1
|
Nguyen DPL, Le HT, Kim DH, Lee CW, Li J, Lim CW, Kim KP, Kim TW. Enrichment and MALDI-TOF-MS/MS analysis of phosphatidylinositol bisphosphates in brain tissue. Anal Biochem 2025; 698:115749. [PMID: 39719188 DOI: 10.1016/j.ab.2024.115749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 12/26/2024]
Abstract
Triazolium α-cyclodextrin click cluster-magnetic agarose bead conjugate (+CCC-MAB) was used to enrich phosphatidylinositol bisphosphates in brain tissue. The enriched sample was phosphate-methylated and analyzed by MALDI-TOF-MS/MS in positive ion mode. +CCC-MAB effectively removed weak-binding interferences from the phosphoinositide extract and improved the signal-to-noise ratio. The MALDI-TOF-MS/MS fragment ion revealed sodium adducts of polar head groups, exhibiting a converse fragmentation pattern compared to LC-ESI fragmentation. Our +CCC-MAB-based phosphoinositide enrichment method enabled MALDI-TOF-MS/MS to assign 38 peaks in brain tissue and identify two phosphatidylinositol monophosphates, fifteen bisphosphates, and two trisphosphates. To our knowledge, this is the first study to analyze phosphatidylinositol bisphosphates in brain tissue using specific PIP enrichment and phosphate-methylation with MALDI-TOF-MS/MS.
Collapse
Affiliation(s)
- Dinh Phi Long Nguyen
- Dept. of Gerontology (AgeTech-Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Republic of Korea
| | - Hoa Thi Le
- Dept. of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin, Republic of Korea; VNU-Institute of Microbiology and Biotechnology, Vietnam National University, Hanoi, 123105, Viet Nam
| | - Dae Ho Kim
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Chang-Wook Lee
- Dept. of Gerontology (AgeTech-Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Republic of Korea
| | - Jiao Li
- Dept. of Gerontology (AgeTech-Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Republic of Korea
| | - Choon Woo Lim
- Department of Chemistry, College of Life Science and Nano-technology, Hannam University, Daejeon, 34430, Republic of Korea
| | - Kwang Pyo Kim
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Tae Woo Kim
- Dept. of Gerontology (AgeTech-Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Republic of Korea.
| |
Collapse
|
2
|
Griffiths G, Brügger B, Freund C. Lipid switches in the immunological synapse. J Biol Chem 2024; 300:107428. [PMID: 38823638 PMCID: PMC11259711 DOI: 10.1016/j.jbc.2024.107428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/07/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024] Open
Abstract
Adaptive immune responses comprise the activation of T cells by peptide antigens that are presented by proteins of the Major Histocompatibility Complex (MHC) on the surface of an antigen-presenting cell. As a consequence of the T cell receptor interacting productively with a certain peptide-MHC complex, a specialized cell-cell junction known as the immunological synapse forms and is accompanied by changes in the spatiotemporal patterning and function of intracellular signaling molecules. Key modifications occurring at the cytoplasmic leaflet of the plasma and internal membranes in activated T cells comprise lipid switches that affect the binding and distribution of proteins within or near the lipid bilayer. Here, we describe two major classes of lipid switches that act at this critical water/membrane interface. Phosphoinositides are derived from phosphatidylinositol, an amphiphilic molecule that contains two fatty acid chains and a phosphate group that bridges the glycerol backbone to the carbohydrate inositol. The inositol ring can be variably (de-)phosphorylated by dedicated kinases and phosphatases, thereby creating phosphoinositide signatures that define the composition and properties of signaling molecules, molecular complexes, or whole organelles. Palmitoylation refers to the reversible attachment of the fatty acid palmitate to a substrate protein's cysteine residue. DHHC enzymes, named after the four conserved amino acids in their active site, catalyze this post-translational modification and thereby change the distribution of proteins at, between, and within membranes. T cells utilize these two types of molecular switches to adjust their properties to an activation process that requires changes in motility, transport, secretion, and gene expression.
Collapse
Affiliation(s)
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Christian Freund
- Laboratory of Protein Biochemistry, Institute of Chemistry & Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Le HT, Nguyen DPL, Jung GT, Kim E, Yang SH, Lee SM, Lee EA, Jung W, Kim TW, Kim KP. Enrichment and MALDI-TOF MS Analysis of Phosphoinositides in Brain Tissue. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1069-1075. [PMID: 38603805 DOI: 10.1021/jasms.3c00364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Triazolium cyclodextrin click cluster (+CCC) is an ideal scaffold to specifically bind phosphoinositides (PIPs) via multivalent electrostatic interaction. A new enrichment material, triazolium cyclodextrin click cluster-magnetic agarose bead conjugate (+CCC-MAB), was synthesized and applied to the PIP enrichment of brain tissue. The enriched sample was analyzed using MALDI-TOF MS in negative ion mode without any derivatization. The PIP extract of brain tissue is known to contain abundant lipid interferences. By employing magnetic pull-down separation using +CCC-MAB, we effectively removed the weak-binding interferences in the PIP extract, thereby improving the signal-to-noise ratio (S/N) of the PIPs. Our +CCC-MAB-based PIP enrichment enabled us to analyze 16 PIP species in brain tissue. Six species with high S/N were assigned by MS/MS, while the remaining 10 species with low S/N were characterized by an empirical selection guide based on the biological relevance of PIPs. We conclude that +CCC-MAB-based PIP enrichment is a promising MALDI sample preparation method for specific PIP analysis in brain tissue.
Collapse
Affiliation(s)
- Hoa Thi Le
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin 17104, Republic of Korea
- Faculty of Chemical Technology, Hanoi University of Industry, 298 Minh Khai, Bac Tu Liem, Ha Noi 143510, Vietnam
| | - Dinh Phi Long Nguyen
- Department of Gerontology (AgeTech-Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Gun Tae Jung
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eunju Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Seon Hee Yang
- Department of Gerontology (AgeTech-Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Sun Min Lee
- Department of Gerontology (AgeTech-Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eun Ah Lee
- Impedance Imaging Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woong Jung
- Department of Emergency Medicine, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Tae Woo Kim
- Department of Gerontology (AgeTech-Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin 17104, Republic of Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Fabijanczuk KC, Chao HC, Fischer JL, McLuckey SA. Structural elucidation and isomeric differentiation/quantitation of monophosphorylated phosphoinositides using gas-phase ion/ion reactions and dissociation kinetics. Analyst 2022; 147:5000-5010. [PMID: 36254743 PMCID: PMC9651020 DOI: 10.1039/d2an00792d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Phosphoinositides, phosphorylated derivatives of phosphatidylinositols, are essential signaling phospholipids in all mammalian cellular membranes. With three known phosphorylated derivatives of phosphatidylinositols at the 3-, 4-, and 5-positions along the myo-inositol ring, various fatty acyl chain lengths, and varying degrees of unsaturation, numerous isomers can be present. It is challenging for shotgun-MS to accurately identify and characterize phosphoinositides and their isomers using the most readily available precursor ion types. To overcome this challenge, novel gas-phase ion/ion chemistry was used to expand the range of precursor ion-types for subsequent structural characterization of phosphoinositides using shot-gun tandem mass spectrometry. The degree of phosphorylation and fatty acyl sum composition are readily obtained by ion-trap CID of deprotonated phosphoinositides. Carbon-carbon double bond position of the fatty acyl chains can be localized via a charge inversion ion/ion reaction. Utilizing sequential ion/ion reactions and subsequent activation yields product ion information that is of limited utility for phosphorylation site localization. However, the kinetics of dissociation allowed for isomeric differentiation of the position of the phosphate group. Furthermore, employing the same kinetics method, relative quantitative information was gained for the isomeric species.
Collapse
Affiliation(s)
| | - Hsi-Chun Chao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| | - Joshua L Fischer
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| |
Collapse
|
5
|
Barneda D, Janardan V, Niewczas I, Collins DM, Cosulich S, Clark J, Stephens LR, Hawkins PT. Acyl chain selection couples the consumption and synthesis of phosphoinositides. EMBO J 2022; 41:e110038. [PMID: 35771169 PMCID: PMC9475507 DOI: 10.15252/embj.2021110038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
Phosphoinositides (PIPn) in mammalian tissues are enriched in the stearoyl/arachidonoyl acyl chain species ("C38:4"), but its functional significance is unclear. We have used metabolic tracers (isotopologues of inositol, glucose and water) to study PIPn synthesis in cell lines in which this enrichment is preserved to differing relative extents. We show that PIs synthesised from glucose are initially enriched in shorter/more saturated acyl chains, but then rapidly remodelled towards the C38:4 species. PIs are also synthesised by a distinct 're-cycling pathway', which utilises existing precursors and exhibits substantial selectivity for the synthesis of C38:4-PA and -PI. This re-cycling pathway is rapidly stimulated during receptor activation of phospholipase-C, both allowing the retention of the C38:4 backbone and the close coupling of PIPn consumption to its resynthesis, thus maintaining pool sizes. These results suggest that one property of the specific acyl chain composition of PIPn is that of a molecular code, to facilitate 'metabolic channelling' from PIP2 to PI via pools of intermediates (DG, PA and CDP-DG) common to other lipid metabolic pathways.
Collapse
Affiliation(s)
- David Barneda
- Signalling Programme, Babraham Institute, Cambridge, UK.,Projects, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Vishnu Janardan
- Cellular Organization and Signalling, National Centre for Biological Sciences, Bangalore, India
| | | | | | | | | | | | | |
Collapse
|
6
|
Palavicini JP, Chavez-Velazquez A, Fourcaudot M, Tripathy D, Pan M, Norton L, DeFronzo RA, Shannon CE. The Insulin-Sensitizer Pioglitazone Remodels Adipose Tissue Phospholipids in Humans. Front Physiol 2021; 12:784391. [PMID: 34925073 PMCID: PMC8674727 DOI: 10.3389/fphys.2021.784391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
The insulin-sensitizer pioglitazone exerts its cardiometabolic benefits in type 2 diabetes (T2D) through a redistribution of body fat, from ectopic and visceral areas to subcutaneous adipose depots. Whereas excessive weight gain and lipid storage in obesity promotes insulin resistance and chronic inflammation, the expansion of subcutaneous adipose by pioglitazone is associated with a reversal of these immunometabolic deficits. The precise events driving this beneficial remodeling of adipose tissue with pioglitazone remain unclear, and whether insulin-sensitizers alter the lipidomic composition of human adipose has not previously been investigated. Using shotgun lipidomics, we explored the molecular lipid responses in subcutaneous adipose tissue following 6months of pioglitazone treatment (45mg/day) in obese humans with T2D. Despite an expected increase in body weight following pioglitazone treatment, no robust effects were observed on the composition of storage lipids (i.e., triglycerides) or the content of lipotoxic lipid species (e.g., ceramides and diacylglycerides) in adipose tissue. Instead, pioglitazone caused a selective remodeling of the glycerophospholipid pool, characterized by a decrease in lipids enriched for arachidonic acid, such as plasmanylethanolamines and phosphatidylinositols. This contributed to a greater overall saturation and shortened chain length of fatty acyl groups within cell membrane lipids, changes that are consistent with the purported induction of adipogenesis by pioglitazone. The mechanism through which pioglitazone lowered adipose tissue arachidonic acid, a major modulator of inflammatory pathways, did not involve alterations in phospholipase gene expression but was associated with a reduction in its precursor linoleic acid, an effect that was also observed in skeletal muscle samples from the same subjects. These findings offer important insights into the biological mechanisms through which pioglitazone protects the immunometabolic health of adipocytes in the face of increased lipid storage.
Collapse
Affiliation(s)
- Juan P. Palavicini
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Alberto Chavez-Velazquez
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Marcel Fourcaudot
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Devjit Tripathy
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Meixia Pan
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Luke Norton
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Ralph A. DeFronzo
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Christopher E. Shannon
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
7
|
Müller R, Kojic A, Citir M, Schultz C. Synthesis and Cellular Labeling of Multifunctional Phosphatidylinositol Bis- and Trisphosphate Derivatives. Angew Chem Int Ed Engl 2021; 60:19759-19765. [PMID: 34075669 PMCID: PMC8390440 DOI: 10.1002/anie.202103599] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/07/2021] [Indexed: 12/15/2022]
Abstract
We synthesized the first multifunctionalized phosphoinositide polyphosphate derivatives featuring a photo-removable protecting group ("cage"), a photo-crosslinkable diazirine group, and a terminal alkyne group useful for click chemistry. We demonstrate that the lipid derivatives readily enter cells. After photo-crosslinking, cell fixation and fluorescent tagging via click chemistry, we determined the intracellular location of the lipid derivatives before and after uncaging of the lipids. We find that there is rapid trafficking of PI(3,4)P2 and PI(3,4,5)P3 derivatives to the plasma membrane, opening the intriguing possibility that there is active transport of these lipids involved. We employed the photo-crosslinking and click chemistry functions to analyze the proteome of PI(3,4,5)P3 -binding proteins. From the latter, we validated by RNAi that the putative lipid binding proteins ATP11A and MPP6 are involved in the transport of PI(3,4,5)P3 to the plasma membrane.
Collapse
Affiliation(s)
- Rainer Müller
- European Molecular Biology Laboratory (EMBL)Cell Biology & Biophysics UnitMeyerhofstr. 169117HeidelbergGermany
| | - Ana Kojic
- European Molecular Biology Laboratory (EMBL)Cell Biology & Biophysics UnitMeyerhofstr. 169117HeidelbergGermany
- Faculty of BiosciencesCollaboration for Joint Ph.D. Degree between EMBL and Heidelberg University69117HeidelbergGermany
- Oregon Health & Science UniversityDepartment of Chemical Physiology and Biochemistry3181 SW Sam Jackson Park RdPortlandOR97239-3098USA
| | - Mevlut Citir
- European Molecular Biology Laboratory (EMBL)Cell Biology & Biophysics UnitMeyerhofstr. 169117HeidelbergGermany
- Faculty of BiosciencesCollaboration for Joint Ph.D. Degree between EMBL and Heidelberg University69117HeidelbergGermany
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL)Cell Biology & Biophysics UnitMeyerhofstr. 169117HeidelbergGermany
- Oregon Health & Science UniversityDepartment of Chemical Physiology and Biochemistry3181 SW Sam Jackson Park RdPortlandOR97239-3098USA
| |
Collapse
|
8
|
Müller R, Kojic A, Citir M, Schultz C. Synthesis and Cellular Labeling of Multifunctional Phosphatidylinositol Bis‐ and Trisphosphate Derivatives. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Rainer Müller
- European Molecular Biology Laboratory (EMBL) Cell Biology & Biophysics Unit Meyerhofstr. 1 69117 Heidelberg Germany
| | - Ana Kojic
- European Molecular Biology Laboratory (EMBL) Cell Biology & Biophysics Unit Meyerhofstr. 1 69117 Heidelberg Germany
- Faculty of Biosciences Collaboration for Joint Ph.D. Degree between EMBL and Heidelberg University 69117 Heidelberg Germany
- Oregon Health & Science University Department of Chemical Physiology and Biochemistry 3181 SW Sam Jackson Park Rd Portland OR 97239-3098 USA
| | - Mevlut Citir
- European Molecular Biology Laboratory (EMBL) Cell Biology & Biophysics Unit Meyerhofstr. 1 69117 Heidelberg Germany
- Faculty of Biosciences Collaboration for Joint Ph.D. Degree between EMBL and Heidelberg University 69117 Heidelberg Germany
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL) Cell Biology & Biophysics Unit Meyerhofstr. 1 69117 Heidelberg Germany
- Oregon Health & Science University Department of Chemical Physiology and Biochemistry 3181 SW Sam Jackson Park Rd Portland OR 97239-3098 USA
| |
Collapse
|
9
|
Li P, Lämmerhofer M. Isomer Selective Comprehensive Lipidomics Analysis of Phosphoinositides in Biological Samples by Liquid Chromatography with Data Independent Acquisition Tandem Mass Spectrometry. Anal Chem 2021; 93:9583-9592. [PMID: 34191474 DOI: 10.1021/acs.analchem.1c01751] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Phosphoinositides (PIPx) play central roles in membrane dynamics and signal transduction of key functions like cellular growth, proliferation, differentiation, migration, and adhesion. They are highly regulated through a network of distinct phosphatidylinositol phosphates consisting of seven groups and three regioisomers in two groups (PIP and PIP2), which arise from phosphorylation at 3', 4', and 5' positions of the inositol ring. Numerous studies have revealed the importance of both fatty acyl chains, degree of phosphorylation, and phosphorylation positions under physiological and pathological states. However, a comprehensive analytical method that allows differentiation of all regioisomeric forms with different acyl side chains and degrees of phosphorylation is still lacking. Here, we present an integrated comprehensive workflow of PIPx analysis utilizing a chiral polysaccharide stationary phase coupled with electrospray ionization high-resolution mass spectrometry with a data independent acquisition technique using the SWATH technology. Correspondingly, a targeted data mining strategy in the untargeted comprehensively acquired MS and MS/MS data was developed. This powerful highly selective method gives a full picture of PIPx profiles in biological samples. Herein, we present for the first time the full PIPx profiles of NIST SRM1950 plasma, Pichia pastoris lipid extract, and HeLa cell extract, including profile changes upon treatment with potential PI3K inhibitor wortmannin. We also illustrate using this inhibitor that measurements of the PIPx profile averaged over the distinct regioisomers by analytical procedures, which cannot differentiate between the individual PIPx isomers, can easily lead to biased conclusions.
Collapse
Affiliation(s)
- Peng Li
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany
| |
Collapse
|
10
|
Cheung HF, Coman C, Westhoff P, Manke M, Sickmann A, Borst O, Gawaz M, Watson SP, Heemskerk JWM, Ahrends R. Targeted Phosphoinositides Analysis Using High-Performance Ion Chromatography-Coupled Selected Reaction Monitoring Mass Spectrometry. J Proteome Res 2021; 20:3114-3123. [PMID: 33938762 PMCID: PMC8280744 DOI: 10.1021/acs.jproteome.1c00017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Indexed: 12/30/2022]
Abstract
Phosphoinositides are minor components of cell membranes, but play crucial roles in numerous signal transduction pathways. To obtain quantitative measures of phosphoinositides, sensitive, accurate, and comprehensive methods are needed. Here, we present a quantitative targeted ion chromatography-mass spectrometry-based workflow that separates phosphoinositide isomers and increases the quantitative accuracy of measured phosphoinositides. Besides testing different analytical characteristics such as extraction and separation efficiency, the reproducibility of the developed workflow was also investigated. The workflow was verified in resting and stimulated human platelets, fat cells, and rat hippocampal brain tissue, where the LOD and LOQ for phosphoinositides were at 312.5 and 625 fmol, respectively. The robustness of the workflow is shown with different applications that confirms its suitability to analyze multiple less-abundant phosphoinositides.
Collapse
Affiliation(s)
- Hilaire
Yam Fung Cheung
- Leibniz-Institut
für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
- Institute
of Cardiovascular Sciences, Institute of Biomedical Research, College
of Medical and Dental Sciences, University
of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
- Department
of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Cristina Coman
- Leibniz-Institut
für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Wien, Austria
| | - Philipp Westhoff
- Leibniz-Institut
für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
| | - Mailin Manke
- Department
of Cardiology and Cardiovascular Medicine, University of Tübingen, 72076 Tübingen, Germany
| | - Albert Sickmann
- Leibniz-Institut
für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
| | - Oliver Borst
- Department
of Cardiology and Cardiovascular Medicine, University of Tübingen, 72076 Tübingen, Germany
| | - Meinrad Gawaz
- Department
of Cardiology and Cardiovascular Medicine, University of Tübingen, 72076 Tübingen, Germany
| | - Steve P. Watson
- Institute
of Cardiovascular Sciences, Institute of Biomedical Research, College
of Medical and Dental Sciences, University
of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Johan W. M. Heemskerk
- Department
of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Robert Ahrends
- Leibniz-Institut
für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Wien, Austria
| |
Collapse
|
11
|
Montaño-Rendón F, Grinstein S, Walpole GFW. Monitoring Phosphoinositide Fluxes and Effectors During Leukocyte Chemotaxis and Phagocytosis. Front Cell Dev Biol 2021; 9:626136. [PMID: 33614656 PMCID: PMC7890364 DOI: 10.3389/fcell.2021.626136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/06/2021] [Indexed: 01/22/2023] Open
Abstract
The dynamic re-organization of cellular membranes in response to extracellular stimuli is fundamental to the cell physiology of myeloid and lymphoid cells of the immune system. In addition to maintaining cellular homeostatic functions, remodeling of the plasmalemma and endomembranes endow leukocytes with the potential to relay extracellular signals across their biological membranes to promote rolling adhesion and diapedesis, migration into the tissue parenchyma, and to ingest foreign particles and effete cells. Phosphoinositides, signaling lipids that control the interface of biological membranes with the external environment, are pivotal to this wealth of functions. Here, we highlight the complex metabolic transitions that occur to phosphoinositides during several stages of the leukocyte lifecycle, namely diapedesis, migration, and phagocytosis. We describe classical and recently developed tools that have aided our understanding of these complex lipids. Finally, major downstream effectors of inositides are highlighted including the cytoskeleton, emphasizing the importance of these rare lipids in immunity and disease.
Collapse
Affiliation(s)
- Fernando Montaño-Rendón
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Glenn F W Walpole
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Wang J, Wang C, Han X. Mass Spectrometry-Based Shotgun Lipidomics for Cancer Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1280:39-55. [PMID: 33791973 DOI: 10.1007/978-3-030-51652-9_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Shotgun lipidomics is an analytical approach for large-scale and systematic analysis of the composition, structure, and quantity of cellular lipids directly from lipid extracts of biological samples by mass spectrometry. This approach possesses advantages of high throughput and quantitative accuracy, especially in absolute quantification. As cancer research deepens at the level of quantitative biology and metabolomics, the demand for lipidomics approaches such as shotgun lipidomics is becoming greater. In this chapter, the principles, approaches, and some applications of shotgun lipidomics for cancer research are overviewed.
Collapse
Affiliation(s)
- Jianing Wang
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
| | - Chunyan Wang
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA.
- Department of Medicine - Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
13
|
Pan M, Qin C, Han X. Quantitative Analysis of Polyphosphoinositide, Bis(monoacylglycero)phosphate, and Phosphatidylglycerol Species by Shotgun Lipidomics After Methylation. Methods Mol Biol 2021; 2306:77-91. [PMID: 33954941 PMCID: PMC8287892 DOI: 10.1007/978-1-0716-1410-5_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phospholipids play important roles in biological process even at a very low level. For example, bis(monoacylglycerol)phosphate (BMP) is involved in the pathogenesis of lysosomal storage diseases, and polyphosphoinositides (PPI) play critical roles in cellular signaling and functions. Phosphatidylglycerol (PG), a structural isomer of BMP, mediates lipid-protein and lipid-lipid interactions, and inhibits platelet activating factor and phosphatidylcholine transferring. However, due to their low abundance, the analysis of these phospholipids from biological samples is technically challenging. Therefore, the cellular function and metabolism of these phospholipids are still elusive. This chapter overviews a novel method of shotgun lipidomics after methylation with trimethylsilyl-diazomethane (TMS-D) for accurate and comprehensive analysis of these phospholipid species in biological samples. Firstly, a modified Bligh and Dyer procedure is performed to extract tissue lipids for PPI analysis, whereas modified methyl-tert-butylether (MTBE) extraction and modified Folch extraction methods are described to extract tissue lipids for PPI analysis. Secondly, TMS-D methylation is performed to derivatize PG/BMP and PPI, respectively. Then, we described the shotgun lipidomics strategies that can be used as cost-effective and relatively high-throughput methods to determine BMP, PG, and PPI species and isomers with different phosphate position(s) and fatty acyl chains. The described method of shotgun lipidomics after methylation achieves feasible and reliable quantitative analysis of low-abundance lipid classes. The application of this novel method should enable us to reveal the metabolism and functions of these phospholipids in healthy and disease states.
Collapse
Affiliation(s)
- Meixia Pan
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Chao Qin
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Medicine-Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
14
|
Chicanne G, Bertrand-Michel J, Viaud J, Hnia K, Clark J, Payrastre B. Profiling of Phosphoinositide Molecular Species in Resting or Activated Human or Mouse Platelets by a LC-MS Method. Methods Mol Biol 2021; 2251:39-53. [PMID: 33481230 DOI: 10.1007/978-1-0716-1142-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Our knowledge of the role and biology of the different phosphoinositides has greatly expanded over recent years. Reversible phosphorylation by specific kinases and phosphatases of positions 3, 4, and 5 on the inositol ring is a highly dynamic process playing a critical role in the regulation of the spatiotemporal recruitment and binding of effector proteins. The specific phosphoinositide kinases and phosphatases are key players in the control of many cellular functions, including proliferation, survival, intracellular trafficking, or cytoskeleton reorganization. Several of these enzymes are mutated in human diseases. The impact of the fatty acid composition of phosphoinositides in their function is much less understood. There is an important molecular diversity in the fatty acid side chains of PI. While stearic and arachidonic fatty acids are the major acyl species in PIP, PIP2, and PIP3, other fatty acid combinations are also found. The role of these different molecular species is still unknown, but it is important to quantify these different molecules and their potential changes during cell stimulation to better characterize this emerging field. Here, we describe a sensitive high-performance liquid chromatography-mass spectrometry method that we used for the first time to profile the changes in phosphoinositide molecular species (summed fatty acyl chain profiles) in human and mouse platelets under resting conditions and following stimulation. This method can be applied to other hematopoietic primary cells isolated from human or experimental animal models.
Collapse
Affiliation(s)
- Gaëtan Chicanne
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm U1048, Université Toulouse III, Toulouse, France
| | - Justine Bertrand-Michel
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm U1048, Université Toulouse III, Toulouse, France
- MetaToul-Lipidomic Facility, MetaboHUB, Université Toulouse III, Toulouse, France
| | - Julien Viaud
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm U1048, Université Toulouse III, Toulouse, France
| | - Karim Hnia
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm U1048, Université Toulouse III, Toulouse, France
| | | | - Bernard Payrastre
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm U1048, Université Toulouse III, Toulouse, France.
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.
| |
Collapse
|
15
|
Randolph CE, Blanksby SJ, McLuckey SA. Enhancing detection and characterization of lipids using charge manipulation in electrospray ionization-tandem mass spectrometry. Chem Phys Lipids 2020; 232:104970. [PMID: 32890498 PMCID: PMC7606777 DOI: 10.1016/j.chemphyslip.2020.104970] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
Heightened awareness regarding the implication of disturbances in lipid metabolism with respect to prevalent human-related pathologies demands analytical techniques that provide unambiguous structural characterization and accurate quantitation of lipids in complex biological samples. The diversity in molecular structures of lipids along with their wide range of concentrations in biological matrices present formidable analytical challenges. Modern mass spectrometry (MS) offers an unprecedented level of analytical power in lipid analysis, as many advancements in the field of lipidomics have been facilitated through novel applications of and developments in electrospray ionization tandem mass spectrometry (ESI-MS/MS). ESI allows for the formation of intact lipid ions with little to no fragmentation and has become widely used in contemporary lipidomics experiments due to its sensitivity, reproducibility, and compatibility with condensed-phase modes of separation, such as liquid chromatography (LC). Owing to variations in lipid functional groups, ESI enables partial chemical separation of the lipidome, yet the preferred ion-type is not always formed, impacting lipid detection, characterization, and quantitation. Moreover, conventional ESI-MS/MS approaches often fail to expose diverse subtle structural features like the sites of unsaturation in fatty acyl constituents or acyl chain regiochemistry along the glycerol backbone, representing a significant challenge for ESI-MS/MS. To overcome these shortcomings, various charge manipulation strategies, including charge-switching, have been developed to transform ion-type and charge state, with aims of increasing sensitivity and selectivity of ESI-MS/MS approaches. Importantly, charge manipulation approaches afford enhanced ionization efficiency, improved mixture analysis performance, and access to informative fragmentation channels. Herein, we present a critical review of the current suite of solution-based and gas-phase strategies for the manipulation of lipid ion charge and type relevant to ESI-MS/MS.
Collapse
Affiliation(s)
- Caitlin E Randolph
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Stephen J Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| |
Collapse
|
16
|
Xia T, Ren H, Zhang W, Xia Y. Lipidome-wide characterization of phosphatidylinositols and phosphatidylglycerols on CC location level. Anal Chim Acta 2020; 1128:107-115. [PMID: 32825894 DOI: 10.1016/j.aca.2020.06.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/25/2020] [Accepted: 06/09/2020] [Indexed: 01/03/2023]
Abstract
Phosphatidylglycerol (PG) and phosphatidylinositol (PI) are two essential classes of glycerophospholipids (GPs), playing versatile roles such as signalling messengers and lipid-protein interaction ligands in cell. Although a majority of PG and PI molecular species contain unsaturated fatty acyl chain(s), conventional tandem mass spectrometry (MS/MS) methods cannot discern isomers different in carbon-carbon double bond (CC) locations. In this work, we paired phosphate methylation with acetone Paternò-Büchi (PB) reaction, aiming to provide a solution for sensitive and structurally informative analysis of these two important classes of GPs down to the location of CC. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) workflow was established. Offline methylated PG or PI mixtures were subjected to hydrophilic interaction chromatographic separation, online acetone PB reaction, and MS/MS via collision-induced dissociation (CID) for CC location determination in positive ion mode. This method was sensitive, offering limit of identification at 5 nM for both PG and PI standards down to CC locations. On molecular species level, 49 PI and 31 PG were identified from bovine liver, while 61 PIs were identified from human plasma. This workflow also enabled ratiometric comparisons of CC location isomers (C18:1 Δ9 vs. Δ11) of a series of PIs from type 2 diabetes (T2D) plasma to that of normal plasma samples. PI 16:0_18:1 and PI 18:0_18:1 were found to exhibit significant changes in CC isomeric ratios between T2D and normal plasma samples. The above results demonstrate that the developed LC-PB-MS/MS workflow is applicable to different classes of lipids and compatible with other established lipid derivatization methods to achieve comprehensive lipid analysis.
Collapse
Affiliation(s)
- Tian Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hanlin Ren
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wenpeng Zhang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China; Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
17
|
Hu C, Duan Q, Han X. Strategies to Improve/Eliminate the Limitations in Shotgun Lipidomics. Proteomics 2020; 20:e1900070. [PMID: 31291508 PMCID: PMC7394605 DOI: 10.1002/pmic.201900070] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/15/2019] [Indexed: 11/05/2022]
Abstract
Direct infusion-based shotgun lipidomics is one of the most powerful and useful tools in comprehensive analysis of lipid species from lipid extracts of various biological samples with high accuracy/precision. However, despite many advantages, the classical shotgun lipidomics suffers some general dogmas of limitations, such as ion suppression, ambiguous identification of isobaric/isomeric lipid species, and ion source-generated artifacts, restraining the applications in analysis of low-abundance lipid species, particularly those less ionizable or isomers that yield almost identical fragmentation patterns. This article reviews the strategies (such as modifier addition, prefractionation, chemical derivatization, charge feature utilization) that have been employed to improve/eliminate these limitations in modern shotgun lipidomics approaches (e.g., high mass resolution mass spectrometry-based and multidimensional mass spectrometry-based shotgun lipidomics). Therefore, with the enhancement of these strategies for shotgun lipidomics, comprehensive analysis of lipid species including isomeric/isobaric species is achieved in a more accurate and effective manner, greatly substantiating the aberrant lipid metabolism, signaling trafficking, and homeostasis under pathological conditions.
Collapse
Affiliation(s)
- Changfeng Hu
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou, Zhejiang 310053, China
| | - Qiao Duan
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou, Zhejiang 310053, China
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229 USA
- Department of Medicine – Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229 USA
| |
Collapse
|
18
|
Pathmasiri KC, Pergande MR, Tobias F, Rebiai R, Rosenhouse-Dantsker A, Bongarzone ER, Cologna SM. Mass spectrometry imaging and LC/MS reveal decreased cerebellar phosphoinositides in Niemann-Pick type C1-null mice. J Lipid Res 2020; 61:1004-1013. [PMID: 32371566 DOI: 10.1194/jlr.ra119000606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/21/2020] [Indexed: 12/18/2022] Open
Abstract
Niemann-Pick disease type C1 (NPC1) is a lipid storage disorder in which cholesterol and glycosphingolipids accumulate in late endosomal/lysosomal compartments because of mutations in the NPC1 gene. A hallmark of NPC1 is progressive neurodegeneration of the cerebellum as well as visceral organ damage; however, the mechanisms driving this disease pathology are not fully understood. Phosphoinositides are phospholipids that play distinct roles in signal transduction and vesicle trafficking. Here, we utilized a consensus spectra analysis of MS imaging data sets and orthogonal LC/MS analyses to evaluate the spatial distribution of phosphoinositides and quantify them in cerebellar tissue from Npc1-null mice. Our results suggest significant depletion of multiple phosphoinositide species, including PI, PIP, and PIP2, in the cerebellum of the Npc1-null mice in both whole-tissue lysates and myelin-enriched fractions. Additionally, we observed altered levels of the regulatory enzyme phosphatidylinositol 4-kinase type 2α in Npc1-null mice. In contrast, the levels of related kinases, phosphatases, and transfer proteins were unaltered in the Npc1-null mouse model, as observed by Western blot analysis. Our discovery of phosphoinositide lipid biomarkers for NPC1 opens new perspectives on the pathophysiology underlying this fatal neurodegenerative disease.
Collapse
Affiliation(s)
| | | | - Fernando Tobias
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL
| | - Rima Rebiai
- Laboratory of Integrated Neuroscience, University of Illinois at Chicago, Chicago, IL; Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL
| | | | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL; Laboratory of Integrated Neuroscience, University of Illinois at Chicago, Chicago, IL. mailto:
| |
Collapse
|
19
|
Hu C, Wang M, Duan Q, Han X. Sensitive analysis of fatty acid esters of hydroxy fatty acids in biological lipid extracts by shotgun lipidomics after one-step derivatization. Anal Chim Acta 2020; 1105:105-111. [PMID: 32138907 PMCID: PMC7384334 DOI: 10.1016/j.aca.2020.01.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/31/2019] [Accepted: 01/13/2020] [Indexed: 12/20/2022]
Abstract
Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are an important family of endogenous lipids, possessing antidiabetic and anti-inflammatory functions. Therefore, analysis of FAHFAs in biological samples obtained under healthy and disease states can uncover underlying mechanisms of various relevant disorders (e.g., diabetes and autoimmune diseases). Up to now, due to their extremely low abundance, the determination of the changed levels of these species is still a huge challenge, even though great efforts have been made by utilizing liquid chromatography-tandem mass spectrometry with or without derivatization. Herein, we described a novel method for analysis of FAHFAs present in lipid extracts of biological examples after solid-phase extraction and chemical derivatization with one authentic FAHFA specie as an internal standard based on the principles of multi-dimensional mass spectrometry-based shotgun lipidomics. The approach possessed marked sensitivity, high specificity, and broad linear dynamic range of over 3 orders without obvious matrix effects. Moreover, after chemical derivatization, the molecular masses of FAHFAs shift from an overlapped region with ceramide species to a new region without overlaps, removing these contaminating signals from ceramides, and thereby reducing the false results of FAHFAs. Finally, this novel method was successfully applied for determining FAHFAs levels in varieties of representative biological samples, including plasma from lean and overweight/obese individuals of normoglycemia, and tissue samples (such as liver and white adipose tissue from diabetic (db/db) mice). We revealed significant alterations of FAHFAs in samples under patho(physio)logical conditions compared to their respective controls. Taken together, the developed method could greatly contribute to studying altered FAHFA levels under a variety of biological/biomedical conditions, and facilitate the understanding of these lipid species in the patho(physio)logical process.
Collapse
Affiliation(s)
- Changfeng Hu
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou, Zhejiang, 310053, China
| | - Miao Wang
- Frontage Laboratories, 700 Pennsylvania Dr, Exton, PA, 19341, USA
| | - Qiao Duan
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou, Zhejiang, 310053, China
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA; Department of Medicine - Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
20
|
Skotland T, Sagini K, Sandvig K, Llorente A. An emerging focus on lipids in extracellular vesicles. Adv Drug Deliv Rev 2020; 159:308-321. [PMID: 32151658 DOI: 10.1016/j.addr.2020.03.002] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/02/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles contain a lipid bilayer membrane that protects the encapsulated material, such as proteins, nucleic acids, lipids and metabolites, from the extracellular environment. These vesicles are released from cells via different mechanisms. During recent years extracellular vesicles have been studied as possible biomarkers for different diseases, as biological nanoparticles for drug delivery, and in basic studies as a tool to understand the structure of biological membranes and the mechanisms involved in vesicular trafficking. Lipids are essential molecular components of extracellular vesicles, but at the moment our knowledge about the lipid composition and the function of lipids in these vesicles is limited. However, the interest of the research community in these molecules is increasing as their role in extracellular vesicles is starting to be acknowledged. In this review, we will present the status of the field and describe what is needed to bring it forward.
Collapse
Affiliation(s)
- Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Krizia Sagini
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway; Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway.
| |
Collapse
|
21
|
Wang J, Han X. Analytical challenges of shotgun lipidomics at different resolution of measurements. Trends Analyt Chem 2019; 121:115697. [PMID: 32713986 PMCID: PMC7382544 DOI: 10.1016/j.trac.2019.115697] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The essence of shotgun lipidomics is to maintain consistency of the chemical environment of lipid samples during mass spectrometry acquisition. This strategy is suitable for large-scale quantitative analysis. This strategy also allows sufficient time to collect data to improve the signal-to-noise ratio. The initial approach of shotgun lipidomics was the electrospray ionization (ESI)-based direct infusion mass spectrometry strategy. With development of mass spectrometry for small molecules, shotgun lipidomics methods have been extended to matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) and ambient mass spectrometry, including MS imaging methods. Furthermore, the object of analysis has extended from organ and body fluid levels to tissue and cell levels with technological developments. In this article, we summarize the status and technical challenges of shotgun lipidomics at different resolution of measurements from the mass spectrometry perspective.
Collapse
Affiliation(s)
- Jianing Wang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
- Department of Medicine – Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
| |
Collapse
|
22
|
Hu C, Wang C, He L, Han X. Novel strategies for enhancing shotgun lipidomics for comprehensive analysis of cellular lipidomes. Trends Analyt Chem 2019; 120:115330. [PMID: 32647401 PMCID: PMC7344273 DOI: 10.1016/j.trac.2018.11.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Shotgun lipidomics is one of the most powerful tools in analysis of cellular lipidomes in lipidomics, which directly analyzes lipids from lipid extracts of diverse biological samples with high accuracy/precision. However, despite its great advances in high throughput analysis of cellular lipidomes, low coverage of poorly ionized lipids, especially those species in very low abundance, and some types of isomers within complex lipid extracts by shotgun lipidomics remains a huge challenge. In the past few years, many strategies have been developed to enhance shotgun lipidomics for comprehensive analysis of lipid species. Chemical derivatization represents one of the most attractive and effective strategies, already receiving considerable attention. This review focuses on novel advanced derivatization strategies for enhancing shotgun lipidomics. It is anticipated that with the development of enhanced strategies, shotgun lipidomics can make greater contributions to biological and biomedical research.
Collapse
Affiliation(s)
- Changfeng Hu
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou, Zhejiang 310053, China
| | - Chunyan Wang
- Barshop Institute for Longevity and Aging Research, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Lijiao He
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou, Zhejiang 310053, China
| | - Xianlin Han
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou, Zhejiang 310053, China
- Barshop Institute for Longevity and Aging Research, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
- Department of Medicine – Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| |
Collapse
|
23
|
Wang X, Schmitt MV, Xu L, Jiao Y, Guo L, Lienau P, Reichel A, Liu X. Quantitative molecular tissue atlas of Bis(monoacylglycero)phosphate and phosphatidylglycerol membrane lipids in rodent organs generated by methylation assisted high resolution mass spectrometry. Anal Chim Acta 2019; 1084:60-70. [PMID: 31519235 DOI: 10.1016/j.aca.2019.07.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 07/28/2019] [Indexed: 11/25/2022]
Abstract
Bis(monoacylglycero)phosphate (BMP) and phosphatidylglycerol (PG) are structural isomeric phospholipids with very different properties and biological functions. Due to their isomeric nature, it has thus far been challenging to simultaneously quantify BMP and PG lipids in tissue samples by mass spectrometry. Therefore, we have developed a sensitive LC-MS/MS based approach with prior methylation derivatization that is able to handle large batches of samples. Using this high throughput platform, a simulated MS/MS database was established for confident lipid assignment. In this work, we have simultaneously identified and quantified BMP and PG lipid molecules in different body tissues of rats and mice. We report for the first time a quantitative molecular atlas of BMP and PG lipids for 14 different tissues and organs in Wistar rats, NMRI and CD1 mice. Organ- and species-specificity was analyzed and compared for both lipid molecule classes. A total of 34 BMP and 10 PG molecules were quantified, with PG concentrations being generally much higher across tissues than BMP, but BMP lipids showing a much higher molecular diversity between animal organs. The large diversity of the BMP lipids with regard to their abundance and molecular composition suggests distinct biological function(s) of the individual BMP molecules in different tissues and organs of body. Particularly high tissue levels of BMP were seen in spleen, lung, liver, kidney and small intestines, i.e. tissues that are known for their high abundance and/or activity level of lysosomes late and endosomes. Elevated BMP levels in brain tissue of APP/PSEN transgenic compared to age matched wild-type mice were also observed using this platform. This analytical methodology presented a high throughput LC-based approach incorporating simulated MS/MS database to identify and quantify BMP lipids as well as PG molecules.
Collapse
Affiliation(s)
- Xueying Wang
- School of Life Sciences, Tsinghua University, China; National Protein Science Facility, Tsinghua University, Beijing, China
| | | | - Lina Xu
- School of Life Sciences, Tsinghua University, China; National Protein Science Facility, Tsinghua University, Beijing, China
| | - Yupei Jiao
- School of Life Sciences, Tsinghua University, China; National Protein Science Facility, Tsinghua University, Beijing, China
| | - Lvjun Guo
- School of Life Sciences, Tsinghua University, China; National Protein Science Facility, Tsinghua University, Beijing, China
| | - Philip Lienau
- Research Pharmacokinetics, Pharma R&D, Bayer AG, Berlin, Germany
| | - Andreas Reichel
- Research Pharmacokinetics, Pharma R&D, Bayer AG, Berlin, Germany.
| | - Xiaohui Liu
- School of Life Sciences, Tsinghua University, China; National Protein Science Facility, Tsinghua University, Beijing, China.
| |
Collapse
|
24
|
Wang J, Wang C, Han X. Tutorial on lipidomics. Anal Chim Acta 2019; 1061:28-41. [PMID: 30926037 PMCID: PMC7375172 DOI: 10.1016/j.aca.2019.01.043] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 12/20/2022]
Abstract
The mainstream of lipidomics involves mass spectrometry-based, systematic, and large-scale studies of the structure, composition, and quantity of lipids in biological systems such as organs, cells, and body fluids. As increasingly more researchers in broad fields are beginning to pay attention to and actively learn about the lipidomic technology, some introduction on the topic is needed to help the newcomers to better understand the field. This tutorial seeks to introduce the basic knowledge about lipidomics and to provide readers with some core ideas and the most important approaches for studying the field.
Collapse
Affiliation(s)
- Jianing Wang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Chunyan Wang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA; Department of Medicine - Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
25
|
Abstract
Polyphosphoinositides (PPIn) are essential signaling phospholipids that make remarkable contributions to the identity of all cellular membranes and signaling cascades in mammalian cells. They exert regulatory control over membrane homeostasis via selective interactions with cellular proteins at the membrane–cytoplasm interface. This review article briefly summarizes our current understanding of the key roles that PPIn play in orchestrating and regulating crucial electrical and chemical signaling events in mammalian neurons and the significant neuro-pathophysiological conditions that arise following alterations in their metabolism.
Collapse
Affiliation(s)
- Eamonn James Dickson
- Department Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
26
|
Understanding phosphoinositides: rare, dynamic, and essential membrane phospholipids. Biochem J 2019; 476:1-23. [PMID: 30617162 DOI: 10.1042/bcj20180022] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 12/15/2022]
Abstract
Polyphosphoinositides (PPIs) are essential phospholipids located in the cytoplasmic leaflet of eukaryotic cell membranes. Despite contributing only a small fraction to the bulk of cellular phospholipids, they make remarkable contributions to practically all aspects of a cell's life and death. They do so by recruiting cytoplasmic proteins/effectors or by interacting with cytoplasmic domains of membrane proteins at the membrane-cytoplasm interface to organize and mold organelle identity. The present study summarizes aspects of our current understanding concerning the metabolism, manipulation, measurement, and intimate roles these lipids play in regulating membrane homeostasis and vital cell signaling reactions in health and disease.
Collapse
|
27
|
Mujalli A, Chicanne G, Bertrand-Michel J, Viars F, Stephens L, Hawkins P, Viaud J, Gaits-Iacovoni F, Severin S, Gratacap MP, Terrisse AD, Payrastre B. Profiling of phosphoinositide molecular species in human and mouse platelets identifies new species increasing following stimulation. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1121-1131. [PMID: 29902570 DOI: 10.1016/j.bbalip.2018.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/15/2018] [Accepted: 06/10/2018] [Indexed: 12/17/2022]
Abstract
Phosphoinositides are bioactive lipids essential in the regulation of cell signaling as well as cytoskeleton and membrane dynamics. Their metabolism is highly active in blood platelets where they play a critical role during activation, at least through two well identified pathways involving phospholipase C and phosphoinositide 3-kinases (PI3K). Here, using a sensitive high-performance liquid chromatography-mass spectrometry method recently developed, we monitored for the first time the profiling of phosphatidylinositol (PI), PIP, PIP2 and PIP3 molecular species (fatty-acyl profiles) in human and mouse platelets during the course of stimulation by thrombin and collagen-related peptide. Furthermore, using class IA PI3K p110α or p110β deficient mouse platelets and a pharmacological inhibitor, we show the crucial role of p110β and the more subtle role of p110α in the production of PIP3 molecular species following stimulation. This comprehensive platelet phosphoinositides profiling provides important resources for future studies and reveals new information on phosphoinositides biology, similarities and differences in mouse and human platelets and unexpected dramatic increase in low-abundance molecular species of PIP2 during stimulation, opening new perspectives in phosphoinositide signaling in platelets.
Collapse
Affiliation(s)
| | - Gaëtan Chicanne
- INSERM U1048, I2MC, Université Paul Sabatier, 31432 Toulouse, France
| | - Justine Bertrand-Michel
- MetaToul-Lipidomic Core Facility, MetaboHUB, INSERM UMR-1048, Université Paul Sabatier, 31432 Toulouse, France
| | - Fanny Viars
- MetaToul-Lipidomic Core Facility, MetaboHUB, INSERM UMR-1048, Université Paul Sabatier, 31432 Toulouse, France
| | - Len Stephens
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | - Phil Hawkins
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | - Julien Viaud
- INSERM U1048, I2MC, Université Paul Sabatier, 31432 Toulouse, France
| | | | - Sonia Severin
- INSERM U1048, I2MC, Université Paul Sabatier, 31432 Toulouse, France
| | | | | | - Bernard Payrastre
- INSERM U1048, I2MC, Université Paul Sabatier, 31432 Toulouse, France; CHU de Toulouse, Laboratoire d'Hématologie, 31059 Toulouse Cedex 03, France.
| |
Collapse
|
28
|
Rapid profiling and quantification of phospholipid molecular species in human plasma based on chemical derivatization coupled with electrospray ionization tandem mass spectrometry. Anal Chim Acta 2018; 1024:101-111. [PMID: 29776536 DOI: 10.1016/j.aca.2018.04.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 12/23/2022]
Abstract
In this study, we developed a novel strategy using solid-phase extraction (SPE) coupled with shotgun mass spectrometry (MS) based on trimethylsilyldiazomethane (TMSCHN2) stable-isotope derivatization for rapid profiling and accurate quantification of phospholipids (PLs) in human plasma. HybridSPE-Phospholipid (HybridSPE-PL, zirconia coated silica stationary phase) was used for sample pretreatment via the Lewis acid-base interaction between zirconia and phosphate moiety of PLs. This step allows rapid enrichment and recovery of PLs from human plasma. Afterward, PLs were derivatized with TMSCHN2, which leads to methylation of hydroxyl and amino groups in PLs and allows highly sensitive PL analysis by shotgun MS in positive ionization mode (limit of detection decreased up to 116.67 fold compared to underived PLs). We developed an accuracy quantification method for determination of PL molecular species in biological samples. Two or more PL standards were selected for each PL class and derivatized with TMSCHN2 without stable-isotope coding. They were then used as the internal standards. PLs in biological samples were isotopic derivatized via acid-catalyzed H/D exchange and methanolysis of TMSCHN2. For accurate quantification, a calibration curve for each class of PLs was typically constructed by using the internal standards to normalize the non-uniformity response caused by the differential fragmentation kinetics resulting from the distinct chemical constitution of individual PL species in the biological samples. This newly developed method was used to comprehensively analyze PL molecular species in human plasma samples. It is a promising methodology for rapid profiling and accurate quantification of complex lipid molecules in biological samples.
Collapse
|
29
|
Bui HH, Sanders PE, Bodenmiller D, Kuo MS, Donoho GP, Fischl AS. Direct analysis of PI(3,4,5)P 3 using liquid chromatography electrospray ionization tandem mass spectrometry. Anal Biochem 2018; 547:66-76. [PMID: 29470948 DOI: 10.1016/j.ab.2018.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 11/18/2022]
Abstract
Phosphatidylinositol (3,4,5) trisphosphate (PIP3) is a biologically active membrane phospholipid that is essential for the growth and survival of all eukaryotic cells. We describe a new method that directly measures PIP3 and describe the HPLC separation and measurement of the positional isomers of phosphatidylinositol bisphosphate, PI(3,5)P2, PI(3,4)P2 and PI(4,5)P2. Mass spectrometric analyses were performed online using ultra-high performance liquid chromatography (UHPLC)-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) in the negative multiple-reaction monitoring (MRM) modes. Rapid separation of PIP3 from PI, phosphatidylinositol phosphate (PIP) and PIP2 was accomplished by C18 reverse phase chromatography with the addition of the ion pairing reagents diisopropylethanolamine (DiiPEA) and ethylenediamine tetraacetic acid tetrasodium salt dihydrate (EDTA) to the samples and mobile phase with a total run time, including equilibration, of 12 min. Importantly, these chromatography conditions result in no carryover of PIP, PIP2, and PIP3 between samples. To validate the new method, U87MG cancer cells were serum starved and treated with PDGF to stimulate PIP3 biosynthesis in the presence or absence of the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. Results generated with the LC/MS method were in excellent agreement with results generated using [33P] phosphate radiolabeled U87MG cells and anion exchange chromatography analysis, a well validated method for measuring PIP3. To demonstrate the usefulness of the new method, we generated reproducible IC50 data for several well-characterized PI3K small molecule inhibitors using a U87MG cell-based assay as well as showing PIP3 can be measured from additional cancer cell lines. Together, our results demonstrate this novel method is sensitive, reproducible and can be used to directly measure PIP3 without radiolabeling or complex lipid derivatization.
Collapse
Affiliation(s)
- Hai H Bui
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, 46285, USA.
| | - Phillip E Sanders
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Diane Bodenmiller
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Ming Shang Kuo
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Gregory P Donoho
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Anthony S Fischl
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| |
Collapse
|
30
|
Xu L, Wang X, Jiao Y, Liu X. Assessment of potential false positives via orbitrap-based untargeted lipidomics from rat tissues. Talanta 2018; 178:287-293. [DOI: 10.1016/j.talanta.2017.09.046] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/12/2017] [Accepted: 09/16/2017] [Indexed: 12/16/2022]
|
31
|
Wang J, Wang C, Han X. Enhanced coverage of lipid analysis and imaging by matrix-assisted laser desorption/ionization mass spectrometry via a strategy with an optimized mixture of matrices. Anal Chim Acta 2017; 1000:155-162. [PMID: 29289304 DOI: 10.1016/j.aca.2017.09.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/25/2017] [Accepted: 09/28/2017] [Indexed: 01/03/2023]
Abstract
In matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) analysis and imaging of lipids, comprehensive ionization of lipids simultaneously by a universal matrix is a very challenging problem. Ion suppression of readily ionizable lipids to others is common. To overcome this obstacle and enhance the coverage of MALDI MS analysis and imaging of lipids, we developed a novel strategy employing a mixture of matrices, each of which is capable of selective ionization of different lipid classes. Given that MALDI MS with either 9-aminoacridine (9-AA) or N-(1-naphthyl) ethylenediamine dihydrochloride (NEDC) yields weak in-source decay which is critical for analysis of complex biological samples and possesses orthogonal selectivity for ionization of lipid classes, we tested the mixtures of NEDC and 9-AA with different ratios for analysis of standard lipids and mouse brain lipid extracts. We determined 1.35 of NEDC/9-AA as an optimized molar ratio. It was demonstrated that an enhanced coverage with the optimized mixture was obtained, which enabled us to analyze and map all the major classes of phospholipids and sulfatide from either lipid extracts or tissue slides, respectively. We believe that this powerful novel strategy can enhance lipidomics analysis and MALDI MS imaging of lipids in a high-throughput and semi-quantitative fashion.
Collapse
Affiliation(s)
- Jianing Wang
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, United States
| | - Chunyan Wang
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, United States
| | - Xianlin Han
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, United States.
| |
Collapse
|
32
|
Traynor-Kaplan A, Kruse M, Dickson EJ, Dai G, Vivas O, Yu H, Whittington D, Hille B. Fatty-acyl chain profiles of cellular phosphoinositides. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:513-522. [PMID: 28189644 PMCID: PMC5392126 DOI: 10.1016/j.bbalip.2017.02.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/31/2017] [Accepted: 02/07/2017] [Indexed: 12/24/2022]
Abstract
Phosphoinositides are rapidly turning-over phospholipids that play key roles in intracellular signaling and modulation of membrane effectors. Through technical refinements we have improved sensitivity in the analysis of the phosphoinositide PI, PIP, and PIP2 pools from living cells using mass spectrometry. This has permitted further resolution in phosphoinositide lipidomics from cell cultures and small samples of tissue. The technique includes butanol extraction, derivatization of the lipids, post-column infusion of sodium to stabilize formation of sodiated adducts, and electrospray ionization mass spectrometry in multiple reaction monitoring mode, achieving a detection limit of 20pg. We describe the spectrum of fatty-acyl chains in the cellular phosphoinositides. Consistent with previous work in other mammalian primary cells, the 38:4 fatty-acyl chains dominate in the phosphoinositides of the pineal gland and of superior cervical ganglia, and many additional fatty acid combinations are found at low abundance. However, Chinese hamster ovary cells and human embryonic kidney cells (tsA201) in culture have different fatty-acyl chain profiles that change with growth state. Their 38:4 lipids lose their dominance as cultures approach confluence. The method has good time resolution and follows well the depletion in <20s of both PIP2 and PIP that results from strong activation of Gq-coupled receptors. The receptor-activated phospholipase C exhibits no substrate selectivity among the various fatty-acyl chain combinations.
Collapse
Affiliation(s)
- Alexis Traynor-Kaplan
- ATK Innovation, Analytics and Discovery, North Bend, WA 98045, USA; Department of Medicine/Gastroenterology, University of Washington School of Medicine, Seattle, WA, USA.
| | - Martin Kruse
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Eamonn J Dickson
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Gucan Dai
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Oscar Vivas
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Haijie Yu
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Dale Whittington
- Department of Medicinal Chemistry, University of Washington School of Medicine, Seattle, WA, USA
| | - Bertil Hille
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
33
|
Han X. Lipidomics for precision medicine and metabolism: A personal view. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:804-807. [PMID: 28238864 DOI: 10.1016/j.bbalip.2017.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/18/2017] [Accepted: 02/21/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Xianlin Han
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA.
| |
Collapse
|