1
|
Relox PE, Israel KAC, Hiruta Y, Citterio D. Lateral flow immunoassay device to detect staphylococcal enterotoxin B (SEB) in durian candy. ANAL SCI 2024:10.1007/s44211-024-00665-w. [PMID: 39271599 DOI: 10.1007/s44211-024-00665-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024]
Abstract
Staphylococcal enterotoxin B (SEB), a potent enterotoxin produced by Staphylococcus aureus, has been implicated in incidences of Staphylococcal food poisoning in the Philippines. The use of lateral flow immunoassay devices to detect this toxin in solid food samples, like durian candy, at the point of sampling is constrained by the requirement for sample purification (e.g. centrifugation). This problem is also true with the other applications of LFIA devices on food samples. To overcome this challenge, a lateral flow immunoassay (LFIA) device capable of detecting SEB in unpurified durian candy sample was developed in this study. A modified LFIA device was assembled with three layers of glass fiber pads functioning as sample pads instead of a conventional cellulose fiber pad. Unlike with the cellulose fiber pad, the glass fiber sample pads acted as filter and allowed the flow of a 1:5 dilution of durian candy. The LFIA device applied to spiked 1:5 diluted durian candy samples achieved a visual limit of detection of 5 ng/mL for SEB, which is twofold lower than reported for previous LFIA devices designed to detect SEB in food samples.
Collapse
Affiliation(s)
- Paquito E Relox
- Institute of Aquatic and Applied Sciences, Davao del Norte State College, Davao del Norte, Panabo, Philippines
| | - Katherine Ann C Israel
- Institute of Food Science and Technology, College of Agriculture and Food Science, University of the Philippines Los Baños, Laguna, Philippines
| | - Yuki Hiruta
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama, Kanagawa, 2238522, Japan
| | - Daniel Citterio
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama, Kanagawa, 2238522, Japan.
| |
Collapse
|
2
|
Chen T, Sun C, Abbas SC, Alam N, Qiang S, Tian X, Fu C, Zhang H, Xia Y, Liu L, Ni Y, Jiang X. Multi-dimensional microfluidic paper-based analytical devices (μPADs) for noninvasive testing: A review of structural design and applications. Anal Chim Acta 2024; 1321:342877. [PMID: 39155092 DOI: 10.1016/j.aca.2024.342877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 08/20/2024]
Abstract
The rapid emergence of microfluidic paper-based devices as point-of-care testing (POCT) tools for early disease diagnosis and health monitoring, particularly in resource-limited areas, holds immense potential for enhancing healthcare accessibility. Leveraging the numerous advantages of paper, such as capillary-driven flow, porous structure, hydrophilic functional groups, biodegradability, cost-effectiveness, and flexibility, it has become a pivotal choice for microfluidic substrates. The repertoire of microfluidic paper-based devices includes one-dimensional lateral flow assays (1D LFAs), two-dimensional microfluidic paper-based analytical devices (2D μPADs), and three-dimensional (3D) μPADs. In this comprehensive review, we provide and examine crucial information related to paper substrates, design strategies, and detection methods in multi-dimensional microfluidic paper-based devices. We also investigate potential applications of microfluidic paper-based devices for detecting viruses, metabolites and hormones in non-invasive samples such as human saliva, sweat and urine. Additionally, we delve into capillary-driven flow alternative theoretical models of fluids within the paper to provide guidance. Finally, we critically examine the potential for future developments and address challenges for multi-dimensional microfluidic paper-based devices in advancing noninvasive early diagnosis and health monitoring. This article showcases their transformative impact on healthcare, paving the way for enhanced medical services worldwide.
Collapse
Affiliation(s)
- Ting Chen
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Ce Sun
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Syed Comail Abbas
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada; Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA
| | - Nur Alam
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Sheng Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Xiuzhi Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Chenglong Fu
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Hui Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Yuanyuan Xia
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Liu Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Yonghao Ni
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada; Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA.
| | - Xue Jiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
3
|
Ma Z, Guo J, Jiang L, Zhao S. Lateral flow immunoassay (LFIA) for dengue diagnosis: Recent progress and prospect. Talanta 2024; 267:125268. [PMID: 37813013 DOI: 10.1016/j.talanta.2023.125268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/22/2023] [Accepted: 10/01/2023] [Indexed: 10/11/2023]
Abstract
Dengue is one of the most widespread and fatal arboviral infections in the world. Early detection of dengue virus (DENV) is essential to prevent the spread of the disease and provide an immediate response. The lateral flow immunoassay (LFIA) systems are low-cost, rapid, sensitive, targeted, and straightforward detection, which is an ideal early detection candidate for point-of-care testing (POCT) in dengue-affected areas. However, current commercial LFIA kits cannot fully satisfy the sensitivity, specificity, serotype differentiation, and multiplex detection requirements. Therefore, various strategies have been applied to optimize the LFIA for DENV detection, including label material improvement, optical enhancement and novel structure design. In this review, we comprehensively presented the snapshot of dengue, the principle of LFIA, and recent progress in the LFIA optimization for dengue diagnoses. Furthermore, this review also discusses insights into the prospect of LFIA dengue diagnostic methods, such as microfluidics, multiplex design, nucleic acid-typed probes and smartphone-assisted result analysis.
Collapse
Affiliation(s)
- Ziting Ma
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China
| | - Jinnian Guo
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China
| | - Lu Jiang
- Department of Biomedical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
4
|
Diep Trinh TN, Trinh KTL, Lee NY. Microfluidic advances in food safety control. Food Res Int 2024; 176:113799. [PMID: 38163712 DOI: 10.1016/j.foodres.2023.113799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Food contamination is a global concern, particularly in developing countries. Two main types of food contaminants-chemical and biological-are common problems that threaten human health. Therefore, rapid and accurate detection methods are required to address the threat of food contamination. Conventional methods employed to detect these two types of food contaminants have several limitations, including high costs and long analysis time. Alternatively, microfluidic technology, which allows for simple, rapid, and on-site testing, can enable us to control food safety in a timely, cost-effective, simple, and accurate manner. This review summarizes advances in microfluidic approaches to detect contaminants in food. Different detection methods have been applied to microfluidic platforms to identify two main types of contaminants: chemical and biological. For chemical contaminant control, the application of microfluidic approaches for detecting heavy metals, pesticides, antibiotic residues, and other contaminants in food samples is reviewed. Different methods including enzymatic, chemical-based, immunoassay-based, molecular-based, and electrochemical methods for chemical contaminant detection are discussed based on their working principle, the integration in microfluidic platforms, advantages, and limitations. Microfluidic approaches for foodborne pathogen detection, from sample preparation to final detection, are reviewed to identify foodborne pathogens. Common methods for foodborne pathogens screening, namely immunoassay, nucleic acid amplification methods, and other methods are listed and discussed; highlighted examples of recent studies are also reviewed. Challenges and future trends that could be employed in microfluidic design and fabrication process to address the existing limitations for food safety control are also covered. Microfluidic technology is a promising tool for food safety control with high efficiency and applicability. Miniaturization, portability, low cost, and samples and reagents saving make microfluidic devices an ideal choice for on-site detection, especially in low-resource areas. Despite many advantages of microfluidic technology, the wide manufacturing of microfluidic devices still demands intensive studies to be conducted for user-friendly and accurate food safety control. Introduction of recent advances of microfluidic devices will build a comprehensive understanding of the technology and offer comparative analysis for future studies and on-site application.
Collapse
Affiliation(s)
- Thi Ngoc Diep Trinh
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Viet Nam
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
5
|
Panferov VG, Zherdev AV, Dzantiev BB. Post-Assay Chemical Enhancement for Highly Sensitive Lateral Flow Immunoassays: A Critical Review. BIOSENSORS 2023; 13:866. [PMID: 37754100 PMCID: PMC10526817 DOI: 10.3390/bios13090866] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
Lateral flow immunoassay (LFIA) has found a broad application for testing in point-of-care (POC) settings. LFIA is performed using test strips-fully integrated multimembrane assemblies containing all reagents for assay performance. Migration of liquid sample along the test strip initiates the formation of labeled immunocomplexes, which are detected visually or instrumentally. The tradeoff of LFIA's rapidity and user-friendliness is its relatively low sensitivity (high limit of detection), which restricts its applicability for detecting low-abundant targets. An increase in LFIA's sensitivity has attracted many efforts and is often considered one of the primary directions in developing immunochemical POC assays. Post-assay enhancements based on chemical reactions facilitate high sensitivity. In this critical review, we explain the performance of post-assay chemical enhancements, discuss their advantages, limitations, compared limit of detection (LOD) improvements, and required time for the enhancement procedures. We raise concerns about the performance of enhanced LFIA and discuss the bottlenecks in the existing experiments. Finally, we suggest the experimental workflow for step-by-step development and validation of enhanced LFIA. This review summarizes the state-of-art of LFIA with chemical enhancement, offers ways to overcome existing limitations, and discusses future outlooks for highly sensitive testing in POC conditions.
Collapse
Affiliation(s)
- Vasily G. Panferov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.G.P.); (A.V.Z.)
- Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.G.P.); (A.V.Z.)
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.G.P.); (A.V.Z.)
| |
Collapse
|
6
|
Jena S, Gaur D, Dubey NC, Tripathi BP. Advances in paper based isothermal nucleic acid amplification tests for water-related infectious diseases. Int J Biol Macromol 2023:125089. [PMID: 37245760 DOI: 10.1016/j.ijbiomac.2023.125089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/14/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Water-associated or water-related infectious disease outbreaks are caused by pathogens such as bacteria, viruses, and protozoa, which can be transmitted through contaminated water sources, poor sanitation practices, or insect vectors. Low- and middle-income countries bear the major burden of these infections due to inadequate hygiene and subpar laboratory facilities, making it challenging to monitor and detect infections in a timely manner. However, even developed countries are not immune to these diseases, as inadequate wastewater management and contaminated drinking water supplies can also contribute to disease outbreaks. Nucleic acid amplification tests have proven to be effective for early disease intervention and surveillance of both new and existing diseases. In recent years, paper-based diagnostic devices have made significant progress and become an essential tool in detecting and managing water-associated diseases. In this review, we highlight the importance of paper and its variants as a diagnostic tool and discuss the properties, design modifications, and various paper-based device formats developed and used for detecting water-associated pathogens.
Collapse
Affiliation(s)
- Saikrushna Jena
- Department of Materials Science & Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Divya Gaur
- Department of Materials Science & Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Nidhi C Dubey
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Bijay P Tripathi
- Department of Materials Science & Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
7
|
Tay DMY, Kim S, Hao Y, Yee EH, Jia H, Vleck SM, Chilekwa M, Voldman J, Sikes HD. Accelerating the optimization of vertical flow assay performance guided by a rational systematic model-based approach. Biosens Bioelectron 2023; 222:114977. [PMID: 36516633 DOI: 10.1016/j.bios.2022.114977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Rapid diagnostic tests (RDTs) have shown to be instrumental in healthcare and disease control. However, they have been plagued by many inefficiencies in the laborious empirical development and optimization process for the attainment of clinically relevant sensitivity. While various studies have sought to model paper-based RDTs, most have relied on continuum-based models that are not necessarily applicable to all operation regimes, and have solely focused on predicting the specific interactions between the antigen and binders. It is also unclear how the model predictions may be utilized for optimizing assay performance. Here, we propose a streamlined and simplified model-based framework, only relying on calibration with a minimal experimental dataset, for the acceleration of assay optimization. We show that our models are capable of recapitulating experimental data across different formats and antigen-binder-matrix combinations. By predicting signals due to both specific and background interactions, our facile approach enables the estimation of several pertinent assay performance metrics such as limit-of-detection, sensitivity, signal-to-noise ratio and difference. We believe that our proposed workflow would be a valuable addition to the toolset of any assay developer, regardless of the amount of resources they have in their arsenal, and aid assay optimization at any stage in their assay development process.
Collapse
Affiliation(s)
- Dousabel M Y Tay
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Microsystems Technology Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Seunghyeon Kim
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yining Hao
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Emma H Yee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Huan Jia
- Antimicrobial Resistance Integrated Research Group, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore, 138602, Singapore
| | - Sydney M Vleck
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Makaya Chilekwa
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Joel Voldman
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Microsystems Technology Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hadley D Sikes
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Antimicrobial Resistance Integrated Research Group, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore, 138602, Singapore.
| |
Collapse
|
8
|
Quantitative Detection of Mastitis Factor IL-6 in Dairy Cow Using the SERS Improved Immunofiltration Assay. NANOMATERIALS 2022; 12:nano12071091. [PMID: 35407209 PMCID: PMC9000223 DOI: 10.3390/nano12071091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023]
Abstract
Interleukin-6 (IL-6) is generally used as a biomarker for the evaluation of inflammatory infection in humans and animals. However, there is no approach for the on-site and rapid detection of IL-6 for the monitoring of mastitis in dairy farm scenarios. A rapid and highly sensitive surface enhanced Raman scattering (SERS) immunofiltration assay (IFA) for IL-6 detection was developed in the present study. In this assay, a high sensitivity gold core silver shell SERS nanotag with Raman molecule 4-mercaptobenzoic acid (4-MBA) embedded into the gap was fabricated for labelling. Through the immuno-specific combination of the antigen and antibody, antibody conjugated SERS nanotags were captured on the test zone, which facilitated the SERS measurement. The quantitation of IL-6 was performed by the readout Raman signal in the test region. The results showed that the detection limit (LOD) of IL-6 in milk was 0.35 pg mL−1, which was far below the threshold value of 254.32 pg mL−1. The recovery of the spiking experiment was 87.0–102.7%, with coefficients of variation below 9.0% demonstrating high assay accuracy and precision. We believe the immunosensor developed in the current study could be a promising tool for the rapid assessment of mastitis by detecting milk IL-6 in dairy cows. Moreover, this versatile immunosensor could also be applied for the detection of a wide range of analytes in dairy cow healthy monitoring.
Collapse
|
9
|
Thangavelu RM, Kadirvel N, Balasubramaniam P, Viswanathan R. Ultrasensitive nano-gold labelled, duplex lateral flow immunochromatographic assay for early detection of sugarcane mosaic viruses. Sci Rep 2022; 12:4144. [PMID: 35264671 PMCID: PMC8907228 DOI: 10.1038/s41598-022-07950-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/17/2022] [Indexed: 02/08/2023] Open
Abstract
Sugarcane is one of the important food and bioenergy crops, cultivated all over the world except European continent. Like many other crops, sugarcane production and quality are hampered by various plant pathogens, among them viruses that infect systemically and cause severe impact to cane growth. The viruses are efficiently managed by their elimination through tissue culture combined with molecular diagnostics, which could detect virus titre often low at 10-12 g mL-1. To harmonize the virus diagnostics by molecular methods, we established a nanocatalysis-based high sensitive lateral flow immunochromatographic assay (LFIA) simultaneously to detect two major sugarcane viruses associated with mosaic disease in sugarcane. LFIA is known for poor sensitivity and stability with its signalling conjugates. However, we synthesized positively charged Cysteamine-gold nanoparticles and used them to prepare highly stable to sensitive immunoconjugates and as a colourimetric detection label. Further nanogold signal enhancement was performed on LFIA to obtain a high detection sensitivity, which is higher than the conventional immunoassays. The linear detection range of the nano-LIFA was 10-6 to 10-9 g mL-1, and with the signal enhancement, the LOD reached up to 10-12 g ml-1. This research paper provides relative merits and advancement on nano-LFIA for specific detection of sugarcane viruses in sugarcane for the first time.
Collapse
Affiliation(s)
| | - Nithya Kadirvel
- Plant Pathology Section, Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Coimbatore, 641 007, India
| | | | - Rasappa Viswanathan
- Plant Pathology Section, Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Coimbatore, 641 007, India.
| |
Collapse
|
10
|
Wang E, Guo Z, Tang R, Lo YH. Using airflow-driven, evaporative gradients to improve sensitivity and fluid control in colorimetric paper-based assays. LAB ON A CHIP 2021; 21:4249-4261. [PMID: 34608465 DOI: 10.1039/d1lc00542a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microfluidic paper-based analytical devices (μPADs) are foundational devices for point-of-care testing, yet suffer from limitations in regards to their sensitivity and capability in handling complex assays. Here, we demonstrate an airflow-based, evaporative method that is capable of manipulating fluid flows within paper membranes to offer new functionalities for multistep delivery of reagents and improve the sensitivity of μPADs by 100-1000 times. This method applies an air-jet to a pre-wetted membrane, generating an evaporative gradient such that any solutes become enriched underneath the air-jet spot. By controlling the lateral position of this spot, the solutes in the paper strip are enriched and follow the air jet trajectory, driving the reactions and enhancing visualization for colorimetric readout in multistep assays. The technique has been successfully applied to drive the sequential delivery in multistep immunoassays as well as improve sensitivity for colorimetric detection assays for nucleic acids and proteins via loop-mediated isothermal amplification (LAMP) and ELISA. For colorimetric LAMP detection of the COVID-19 genome, enrichment of the solution on paper could enhance the contrast of the dye in order to more clearly distinguish between the positive and negative results to achieve a sensitivity of 3 copies of SARS-Cov-2 RNAs. For ELISA, enrichment of the oxidized TMB substrate yielded a sensitivity increase of two-to-three orders of magnitude when compared to non-enriched samples - having a limit of detection of around 200 fM for IgG. Therefore, this enrichment method represents a simple process that can be easily integrated into existing detection assays for controlling fluid flows and improving detection of biomarkers on paper.
Collapse
Affiliation(s)
- Edward Wang
- Department of Aerospace and Mechanical Engineering, Materials Science and Engineering Program, UC-San Diego, San Diego, USA.
| | - Zhilin Guo
- Department of Aerospace and Mechanical Engineering, Materials Science and Engineering Program, UC-San Diego, San Diego, USA.
| | - Rui Tang
- Department of Electrical and Computer Engineering, UC-San Diego, San Diego, USA
| | - Yu-Hwa Lo
- Department of Aerospace and Mechanical Engineering, Materials Science and Engineering Program, UC-San Diego, San Diego, USA.
- Department of Electrical and Computer Engineering, UC-San Diego, San Diego, USA
| |
Collapse
|
11
|
Yao L, Xu J, Cheng J, Yao B, Zheng L, Liu G, Chen W. Simultaneous and accurate screening of multiple genetically modified organism (GMO) components in food on the same test line of SERS-integrated lateral flow strip. Food Chem 2021; 366:130595. [PMID: 34298393 DOI: 10.1016/j.foodchem.2021.130595] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/14/2021] [Accepted: 07/11/2021] [Indexed: 01/17/2023]
Abstract
Herein, a surface-enhanced Raman scattering (SERS)-integrated LFS platform was developed for rapid and simultaneous screening of multiple genetically modified organism (GMO) components (promoter, codon, and terminator) in soybean. Research demonstrated that, on the same test line (T line) of single LFS, three different GMP components can be well distinguished with the help of three SERS nano tags. Good linear correlations between SERS signal and concentration of each GMO component were also obtained for quantitative analysis. Of greater importance, whether these multiple analytes coexisted or not, varied in the same concentration trend or not, these multiple GMP components can be rapidly (15 min) and accurately screened with satisfied sensitivity and specificity by decoding the signals on the same T line. We envision that this decoding platform can further improve the potential of LFS and SERS for practical applications and provide a promising alternative for multiple screening of GMO identification in food.
Collapse
Affiliation(s)
- Li Yao
- Engineering Research Center of Bioprocess, MOE, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China; Research Center for Biomedical and Health Science, School of Life and Health, Anhui Science & Technology University, Fengyang 233100, China
| | - Jianguo Xu
- Engineering Research Center of Bioprocess, MOE, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jigui Cheng
- Engineering Research Center of Bioprocess, MOE, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Bangben Yao
- Engineering Research Center of Bioprocess, MOE, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Province Institute of Product Quality Supervision & Inspection, Hefei 230051, China
| | - Lei Zheng
- Engineering Research Center of Bioprocess, MOE, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Guodong Liu
- Research Center for Biomedical and Health Science, School of Life and Health, Anhui Science & Technology University, Fengyang 233100, China.
| | - Wei Chen
- Engineering Research Center of Bioprocess, MOE, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China; Intelligent Manufacturing Institute of Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
12
|
Han X, Liu Y, Yin J, Yue M, Mu Y. Microfluidic devices for multiplexed detection of foodborne pathogens. Food Res Int 2021; 143:110246. [PMID: 33992358 DOI: 10.1016/j.foodres.2021.110246] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/02/2021] [Accepted: 02/16/2021] [Indexed: 01/10/2023]
Abstract
The global burden of foodborne diseases is substantial and foodborne pathogens are the major cause for human illnesses. In order to prevent the spread of foodborne pathogens, detection methods are constantly being updated towards rapid, portable, inexpensive, and multiplexed on-site detection. Due to the nature of the small size and low volume, microfluidics has been applied to rapid, time-saving, sensitive, and portable devices to meet the requirements of on-site detection. Simultaneous detection of multiple pathogens is another key parameter to ensure food safety. Multiplexed detection technology, including microfluidic chip design, offers a new opportunity to achieve this goal. In this review, we introduced several sample preparation and corresponding detection methods on microfluidic devices for multiplexed detection of foodborne pathogens. In the sample preparation section, methods of cell capture and enrichment, as well as nucleic acid sample preparation, were described in detail, and in the section of detection methods, amplification, immunoassay, surface plasmon resonance and impedance spectroscopy were exhaustively illustrated. The limitations and advantages of all available experimental options were also summarized and discussed in order to form a comprehensive understanding of cutting-edge technologies and provide a comparative assessment for future investigation and in-field application.
Collapse
Affiliation(s)
- Xiaoying Han
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310023, PR China; College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yuanhui Liu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310023, PR China; College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Juxin Yin
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310023, PR China
| | - Min Yue
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China; Hainan Institute of Zhejiang University, Sanya 572025, PR China.
| | - Ying Mu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310023, PR China.
| |
Collapse
|
13
|
Scholz F, Rüttinger L, Heckmann T, Freund L, Gad AM, Fischer T, Gütter A, Söffing HH. Carboxyl functionalized gold nanorods for sensitive visual detection of biomolecules. Biosens Bioelectron 2020; 164:112324. [DOI: 10.1016/j.bios.2020.112324] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 01/28/2023]
|
14
|
Wu Q, Song Q, Wang X, Yao L, Xu J, Lu J, Liu G, Chen W. Simultaneous Detection of Multiple β-Adrenergic Agonists with 2-Directional Lateral Flow Strip Platform. ANAL SCI 2020; 36:653-657. [PMID: 31656246 DOI: 10.2116/analsci.19p218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 10/15/2019] [Indexed: 08/09/2023]
Abstract
Clenbuterol (CL), salbutamol (SAL) and ractopamine (RAC) are the three common β-adrenergic agonists, which are the main hazards in food safety and affect human health through the food chain. A convenient and efficient method is urgently required to perform on-site detection of multiple β-adrenergic agonists to avoid frequent poisoning incidents. In this paper, a 2-directional lateral flow strip technique (2-directional LFS) is developed for rapid and simultaneous detection of CL, SAL and RAC with single sampling. Compared to the conventional lateral flow strip, this 2-directional LFS technique can realize simultaneous detection of three or more target analytes without any change of intrinsic simplicity of LFS. Furthermore, this 2-directional LFS can effectively avoid the potential intrinsic cross-reactivity among the reagents to analogues. Under the optimized conditions, CL, SAL and RAC were all successfully determined with satisfactory results in both buffer and urine samples with the detection limit as low as 0.5 ng/mL. This 2-directional LFS technique can revolutionize the commercial single-analyte LFS products and can effectively widen the applications of the classic LFS in various fields.
Collapse
Affiliation(s)
- Qian Wu
- Engineering Research Center of Bio-process, MOE, School of Food Science & Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Qing Song
- Engineering Research Center of Bio-process, MOE, School of Food Science & Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xinxin Wang
- Engineering Research Center of Bio-process, MOE, School of Food Science & Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Li Yao
- Engineering Research Center of Bio-process, MOE, School of Food Science & Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jianguo Xu
- Engineering Research Center of Bio-process, MOE, School of Food Science & Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jianfeng Lu
- Engineering Research Center of Bio-process, MOE, School of Food Science & Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Guodong Liu
- Research Center for Biomedical and Health Science, School of Life and Health, Anhui Science & Technology University, Fengyang, 233100, China.
| | - Wei Chen
- Engineering Research Center of Bio-process, MOE, School of Food Science & Engineering, Hefei University of Technology, Hefei, 230009, China.
- Research Center for Biomedical and Health Science, School of Life and Health, Anhui Science & Technology University, Fengyang, 233100, China.
| |
Collapse
|
15
|
Kim TH, Hahn YK, Kim MS. Recent Advances of Fluid Manipulation Technologies in Microfluidic Paper-Based Analytical Devices (μPADs) toward Multi-Step Assays. MICROMACHINES 2020; 11:mi11030269. [PMID: 32143468 PMCID: PMC7142896 DOI: 10.3390/mi11030269] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022]
Abstract
Microfluidic paper-based analytical devices (μPADs) have been suggested as alternatives for developing countries with suboptimal medical conditions because of their low diagnostic cost, high portability, and disposable characteristics. Recently, paper-based diagnostic devices enabling multi-step assays have been drawing attention, as they allow complicated tests, such as enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR), which were previously only conducted in the laboratory, to be performed on-site. In addition, user convenience and price of paper-based diagnostic devices are other competitive points over other point-of-care testing (POCT) devices, which are more critical in developing countries. Fluid manipulation technologies in paper play a key role in realizing multi-step assays via μPADs, and the expansion of biochemical applications will provide developing countries with more medical benefits. Therefore, we herein aimed to investigate recent fluid manipulation technologies utilized in paper-based devices and to introduce various approaches adopting several principles to control fluids on papers. Fluid manipulation technologies are classified into passive and active methods. While passive valves are structurally simple and easy to fabricate, they are difficult to control in terms of flow at a specific spatiotemporal condition. On the contrary, active valves are more complicated and mostly require external systems, but they provide much freedom of fluid manipulation and programmable operation. Both technologies have been revolutionized in the way to compensate for their limitations, and their advances will lead to improved performance of μPADs, increasing the level of healthcare around the world.
Collapse
Affiliation(s)
| | - Young Ki Hahn
- Biomedical Convergence Science & Technology, Industrial Technology Advances, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Korea
- Correspondence: (Y.K.H.); (M.S.K.); Tel.: +82-53-950-2338 (Y.K.H.); +82-53-785-1740 (M.S.K.)
| | - Minseok S. Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333 Techno jungang-daero, Daegu 42988, Korea
- Correspondence: (Y.K.H.); (M.S.K.); Tel.: +82-53-950-2338 (Y.K.H.); +82-53-785-1740 (M.S.K.)
| |
Collapse
|
16
|
He T, Li J, Liu L, Ge S, Yan M, Liu H, Yu J. Origami-based “Book” shaped three-dimensional electrochemical paper microdevice for sample-to-answer detection of pathogens. RSC Adv 2020; 10:25808-25816. [PMID: 35518615 PMCID: PMC9055359 DOI: 10.1039/d0ra03833d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/21/2020] [Indexed: 01/14/2023] Open
Abstract
Herein, an ease-of-use and highly sensitive origami-based “book” shaped three-dimensional electrochemical paper microdevice based on nucleic acid testing (NAT) methodology was developed for sample-to-answer detection of pathogens from whole blood and food samples. The whole steps of NAT, including sample preparation, amplification and detection, were performed by alternately folding the panels of the microdevice, just like flipping a book. The screen-printing electrodes were combined with wax-printing technology to construct a paper-based electrochemical unit to monitor Loop-mediated isothermal amplification (LAMP) reaction with an electrochemical strategy. After nucleic acid extraction and purification with the glass fiber, the LAMP reaction was performed for 45 min to amplify the extracted nucleic acid sequence, followed by the execution of the electrochemical interrogation reaction based on methylene blue (MB) and double-stranded LAMP amplicons. Starting with whole blood and food samples spiked with Salmonella typhimurium, this microdevice was successfully applied to identify pathogens from biological samples with satisfactory sensitivity and specificity. Therefore, the proposed origami-based “book” shaped three-dimensional paper microdevice has great potential for disease diagnosis, food safety analysis applications in the future. Herein, an ease-of-use and highly sensitive origami-based “book” shaped three-dimensional electrochemical paper microdevice based on nucleic acid testing (NAT) methodology was developed for sample-to-answer detection of pathogens from whole blood and food samples.![]()
Collapse
Affiliation(s)
- Tao He
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong
- Institute for Advanced Interdisciplinary Research (IAIR)
- University of Jinan
- Jinan 250022
- P. R. China
| | - Jingwen Li
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong
- Institute for Advanced Interdisciplinary Research (IAIR)
- University of Jinan
- Jinan 250022
- P. R. China
| | - Lisheng Liu
- Key Laboratory of Animal Resistance Research
- College of Life Science
- Shandong Normal University
- Jinan
- P. R. China
| | - Shenguang Ge
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong
- Institute for Advanced Interdisciplinary Research (IAIR)
- University of Jinan
- Jinan 250022
- P. R. China
| | - Mei Yan
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong
- Institute for Advanced Interdisciplinary Research (IAIR)
- University of Jinan
- Jinan 250022
- P. R. China
| | - Haiyun Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong
- Institute for Advanced Interdisciplinary Research (IAIR)
- University of Jinan
- Jinan 250022
- P. R. China
| | - Jinghua Yu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong
- Institute for Advanced Interdisciplinary Research (IAIR)
- University of Jinan
- Jinan 250022
- P. R. China
| |
Collapse
|
17
|
Abstract
Lateral flow test strips (LFTSs) are particularly attractive for assaying targets due to their ability for fast response, simple equipment, portability, and straightforward signal readout. In this work, we describe a rapid and sensitive "off-on" LFTS for point-of-care testing of glutathione (GSH) based on fluorescent quantum dots. Under the optimal conditions, a good linear relationship from 0.1 to 15 μM with a detection limit of 25 nM was obtained, and the whole process was accomplished within 10 min. In addition, this proposed LFTS was successfully used to detect GSH in HeLa cells extract.
Collapse
|
18
|
Huang Y, Xu T, Wang W, Wen Y, Li K, Qian L, Zhang X, Liu G. Lateral flow biosensors based on the use of micro- and nanomaterials: a review on recent developments. Mikrochim Acta 2019; 187:70. [PMID: 31853644 DOI: 10.1007/s00604-019-3822-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/12/2019] [Indexed: 12/25/2022]
Abstract
This review (with 187 refs.) summarizes the progress that has been made in the design of lateral flow biosensors (LFBs) based on the use of micro- and nano-materials. Following a short introduction into the field, a first section covers features related to the design of LFBs, with subsections on strip-based, cotton thread-based and vertical flow- and syringe-based LFBs. The next chapter summarizes methods for sample pretreatment, from simple method to membrane-based methods, pretreatment by magnetic methods to device-integrated sample preparation. Advances in flow control are treated next, with subsections on cross-flow strategies, delayed and controlled release and various other strategies. Detection conditionst and mathematical modelling are briefly introduced in the following chapter. A further chapter covers methods for reliability improvement, for example by adding other validation lines or adopting different detection methods. Signal readouts are summarized next, with subsections on color-based, luminescent, smartphone-based and SERS-based methods. A concluding section summarizes the current status and addresses challenges in future perspectives. Graphical abstractRecent development and breakthrough points of lateral flow biosensors.
Collapse
Affiliation(s)
- Yan Huang
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China.,Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, People's Republic of China.,Department of Chemistry and biochemistry, North Dakota State University, Fargo, ND, 58105, USA
| | - Tailin Xu
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Wenqian Wang
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Yongqiang Wen
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Kun Li
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, People's Republic of China
| | - Lisheng Qian
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, People's Republic of China.
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China. .,Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, People's Republic of China. .,School of Biomedical Engineering, Shenzhen University Healthy Science Center, Shenzhen, Guangdong, 518060, People's Republic of China.
| | - Guodong Liu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, People's Republic of China. .,Department of Chemistry and biochemistry, North Dakota State University, Fargo, ND, 58105, USA.
| |
Collapse
|
19
|
Mahmoudi T, de la Guardia M, Shirdel B, Mokhtarzadeh A, Baradaran B. Recent advancements in structural improvements of lateral flow assays towards point-of-care testing. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Wu Y, Ren Y, Han L, Yan Y, Jiang H. Three-dimensional paper based platform for automatically running multiple assays in a single step. Talanta 2019; 200:177-185. [PMID: 31036171 DOI: 10.1016/j.talanta.2019.03.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/19/2019] [Accepted: 03/05/2019] [Indexed: 01/19/2023]
Abstract
Paper based assays are paving the way to automated, simplified, robust and cost-effective point of care testing (POCT). We propose a method for fabricating three dimensional (3D) microfluidic paper based analytical devices (μPADs) via combining thin adhesive films and paper folding, which avoids the use of cellulose powders and the complex folding sequence and simultaneously permits assays in several layers. To demonstrate the effectiveness of this approach, a 3DμPADs was designed to conduct more assays on a small footprint, allowing dual colorimetric and electrochemical detections. More importantly, we further developed a 3D platform for implementing automated and multiplexed ELISA in parallel, since ELISA, a routine and standard laboratory method, has rarely been used in practical analyses outside of the laboratory. In this configuration, complex and multistep diagnostic assays can be carried out with the addition of the sample and buffer in a simple fashion. Using Troponin I as model, the device showed a broad dynamic range of detection with a detection limit of 0.35 ng/mL. Thus, the developed platforms allow for various assays to be cost-effectively carried out on a single 3D device, showing great potential in an academic setting and point of care testing under resource-poor conditions.
Collapse
Affiliation(s)
- Yupan Wu
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China
| | - Yukun Ren
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China; State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China.
| | - Lianhuan Han
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China
| | - Yongda Yan
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China; State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China; State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China.
| |
Collapse
|
21
|
Zadehkafi A, Siavashi M, Asiaei S, Bidgoli MR. Simple geometrical modifications for substantial color intensity and detection limit enhancements in lateral-flow immunochromatographic assays. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1110-1111:1-8. [PMID: 30772779 DOI: 10.1016/j.jchromb.2019.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/10/2018] [Accepted: 01/24/2019] [Indexed: 11/27/2022]
Abstract
One of the ongoing challenges in lateral flow Immunochromatographic assays (LFIA), is lowering the limit of detection and enhancing their signal quality, i.e. the color intensity. There are a number of rather costly and complicated processes for this aim, such as the use of functionalized materials/membranes and additional spectroscopic readout units. Nonetheless, there are simple and easy to practice alternatives, to be uncovered by analyzing the essential parameters of immunological reactions. The color intensity of the test line is a function of analytes flow velocity and their reaction rate. Detection pad width and test line position impact the flow velocity and reaction rate kinetics, examined in this paper for the limit of detection (LOD) and test-line color intensity. Firstly, the impact of width on the LOD was examined for human chorionic gonadotropin (pregnancy biomarker). Test line color intensity was measured using five different widths of the detection pad (trapezoidal) and four different test line positions, and the trends observed were explained according to the measured evolution of the velocity along the chromatography paper. With a constant width absorbent pad, LOD was cut by half to 5 mIU/ml by using a narrowing width detection pad, which keeps the wicking velocity higher than normal strips, and compared to them, color intensity increase between 55 and 150%, depending on the concentration. Nevertheless, a widening detection pad might cut the color intensity up to 150%, compared to normal strips, due to a profound decline of the analyte to ligand ratio at the test line. In addition, adequately sending the test line away from the conjugate pad yields the highest possible color intensity, for up to 400% of increase, in lower concentrations and narrowing test pads. However, further distancing the test line downfalls the color intensity.
Collapse
Affiliation(s)
- Ali Zadehkafi
- Sensors and Integrated Bio-Microfluidics/MEMS Lab, School of Mechanical Engineering, Iran University of Science & Technology, Tehran, Iran
| | - Majid Siavashi
- Applied Multi-Phase Fluid Dynamics Lab., School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Sasan Asiaei
- Sensors and Integrated Bio-Microfluidics/MEMS Lab, School of Mechanical Engineering, Iran University of Science & Technology, Tehran, Iran.
| | - Mostafa Rabbani Bidgoli
- Sensors and Integrated Bio-Microfluidics/MEMS Lab, School of Mechanical Engineering, Iran University of Science & Technology, Tehran, Iran
| |
Collapse
|
22
|
Wang C, Peng J, Liu DF, Xing KY, Zhang GG, Huang Z, Cheng S, Zhu FF, Duan ML, Zhang KY, Yuan MF, Lai WH. Lateral flow immunoassay integrated with competitive and sandwich models for the detection of aflatoxin M1 and Escherichia coli O157:H7 in milk. J Dairy Sci 2018; 101:8767-8777. [DOI: 10.3168/jds.2018-14655] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/19/2018] [Indexed: 12/26/2022]
|
23
|
Qi J, Li B, Wang X, Fu L, Luo L, Chen L. Rotational Paper-Based Microfluidic-Chip Device for Multiplexed and Simultaneous Fluorescence Detection of Phenolic Pollutants Based on a Molecular-Imprinting Technique. Anal Chem 2018; 90:11827-11834. [DOI: 10.1021/acs.analchem.8b01291] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ji Qi
- College of Sciences, Shanghai University, Shanghai 200444, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Bowei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Longwen Fu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Liqiang Luo
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
24
|
|
25
|
Shin JH, Hong J, Go H, Park J, Kong M, Ryu S, Kim KP, Roh E, Park JK. Multiplexed Detection of Foodborne Pathogens from Contaminated Lettuces Using a Handheld Multistep Lateral Flow Assay Device. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:290-297. [PMID: 29198101 DOI: 10.1021/acs.jafc.7b03582] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This paper presents a handheld device that is capable of simplifying multistep assays to perform sensitive detection of foodborne pathogens. The device is capable of multiplexed detection of Escherichia coli (E. coli) O157:H7, Salmonella Typhimurium (S. Typhimurium), Staphylococcus aureus, and Bacillus cereus. The limit of detection for each bacterium was characterized, and then, the detection of bacteria from contaminated fresh lettuces was demonstrated for two representative foodborne pathogens. We employed a sample pretreatment protocol to recover and concentrate target bacteria from contaminated lettuces, which can detect 1.87 × 104 CFU of E. coli O157:H7 and 1.47 × 104 CFU of S. Typhimurium/1 g of lettuce without an enrichment process. Lastly, we demonstrated that the limit of detection can be reduced to 1 CFU of E. coli O157:H7 and 1 CFU of S. Typhimurium/1 g of lettuce by including a 6 h enrichment of contaminated lettuces in growth media before pretreatment.
Collapse
Affiliation(s)
- Joong Ho Shin
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| | - Jisoo Hong
- Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration , Wanju-gun 55365, Republic of Korea
| | - Hyeyun Go
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| | - Juhwan Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| | - Minsuk Kong
- Department of Agricultural Biotechnology, Seoul National University , Seoul 08826, Republic of Korea
| | - Sangryeol Ryu
- Department of Agricultural Biotechnology, Seoul National University , Seoul 08826, Republic of Korea
| | - Kwang-Pyo Kim
- Department of Food Science and Technology, Chonbuk National University , Jeonju 54896, Republic of Korea
| | - Eunjung Roh
- Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration , Wanju-gun 55365, Republic of Korea
| | - Je-Kyun Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| |
Collapse
|
26
|
Park M, Hwang CSH, Jeong KH. Nanoplasmonic Alloy of Au/Ag Nanocomposites on Paper Substrate for Biosensing Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:290-295. [PMID: 29220574 DOI: 10.1021/acsami.7b16182] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plasmonic alloy has attracted much interest in tailoring localized surface plasmon resonance (LSPR) for recent biosensing techniques. In particular, paper-based plasmonic substrates allow capillary-driven lateral flow as well as three-dimensional metal nanostructures, and therefore they become actively transferred to LSPR-based biosensing such as surface-enhanced Raman spectroscopy (SERS) or metal-enhanced fluorescence (MEF). However, employing plasmonic alloy nanoislands on heat-sensitive substrate is still challenging, which significantly inhibits broad-range tailoring of the plasmon resonance wavelength (PRW) for superior sensitivity. Here we report paper-based plasmonic substrate with plasmonic alloy of Au/Ag nanocomposites for highly sensitive MEF and SERS biosensing applications. The nanofabrication procedures include concurrent deposition of Au and Ag below 100 °C without any damage on cellulose fibers. The Au/Ag nanocomposites feature nanoplasmonic alloy with single plasmon peak as well as broad-range tunability of PRW by composition control. This paper-based plasmonic alloy substrate enables about twofold enhancement of fluorescence signals and selective MEF after paper chromatography. The experimental results clearly demonstrate extraordinary enhancement in SERS signals for picomolar detection of folic acid as a cancer biomarker. This new method provides huge opportunities for fabricating plasmonic alloy on heat-sensitive substrate and biosensing applications.
Collapse
Affiliation(s)
- Moonseong Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291-Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Charles S H Hwang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291-Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ki-Hun Jeong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291-Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
27
|
Ma C, Liu H, Zhang L, Li H, Yan M, Song X, Yu J. Multiplexed aptasensor for simultaneous detection of carcinoembryonic antigen and mucin-1 based on metal ion electrochemical labels and Ru(NH 3) 63+ electronic wires. Biosens Bioelectron 2017; 99:8-13. [PMID: 28732346 DOI: 10.1016/j.bios.2017.07.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/26/2017] [Accepted: 07/12/2017] [Indexed: 01/24/2023]
Abstract
In this paper, a dual-target electrochemical aptasensor has been developed for simultaneous detection of carcinoembryonic antigen and mucin-1 based on metal ion electrochemical labels and Ru(NH3)63+ electronic wires. When targets are present, the interaction between targets and their respective aptamers leads to the dissociation of double-strand DNA because the targets have higher affinity to its aptamer than the complementary strand. And the qualitative and quantitative analyses of the two targets are realized by the differential pulse voltammetry (DPV) peaks generated by metal ion electrochemical labels. For the effective loading of a large number of metal ions, Au/bovine serum albumin (Au/BSA) nanospheres are employed as carriers to develop Au/BSA-metal ions. After Ru(NH3)63+ complexes are embedded into double-strand DNA to form the electronic wires, the electrical conductivity and the electron transfer of the detection system are greatly improved. The detection limit of the proposed assay was calculated as 3.33fM ranging from 0.01pM to 100nM. Therefore, this novel sensing assay provides a new and sensitive platform for detecting several targets simultaneously in biochemical research and clinical diagnosis.
Collapse
Affiliation(s)
- Chao Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Haiyun Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, China
| | - Hao Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xianrang Song
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan 250117, China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
28
|
Olanrewaju AO, Ng A, DeCorwin-Martin P, Robillard A, Juncker D. Microfluidic Capillaric Circuit for Rapid and Facile Bacteria Detection. Anal Chem 2017; 89:6846-6853. [DOI: 10.1021/acs.analchem.7b01315] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Ayokunle Oluwafemi Olanrewaju
- Biomedical Engineering Department, McGill University, 3775 rue University, Montreal, QC, H3A 2B4, Canada
- Genome Quebec and
McGill
University Innovation Centre, McGill University, 740 Dr Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Andy Ng
- Biomedical Engineering Department, McGill University, 3775 rue University, Montreal, QC, H3A 2B4, Canada
- Genome Quebec and
McGill
University Innovation Centre, McGill University, 740 Dr Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Philippe DeCorwin-Martin
- Biomedical Engineering Department, McGill University, 3775 rue University, Montreal, QC, H3A 2B4, Canada
- Genome Quebec and
McGill
University Innovation Centre, McGill University, 740 Dr Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Alessandra Robillard
- Biomedical Engineering Department, McGill University, 3775 rue University, Montreal, QC, H3A 2B4, Canada
- Genome Quebec and
McGill
University Innovation Centre, McGill University, 740 Dr Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - David Juncker
- Biomedical Engineering Department, McGill University, 3775 rue University, Montreal, QC, H3A 2B4, Canada
- Genome Quebec and
McGill
University Innovation Centre, McGill University, 740 Dr Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| |
Collapse
|