance in vitro with protein-enriched artificial ISF and ex vivo under a Franz diffusion cell configuration. The MN sensor shows a linear range from 25 to 400 μM, which fits within the therapeutic range of high-dose MTX treatment for cancer patients and an excellent continuous operation for more than two days. Moreover, an iontophoretic hollow MN array patch is developed with the integration of both the anode and cathode in the single MN array patch. The ex vivo characterization demonstrates the transdermal on-demand drug delivery of MTX. Overall, the combination of both MN patches represents impactful progress in closed-loop systems for therapeutic drug management in disorders such as cancer, rheumatoid arthritis, or psoriasis.
Collapse
Affiliation(s)
- Marc Parrilla
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Usanee Detamornrat
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| | - Juan Domínguez-Robles
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
- Department of Pharmacy and Pharmaceutical Technology, University of Seville, 97 Lisburn Road, Seville 41004, Spain
| | - Sensu Tunca
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Ryan F Donnelly
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| | - Karolien De Wael
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
46
|
Wang Q, Li S, Chen J, Yang L, Qiu Y, Du Q, Wang C, Teng M, Wang T, Dong Y. A novel strategy for therapeutic drug monitoring: application of biosensors to quantify antimicrobials in biological matrices. J Antimicrob Chemother 2023; 78:2612-2629. [PMID: 37791382 DOI: 10.1093/jac/dkad289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Over the past few years, therapeutic drug monitoring (TDM) has gained practical significance in antimicrobial precision therapy. Yet two categories of mainstream TDM techniques (chromatographic analysis and immunoassays) that are widely adopted nowadays retain certain inherent limitations. The use of biosensors, an innovative strategy for rapid evaluation of antimicrobial concentrations in biological samples, enables the implementation of point-of-care testing (POCT) and continuous monitoring, which may circumvent the constraints of conventional TDM and provide strong technological support for individualized antimicrobial treatment. This comprehensive review summarizes the investigations that have harnessed biosensors to detect antimicrobial drugs in biological matrices, provides insights into the performance and characteristics of each sensing form, and explores the feasibility of translating them into clinical practice. Furthermore, the future trends and obstacles to achieving POCT and continuous monitoring are discussed. More efforts are necessary to address the four key 'appropriateness' challenges to deploy biosensors in clinical practice, paving the way for personalized antimicrobial stewardship.
Collapse
Affiliation(s)
- Quanfang Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Sihan Li
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiaojiao Chen
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Luting Yang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yulan Qiu
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qian Du
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Chuhui Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Mengmeng Teng
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Taotao Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
47
|
Wu G, Zhang ET, Qiang Y, Esmonde C, Chen X, Wei Z, Song Y, Zhang X, Schneider MJ, Li H, Sun H, Weng Z, Santaniello S, He J, Lai RY, Li Y, Bruchas MR, Zhang Y. Long-Term In Vivo Molecular Monitoring Using Aptamer-Graphene Microtransistors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562080. [PMID: 37905115 PMCID: PMC10614860 DOI: 10.1101/2023.10.18.562080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Long-term, real-time molecular monitoring in complex biological environments is critical for our ability to understand, prevent, diagnose, and manage human diseases. Aptamer-based electrochemical biosensors possess the promise due to their generalizability and a high degree of selectivity. Nevertheless, the operation of existing aptamer-based biosensors in vivo is limited to a few hours. Here, we report a first-generation long-term in vivo molecular monitoring platform, named aptamer-graphene microtransistors (AGMs). The AGM incorporates a layer of pyrene-(polyethylene glycol)5-alcohol and DNase inhibitor-doped polyacrylamide hydrogel coating to reduce biofouling and aptamer degradation. As a demonstration of function and generalizability, the AGM achieves the detection of biomolecules such as dopamine and serotonin in undiluted whole blood at 37 °C for 11 days. Furthermore, the AGM successfully captures optically evoked dopamine release in vivo in mice for over one week and demonstrates the capability to monitor behaviorally-induced endogenous dopamine release even after eight days of implantation in freely moving mice. The results reported in this work establish the potential for chronic aptamer-based molecular monitoring platforms, and thus serve as a new benchmark for molecular monitoring using aptamer-based technology.
Collapse
Affiliation(s)
- Guangfu Wu
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Eric T. Zhang
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Yingqi Qiang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Colin Esmonde
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Zichao Wei
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Yang Song
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Xincheng Zhang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Michael J. Schneider
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Huijie Li
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - He Sun
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Zhengyan Weng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Sabato Santaniello
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Rebecca Y. Lai
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Michael R. Bruchas
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Yi Zhang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
48
|
Campuzano S, Pingarrón JM. Electrochemical Affinity Biosensors: Pervasive Devices with Exciting Alliances and Horizons Ahead. ACS Sens 2023; 8:3276-3293. [PMID: 37534629 PMCID: PMC10521145 DOI: 10.1021/acssensors.3c01172] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Electrochemical affinity biosensors are evolving at breakneck speed, strengthening and colonizing more and more niches and drawing unimaginable roadmaps that increasingly make them protagonists of our daily lives. They achieve this by combining their intrinsic attributes with those acquired by leveraging the significant advances that occurred in (nano)materials technology, bio(nano)materials and nature-inspired receptors, gene editing and amplification technologies, and signal detection and processing techniques. The aim of this Perspective is to provide, with the support of recent representative and illustrative literature, an updated and critical view of the repertoire of opportunities, innovations, and applications offered by electrochemical affinity biosensors fueled by the key alliances indicated. In addition, the imminent challenges that these biodevices must face and the new directions in which they are envisioned as key players are discussed.
Collapse
Affiliation(s)
- Susana Campuzano
- Departamento de Química Analítica,
Facultad de Ciencias Químicas, Universidad
Complutense de Madrid, 28040 Madrid, España
| | - José M. Pingarrón
- Departamento de Química Analítica,
Facultad de Ciencias Químicas, Universidad
Complutense de Madrid, 28040 Madrid, España
| |
Collapse
|
49
|
Ghanim R, Kaushik A, Park J, Abramson A. Communication Protocols Integrating Wearables, Ingestibles, and Implantables for Closed-Loop Therapies. DEVICE 2023; 1:100092. [PMID: 38465200 PMCID: PMC10923538 DOI: 10.1016/j.device.2023.100092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Body-conformal sensors and tissue interfacing robotic therapeutics enable the real-time monitoring and treatment of diabetes, wound healing, and other critical conditions. By integrating sensors and drug delivery devices, scientists and engineers have developed closed-loop drug delivery systems with on-demand therapeutic capabilities to provide just-in-time treatments that correspond to chemical, electrical, and physical signals of a target morbidity. To enable closed-loop functionality in vivo, engineers utilize various low-power means of communication that reduce the size of implants by orders of magnitude, increase device lifetime from hours to months, and ensure the secure high-speed transfer of data. In this review, we highlight how communication protocols used to integrate sensors and drug delivery devices, such as radio frequency communication (e.g., Bluetooth, near-field communication), in-body communication, and ultrasound, enable improved treatment outcomes.
Collapse
Affiliation(s)
- Ramy Ghanim
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Anika Kaushik
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jihoon Park
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alex Abramson
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
50
|
Mishi RD, Stokes MA, Campbell CA, Plaxco KW, Stocker SL. Real-Time Monitoring of Antibiotics in the Critically Ill Using Biosensors. Antibiotics (Basel) 2023; 12:1478. [PMID: 37887179 PMCID: PMC10603738 DOI: 10.3390/antibiotics12101478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 09/11/2023] [Indexed: 10/28/2023] Open
Abstract
By ensuring optimal dosing, therapeutic drug monitoring (TDM) improves outcomes in critically ill patients by maximizing effectiveness while minimizing toxicity. Current methods for measuring plasma drug concentrations, however, can be challenging, time-consuming, and slow to return an answer, limiting the extent to which TDM is used to optimize drug exposure. A potentially promising solution to this dilemma is provided by biosensors, molecular sensing devices that employ biorecognition elements to recognize and quantify their target molecules rapidly and in a single step. This paper reviews the current state of the art for biosensors regarding their application to TDM of antibiotics in the critically ill, both as ex vivo point-of-care devices supporting single timepoint measurements and in vivo devices supporting continuous real-time monitoring in situ in the body. This paper also discusses the clinical development of biosensors for TDM, including regulatory challenges and the need for standardized performance evaluation. We conclude by arguing that, through precise and real-time monitoring of antibiotics, the application of biosensors in TDM holds great promise for enhancing the optimization of drug exposure in critically ill patients, offering the potential for improved outcomes.
Collapse
Affiliation(s)
- Ruvimbo Dephine Mishi
- Department of Human Biology, Division of Cell Biology, University of Cape Town, Cape Town 7925, South Africa
| | - Michael Andrew Stokes
- Paediatric Critical Care Unit, Department of Pharmacy, The Children’s Hospital at Westmead, Sydney, NSW 2031, Australia
| | - Craig Anthony Campbell
- NSW Health Pathology, Department of Chemical Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Kevin William Plaxco
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Biomolecular Sciences and Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Sophie Lena Stocker
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Clinical Pharmacology and Toxicology, St. Vincent’s Hospital, Sydney, NSW 2010, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|