1
|
Khatmi G, Klinavičius T, Simanavičius M, Silimavičius L, Tamulevičienė A, Rimkutė A, Kučinskaitė-Kodzė I, Gylys G, Tamulevičius T. Lateral flow assay sensitivity and signal enhancement via laser µ-machined constrains in nitrocellulose membrane. Sci Rep 2024; 14:22936. [PMID: 39358489 PMCID: PMC11446913 DOI: 10.1038/s41598-024-74407-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
Lateral flow assay (LFA) is a handful diagnostic technology that can identify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other common respiratory viruses in one strip, which can be tested at the point-of-care without the need for equipment or skilled personnel outside the laboratory. Although its simplicity and practicality make it an appealing solution, it remains a grand challenge to substantially enhance the colorimetric LFA sensitivity. In this work, we present a straightforward approach to enhance the sensitivity of LFA by imposing the flow constraints in nitrocellulose (NC) membranes via a number of vertical femtosecond laser micromachined microchannels which is important for prolonged specific binding interactions. Porous NC membrane surfaces were structured with different widths and densities µ-channels employing a second harmonic of the Yb:KGW femtosecond laser and sample XYZ translation over a microscope objective-focused laser beam. The influence of the microchannel parameters on the vertical wicking speed was evaluated from the video recordings. The obtained results indicated that µ-channel length, width, and density in NC membranes controllably increased the immunological reaction time between the analyte and the labeled antibody by 950%. Image analysis of the colorimetric indicators confirmed that the flow rate delaying strategy enhanced the signal sensitives by 40% compared with pristine NC LFA.
Collapse
Affiliation(s)
- Gazy Khatmi
- Department of Physics, Kaunas University of Technology, Kaunas, Lithuania.
| | - Tomas Klinavičius
- Institute of Materials Science, Kaunas University of Technology, Kaunas, Lithuania
| | - Martynas Simanavičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Laimis Silimavičius
- UAB Sanpharm, Vilnius, Lithuania
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Asta Tamulevičienė
- Department of Physics, Kaunas University of Technology, Kaunas, Lithuania
- Institute of Materials Science, Kaunas University of Technology, Kaunas, Lithuania
| | - Agnė Rimkutė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | | | - Tomas Tamulevičius
- Department of Physics, Kaunas University of Technology, Kaunas, Lithuania.
- Institute of Materials Science, Kaunas University of Technology, Kaunas, Lithuania.
| |
Collapse
|
2
|
Jiang KP, Bennett S, Heiniger EK, Kumar S, Yager P. UbiNAAT: a multiplexed point-of-care nucleic acid diagnostic platform for rapid at-home pathogen detection. LAB ON A CHIP 2024; 24:492-504. [PMID: 38164805 DOI: 10.1039/d3lc00753g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The COVID-19 pandemic increased demands for respiratory disease testing to facilitate treatment and limit transmission, demonstrating in the process that most existing test options were too complex and expensive to perform in point-of-care or home scenarios. Lab-based molecular techniques can detect viral RNA in respiratory illnesses but are expensive and require trained personnel, while affordable antigen-based home tests lack sensitivity for early detection in newly infected or asymptomatic individuals. The few home RNA detection tests deployed were prohibitively expensive. Here, we demonstrate a point-of-care, paper-based rapid analysis device that simultaneously detects multiple viral RNAs; it is demonstrated on two common respiratory viruses (COVID-19 and influenza A) spiked onto a commercial nasal swab. The automated device requires no sample preparation by the user after insertion of the swab, minimizing user operation steps. We incorporated lyophilized amplification reagents immobilized in a porous matrix, a novel thermally actuated valve for multiplexed fluidic control, a printed circuit board that performs on-device lysis and amplification within a cell-phone-sized disposable device. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) products are visualized via fluorescent dyes using a modified cell phone, resulting in detection of as few as 104 viral copies per swab across both pathogens within 30 minutes. This integrated platform could be commercialized in a form that would be inexpensive, portable, and sensitive; it can readily be multiplexed to detect as many as 8 different RNA or DNA sequences, and adapted to any desired RNA or DNA detection assays.
Collapse
Affiliation(s)
- Kevin P Jiang
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
| | - Steven Bennett
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
| | - Erin K Heiniger
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
| | - Sujatha Kumar
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
| | - Paul Yager
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
3
|
Chen YC, Syu YH, Huang JY, Lin CY, Chan YH. Hybrid polymer dot-magnetic nanoparticle based immunoassay for dual-mode multiplexed detection of two mycotoxins. Chem Commun (Camb) 2023; 59:9968-9971. [PMID: 37501643 DOI: 10.1039/d3cc02586a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
We designed polymer dot-magnetic nanoparticle nanohybrids for signal enhancement in a test strip platform. Besides, the multicolor emissions of the Pdots embed multiplexing ability for this test strip. Two mycotoxins, aflatoxin B1 and zearalenone, were tested with the determined limits of detection of 2.15 ng mL-1 and 4.87 ng mL-1, respectively.
Collapse
Affiliation(s)
- Yi-Chen Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
| | - Yu-Han Syu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
| | - Jhen-Yan Huang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
| | - Chun-Yi Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
| | - Yang-Hsiang Chan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| |
Collapse
|
4
|
Younes N, Yassine HM, Kourentzi K, Tang P, Litvinov D, Willson RC, Abu-Raddad LJ, Nasrallah GK. A review of rapid food safety testing: using lateral flow assay platform to detect foodborne pathogens. Crit Rev Food Sci Nutr 2023; 64:9910-9932. [PMID: 37350754 DOI: 10.1080/10408398.2023.2217921] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
The detrimental impact of foodborne pathogens on human health makes food safety a major concern at all levels of production. Conventional methods to detect foodborne pathogens, such as live culture, high-performance liquid chromatography, and molecular techniques, are relatively tedious, time-consuming, laborious, and expensive, which hinders their use for on-site applications. Recurrent outbreaks of foodborne illness have heightened the demand for rapid and simple technologies for detection of foodborne pathogens. Recently, Lateral flow assays (LFA) have drawn attention because of their ability to detect pathogens rapidly, cheaply, and on-site. Here, we reviewed the latest developments in LFAs to detect various foodborne pathogens in food samples, giving special attention to how reporters and labels have improved LFA performance. We also discussed different approaches to improve LFA sensitivity and specificity. Most importantly, due to the lack of studies on LFAs for the detection of viral foodborne pathogens in food samples, we summarized our recent research on developing LFAs for the detection of viral foodborne pathogens. Finally, we highlighted the main challenges for further development of LFA platforms. In summary, with continuing improvements, LFAs may soon offer excellent performance at point-of-care that is competitive with laboratory techniques while retaining a rapid format.
Collapse
Affiliation(s)
- Nadin Younes
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Katerina Kourentzi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Patrick Tang
- Department of Pathology, Sidra Medicine, Doha, Qatar
| | - Dmitri Litvinov
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
- Center for Integrated Bio & Nano Systems, University of Houston, Houston, Texas, USA
| | - Richard C Willson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Laith J Abu-Raddad
- Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
- World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
- Department of Healthcare Policy and Research, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
5
|
Rink S, Baeumner AJ. Progression of Paper-Based Point-of-Care Testing toward Being an Indispensable Diagnostic Tool in Future Healthcare. Anal Chem 2023; 95:1785-1793. [PMID: 36608282 DOI: 10.1021/acs.analchem.2c04442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Point-of-care (POC) diagnostics in particular focuses on the timely identification of harmful conditions close to the patients' needs. For future healthcare these diagnostics could be an invaluable tool especially in a digitalized or telemedicine-based system. However, while paper-based POC tests, with the most prominent example being the lateral flow assay (LFA), have been especially successful due to their simplicity and timely response, the COVID-19 pandemic highlighted their limitations, such as low sensitivity and ambiguous responses. This perspective discusses strategies that are currently being pursued to evolve such paper-based POC tests toward a superior diagnostic tool that provides high sensitivities, objective result interpretation, and multiplexing options. Here, we pinpoint the challenges with respect to (i) measurability and (ii) public applicability, exemplified with select cases. Furthermore, we highlight promising endeavors focused on (iii) increasing the sensitivity, (iv) multiplexing capability, and (v) objective evaluation to also ready the technology for integration with machine learning into digital diagnostics and telemedicine. The status quo in academic research and industry is outlined, and the likely highly relevant role of paper-based POC tests in future healthcare is suggested.
Collapse
Affiliation(s)
- Simone Rink
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Antje J Baeumner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
6
|
Baker AN, Hawker-Bond GW, Georgiou PG, Dedola S, Field RA, Gibson MI. Glycosylated gold nanoparticles in point of care diagnostics: from aggregation to lateral flow. Chem Soc Rev 2022; 51:7238-7259. [PMID: 35894819 PMCID: PMC9377422 DOI: 10.1039/d2cs00267a] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Current point-of-care lateral flow immunoassays, such as the home pregnancy test, rely on proteins as detection units (e.g. antibodies) to sense for analytes. Glycans play a fundamental role in biological signalling and recognition events such as pathogen adhesion and hence they are promising future alternatives to antibody-based biosensing and diagnostics. Here we introduce the potential of glycans coupled to gold nanoparticles as recognition agents for lateral flow diagnostics. We first introduce the concept of lateral flow, including a case study of lateral flow use in the field compared to other diagnostic tools. We then introduce glycosylated materials, the affinity gains achieved by the cluster glycoside effect and the current use of these in aggregation based assays. Finally, the potential role of glycans in lateral flow are explained, and examples of their successful use given. Antibody-based lateral flow (immune) assays are well established, but here the emerging concept and potential of using glycans as the detection agents is reviewed.![]()
Collapse
Affiliation(s)
- Alexander N Baker
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK.
| | - George W Hawker-Bond
- Oxford University Clinical Academic Graduate School, John Radcliffe Hospital Oxford, Oxford, OX3 9DU, UK
| | - Panagiotis G Georgiou
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK.
| | | | - Robert A Field
- Iceni Glycoscience Ltd, Norwich, NR4 7GJ, UK.,Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK. .,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK
| |
Collapse
|
7
|
Newsham EI, Phillips EA, Ma H, Chang MM, Wereley ST, Linnes JC. Characterization of wax valving and μPIV analysis of microscale flow in paper-fluidic devices for improved modeling and design. LAB ON A CHIP 2022; 22:2741-2752. [PMID: 35762978 PMCID: PMC9362854 DOI: 10.1039/d2lc00297c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Paper-fluidic devices are a popular platform for point-of-care diagnostics due to their low cost, ease of use, and equipment-free detection of target molecules. They are limited, however, by their lack of sensitivity and inability to incorporate more complex processes, such as nucleic acid amplification or enzymatic signal enhancement. To address these limitations, various valves have previously been implemented in paper-fluidic devices to control fluid obstruction and release. However, incorporation of valves into new devices is a highly iterative, time-intensive process due to limited experimental data describing the microscale flow that drives the biophysical reactions in the assay. In this paper, we tested and modeled different geometries of thermally actuated valves to investigate how they can be more easily implemented in an LFIA with precise control of actuation time, flow rate, and flow pattern. We demonstrate that bulk flow measurements alone cannot estimate the highly variable microscale properties and effects on LFIA signal development. To further quantify the microfluidic properties of paper-fluidic devices, micro-particle image velocimetry was used to quantify fluorescent nanoparticle flow through the membranes and demonstrated divergent properties from bulk flow that may explain additional variability in LFIA signal generation. Altogether, we demonstrate that a more robust characterization of paper-fluidic devices can permit fine-tuning of parameters for precise automation of multi-step assays and inform analytical models for more efficient design.
Collapse
Affiliation(s)
- Emilie I Newsham
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Elizabeth A Phillips
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Hui Ma
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Megan M Chang
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Steven T Wereley
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Jacqueline C Linnes
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
8
|
Automated liquid handling robot for rapid lateral flow assay development. Anal Bioanal Chem 2022; 414:2607-2618. [PMID: 35091761 PMCID: PMC8799445 DOI: 10.1007/s00216-022-03897-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/21/2021] [Accepted: 01/11/2022] [Indexed: 11/01/2022]
Abstract
AbstractThe lateral flow assay (LFA) is one of the most popular technologies on the point-of-care diagnostics market due to its low cost and ease of use, with applications ranging from pregnancy to environmental toxins to infectious disease. While the use of these tests is relatively straightforward, significant development time and effort are required to create tests that are both sensitive and specific. Workflows to guide the LFA development process exist but moving from target selection to an LFA that is ready for field testing can be labor intensive, resource heavy, and time consuming. To reduce the cost and the duration of the LFA development process, we introduce a novel development platform centered on the flexibility, speed, and throughput of an automated robotic liquid handling system. The system comprises LFA-specific hardware and software that enable large optimization experiments with discrete and continuous variables such as antibody pair selection or reagent concentration. Initial validation of the platform was demonstrated during development of a malaria LFA but was readily expanded to encompass development of SARS-CoV-2 and Mycobacterium tuberculosis LFAs. The validity of the platform, where optimization experiments are run directly on LFAs rather than in solution, was based on a direct comparison between the robotic system and a more traditional ELISA-like method. By minimizing hands-on time, maximizing experiment size, and enabling improved reproducibility, the robotic system improved the quality and quantity of LFA assay development efforts.
Graphical abstract
Collapse
|
9
|
Chou CH, Huang TH, Hsieh PC, Ho NYJ, Chen CA, Wu K, Tsai TT. Quantitative lateral flow immunoassay for rapid detection and monitoring of cerebrospinal fluid leakage following incidental durotomy. Anal Chim Acta 2022; 1196:339544. [DOI: 10.1016/j.aca.2022.339544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/28/2022]
|
10
|
He G, Dong T, Yang Z, Jiang Z. Mitigating hook effect in one-step quantitative sandwich lateral flow assay by timed conjugate release. Talanta 2021; 240:123157. [PMID: 34968809 DOI: 10.1016/j.talanta.2021.123157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Abstract
Sandwich lateral flow assay (LFA) is one of the most successfully commercialized paper-based biosensors, which offers a rapid, low-cost, one-step assay. Despite its advantages, conventional sandwich LFA is fundamentally limited by the high-dose "hook" effect-a phenomenon that occurs at very high analyte concentrations and results in false-negative results. In this paper, we present a novel strategy of automatic timed detection antibody release to mitigate the hook effect in sandwich LFA without additional manual steps. We introduced an intermediate pad treated with saturated sucrose solution to regulate the flow between the nitrocellulose membrane and the conjugate pad in order to delay the reaction between detection antibodies and analytes. Using C-reactive protein (CRP) as a representative analyte, we demonstrated that our strategy exhibited a range of detection 10 times wider than that of our conventional LFA, without sacrificing the limit of detection. Comparing to other published strategies, our work could offer a one-step, cost-effective approach that is closely unified with the benefits of the LFA.
Collapse
Affiliation(s)
- Guozhen He
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China; Department of Microsystems (IMS), Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Postboks 235, 3603, Kongsberg, Norway
| | - Tao Dong
- Department of Microsystems (IMS), Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Postboks 235, 3603, Kongsberg, Norway.
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Zhuangde Jiang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| |
Collapse
|
11
|
Liu Y, Zhan L, Qin Z, Sackrison J, Bischof JC. Ultrasensitive and Highly Specific Lateral Flow Assays for Point-of-Care Diagnosis. ACS NANO 2021; 15:3593-3611. [PMID: 33607867 DOI: 10.1021/acsnano.0c10035] [Citation(s) in RCA: 242] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Lateral flow assays (LFAs) are paper-based point-of-care (POC) diagnostic tools that are widely used because of their low cost, ease of use, and rapid format. Unfortunately, traditional commercial LFAs have significantly poorer sensitivities (μM) and specificities than standard laboratory tests (enzyme-linked immunosorbent assay, ELISA: pM-fM; polymerase chain reaction, PCR: aM), thus limiting their impact in disease control. In this Perspective, we review the evolving efforts to increase the sensitivity and specificity of LFAs. Recent work to improve the sensitivity through assay improvement includes optimization of the assay kinetics and signal amplification by either reader systems or additional reagents. Together, these efforts have produced LFAs with ELISA-level sensitivities (pM-fM). In addition, sample preamplification can be applied to both nucleic acids (direct amplification) and other analytes (indirect amplification) prior to LFA testing, which can lead to PCR-level (aM) sensitivity. However, these amplification strategies also increase the detection time and assay complexity, which inhibits the large-scale POC use of LFAs. Perspectives to achieve future rapid (<30 min), ultrasensitive (PCR-level), and "sample-to-answer" POC diagnostics are also provided. In the case of LFA specificity, recent research efforts have focused on high-affinity molecules and assay optimization to reduce nonspecific binding. Furthermore, novel highly specific molecules, such as CRISPR/Cas systems, can be integrated into diagnosis with LFAs to produce not only ultrasensitive but also highly specific POC diagnostics. In summary, with continuing improvements, LFAs may soon offer performance at the POC that is competitive with laboratory techniques while retaining a rapid format.
Collapse
Affiliation(s)
- Yilin Liu
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Li Zhan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zhenpeng Qin
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas 75080 United States
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - James Sackrison
- 3984 Hunters Hill Way, Minnetonka, Minnesota 55345, United States
| | - John C Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Director, Institute of Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
12
|
Downs C, Milovancev M, Fu E. Rational design and characterization of a lateral flow assay for canine C-reactive protein in wound exudate. Talanta 2020; 220:121319. [PMID: 32928378 PMCID: PMC7494954 DOI: 10.1016/j.talanta.2020.121319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 01/22/2023]
Abstract
C-reactive protein levels may have clinical value in monitoring different phases of healing and in identifying possible states of infection. As a critical step to further investigate this potential connection, we have demonstrated a lateral flow assay (LFA) for canine CRP level assessment in wound exudate that could be used as a tool in the veterinary clinic setting. In the rational design of our cCRP LFA, we have characterized LFA performance for sequential delivery mode vs. the more common premixed delivery mode using several metrics including dynamic range, sensitivity, limit of detection, and time to result. Although the sequential mode assay results indicated modestly improved signal (3-14%) and limit of detection (in the low ng/mL range for both) for this set of cCRP immunoassay reagents, the premixed mode assay's shorter run time with one less delivery step was chosen for use in this application in which analyte levels are substantially elevated. We have defined a straightforward wound exudate processing procedure that includes centrifugation to extract exudate from canine patient bandages, and subsequent sample dilution for cCRP quantification by our LFA. And, we have demonstrated that our cCRP LFA provides comparable cCRP concentrations to that of gold-standard ELISA performed on the same clinical wound exudate, and serum/plasma samples. Finally, we have highlighted some next steps in the assessment of cCRP as a biomarker for wound healing and infection.
Collapse
Affiliation(s)
- Corey Downs
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA
| | - Milan Milovancev
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, USA
| | - Elain Fu
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
13
|
Ross GMS, Filippini D, Nielen MWF, Salentijn GI. Unraveling the Hook Effect: A Comprehensive Study of High Antigen Concentration Effects in Sandwich Lateral Flow Immunoassays. Anal Chem 2020; 92:15587-15595. [PMID: 33185097 PMCID: PMC7711776 DOI: 10.1021/acs.analchem.0c03740] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sandwich lateral flow immunoassays (LFIAs) are limited at high antigen concentrations by the hook effect, leading to a contradictory decrease in the test line (T) intensity and false-negative results. The hook effect is mainly associated with the loss of T, and research focuses on minimizing this effect. Nevertheless, the control line (C) intensity is also affected at higher analyte concentrations, undesirably influencing the T/C ratio in LFIA readers. The main aim of this work is to identify and understand these high antigen concentration effects in order to develop ubiquitous strategies to interpret and mitigate such effects. Four complementary experiments were performed: performance assessment of three different allergen LFIAs (two for hazelnut, one for peanut) over 0.075-3500 ppm, LFIAs with C only, surface plasmon resonance (SPR) binding experiments on the immobilized control antibody, and smartphone video recording of LFIAs during their development. As antigen concentrations increase, the C signal decreases before the T signal does, suggesting that distinct mechanisms underlie these intensity reductions. Reduced binding at the C occurred even in the absence of T, so the upfront T does not explain the loss of C. SPR confirmed that the C antibody favors binding with free labeled antibody compared with a labeled antibody-analyte complex, indicating that in antigen excess, binding is reduced at C before T. Finally, a smartphone-based video method was developed for dynamically monitoring the LFIA development in real time to distinguish between different concentration-dependent effects. Digitally analyzing the data allows clear differentiation of highly positive samples and false-negative samples and can indicate whether the LFIA is in the dynamic working range or at critically high concentrations. The aim of this work is to identify and understand such high antigen concentration effects in order to develop ubiquitous strategies to interpret and mitigate such effects.
Collapse
Affiliation(s)
- Georgina M S Ross
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, P.O. Box 230, Wageningen 6700 AE, The Netherlands
| | - Daniel Filippini
- Optical Devices Laboratory, Division of Sensor and Actuator Systems, IFM-Linköping University, Linköping S58183, Sweden
| | - Michel W F Nielen
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, P.O. Box 230, Wageningen 6700 AE, The Netherlands.,Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Gert Ij Salentijn
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, P.O. Box 230, Wageningen 6700 AE, The Netherlands.,Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| |
Collapse
|
14
|
Wang J, Chen Q, Jin Y, Zhang X, He L, Zhang W, Chen Y. Surface enhanced Raman scattering-based lateral flow immunosensor for sensitive detection of aflatoxin M1 in urine. Anal Chim Acta 2020; 1128:184-192. [DOI: 10.1016/j.aca.2020.06.076] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/30/2020] [Indexed: 11/29/2022]
|
15
|
Lateral flow immunoassay for 5-hydroxyflunixin based on near-infrared fluorescence molecule as an alternative label to gold nanoparticles. Mikrochim Acta 2020; 187:368. [PMID: 32495065 DOI: 10.1007/s00604-020-04338-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 05/18/2020] [Indexed: 10/24/2022]
Abstract
A high-affinity monoclonal antibody (mAb) has been prepared and separately a gold nanoparticle (AuNP)-based and a near-infrared (NIR) fluorescence-based lateral flow immunoassay (LFA) developed for determination of 5-hydroxyflunixin residue in raw milk. The AuNP and IRDye® 800CW were used to label anti-5-hydroxyflunixin mAb to form the AuNP-mAb and NIR dye-mAb conjugates, respectively. Quantitative determination of 5-hydroxyflunixin was achieved by imaging the optical or fluorescence intensity of the AuNP-mAb and NIR dye-mAb captured on the test line. As a result, the detection limits of the AuNP-based LFA and NIR dye-based LFA were 0.82 and 0.073 ng/mL in raw milk, respectively. The considerable improvement on assay sensitivity of the NIR-based LFA can be attributed to the lower background and less antibody consumption per test than that of the AuNP-based LFA. The spiking experiment by the NIR-based LFA yielded 85.7-112.6% recovery with a relative standard deviation below 14%, indicating that it has satisfactory assay accuracy and precision. Furthermore, the analytical results of actual samples by the NIR dye-based LFA were consistent with that by instrumental analysis. Therefore, these results demonstrated that the NIR dye is an ideal alternative label to the conventional AuNP for the development of LFA for veterinary drugs in animal-origin food. Graphical abstract.
Collapse
|
16
|
Bishop JD, Hsieh HV, Gasperino DJ, Weigl BH. Sensitivity enhancement in lateral flow assays: a systems perspective. LAB ON A CHIP 2019; 19:2486-2499. [PMID: 31251312 DOI: 10.1039/c9lc00104b] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Lateral flow assays (LFAs) are rapid, inexpensive, easy-to-manufacture and -use tests widely employed in medical and environmental applications, particularly in low resource settings. Historically, LFAs have been stigmatized as having limited sensitivity. However, as their global usage expands, extensive research has demonstrated that it is possible to substantially improve LFA sensitivity without sacrificing their advantages. In this critical review, we have compiled state-of-the-art approaches to LFA sensitivity enhancement. Moreover, we have organized and evaluated these approaches from a system-level perspective, as we have observed that the advantages and disadvantages of each approach have arisen from the integrated and tightly interconnected chemical, physical, and optical properties of LFAs.
Collapse
Affiliation(s)
| | - Helen V Hsieh
- Intellectual Ventures Laboratory, Bellevue, 98007 WA, USA.
| | | | - Bernhard H Weigl
- Intellectual Ventures Laboratory, Bellevue, 98007 WA, USA. and Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
17
|
Markwalter C, Kantor AG, Moore CP, Richardson KA, Wright DW. Inorganic Complexes and Metal-Based Nanomaterials for Infectious Disease Diagnostics. Chem Rev 2019; 119:1456-1518. [PMID: 30511833 PMCID: PMC6348445 DOI: 10.1021/acs.chemrev.8b00136] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Indexed: 12/12/2022]
Abstract
Infectious diseases claim millions of lives each year. Robust and accurate diagnostics are essential tools for identifying those who are at risk and in need of treatment in low-resource settings. Inorganic complexes and metal-based nanomaterials continue to drive the development of diagnostic platforms and strategies that enable infectious disease detection in low-resource settings. In this review, we highlight works from the past 20 years in which inorganic chemistry and nanotechnology were implemented in each of the core components that make up a diagnostic test. First, we present how inorganic biomarkers and their properties are leveraged for infectious disease detection. In the following section, we detail metal-based technologies that have been employed for sample preparation and biomarker isolation from sample matrices. We then describe how inorganic- and nanomaterial-based probes have been utilized in point-of-care diagnostics for signal generation. The following section discusses instrumentation for signal readout in resource-limited settings. Next, we highlight the detection of nucleic acids at the point of care as an emerging application of inorganic chemistry. Lastly, we consider the challenges that remain for translation of the aforementioned diagnostic platforms to low-resource settings.
Collapse
Affiliation(s)
| | | | | | | | - David W. Wright
- Department of Chemistry, Vanderbilt
University, Nashville, Tennessee 37235, United States
| |
Collapse
|
18
|
Fu E. Paper Microfluidics for POC Testing in Low-Resource Settings. Bioanalysis 2019. [DOI: 10.1007/978-981-13-6229-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
19
|
Gasperino D, Baughman T, Hsieh HV, Bell D, Weigl BH. Improving Lateral Flow Assay Performance Using Computational Modeling. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:219-244. [PMID: 29595992 DOI: 10.1146/annurev-anchem-061417-125737] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The performance, field utility, and low cost of lateral flow assays (LFAs) have driven a tremendous shift in global health care practices by enabling diagnostic testing in previously unserved settings. This success has motivated the continued improvement of LFAs through increasingly sophisticated materials and reagents. However, our mechanistic understanding of the underlying processes that drive the informed design of these systems has not received commensurate attention. Here, we review the principles underpinning LFAs and the historical evolution of theory to predict their performance. As this theory is integrated into computational models and becomes testable, the criteria for quantifying performance and validating predictive power are critical. The integration of computational design with LFA development offers a promising and coherent framework to choose from an increasing number of novel materials, techniques, and reagents to deliver the low-cost, high-fidelity assays of the future.
Collapse
Affiliation(s)
- David Gasperino
- Intellectual Ventures Laboratory, Bellevue, Washington 98007, USA
| | - Ted Baughman
- Intellectual Ventures Laboratory, Bellevue, Washington 98007, USA
| | - Helen V Hsieh
- Intellectual Ventures Laboratory, Bellevue, Washington 98007, USA
| | - David Bell
- Intellectual Ventures Laboratory, Bellevue, Washington 98007, USA
| | - Bernhard H Weigl
- Intellectual Ventures Laboratory, Bellevue, Washington 98007, USA
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
20
|
Gasperino DJ, Leon D, Lutz B, Cate DM, Nichols KP, Bell D, Weigl BH. Threshold-Based Quantification in a Multiline Lateral Flow Assay via Computationally Designed Capture Efficiency. Anal Chem 2018; 90:6643-6650. [DOI: 10.1021/acs.analchem.8b00440] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Daniel Leon
- University of Washington, Seattle, Washington 98195, United States
| | - Barry Lutz
- University of Washington, Seattle, Washington 98195, United States
| | - David M. Cate
- Intellectual Ventures, Bellevue, Washington 98005, United States
| | - Kevin P. Nichols
- Intellectual Ventures, Bellevue, Washington 98005, United States
| | - David Bell
- Intellectual Ventures, Bellevue, Washington 98005, United States
| | - Bernhard H. Weigl
- Intellectual Ventures, Bellevue, Washington 98005, United States
- University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
21
|
Joh DY, Hucknall AM, Wei Q, Mason KA, Lund ML, Fontes CM, Hill RT, Blair R, Zimmers Z, Achar RK, Tseng D, Gordan R, Freemark M, Ozcan A, Chilkoti A. Inkjet-printed point-of-care immunoassay on a nanoscale polymer brush enables subpicomolar detection of analytes in blood. Proc Natl Acad Sci U S A 2017; 114:E7054-E7062. [PMID: 28784765 PMCID: PMC5576789 DOI: 10.1073/pnas.1703200114] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The ELISA is the mainstay for sensitive and quantitative detection of protein analytes. Despite its utility, ELISA is time-consuming, resource-intensive, and infrastructure-dependent, limiting its availability in resource-limited regions. Here, we describe a self-contained immunoassay platform (the "D4 assay") that converts the sandwich immunoassay into a point-of-care test (POCT). The D4 assay is fabricated by inkjet printing assay reagents as microarrays on nanoscale polymer brushes on glass chips, so that all reagents are "on-chip," and these chips show durable storage stability without cold storage. The D4 assay can interrogate multiple analytes from a drop of blood, is compatible with a smartphone detector, and displays analytical figures of merit that are comparable to standard laboratory-based ELISA in whole blood. These attributes of the D4 POCT have the potential to democratize access to high-performance immunoassays in resource-limited settings without sacrificing their performance.
Collapse
Affiliation(s)
- Daniel Y Joh
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708
| | - Angus M Hucknall
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708;
| | - Qingshan Wei
- Electrical Engineering and Bioengineering Departments, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA 90095
| | - Kelly A Mason
- Division of Pediatric Endocrinology, Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27705
| | - Margaret L Lund
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708
| | - Cassio M Fontes
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708
| | - Ryan T Hill
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708
| | - Rebecca Blair
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708
| | - Zackary Zimmers
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708
| | - Rohan K Achar
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708
| | - Derek Tseng
- Electrical Engineering and Bioengineering Departments, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA 90095
| | - Raluca Gordan
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708
| | - Michael Freemark
- Division of Pediatric Endocrinology, Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27705
| | - Aydogan Ozcan
- Electrical Engineering and Bioengineering Departments, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA 90095
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708;
| |
Collapse
|
22
|
Analytical Tools to Improve Optimization Procedures for Lateral Flow Assays. Diagnostics (Basel) 2017; 7:diagnostics7020029. [PMID: 28555034 PMCID: PMC5489949 DOI: 10.3390/diagnostics7020029] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/20/2017] [Accepted: 05/24/2017] [Indexed: 01/01/2023] Open
Abstract
Immunochromatographic or lateral flow assays (LFAs) are inexpensive, easy to use, point-of-care medical diagnostic tests that are found in arenas ranging from a doctor’s office in Manhattan to a rural medical clinic in low resource settings. The simplicity in the LFA itself belies the complex task of optimization required to make the test sensitive, rapid and easy to use. Currently, the manufacturers develop LFAs by empirical optimization of material components (e.g., analytical membranes, conjugate pads and sample pads), biological reagents (e.g., antibodies, blocking reagents and buffers) and the design of delivery geometry. In this paper, we will review conventional optimization and then focus on the latter and outline analytical tools, such as dynamic light scattering and optical biosensors, as well as methods, such as microfluidic flow design and mechanistic models. We are applying these tools to find non-obvious optima of lateral flow assays for improved sensitivity, specificity and manufacturing robustness.
Collapse
|
23
|
Anderson CE, Shah KG, Yager P. Sensitive Protein Detection and Quantification in Paper-Based Microfluidics for the Point of Care. Methods Enzymol 2017; 589:383-411. [PMID: 28336071 DOI: 10.1016/bs.mie.2017.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The design of appropriate diagnostic assays for the point of care requires development of suitable biosensors, detection methods, and diagnostic platforms for sensitive, quantitative detection of biological analytes. Protein targets in particular are especially challenging to detect quantitatively and sensitively due to the lack of amplification strategies akin to nucleic acid amplification. However, recent advances in transducer and biosensor design, new detection labels, and paper-based microfluidics may realize the goal of sensitive, fast, portable, and low-cost protein detection. In this review, we discuss the biochemistry, optics, and engineering advances that may be leveraged to design such a sensitive protein diagnostic assay. The binding kinetics, mechanisms of binding in porous networks, and potential transducers are explained in detail. We discuss the relative merits of various optical detection strategies, potential detection labels, optical readout approaches, and image-processing techniques that are amenable to point-of-care use. To conclude, we present a systematic analysis of potential approaches to enhance the sensitivity of paper-based assays. The assay development framework presented here provides bioassay developers a strategy to methodically enhance the sensitivity and point-of-care suitability of protein diagnostics.
Collapse
Affiliation(s)
| | - Kamal G Shah
- University of Washington, Seattle, WA, United States
| | - Paul Yager
- University of Washington, Seattle, WA, United States.
| |
Collapse
|
24
|
Sharma S, Crawley A, O'Kennedy R. Strategies for overcoming challenges for decentralised diagnostics in resource-limited and catastrophe settings. Expert Rev Mol Diagn 2017; 17:109-118. [PMID: 28010145 DOI: 10.1080/14737159.2017.1273773] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Globally, both communicable and non-communicable diseases pose a serious threat to populations in developed as well as developing countries. Access to reliable diagnostic testing along with qualified health practitioners is severely limited in low resource and very remote areas and following natural catastrophes. Areas covered: This paper provides an overview of the challenges involved and suggests strategies to address them. The emergence of more robust, user-friendly, cost-effective and 'sample-to-result' point-of-care (POC) tools, along with the proliferation of mobile technologies, may provide a practical approach in addressing some of the challenges. Expert commentary: The successful implementation of POC testing requires the availability of versatile diagnostic technologies, improved platforms and back-up infrastructure, successful leveraging of human resources through training and, finally, engagement/coordination of associated stakeholders, including public health agencies, diagnostics companies, healthcare practitioners and local rural authorities.
Collapse
Affiliation(s)
- Shikha Sharma
- a School of Biotechnology , Dublin City University , Dublin 9 , Ireland.,b Biomedical Diagnostics Institute , Dublin City University , Dublin 9 , Ireland
| | - Aoife Crawley
- a School of Biotechnology , Dublin City University , Dublin 9 , Ireland
| | - Richard O'Kennedy
- a School of Biotechnology , Dublin City University , Dublin 9 , Ireland.,b Biomedical Diagnostics Institute , Dublin City University , Dublin 9 , Ireland
| |
Collapse
|