1
|
Colón-Quintana G, Clarke TB, Ailawar SA, Dick JE. Single gold nanowires with ultrahigh (>10 4) aspect ratios by triphasic electrodeposition. NANOSCALE 2024; 16:20073-20081. [PMID: 39412473 DOI: 10.1039/d4nr00736k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Due to their superior optical and electrical properties, gold nanowires are used ubiquitously across industries. Current techniques for fabricating such structures are often expensive, involving multiple steps, cleanroom operation, and limited ability for a user to controllably place a nanowire at a desired location. Here, we introduce the concept of triphasic electrodeposition, where metal salts act as antagonistic salts at the liquid|liquid interface, leading to their increased concentration at this phase boundary. We show that the electrodeposition of ultra-high aspect ratio gold nanowires may be achieved in a one-step, one-pot method by submerging a conductor in contact with two phases: an organic phase containing HAuCl4 and a quaternary ammonium salt, and an aqueous phase containing potassium chloride. Changing electrodeposition parameters in the triphasic system allows tunability of important features of the nanowire, such as size and thickness. Furthermore, this new method provides an impressive ability to choose the geometry and precise positioning of deposited nanowires simply by changing where a liquid|liquid interface contacts the electrode surface.
Collapse
Affiliation(s)
| | - Thomas B Clarke
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| | - Sakshi A Ailawar
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
- Elmore School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
2
|
Yang ZM, Han X, Zhang MH, Liu C, Liu QL, Tang L, Gao F, Su J, Ding M, Zuo JL. Dynamic Interchain Motion in 1D Tetrathiafulvalene-Based Coordination Polymers for Highly Sensitive Molecular Recognition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402255. [PMID: 38837847 DOI: 10.1002/smll.202402255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/27/2024] [Indexed: 06/07/2024]
Abstract
The application of electrically conductive 1D coordination polymers (1D CPs) in nanoelectronic molecular recognition is theoretically promising yet rarely explored due to the challenges in their synthesis and optimization of electrical properties. In this regard, two tetrathiafulvalene-based 1D CPs, namely [Co(m-H2TTFTB)(DMF)2(H2O)]n (Co-m-TTFTB), and {[Ni(m-H2TTFTB)(CH3CH2OH)1.5(H2O)1.5]·(H2O)0.5}n (Ni-m-TTFTB) are successfully constructed. The shorter S···S contacts between the [M(solvent)3(m-H2TTFTB)]n chains contribute to a significant improvement in their electrical conductivities. The powder X-ray diffraction (PXRD) under different organic solvents reveals the flexible and dynamic structural characteristic of M-m-TTFTB, which, combined with the 1D morphology, lead to their excellent performance for sensitive detection of volatile organic compounds. Co-m-TTFTB achieves a limit of detection for ethanol vapor down to 0.5 ppm, which is superior to the state-of-the-art chemiresistive sensors based on metal-organic frameworks or organic polymers at room temperature. In situ diffuse reflectance infrared Fourier transform spectroscopy, PXRD measurements and density functional theory calculations reveal the molecular insertion sensing mechanism and the corresponding structure-function relationship. This work expands the applicable scenario of 1D CPs and opens a new realm of 1D CP-based nanoelectronic sensors for highly sensitive room temperature gas detection.
Collapse
Affiliation(s)
- Zhi-Mei Yang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiao Han
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Meng-Hang Zhang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Cheng Liu
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Qing-Long Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, P. R. China
| | - Lingyu Tang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Fei Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, P. R. China
| | - Jian Su
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Mengning Ding
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
3
|
Xu Y, Ben Y, Sun L, Su J, Guo H, Zhou R, Wei Y, Wei Y, Lu Y, Sun Y, Zhang X. Sensing platform for the highly sensitive detection of catechol based on composite coupling with conductive Ni 3(HITP) 2 and nanosilvers. Phys Chem Chem Phys 2024; 26:2951-2962. [PMID: 38214187 DOI: 10.1039/d3cp05391a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Catechol, which has a high toxicity and low degradability, poses significant risks to both human health and the environment. Tracking of catechol residues is essential to protect human health and to assess the safety of the environment. We constructed sensing platforms to detect catechol based on the conductive metal-organic frameworks [Ni3(HITP)2] and their nanosilver composites. The reduction process of catechol at the Ni3(HITP)2/AgNP electrode is chemically irreversible as a result of the difference in compatibility of the oxidation stability and conductivity between the Ni3(HITP)2/AgNS and Ni3(HITP)2/AgNP electrodes. The electrochemical results show that the Ni3(HITP)2/AgNS electrode presents a lower detection limit of 0.053 μM and better sensitivity, reproducibility and repeatability than the Ni3(HITP)2/AgNP electrode. The kinetic mechanism of the catechol electrooxidation at the surface of the electrode is controlled by diffusion through a 2H+/2e- process. The transfer coefficient is the key factor used to illustrate this process. During the electrochemical conversion of phenol to ketone, more than half of ΔG is used to change the activation energy. We also studied the stability, anti-interference and reproducibility of these electrode systems.
Collapse
Affiliation(s)
- Yuandong Xu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Yingying Ben
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Lili Sun
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Jishan Su
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Hui Guo
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Rongjia Zhou
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Yaqing Wei
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Yajun Wei
- School of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Yongjuan Lu
- School of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Yizhan Sun
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Xia Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
4
|
Kamel AH, Hefnawy A, Hazeem LJ, Rashdan SA, Abd-Rabboh HSM. Current perspectives, challenges, and future directions in the electrochemical detection of microplastics. RSC Adv 2024; 14:2134-2158. [PMID: 38205235 PMCID: PMC10777194 DOI: 10.1039/d3ra06755f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Microplastics (5 μm) are a developing threat that contaminate every environmental compartment. The detection of these contaminants is undoubtedly an important topic of study because of their high potential to cause harm to ecosystems. For many years, scientists have been assiduously striving to surmount the obstacle of detection restrictions and minimize the likelihood of receiving results that are either false positives or false negatives. This study covers the current state of electrochemical sensing technology as well as its application as a low-cost analytical platform for the detection and characterization of novel contaminants. Examples of detection mechanisms, electrode modification procedures, device configuration, and performance are given to show how successful these approaches are for monitoring microplastics in the environment. Additionally included are the recent developments in nanoimpact techniques. Compared to electrochemical methods for microplastic remediation, the use of electrochemical sensors for microplastic detection has received very little attention. With an overview of microplastic electrochemical sensors, this review emphasizes the promise of existing electrochemical remediation platforms toward sensor design and development. In order to enhance the monitoring of these substances, a critical assessment of the requirements for future research, challenges associated with detection, and opportunities is provided. In addition to-or instead of-the now-in-use laboratory-based analytical equipment, these technologies can be utilized to support extensive research and manage issues pertaining to microplastics in the environment and other matrices.
Collapse
Affiliation(s)
- Ayman H Kamel
- Department, College of Science, University of Bahrain Zallaq 32038 Kingdom of Bahrain
- Department of Chemistry, Faculty of Science, Ain Shams University Cairo 11566 Egypt
| | - A Hefnawy
- Department, College of Science, University of Bahrain Zallaq 32038 Kingdom of Bahrain
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University El-Shatby Alexandria 21526 Egypt
| | - Layla J Hazeem
- Department of Biology, College of Science, University of Bahrain Zallaq 32038 Bahrain
| | - Suad A Rashdan
- Department, College of Science, University of Bahrain Zallaq 32038 Kingdom of Bahrain
| | - Hisham S M Abd-Rabboh
- Chemistry Department, Faculty of Science, King Khalid University Abha 62529 Saudi Arabia
| |
Collapse
|
5
|
Sarfudeen S, Sruthi VP, Maibam A, Panda P, Jhariat P, Senthilkumar S, Babarao R, Panda T. Robust Zeolitic Tetrazole Framework for Electrocatalytic Dopamine Detection with High Selectivity. Inorg Chem 2023. [PMID: 38029418 DOI: 10.1021/acs.inorgchem.3c03189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
A novel zeolitic tetrazolate framework (ZTF-8) has been synthesized by solvent-free heat-assisted (70 °C) mechanochemical grinding of zinc acetate and 5-methyl tetrazole in the presence of NaOH powder. The structure of ZTF-8 adopts the zeolitic sodalite (SOD) topology with uncoordinated N-heteroatom sites and resembles the structure of the well-known zeolitic imidazole framework ZIF-8. ZTF-8 is exceptionally stable in 0.1 M aqueous acid and base solutions for 60 days at 25 °C. The unique structure with uncoordinated N-heteroatom active sites and exceptional stability of ZTF-8 facilitated the electrocatalytic oxidation of dopamine to dopamine quinone at neutral pH. Without any postsynthetic modification, ZTF-8 is directly used for the facile electrochemical detection of dopamine over a wide range of concentrations (5-550 μM) with a high sensitivity (2410.8 μA mM-1 cm-2). It also demonstrated promising selectivity over other interferents of similar oxidation potential, such as ascorbic acid and uric acid. The DFT study revealed that the ZTF-8 framework has a higher binding energy (-145.07 kJ/mol) and stronger interaction with dopamine than its isostructural ZIF-8 structure (-130.42 kJ/mol).
Collapse
Affiliation(s)
- Shafeeq Sarfudeen
- Department of Chemistry, School of Advanced Science (SAS), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu,India
| | - Vadakke Purakkal Sruthi
- Department of Chemistry, School of Advanced Science (SAS), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu,India
| | - Ashakiran Maibam
- Physical and Materials Chemistry Division,CSIR-National Chemical Laboratory, Pune 411008, India
- School of Science, Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne 3001, Victoria, Australia
- Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Postal Staff College Area, Ghaziabad 201 002, Uttar Pradesh, India
| | - Premchand Panda
- Department of Chemistry, School of Advanced Science (SAS), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu,India
| | - Pampa Jhariat
- Department of Chemistry, School of Advanced Science (SAS), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu,India
| | - Sellappan Senthilkumar
- Department of Chemistry, School of Advanced Science (SAS), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu,India
| | - Ravichandar Babarao
- School of Science, Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne 3001, Victoria, Australia
- CSIRO, Normanby Road,Clayton 3168, Victoria, Australia
| | - Tamas Panda
- Centre for Clean Environment (CCE), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu,India
| |
Collapse
|
6
|
Xiong X, Zhu P, Li S, Jiang Y, Ma Y, Shi Q, Zhang X, Shu X, Wang Z, Sun L, Han J. Electrochemical biosensor based on topological insulator Bi 2Se 3 tape electrode for HIV-1 DNA detection. Mikrochim Acta 2022; 189:285. [PMID: 35851426 DOI: 10.1007/s00604-022-05365-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/01/2022] [Indexed: 10/17/2022]
Abstract
A large-size Bi2Se3 tape electrode (BTE) was prepared by peeling off a 2 × 1 × 0.5 cm high-quality single crystal. The feasibility of using the flexible BTE as an efficient bioplatform to load Au nanoparticles and probe DNA for HIV-1 DNA electrochemical sensing was explored. Differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) show that the resultant biosensor has a wide linear range from 0.1 fM to 1 pM, a low detection limit of 50 aM, excellent selectivity, reproducibility and stability, and is superior to the pM DNA detection level of Pt-Au, graphene-AuNPs hybrid biosensors. This outstanding performance is attributed to the intrinsic surface state of Bi2Se3 topological insulator in facilitating electron transfer. Therefore, BTE electrochemical biosensor platform has great potential in the application for sensitive detection of DNA biomarkers.
Collapse
Affiliation(s)
- Xiaolu Xiong
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China.,Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314000, China
| | - Peng Zhu
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China.,Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314000, China
| | - Shanshan Li
- Department of Rheumatology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yujiu Jiang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China.,Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314000, China
| | - Yurong Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Qingfan Shi
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Xu Zhang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China.,Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314000, China
| | - Xiaoming Shu
- Department of Rheumatology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Zhiwei Wang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China. .,Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314000, China.
| | - Linfeng Sun
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China.
| | - Junfeng Han
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China. .,Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314000, China.
| |
Collapse
|
7
|
Zamhuri SA, Soon CF, Nordin AN, Ab Rahim R, Sultana N, Khan MA, Lim GP, Tee KS. A review on the contamination of SARS-CoV-2 in water bodies: Transmission route, virus recovery and recent biosensor detection techniques. SENSING AND BIO-SENSING RESEARCH 2022; 36:100482. [PMID: 35251937 PMCID: PMC8889793 DOI: 10.1016/j.sbsr.2022.100482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
The discovery of SARS-CoV-2 virus in the water bodies has been reported, and the risk of virus transmission to human via the water route due to poor wastewater management cannot be disregarded. The main source of the virus in water bodies is the sewage network systems which connects to the surface water. Wastewater-based epidemiology has been applied as an early surveillance tool to sense SARS-CoV-2 virus in the sewage network. This review discussed possible transmission routes of the SARS-CoV-2 virus and the challenges of the existing method in detecting the virus in wastewater. One significant challenge for the detection of the virus is that the high virus loading is diluted by the sheer volume of the wastewater. Hence, virus preconcentration from water samples prior to the application of virus assay is essential to accurately detect traceable virus loading. The preparation time, materials and conditions, virus type, recovery percentage, and various virus recovery techniques are comprehensively discussed in this review. The practicability of molecular methods such as Polymer-Chain-Reaction (PCR) for the detection of SARS-CoV-2 in wastewater will be revealed. The conventional virus detection techniques have several shortcomings and the potential of biosensors as an alternative is also considered. Biosensing techniques have also been proposed as an alternative to PCR and have reported detection limits of 10 pg/μl. This review serves to guide the reader on the future designs and development of highly sensitive, robust and, cost effective SARS-CoV-2 lab-on-a-chip biosensors for use in complex wastewater.
Collapse
Affiliation(s)
- Siti Adibah Zamhuri
- Microelectronics and Nanotechnology-Shamsuddin Research Centre, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Chin Fhong Soon
- Microelectronics and Nanotechnology-Shamsuddin Research Centre, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
- Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Anis Nurashikin Nordin
- Department of Electrical and Computer Engineering, Kulliyah of Engineering, International University of Islam Malaysia, 53100, Jalan Gombak, Kuala Lumpur, Malaysia
| | - Rosminazuin Ab Rahim
- Department of Electrical and Computer Engineering, Kulliyah of Engineering, International University of Islam Malaysia, 53100, Jalan Gombak, Kuala Lumpur, Malaysia
| | | | - Muhammad Arif Khan
- Microelectronics and Nanotechnology-Shamsuddin Research Centre, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Gim Pao Lim
- Microelectronics and Nanotechnology-Shamsuddin Research Centre, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Kian Sek Tee
- Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| |
Collapse
|
8
|
dos Santos DM, Cardoso RM, Migliorini FL, Facure MH, Mercante LA, Mattoso LH, Correa DS. Advances in 3D printed sensors for food analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Hassan MH, Khan R, Andreescu S. Advances in electrochemical detection methods for measuring contaminants of emerging concerns. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Mohamed H. Hassan
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam New York USA
| | - Reem Khan
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam New York USA
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam New York USA
| |
Collapse
|
10
|
Hu Q, Qin J, Wang XF, Ran GY, Wang Q, Liu GX, Ma JP, Ge JY, Wang HY. Cu-Based Conductive MOF Grown in situ on Cu Foam as a Highly Selective and Stable Non-Enzymatic Glucose Sensor. Front Chem 2021; 9:786970. [PMID: 34912785 PMCID: PMC8666423 DOI: 10.3389/fchem.2021.786970] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
A non-enzymatic electrochemical sensor for glucose detection is executed by using a conductive metal–organic framework (MOF) Cu-MOF, which is built from the 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) ligand and copper acetate by hydrothermal reaction. The Cu-MOF demonstrates superior electrocatalytic activity for glucose oxidation under alkaline pH conditions. As an excellent non-enzymatic sensor, the Cu-MOF grown on Cu foam (Cu-MOF/CF) displays an ultra-low detection limit of 0.076 μM through a wide concentration range (0.001–0.95 mM) and a strong sensitivity of 30,030 mA μM−1 cm−2. Overall, the Cu-MOF/CF exhibits a low detection limit, high selectivity, excellent stability, fast response time, and good practical application feasibility for glucose detection and can promote the development of MOF materials in the field of electrochemical sensors.
Collapse
Affiliation(s)
- Qin Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Jie Qin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Xiao-Feng Wang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, China
| | - Guang-Ying Ran
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Qiang Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Guang-Xiang Liu
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, China
| | - Jian-Ping Ma
- School of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, China
| | - Jing-Yuan Ge
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Hai-Ying Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China.,School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, China
| |
Collapse
|
11
|
Kang X, Yip S, Meng Y, Wang W, Li D, Liu C, Ho JC. High-performance electrically transduced hazardous gas sensors based on low-dimensional nanomaterials. NANOSCALE ADVANCES 2021; 3:6254-6270. [PMID: 36133491 PMCID: PMC9419631 DOI: 10.1039/d1na00433f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/09/2021] [Indexed: 06/16/2023]
Abstract
Low-dimensional nanomaterials have been proven as promising high-performance gas sensing components due to their fascinating structural, physical, chemical, and electronic characteristics. In particular, materials with low dimensionalities (i.e., 0D, 1D, and 2D) possess an extremely large surface area-to-volume ratio to expose abundant active sites for interactions with molecular analytes. Gas sensors based on these materials exhibit a sensitive response to subtle external perturbations on sensing channel materials via electrical transduction, demonstrating a fast response/recovery, specific selectivity, and remarkable stability. Herein, we comprehensively elaborate gas sensing performances in the field of sensitive detection of hazardous gases with diverse low-dimensional sensing materials and their hybrid combinations. We will first introduce the common configurations of gas sensing devices and underlying transduction principles. Then, the main performance parameters of gas sensing devices and subsequently the main underlying sensing mechanisms governing their detection operation process are outlined and described. Importantly, we also elaborate the compositional and structural characteristics of various low-dimensional sensing materials, exemplified by the corresponding sensing systems. Finally, our perspectives on the challenges and opportunities confronting the development and future applications of low-dimensional materials for high-performance gas sensing are also presented. The aim is to provide further insights into the material design of different nanostructures and to establish relevant design guidelines to facilitate the device performance enhancement of nanomaterial based gas sensors.
Collapse
Affiliation(s)
- Xiaolin Kang
- Department of Materials Science and Engineering, City University of Hong Kong Kowloon 999077 Hong Kong SAR China
| | - SenPo Yip
- Institute for Materials Chemistry and Engineering, Kyushu University Fukuoka 816-8580 Japan
| | - You Meng
- Department of Materials Science and Engineering, City University of Hong Kong Kowloon 999077 Hong Kong SAR China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong Kowloon 999077 Hong Kong SAR China
| | - Wei Wang
- Department of Materials Science and Engineering, City University of Hong Kong Kowloon 999077 Hong Kong SAR China
| | - Dengji Li
- Department of Materials Science and Engineering, City University of Hong Kong Kowloon 999077 Hong Kong SAR China
| | - Chuntai Liu
- Key Laboratory of Advanced Materials Processing & Mold (Zhengzhou University), Ministry of Education Zhengzhou 450002 China
| | - Johnny C Ho
- Department of Materials Science and Engineering, City University of Hong Kong Kowloon 999077 Hong Kong SAR China
- Institute for Materials Chemistry and Engineering, Kyushu University Fukuoka 816-8580 Japan
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong Kowloon 999077 Hong Kong SAR China
| |
Collapse
|
12
|
Rahman A, Kang S, Wang W, Garg A, Maile-Moskowitz A, Vikesland PJ. Nanobiotechnology enabled approaches for wastewater based epidemiology. Trends Analyt Chem 2021; 143:116400. [PMID: 34334850 PMCID: PMC8317456 DOI: 10.1016/j.trac.2021.116400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The impacts of the ongoing coronavirus pandemic highlight the importance of environmental monitoring to inform public health safety. Wastewater based epidemiology (WBE) has drawn interest as a tool for analysis of biomarkers in wastewater networks. Wide scale implementation of WBE requires a variety of field deployable analytical tools for real-time monitoring. Nanobiotechnology enabled sensing platforms offer potential as biosensors capable of highly efficient and sensitive detection of target analytes. This review provides an overview of the design and working principles of nanobiotechnology enabled biosensors and recent progress on the use of biosensors in detection of biomarkers. In addition, applications of biosensors for analysis of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus are highlighted as they relate to the potential expanded use of biosensors for WBE-based monitoring. Finally, we discuss the opportunities and challenges in future applications of biosensors in WBE for effective monitoring and investigation of public health threats.
Collapse
Affiliation(s)
- Asifur Rahman
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Seju Kang
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Wei Wang
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Aditya Garg
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Ayella Maile-Moskowitz
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Peter J Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
13
|
|
14
|
Sedki M, Shen Y, Mulchandani A. Nano-FET-enabled biosensors: Materials perspective and recent advances in North America. Biosens Bioelectron 2021; 176:112941. [DOI: 10.1016/j.bios.2020.112941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023]
|
15
|
Carbon cloth-supported nanorod-like conductive Ni/Co bimetal MOF: A stable and high-performance enzyme-free electrochemical sensor for determination of glucose in serum and beverage. Food Chem 2021; 349:129202. [PMID: 33582540 DOI: 10.1016/j.foodchem.2021.129202] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 11/21/2022]
Abstract
In this work, we propose a electrochemical enzyme-free glucose sensor by direct growth of conductive Ni/Co bimetal MOF on carbon cloth [Ni/Co(HHTP)MOF/CC] via a facile hydrothermal method. Due to excellent conductivity between Ni/Co(HHTP)MOF and CC, synergic catalytic effect of Ni and Co elements, the Ni/Co(HHTP)MOF/CC not only provides larger surface area and more effective active sites, but also boosts the charge transports and electro-catalytic performance. Under optimized conditions, the Ni/Co(HHTP)MOF/CC shows excellent activity with a linear range of 0.3 μM-2.312 mM, a low detection limit of 100 nM (S/N = 3), a fast response time of 2 s and a high sensitivity of 3250 μA mM-1 cm-2. Furthermore, the Ni/Co(HHTP)MOF/CC was successfully applied for the detection of glucose in real serum and beverages with competitive performances. This facile and cost-effective method provides a novel strategy for monitoring of glucose in biological and food samples.
Collapse
|
16
|
Shi X, Chen L, Chen S, Sun D. Electrochemical aptasensors for the detection of hepatocellular carcinoma-related biomarkers. NEW J CHEM 2021. [DOI: 10.1039/d1nj01042e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent progress in electrochemical aptasensors for the detection of HCC-related biomarkers, including cancer cells, proteins, cell-derived exosomes, and nucleic acids, is reviewed.
Collapse
Affiliation(s)
- Xianhua Shi
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
- Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Linxi Chen
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
- Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Siyi Chen
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
- Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Duanping Sun
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
- Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| |
Collapse
|
17
|
Wang Y, Duan L, Deng Z, Liao J. Electrically Transduced Gas Sensors Based on Semiconducting Metal Oxide Nanowires. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6781. [PMID: 33260973 PMCID: PMC7729516 DOI: 10.3390/s20236781] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022]
Abstract
Semiconducting metal oxide-based nanowires (SMO-NWs) for gas sensors have been extensively studied for their extraordinary surface-to-volume ratio, high chemical and thermal stabilities, high sensitivity, and unique electronic, photonic and mechanical properties. In addition to improving the sensor response, vast developments have recently focused on the fundamental sensing mechanism, low power consumption, as well as novel applications. Herein, this review provides a state-of-art overview of electrically transduced gas sensors based on SMO-NWs. We first discuss the advanced synthesis and assembly techniques for high-quality SMO-NWs, the detailed sensor architectures, as well as the important gas-sensing performance. Relationships between the NWs structure and gas sensing performance are established by understanding general sensitization models related to size and shape, crystal defect, doped and loaded additive, and contact parameters. Moreover, major strategies for low-power gas sensors are proposed, including integrating NWs into microhotplates, self-heating operation, and designing room-temperature gas sensors. Emerging application areas of SMO-NWs-based gas sensors in disease diagnosis, environmental engineering, safety and security, flexible and wearable technology have also been studied. In the end, some insights into new challenges and future prospects for commercialization are highlighted.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Luminescence & Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University, Beijing 100044, China;
| | - Li Duan
- Beijing Key Laboratory of Security and Privacy in Intelligent Transportation, Beijing Jiaotong University, Beijing 100044, China;
| | - Zhen Deng
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianhui Liao
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China;
| |
Collapse
|
18
|
Sedki M, Chen Y, Mulchandani A. Non-Carbon 2D Materials-Based Field-Effect Transistor Biosensors: Recent Advances, Challenges, and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4811. [PMID: 32858906 PMCID: PMC7506755 DOI: 10.3390/s20174811] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/25/2022]
Abstract
In recent years, field-effect transistors (FETs) have been very promising for biosensor applications due to their high sensitivity, real-time applicability, scalability, and prospect of integrating measurement system on a chip. Non-carbon 2D materials, such as transition metal dichalcogenides (TMDCs), hexagonal boron nitride (h-BN), black phosphorus (BP), and metal oxides, are a group of new materials that have a huge potential in FET biosensor applications. In this work, we review the recent advances and remarkable studies of non-carbon 2D materials, in terms of their structures, preparations, properties and FET biosensor applications. We will also discuss the challenges facing non-carbon 2D materials-FET biosensors and their future perspectives.
Collapse
Affiliation(s)
- Mohammed Sedki
- Department of Materials Science and Engineering, University of California, Riverside, CA 92521, USA
| | - Ying Chen
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Ashok Mulchandani
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| |
Collapse
|
19
|
Ko M, Mendecki L, Eagleton AM, Durbin CG, Stolz RM, Meng Z, Mirica KA. Employing Conductive Metal-Organic Frameworks for Voltammetric Detection of Neurochemicals. J Am Chem Soc 2020; 142:11717-11733. [PMID: 32155057 DOI: 10.1021/jacs.9b13402] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This paper describes the first implementation of an array of two-dimensional (2D) layered conductive metal-organic frameworks (MOFs) as drop-casted film electrodes that facilitate voltammetric detection of redox active neurochemicals in a multianalyte solution. The device configuration comprises a glassy carbon electrode modified with a film of conductive MOF (M3HXTP2; M = Ni, Cu; and X = NH, 2,3,6,7,10,11-hexaiminotriphenylene (HITP) or O, 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP)). The utility of 2D MOFs in voltammetric sensing is measured by the detection of ascorbic acid (AA), dopamine (DA), uric acid (UA), and serotonin (5-HT) in 0.1 M PBS (pH = 7.4). In particular, Ni3HHTP2 MOFs demonstrated nanomolar detection limits of 63 ± 11 nM for DA and 40 ± 17 nM for 5-HT through a wide concentration range (40 nM-200 μM). The applicability in biologically relevant detection was further demonstrated in simulated urine using Ni3HHTP2 MOFs for the detection of 5-HT with a nanomolar detection limit of 63 ± 11 nM for 5-HT through a wide concentration range (63 nM-200 μM) in the presence of a constant background of DA. The implementation of conductive MOFs in voltammetric detection holds promise for further development of highly modular, sensitive, selective, and stable electroanalytical devices.
Collapse
Affiliation(s)
- Michael Ko
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Lukasz Mendecki
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Aileen M Eagleton
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Claudia G Durbin
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Robert M Stolz
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Zheng Meng
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
20
|
Sassa F, Biswas GC, Suzuki H. Microfabricated electrochemical sensing devices. LAB ON A CHIP 2020; 20:1358-1389. [PMID: 32129358 DOI: 10.1039/c9lc01112a] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electrochemistry provides possibilities to realize smart microdevices of the next generation with high functionalities. Electrodes, which constitute major components of electrochemical devices, can be formed by various microfabrication techniques, and integration of the same (or different) components for that purpose is not difficult. Merging this technique with microfluidics can further expand the areas of application of the resultant devices. To augment the development of next generation devices, it will be beneficial to review recent technological trends in this field and clarify the directions required for moving forward. Even when limiting the discussion to electrochemical microdevices, a variety of useful techniques should be considered. Therefore, in this review, we attempted to provide an overview of all relevant techniques in this context in the hope that it can provide useful comprehensive information.
Collapse
Affiliation(s)
- Fumihiro Sassa
- Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | | | | |
Collapse
|
21
|
Field-Effect Transistor Biosensors for Biomedical Applications: Recent Advances and Future Prospects. SENSORS 2019; 19:s19194214. [PMID: 31569330 PMCID: PMC6806101 DOI: 10.3390/s19194214] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/29/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023]
Abstract
During recent years, field-effect transistor biosensors (Bio-FET) for biomedical applications have experienced a robust development with evolutions in FET characteristics as well as modification of bio-receptor structures. This review initially provides contemplation on this progress by analyzing and summarizing remarkable studies on two aforementioned aspects. The former includes fabricating unprecedented nanostructures and employing novel materials for FET transducers whereas the latter primarily synthesizes compact molecules as bio-probes (antibody fragments and aptamers). Afterwards, a future perspective on research of FET-biosensors is also predicted depending on current situations as well as its great demand in clinical trials of disease diagnosis. From these points of view, FET-biosensors with infinite advantages are expected to continuously advance as one of the most promising tools for biomedical applications.
Collapse
|
22
|
Sun D, Lu J, Zhang L, Chen Z. Aptamer-based electrochemical cytosensors for tumor cell detection in cancer diagnosis: A review. Anal Chim Acta 2019; 1082:1-17. [PMID: 31472698 DOI: 10.1016/j.aca.2019.07.054] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 01/25/2023]
Abstract
Circulating tumor cells, a type of viable cancer cell circulating from primary or metastatic tumors in the blood stream, can lead to the parallel development of primary tumors and metastatic lesions. Highly selective and sensitive detection of tumor cells has become a hot research topic and can provide a basis for early diagnosis of cancers and anticancer drug evaluation to develop the best treatment plan. Aptamers are single-stranded oligonucleotides that can bind to target tumor cells in unique three-dimensional structures with high specificity and affinity. Aptamer-based methods or signal amplification methods using aptamers show great potential in improving the selectivity and sensitivity of electrochemical (EC) cytosensors for tumor cell detection. This review covers the remarkable developments in aptamer-based EC cytosensors for the identification of cell type, cell counting and detection of crucial proteins on the cell surface. Various EC techniques have been developed for cancer cell detection, including common voltammetry or impedance, electrochemiluminescence and photoelectrochemistry in a direct approach (aptamer-target cell), sandwich approach (capture probe-target cell-signaling probe) or other approach. The current challenges and promising opportunities in the establishment of EC aptamer cytosensors for tumor cell detection are also discussed.
Collapse
Affiliation(s)
- Duanping Sun
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Jing Lu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Luyong Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zuanguang Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
23
|
Patil YS, Salunkhe PH, Navale YH, Patil VB, Ubale VP, Ghanwat AA. Tetraphenylthiophene–thiazole-based π-conjugated polyazomethines: synthesis, characterization and gas sensing application. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02856-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Kamata T, Sumimoto M, Shiba S, Kurita R, Niwa O, Kato D. Increased electrode activity during geosmin oxidation provided by Pt nanoparticle-embedded nanocarbon film. NANOSCALE 2019; 11:8845-8854. [PMID: 31012904 DOI: 10.1039/c9nr00793h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The musty odor compound geosmin was electrochemically detected by using Pt nanoparticle (PtNP)-embedded nanocarbon (Pt-C) films formed with unbalanced magnetron (UBM) co-sputtering. The sputtered Pt components formed NPs (typically 1.53-4.75 nm in diameter) spontaneously in the carbon films, owing to the poor intermiscibility of Pt with carbon. The surface concentrations of PtNPs embedded in the nanocarbon film were widely controllable (Pt = 4.8-35.9 at%) by regulating the target powers of the Pt and carbon individually. The obtained film had a flat surface (Ra = 0.17-0.18 nm) despite the fact the PtNPs were partially exposed at the surface. Compared with a Pt film electrode, some Pt-C films exhibited higher electrode activity against geosmin although the surface Pt concentrations of these Pt-C films were much lower than that of the Pt film electrode, thanks to the wider potential window and lower background current that resulted from the ultraflat and stable carbon-based film prepared by UBM co-sputtering. Computational experiments revealed that the theoretical oxidation potential (Eox) value for geosmin was relatively similar to that obtained in electrochemical experiments using our Pt-C film electrode. Moreover, we also theoretically estimated the possible oxidation site of geosmin molecules and the advantage of the NP shape of the electroactive Pt parts as regards the electrochemical oxidation of geosmin. We successfully used the Pt-C film (10.6 at%) electrode to detect geosmin in combination with HPLC at a low detection limit of 100 ng L-1.
Collapse
Affiliation(s)
- Tomoyuki Kamata
- National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Chemiresistive DNA hybridization sensor with electrospun nanofibers: A method to minimize inter-device variability. Biosens Bioelectron 2019; 133:24-31. [DOI: 10.1016/j.bios.2019.03.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/02/2019] [Accepted: 03/17/2019] [Indexed: 02/08/2023]
|
26
|
Ayalew H, Wang TL, Yu HH. Deprotonation-Induced Conductivity Shift of Polyethylenedioxythiophenes in Aqueous Solutions: The Effects of Side-Chain Length and Polymer Composition. Polymers (Basel) 2019; 11:E659. [PMID: 30974910 PMCID: PMC6523877 DOI: 10.3390/polym11040659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
Deprotonation-induced conductivity shift of poly(3,4-ethylenedixoythiophene)s (PEDOTs) in aqueous solutions is a promising platform for chemical or biological sensor due to its large signal output and minimum effect from material morphology. Carboxylic acid group functionalized poly(Cn-EDOT-COOH)s are synthesized and electrodeposited on microelectrodes. The microelectrodes are utilized to study the effect of carboxylic acid side-chain length on the conductivity curve profiles in aqueous buffer with different pH. The conductivity shifts due to the buffer pH are effected by the length of the carboxylic acid side-chains. The shifts can be explained by the carboxylic acid dissociation property (pKa) at the solid-liquid interface, self-doping effect, and effective conjugation length. Conductivity profiles of poly(EDOT-OH-co-C₂-EDOT-COOH) copolymers are also studied. The shifts show linear relationship with the feed monomer composition used in electrochemical polymerization.
Collapse
Affiliation(s)
- Hailemichael Ayalew
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan.
- Taiwan International Graduate Program (TIGP), Sustainable Chemical Science and Technology (SCST), Academia Sinica, Taipei 11529, Taiwan.
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan.
| | - Tian-Lin Wang
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan.
| | - Hsiao-Hua Yu
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan.
- Taiwan International Graduate Program (TIGP), Sustainable Chemical Science and Technology (SCST), Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
27
|
Meng Z, Stolz RM, Mendecki L, Mirica KA. Electrically-Transduced Chemical Sensors Based on Two-Dimensional Nanomaterials. Chem Rev 2019; 119:478-598. [PMID: 30604969 DOI: 10.1021/acs.chemrev.8b00311] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electrically-transduced sensors, with their simplicity and compatibility with standard electronic technologies, produce signals that can be efficiently acquired, processed, stored, and analyzed. Two dimensional (2D) nanomaterials, including graphene, phosphorene (BP), transition metal dichalcogenides (TMDCs), and others, have proven to be attractive for the fabrication of high-performance electrically-transduced chemical sensors due to their remarkable electronic and physical properties originating from their 2D structure. This review highlights the advances in electrically-transduced chemical sensing that rely on 2D materials. The structural components of such sensors are described, and the underlying operating principles for different types of architectures are discussed. The structural features, electronic properties, and surface chemistry of 2D nanostructures that dictate their sensing performance are reviewed. Key advances in the application of 2D materials, from both a historical and analytical perspective, are summarized for four different groups of analytes: gases, volatile compounds, ions, and biomolecules. The sensing performance is discussed in the context of the molecular design, structure-property relationships, and device fabrication technology. The outlook of challenges and opportunities for 2D nanomaterials for the future development of electrically-transduced sensors is also presented.
Collapse
Affiliation(s)
- Zheng Meng
- Department of Chemistry, Burke Laboratory , Dartmouth College , Hanover , New Hampshire 03755 , United States
| | - Robert M Stolz
- Department of Chemistry, Burke Laboratory , Dartmouth College , Hanover , New Hampshire 03755 , United States
| | - Lukasz Mendecki
- Department of Chemistry, Burke Laboratory , Dartmouth College , Hanover , New Hampshire 03755 , United States
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory , Dartmouth College , Hanover , New Hampshire 03755 , United States
| |
Collapse
|
28
|
Barnsley JE, Wagner P, Officer DL, Gordon KC. Aldehyde isomers of porphyrin: A spectroscopic and computational study. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.06.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Recent development of fiber-optic chemical sensors and biosensors: Mechanisms, materials, micro/nano-fabrications and applications. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Vikesland PJ. Nanosensors for water quality monitoring. NATURE NANOTECHNOLOGY 2018; 13:651-660. [PMID: 30082808 DOI: 10.1038/s41565-018-0209-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 05/20/2023]
Abstract
Nanomaterial-enabled sensors are being designed for high-efficiency, multiplex-functionality and high-flexibility sensing applications. Many existing nanosensors have the inherent capacity to achieve such goals; however, they require further development into consumer- and operator-friendly tools with the ability to detect analytes in previously inaccessible locations, as well as at a greater scale than heretofore possible. Here, I discuss how nanotechnology-enabled sensors have great, as yet unmet, promise to provide widespread and potentially low-cost monitoring of chemicals, microbes and other analytes in drinking water.
Collapse
Affiliation(s)
- Peter J Vikesland
- Via Department of Civil and Environmental Engineering and the Institute for Critical Technology and Applied Science (ICTAS), Virginia Tech, Blacksburg, VA, USA.
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, NC, USA.
| |
Collapse
|
31
|
Endogenous and food-derived polyamines: determination by electrochemical sensing. Amino Acids 2018; 50:1187-1203. [DOI: 10.1007/s00726-018-2617-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
|
32
|
Xu S, Zhao H, Xu Y, Xu R, Lei Y. Carrier Mobility-Dominated Gas Sensing: A Room-Temperature Gas-Sensing Mode for SnO 2 Nanorod Array Sensors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13895-13902. [PMID: 29595250 DOI: 10.1021/acsami.8b03953] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Adsorption-induced change of carrier density is presently dominating inorganic semiconductor gas sensing, which is usually operated at a high temperature. Besides carrier density, other carrier characteristics might also play a critical role in gas sensing. Here, we show that carrier mobility can be an efficient parameter to dominate gas sensing, by which room-temperature gas sensing of inorganic semiconductors is realized via a carrier mobility-dominated gas-sensing (CMDGS) mode. To demonstrate CMDGS, we design and prepare a gas sensor based on a regular array of SnO2 nanorods on a bottom film. It is found that the key for determining the gas-sensing mode is adjusting the length of the arrayed nanorods. With the change in the nanorod length from 340 to 40 nm, the gas-sensing behavior changes from the conventional carrier-density mode to a complete carrier-mobility mode. Moreover, compared to the carrier density-dominating gas sensing, the proposed CMDGS mode enhances the sensor sensitivity. CMDGS proves to be an emerging gas-sensing mode for designing inorganic semiconductor gas sensors with high performances at room temperature.
Collapse
Affiliation(s)
- Shipu Xu
- Institute für Physik & IMN MacroNano (ZIK) , Technische Universität Ilmenau , Ilmenau 98693 , Germany
| | - Huaping Zhao
- Institute für Physik & IMN MacroNano (ZIK) , Technische Universität Ilmenau , Ilmenau 98693 , Germany
| | - Yang Xu
- Institute für Physik & IMN MacroNano (ZIK) , Technische Universität Ilmenau , Ilmenau 98693 , Germany
| | - Rui Xu
- Institute für Physik & IMN MacroNano (ZIK) , Technische Universität Ilmenau , Ilmenau 98693 , Germany
| | - Yong Lei
- Institute für Physik & IMN MacroNano (ZIK) , Technische Universität Ilmenau , Ilmenau 98693 , Germany
| |
Collapse
|
33
|
Ibanez JG, Rincón ME, Gutierrez-Granados S, Chahma M, Jaramillo-Quintero OA, Frontana-Uribe BA. Conducting Polymers in the Fields of Energy, Environmental Remediation, and Chemical–Chiral Sensors. Chem Rev 2018; 118:4731-4816. [DOI: 10.1021/acs.chemrev.7b00482] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jorge G. Ibanez
- Departamento de Ingeniería y Ciencias Químicas, Universidad Iberoamericana, Prolongación Paseo de la Reforma 880, 01219 Ciudad de México, Mexico
| | - Marina. E. Rincón
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Apartado Postal 34, 62580, Temixco, MOR, Mexico
| | - Silvia Gutierrez-Granados
- Departamento de Química, DCNyE, Campus Guanajuato, Universidad de Guanajuato, Cerro de la Venada S/N, Pueblito
de Rocha, 36080 Guanajuato, GTO Mexico
| | - M’hamed Chahma
- Laurentian University, Department of Chemistry & Biochemistry, Sudbury, ON P3E2C6, Canada
| | - Oscar A. Jaramillo-Quintero
- CONACYT-Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Apartado Postal 34, 62580 Temixco, MOR, Mexico
| | - Bernardo A. Frontana-Uribe
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Km 14.5 Carretera Toluca-Ixtlahuaca, Toluca 50200, Estado de México Mexico
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito
exterior Ciudad Universitaria, 04510 Ciudad de México, Mexico
| |
Collapse
|
34
|
Iskierko Z, Noworyta K, Sharma PS. Molecular recognition by synthetic receptors: Application in field-effect transistor based chemosensing. Biosens Bioelectron 2018. [PMID: 29525669 DOI: 10.1016/j.bios.2018.02.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Molecular recognition, i.e., ability of one molecule to recognize another through weak bonding interactions, is one of the bases of life. It is often implemented to sensing systems of high merits. Preferential recognition of the analyte (guest) by the receptor (host) induces changes in physicochemical properties of the sensing system. These changes are measured by using suitable signal transducers. Because of possibility of miniaturization, fast response, and high sensitivity, field-effect transistors (FETs) are more frequently being used for that purpose. A FET combined with a biological material offers the potential to overcome many challenges approached in sensing. However, low stability of biological materials under measurement conditions is a serious problem. To circumvent this problem, synthetic receptors were integrated with the gate surface of FETs to provide robust performance. In the present critical review, the approach utilized to devise chemosensors integrating synthetic receptors and FET transduction is discussed in detail. The progress in this field was summarized and important outcome was provided.
Collapse
Affiliation(s)
- Zofia Iskierko
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Krzysztof Noworyta
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Piyush Sindhu Sharma
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
35
|
Mishra S, Yogi P, Sagdeo PR, Kumar R. Mesoporous Nickel Oxide (NiO) Nanopetals for Ultrasensitive Glucose Sensing. NANOSCALE RESEARCH LETTERS 2018; 13:16. [PMID: 29327092 PMCID: PMC5764908 DOI: 10.1186/s11671-018-2435-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
Glucose sensing properties of mesoporous well-aligned, dense nickel oxide (NiO) nanostructures (NSs) in nanopetals (NPs) shape grown hydrothermally on the FTO-coated glass substrate has been demonstrated. The structural study based investigations of NiO-NPs has been carried out by X-ray diffraction (XRD), electron and atomic force microscopies, energy dispersive X-ray (EDX), and X-ray photospectroscopy (XPS). Brunauer-Emmett-Teller (BET) measurements, employed for surface analysis, suggest NiO's suitability for surface activity based glucose sensing applications. The glucose sensor, which immobilized glucose on NiO-NPs@FTO electrode, shows detection of wide range of glucose concentrations with good linearity and high sensitivity of 3.9 μA/μM/cm2 at 0.5 V operating potential. Detection limit of as low as 1 μΜ and a fast response time of less than 1 s was observed. The glucose sensor electrode possesses good anti-interference ability, stability, repeatability & reproducibility and shows inert behavior toward ascorbic acid (AA), uric acid (UA) and dopamine acid (DA) making it a perfect non-enzymatic glucose sensor.
Collapse
Affiliation(s)
- Suryakant Mishra
- Material Research Laboratory, Discipline of Physics & MEMS, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Priyanka Yogi
- Material Research Laboratory, Discipline of Physics & MEMS, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - P R Sagdeo
- Material Research Laboratory, Discipline of Physics & MEMS, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Rajesh Kumar
- Material Research Laboratory, Discipline of Physics & MEMS, Indian Institute of Technology Indore, Simrol, Indore, 453552, India.
| |
Collapse
|
36
|
Tang N, Jiang Y, Qu H, Duan X. Conductive polymer nanowire gas sensor fabricated by nanoscale soft lithography. NANOTECHNOLOGY 2017; 28:485301. [PMID: 28968225 DOI: 10.1088/1361-6528/aa905b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Resistive devices composed of one-dimensional nanostructures are promising candidates for the next generation of gas sensors. However, the large-scale fabrication of nanowires is still challenging, which restricts the commercialization of such devices. Here, we report a highly efficient and facile approach to fabricating poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) nanowire chemiresistive gas sensors by nanoscale soft lithography. Well-defined sub-100 nm nanowires are fabricated on silicon substrate, which facilitates device integration. The nanowire chemiresistive gas sensor is demonstrated for NH3 and NO2 detection at room temperature and shows a limit of detection at ppb level, which is compatible with nanoscale PEDOT:PSS gas sensors fabricated with the conventional lithography technique. In comparison with PEDOT:PSS thin-film gas sensors, the nanowire gas sensor exhibits higher sensitivity and a much faster response to gas molecules.
Collapse
Affiliation(s)
- Ning Tang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | | | | | | |
Collapse
|
37
|
He Y, Zheng J, Wang B, Ren H. Double Biocatalysis Signal Amplification Glucose Biosensor Based on Porous Graphene. MATERIALS 2017; 10:ma10101139. [PMID: 28953240 PMCID: PMC5666945 DOI: 10.3390/ma10101139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 11/16/2022]
Abstract
Controllable preparation of nanopores to promote the performance of electrochemical biosensing interfaces has become one of the researching frontiers in biosensing. A double biocatalysis signal amplification of glucose biosensor for the study of electrochemical behaviors of glucose oxidase (GOx) was proposed by using horseradish peroxidase biosynthesized porous graphene (PGR) as the platform for the biocatalytic deposition of gold nanoparticles (AuNPs). The biosensor showed a linear range from 0.25 to 27.5 μM with a detection limit of 0.05 μM (S/N = 3) towards glucose. Furthermore, the proposed AuNPs/GOx–PGR modified glassy carbon electrode (AuNPs/GOx–PGR/GCE) achieved direct electron transfer of GOx.
Collapse
Affiliation(s)
- Yaping He
- School of Chemical Engineering, Xi'an University, Xi'an 710065, Shaanxi, China.
| | - Jianbin Zheng
- Institute of Analytical Science/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University, Xi'an 710069, Shaanxi, China.
| | - Bini Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an 710119, Shaanxi, China.
| | - Hongjiang Ren
- School of Chemical Engineering, Xi'an University, Xi'an 710065, Shaanxi, China.
| |
Collapse
|
38
|
Ko M, Aykanat A, Smith MK, Mirica KA. Drawing Sensors with Ball-Milled Blends of Metal-Organic Frameworks and Graphite. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2192. [PMID: 28946624 PMCID: PMC5677178 DOI: 10.3390/s17102192] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/15/2017] [Accepted: 09/17/2017] [Indexed: 01/05/2023]
Abstract
The synthetically tunable properties and intrinsic porosity of conductive metal-organic frameworks (MOFs) make them promising materials for transducing selective interactions with gaseous analytes in an electrically addressable platform. Consequently, conductive MOFs are valuable functional materials with high potential utility in chemical detection. The implementation of these materials, however, is limited by the available methods for device incorporation due to their poor solubility and moderate electrical conductivity. This manuscript describes a straightforward method for the integration of moderately conductive MOFs into chemiresistive sensors by mechanical abrasion. To improve electrical contacts, blends of MOFs with graphite were generated using a solvent-free ball-milling procedure. While most bulk powders of pure conductive MOFs were difficult to integrate into devices directly via mechanical abrasion, the compressed solid-state MOF/graphite blends were easily abraded onto the surface of paper substrates equipped with gold electrodes to generate functional sensors. This method was used to prepare an array of chemiresistors, from four conductive MOFs, capable of detecting and differentiating NH₃, H₂S and NO at parts-per-million concentrations.
Collapse
Affiliation(s)
- Michael Ko
- Department of Chemistry-Burke Laboratory, Dartmouth College, Hanover, NH 03755, USA.
| | - Aylin Aykanat
- Department of Chemistry-Burke Laboratory, Dartmouth College, Hanover, NH 03755, USA.
| | - Merry K Smith
- Department of Chemistry-Burke Laboratory, Dartmouth College, Hanover, NH 03755, USA.
| | - Katherine A Mirica
- Department of Chemistry-Burke Laboratory, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
39
|
Baumgartner M, Weihrich R, Nilges T. Inorganic SnIP-Type Double Helices in Main-Group Chemistry. Chemistry 2017; 23:6452-6457. [PMID: 28247489 DOI: 10.1002/chem.201700929] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Indexed: 11/06/2022]
Abstract
Inspired by the synthesis of the first atomic-scale double-helix semiconductor SnIP, this study deals with the question of whether more atomistic, inorganic double-helix compounds are accessible. With the aid of quantum chemical calculations, we have identified 31 candidates by a homoatomic substitution in MXPn, varying the Group 14 M-element from Si to Pb, the Group 17 X-element from F to I and replacing the pnictide (Pn) phosphorus by arsenic. The double-helical structure of SnIP has been used as the starting model for all candidates and the electronic structure and vibrational spectra were determined within the framework of density functional theory (DFT). Varying the outer MX or the inner Pn helix led to the conclusion that iodide- and bromide-containing MXPn compounds show similar structures to SnIP. Here, the calculations indicate interesting effects for electronic band-gap tuning. For the highly polarized fluorides, a segregation of the helices to more complex MX substructures is predicted.
Collapse
Affiliation(s)
- Maximilian Baumgartner
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85747, Garching, Germany
| | - Richard Weihrich
- Institute for Materials Resource Management, University of Augsburg, Universitätsstr. 1, 86135, Augsburg, Germany
| | - Tom Nilges
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85747, Garching, Germany
| |
Collapse
|
40
|
Bettazzi F, Marrazza G, Minunni M, Palchetti I, Scarano S. Biosensors and Related Bioanalytical Tools. PAST, PRESENT AND FUTURE CHALLENGES OF BIOSENSORS AND BIOANALYTICAL TOOLS IN ANALYTICAL CHEMISTRY: A TRIBUTE TO PROFESSOR MARCO MASCINI 2017. [DOI: 10.1016/bs.coac.2017.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|