1
|
Malecka-Baturo K, Grabowska I. Efficiency of electrochemical immuno- vs. apta(geno)sensors for multiple cancer biomarkers detection. Talanta 2025; 281:126870. [PMID: 39298804 DOI: 10.1016/j.talanta.2024.126870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
The interest in biosensors technology has been constantly growing over the last few years. It is still the biggest challenge to design biosensors able to detect two or more analytes in a single measurement. Electrochemical methods are frequently used for this purpose, mainly due to the possibility of applying two or more different redox labels characterized by independent and distinguished electrochemical signals. In addition to antibodies, nucleic acids (aptamers) have been increasingly used as bioreceptors in the construction of such sensors. Within this review paper, we have collected the examples of electrochemical immuno- and geno(apta)sensors for simultaneous detection of multiple analytes. Based on many published literature examples, we have emphasized the recent application of multiplexed platforms for detection of cancer biomarkers. It has allowed us to compare the progress in design strategies, including novel nanomaterials and amplification of signals, to get as low as possible limits of detection. We have focused on multi-electrode and multi-label strategies based on redox-active labels, such as ferrocene, anthraquinone, methylene blue, thionine, hemin and quantum dots, or metal ions such as Ag+, Pb2+, Cd2+, Zn2+, Cu2+ and others. We have finally discussed the possible way of development, challenges and prospects in the area of multianalyte electrochemical immuno- and geno(apta)sensors.
Collapse
Affiliation(s)
- Kamila Malecka-Baturo
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Str. 10, 10-748, Olsztyn, Poland
| | - Iwona Grabowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Str. 10, 10-748, Olsztyn, Poland.
| |
Collapse
|
2
|
Tang S, He B, Liu Y, Wang L, Liang Y, Wang J, Jin H, Wei M, Ren W, Suo Z, Xu Y. A dual-signal mode electrochemical aptasensor based on tetrahedral DNA nanostructures for sensitive detection of citrinin in food using PtPdCo mesoporous nanozymes. Food Chem 2024; 460:140739. [PMID: 39116770 DOI: 10.1016/j.foodchem.2024.140739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Citrinin (CIT) is a mycotoxin with nephrotoxicity and hepatotoxicity, presenting a significant threat to human health that is often overlooked. Therefore, a dual-signal mode (DPV and SWV) aptasensor for citrinin (CIT) detection was constructed based on tetrahedral DNA nanostructures (TDN) in this study. Furthermore, PtPdCo mesoporous nanozymes exhibit catalase-like catalytic functions, generating significant electrochemical signals through a Fenton-like reaction. Meanwhile their excellent Methylene Blue (MB) loading capability ensures independent dual signal outputs. The RecJf exonuclease-assisted (RecJf Exo-assisted) process can expand the linear detection range, enabling further amplification of the signal. Under optimized conditions, the constructed aptaensor exhibited excellent detection performance with limits of detection (LODs) of 7.67 × 10-3 ng·mL-1 (DPV mode) and 1.57 × 10-3 ng·mL-1 (SWV mode). Due to its multiple signal amplification and highly accurate dual-signal mode detection capability, this aptasensor shows promising potential for the in situ detection.
Collapse
Affiliation(s)
- Shi Tang
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Yao Liu
- Henan Scientific Research Platform Service Center, Zhengzhou, Henan 450003, PR China
| | - Longdi Wang
- COFCO Lijin (Tianjin) Grain and Oil Co., Ltd., Tianjin, 300112, PR China
| | - Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Huali Jin
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Min Wei
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Wenjie Ren
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Zhiguang Suo
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Yiwei Xu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| |
Collapse
|
3
|
Tang H, Zhang S, Yang B, Qiu X, Wang H, Li Y. Metal-Organic Framework Sub-Nanochannels within the Confined Micropipettes: Precise Construction Makes It a Universal Aptamer-Based Sensing Platform. Anal Chem 2024; 96:17649-17656. [PMID: 39437322 DOI: 10.1021/acs.analchem.4c03620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
It is crucial to precisely construct metal-organic framework (MOF) sub-nanochannels at the tip of micro/nanopipettes for fundamental research and sensing applications. The quality of the MOF modification plays a significant role in influencing subsequent research, particularly in sensing applications. In this work, we present a precise method of constructing MOF sub-nanochannels at the tip of glass micropipettes, which serve as a universal aptamer-based sensing platform for the selective detection of proteins. In situ scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) mapping, and fluorescence microscopy results demonstrate that the synthesized MOF (UiO-66) nanocrystals fully block the orifice of glass micropipettes (UiO-66-GMs) without forming any nanometer-scale cracks and remain confined within the geometric boundaries of the orifice. The terminal phosphate-modified aptamer readily binds to the surface of UiO-66-GMs through metal (Zr)-phosphate coordination, ultimately forming the aptamer sensor (Apt-UiO-66-GMs). The selective quantification of proteins is achieved via a decrease in current resulting from protein binding to the aptamer. Our results indicate that the precisely constructed Apt-UiO-66-GMs sensor enables highly selective and sensitive detection of SARS-CoV-2 nucleocapsid protein and holds potential for real sample detection. Furthermore, given the sharp tip of the micropipets and the external sensing interface we have constructed, our aptamer-based sensing platform also opens avenues for single-cell analysis and in vivo sensing.
Collapse
Affiliation(s)
- Haoran Tang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Anhui Key Laboratory of Synthetic Chemistry and Applications, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, P. R. China
| | - Shuai Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Anhui Key Laboratory of Synthetic Chemistry and Applications, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, P. R. China
| | - Binbin Yang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Anhui Key Laboratory of Synthetic Chemistry and Applications, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, P. R. China
| | - Xia Qiu
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Hao Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Anhui Key Laboratory of Synthetic Chemistry and Applications, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, P. R. China
| | - Yongxin Li
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| |
Collapse
|
4
|
Yan Y, Liu Z, Pang W, Huang S, Deng M, Yao J, Huang Q, Jin M, Shui L. Integrated biosensor array for multiplex biomarkers cancer diagnosis via in-situ self-assembly carbon nanotubes with an ordered inverse-opal structure. Biosens Bioelectron 2024; 262:116528. [PMID: 38943855 DOI: 10.1016/j.bios.2024.116528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/31/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
To enhance the precision and reliability of early disease detection, especially in malignancies, an exhaustive investigation of multi-target biomarkers is essential. In this study, an advanced integrated electrochemical biosensor array that demonstrates exceptional performance was constructed. This biosensor was developed through a controllable porous-size mechanism and in-situ modification of carbon nanotubes (CNTs) to quantify multiplex biomarkers-specifically, C-reaction protein (CRP), carbohydrate antigen 125 (CA125), and carcinoembryonic antigen (CEA)-in human serum plasma. The fabrication process involved creating a highly ordered three-dimensional inverse-opal structure with the CNTs (pCNTs) modifier through microdroplet-based microfluidics, confined spatial self-assembly of nanoparticles, and chemical wet-etching. This innovative approach allowed for direct in-situ modification of nanomaterial onto the surface of electrode array, eliminating secondary transfer and providing exceptional control over structure and stability. The outstanding electrochemical performance was achieved through the synergistic effect of the pCNTs nanomaterial, aptamer, and horseradish peroxidase-labeled (HRP-) antibody. Additionally, the integrated biosensor array platform comprised multiple individually addressable electrode units (n = 11), enabling simultaneous multi-parallel/target testing, thereby ensuring accuracy and high throughput. Crucially, this integrated biosensor array accurately quantified multiplex biomarkers in human serum, yielding results comparable to commercial methods. This integrated technology holds promise for point-of-care testing (POCT) in early disease diagnosis and biological analysis.
Collapse
Affiliation(s)
- Yu Yan
- Joint Laboratory of Optofluidic Technology and System, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China
| | - Zhenping Liu
- Joint Laboratory of Optofluidic Technology and System, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China.
| | - Wenbin Pang
- Joint Laboratory of Optofluidic Technology and System, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China
| | - Shijian Huang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, PR China
| | - Mengxin Deng
- Joint Laboratory of Optofluidic Technology and System, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China
| | - Jiyuan Yao
- Joint Laboratory of Optofluidic Technology and System, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China
| | - Qiuju Huang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning, 530021, PR China.
| | - Mingliang Jin
- Joint Laboratory of Optofluidic Technology and System, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China; International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing, 526238, PR China
| | - Lingling Shui
- Joint Laboratory of Optofluidic Technology and System, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, PR China.
| |
Collapse
|
5
|
Tan C, Xie G, Wu S, Song C, Zhang J, Yi X, Wang J, Tang H. Simultaneous detection of breast cancer biomarkers circROBO1 and BRCA1 based on a CRISPR-Cas13a/Cas12a system. Biosens Bioelectron 2024; 258:116373. [PMID: 38729048 DOI: 10.1016/j.bios.2024.116373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Breast cancer is reported to be one of the most lethal cancers in women, and its multi-target detection can help improve the accuracy of diagnosis. In this work, a cluster regularly interspaced short palindromic repeats (CRISPR)-Cas13a/Cas12a-based system was established for the simultaneous fluorescence detection of breast cancer biomarkers circROBO1 and BRCA1. CRISPR-Cas13a and CRISPR-Cas12a were directly activated by their respective targets, resulting in the cleavage of short RNA and DNA reporters, respectively, thus the signals of 6-carboxyfluorescein (FAM) and 6-carboxy-xrhodamine (ROX) were restored. As the fluorescence intensities of FAM and ROX were dependent on the concentrations of circROBO1 and BRCA1, respectively, synchronous fluorescence scanning could achieve one-step detection of circROBO1 and BRCA1 with detection limits of 0.013 pM and 0.26 pM, respectively. The system was highly sensitive and specific, holding high diagnostic potential for the detection of clinical samples. Furthermore, the competing endogenous RNA mechanism between circROBO1 and BRCA1 was also explored, providing a reliable basis for the intrinsic regulatory mechanism of breast cancer.
Collapse
Affiliation(s)
- Chengchen Tan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, PR China
| | - Guoyang Xie
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, PR China
| | - Song Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, PR China
| | - Cailu Song
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, PR China
| | - Jinhui Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, PR China
| | - Xinyao Yi
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, PR China.
| | - Jianxiu Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, PR China.
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, PR China.
| |
Collapse
|
6
|
Zahra T, Javeria U, Jamal H, Baig MM, Akhtar F, Kamran U. A review of biocompatible polymer-functionalized two-dimensional materials: Emerging contenders for biosensors and bioelectronics applications. Anal Chim Acta 2024; 1316:342880. [PMID: 38969417 DOI: 10.1016/j.aca.2024.342880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/07/2024]
Abstract
Bioelectronics, a field pivotal in monitoring and stimulating biological processes, demands innovative nanomaterials as detection platforms. Two-dimensional (2D) materials, with their thin structures and exceptional physicochemical properties, have emerged as critical substances in this research. However, these materials face challenges in biomedical applications due to issues related to their biological compatibility, adaptability, functionality, and nano-bio surface characteristics. This review examines surface modifications using covalent and non-covalent-based polymer-functionalization strategies to overcome these limitations by enhancing the biological compatibility, adaptability, and functionality of 2D nanomaterials. These surface modifications aim to create stable and long-lasting therapeutic effects, significantly paving the way for the practical application of polymer-functionalized 2D materials in biosensors and bioelectronics. The review paper critically summarizes the surface functionalization of 2D nanomaterials with biocompatible polymers, including g-C3N4, graphene family, MXene, BP, MOF, and TMDCs, highlighting their current state, physicochemical structures, synthesis methods, material characteristics, and applications in biosensors and bioelectronics. The paper concludes with a discussion of prospects, challenges, and numerous opportunities in the evolving field of bioelectronics.
Collapse
Affiliation(s)
- Tahreem Zahra
- Department of Chemistry, University of Narowal, Narowal, Punjab, 51600, Pakistan
| | - Umme Javeria
- Department of Chemistry, University of Narowal, Narowal, Punjab, 51600, Pakistan
| | - Hasan Jamal
- Division of Energy Technology, Daegu Gyeongbuk Institute of Science & Technology, 333, Techno Jungang-Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, Republic of Korea
| | - Mirza Mahmood Baig
- Department of Chemistry, University of Narowal, Narowal, Punjab, 51600, Pakistan; Department of Chemistry, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Farid Akhtar
- Division of Materials Science, Luleå University of Technology, 97187, Luleå, Sweden.
| | - Urooj Kamran
- Division of Materials Science, Luleå University of Technology, 97187, Luleå, Sweden; Institute of Advanced Machinery Design Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Mao H, Yu L, Tu M, Wang S, Zhao J, Zhang H, Cao Y. Recent Advances on the Metal-Organic Frameworks-Based Biosensing Methods for Cancer Biomarkers Detection. Crit Rev Anal Chem 2024; 54:1273-1289. [PMID: 35980613 DOI: 10.1080/10408347.2022.2111197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sensitive and selective detection of cancer biomarkers is crucial for early diagnosis and treatment of cancer, one of the most dangerous diseases in the world. Metal-organic frameworks (MOFs), a class of hybrid porous materials fabricated through the assembly of metal ions/clusters and organic ligands, have attracted increasing attention in the sensing of cancer biomarkers, due to the advantages of adjustable size, high porosity, large surface area and ease of modification. MOFs have been utilized to not only fabricate active sensing interfaces but also arouse a variety of measurable signals. Several representative analytical technologies have been applied in MOF-based biosensing strategies to ensure high detection sensitivity toward cancer biomarkers, such as fluorescence, electrochemistry, electrochemiluminescence, photochemistry and colorimetric methods. In this review, we summarized recent advances on MOFs-based biosensing strategies for the detection of cancer biomarkers in recent three years based on the categories of metal nodes, and aimed to provide valuable references for the development of innovative biosensing platform for the purpose of clinical diagnosis.
Collapse
Affiliation(s)
- Huiru Mao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China
| | - Longmei Yu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
| | - Ming Tu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuning Wang
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jing Zhao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China
| | - Haiyun Zhang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
| | - Ya Cao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
8
|
Cheng WH, Zhan LL, Li W. Construction of MOF@COF-derived composites for ratiometric fluorescence detection of water with ultralow background. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124304. [PMID: 38636424 DOI: 10.1016/j.saa.2024.124304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
A ratiometric sensor with ultralow background is highly desired due to its low environmental influence and high sensitivity. Herein, inspired by the solubility difference of carboxylate in aqueous and organic solvents, we prepared a core-shell structure porous zirconia-covalent organic framework (COF) composite through thermal hydrolysis of UiO-66-COF precursors in organic alkali solution. The ligand 2-aminoterephthalic acids (H2BDC-NH2) of UiO-66 were transformed into 2-aminoterephthalate salts (ATA salts) that existed in zirconium-oxo clusters building units. The composites emitted only yellow emission (597 nm) from the COF in organic solvent due to the insolubility of ATA salts that induce aggregation-caused quenching (ACQ) and the protection of the COF shell. Contrarily, when water was added into mixture, the ATA salts were released into solution and its fluorescence recovered at 446 nm, while the fluorescence of COF was quenched due to the blockage of the intramolecular charge transfer (ICT) process by water. Thus, a high-sensitivity ratiometric fluorescence method is obtained with ultralow background signal and fast response (less than 1 min) for sensing water in organic solvent. We believe that the proposed ratiometric fluorescence sensor based on the zirconia-COF composite will provide the guidance for detection with wide applications.
Collapse
Affiliation(s)
- Wen-Hui Cheng
- School of Pharmaceutical and Materials Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Le-Le Zhan
- School of Pharmaceutical and Materials Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Wei Li
- School of Pharmaceutical and Materials Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, China.
| |
Collapse
|
9
|
Gorgani L, Mohammadi M, Najafpour Darzi G, Raoof JB. Metal-organic framework (MOF)-based biosensors for miRNA detection. Talanta 2024; 273:125854. [PMID: 38447342 DOI: 10.1016/j.talanta.2024.125854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/31/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
MicroRNAs (miRNAs) play several crucial roles in the physiological and pathological processes of the human body. They are considered as important biomarkers for the diagnosis of various disorders. Thus, rapid, sensitive, selective, and affordable detection of miRNAs is of great importance. However, the small size, low abundance, and highly similar sequences of miRNAs impose major challenges to their accurate detection in biological samples. In recent years, metal-organic frameworks (MOFs) have been applied as promising sensing materials for the fabrication of different biosensors due to their distinctive characteristics, such as high porosity and surface area, tunable pores, outstanding adsorption affinities, and ease of functionalization. In this review, the applications of MOFs and MOF-derived materials in the fabrication of fluorescence, electrochemical, chemiluminescence, electrochemiluminescent, and photoelectrochemical biosensors for the detection of miRNAs and their detection principle and analytical performance are discussed. This paper attempts to provide readers with a comprehensive knowledge of the fabrication and sensing mechanisms of miRNA detection platforms.
Collapse
Affiliation(s)
- Leila Gorgani
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, 47148-71167, Iran
| | - Maedeh Mohammadi
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, 47148-71167, Iran; School of Chemical Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| | - Ghasem Najafpour Darzi
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, 47148-71167, Iran
| | - Jahan Bakhsh Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
10
|
Fan J, Gong H, Wang F, Wang L, Yu Y, Liu D, Yang W. Multiplexed electrochemical nucleic acid sensor based on visible light-mediated metal-free thiol-yne click reaction for simultaneous detection of different nucleic acid targets. Talanta 2024; 273:125856. [PMID: 38442565 DOI: 10.1016/j.talanta.2024.125856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/26/2023] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
Simultaneous detection of multiple tumor biomarkers with a simple and low-cost assay is crucial for early cancer detection and diagnosis. Herein, we presented a low-cost and simple assay for multiplexed detection of tumor biomarkers using a spatially separated electrodes strategy. The sensor is fabricated based on a metal-free thiol-yne click reaction, which is mediated by visible light, on commercially available indium tin oxide (ITO) electrodes. Four biomarkers, including p53 DNA, Brca2 DNA, K-ras DNA, and MicroRNA-204 RNA, were used as model analytes, and the corresponding oligonucleotide probes were modified on the desired electrode units sequentially with 530 nm irradiation light in the presence of photosensitizer Eosin Y. By this visible light-mediated coupling reaction, oligonucleotide probe densities of up to 9.2 ± 0.7 × 1010 molecules/cm2 were readily obtained on the ITO electrode surface. The proposed multiplexed E-NA sensor could detect four different nucleic acid targets concurrently without crosstalk among adjacent electrodes and was also successfully applied for detecting targets in a 20% fetal calf serum sample. The detection limits for p53 DNA, Brca2 DNA, K-ras DNA, and MicroRNA-204 RNA were 0.72 nM, 0.97 nM, 2.15 nM, and 1.73 nM, respectively. The developed approach not only has a great potential for developing cost-effective biosensors on affordable substrates for nucleic acid target detection, but also be easily extended to detect other targets by modifying the specific oligonucleotide probes anchored on the electrode.
Collapse
Affiliation(s)
- Jinlong Fan
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Hanlin Gong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Fan Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Li Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150001, China
| | - Yongsheng Yu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Danqing Liu
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China.
| | - Weiwei Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
11
|
Zhang X, Zhu L, Yang L, Liu G, Qiu S, Xiong X, Huang K, Xiao T, Zhu L. A sensitive and versatile electrochemical sensor based on hybridization chain reaction and CRISPR/Cas12a system for antibiotic detection. Anal Chim Acta 2024; 1304:342562. [PMID: 38637031 DOI: 10.1016/j.aca.2024.342562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/20/2024]
Abstract
A sensitive electrochemical platform was constructed with NH2-Cu-MOF as electrochemical probe to detect antibiotics using CRISPR/Cas12a system triggered by hybridization chain reaction (HCR). The sensing system consists of two HCR systems. HCR1 occurred on the electrode surface independent of the target, generating long dsDNA to connect signal probes and producing a strong electrochemical signal. HCR2 was triggered by target, and the resulting dsDNA products activated the CRISPR/Cas12a, thereby resulting in effective and rapid cleavage of the trigger of HCR1, hindering the occurrence of HCR1, and reducing the number of NH2-Cu-MOF on the electrode surface. Eventually, significant signal change depended on the target was obtained. On this basis and with the help of the programmability of DNA, kanamycin and ampicillin were sensitively detected with detection limits of 60 fM and 10 fM (S/N = 3), respectively. Furthermore, the sensing platform showed good detection performance in milk and livestock wastewater samples, demonstrating its great application prospects in the detection of antibiotics in food and environmental water samples.
Collapse
Affiliation(s)
- Xuemei Zhang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China; Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling (Sichuan Normal University), Chengdu, 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Li Zhu
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China; Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling (Sichuan Normal University), Chengdu, 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Li Yang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China; Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling (Sichuan Normal University), Chengdu, 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Guoyu Liu
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China; Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling (Sichuan Normal University), Chengdu, 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Shan Qiu
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China; Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling (Sichuan Normal University), Chengdu, 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Xiaoli Xiong
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China; Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling (Sichuan Normal University), Chengdu, 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Ke Huang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China; Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling (Sichuan Normal University), Chengdu, 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Ting Xiao
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China; Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling (Sichuan Normal University), Chengdu, 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China.
| | - Liping Zhu
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610066, China; Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling (Sichuan Normal University), Chengdu, 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China.
| |
Collapse
|
12
|
Dong J, Li X, Hou C, Hou J, Huo D. A Novel CRISPR/Cas12a-Mediated Ratiometric Dual-Signal Electrochemical Biosensor for Ultrasensitive and Reliable Detection of Circulating Tumor Deoxyribonucleic Acid. Anal Chem 2024; 96:6930-6939. [PMID: 38652001 DOI: 10.1021/acs.analchem.3c05700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Circulating tumor DNA (ctDNA) holds great promise as a noninvasive biomarker for cancer diagnosis, treatment, and prognosis. However, the accurate and specific quantification of low-abundance ctDNA in serum remains a significant challenge. This study introduced, for the first time, a novel exponential amplification reaction (EXPAR)-assisted CRISPR/Cas12a-mediated ratiometric dual-signal electrochemical biosensor for ultrasensitive and reliable detection of ctDNA. To implement the dual-signal strategy, a signal unit (ssDNA-MB@Fc/UiO-66-NH2) was prepared, consisting of methylene blue-modified ssDNA as the biogate to encapsulate ferrocene signal molecules within UiO-66-NH2 nanocarriers. The presence of target ctDNA KRAS triggered EXPAR amplification, generating numerous activators for Cas12a activation, resulting in the cleavage of ssDNA-P fully complementary to the ssDNA-MB biogate. Due to the inability to form a rigid structure dsDNA (ssDNA-MB/ssDNA-P), the separation of ssDNA-MB biogate from the UiO-66-NH2 surface was hindered by electrostatic interactions. Consequently, the supernatant collected after centrifugation exhibited either no or only a weak presence of Fc and MB signal molecules. Conversely, in the absence of the target ctDNA, the ssDNA-MB biogate was open, leading to the leakage of Fc signal molecules. This clever ratiometric strategy with Cas12a as the "connector", reflecting the concentration of ctDNA KRAS based on the ratio of the current intensities of the two electroactive signal molecules, enhanced detection sensitivity by at least 60-300 times compared to single-signal strategies. Moreover, this strategy demonstrated satisfactory performance in ctDNA detection in complex human serum, highlighting its potential for cancer diagnosis.
Collapse
Affiliation(s)
- Jiangbo Dong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Xinyao Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
- Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, PR China
| | - Jingzhou Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing 401331, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
13
|
Zong C, Kong L, Li C, Xv H, Lv M, Chen X, Li C. Light-harvesting iridium (III) complex-sensitized NiO photocathode for photoelectrochemical bioanalysis. Mikrochim Acta 2024; 191:223. [PMID: 38556564 DOI: 10.1007/s00604-024-06321-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
A novel iridium (III) complex bearing boron dipyrromethene (Bodipy) as the light-harvesting antenna has been synthesized and is firstly employed as photosensitizer to assemble a dye-sensitized NiO photocathode. The assembled photocathode exhibits significantly improved photoelectrochemical (PEC) performance. Integrating the prepared photocathode with hybridization chain reaction (HCR)--based signal amplification strategy, a cathodic PEC biosensor is proposed for the detection of microRNA-133a (miRNA-133a). In the presence of the target, HCR is triggered to form long duplex concatamers on the photocathode, which allows numerous manganese porphyrins (MnPP) to bind in the dsDNA groove. With the help of H2O2, MnPP with peroxidase-like activity catalyzes 4--chloro-1-naphthol (4-CN) to produce benzo--4--chlorohexadienone (4-CD) precipitate on the electrode, leading to a significant decrease of photocurrent signal. The decreased photocurrent correlates linearly with the target concentration from 0.1 fM to 1 nM with a detection limit of 66.2 aM (S/N = 3). The proposed PEC strategy exhibits delightful selectivity, reproducibility and stability.
Collapse
Affiliation(s)
- Chengxue Zong
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Linghui Kong
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Can Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Huijuan Xv
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Mengwei Lv
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Xiaodong Chen
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Chunxiang Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| |
Collapse
|
14
|
Dong J, Li X, Wen L, Ma Y, Xu J, Luo H, Hou J, Hou C, Huo D. A novel electrochemical strategy based on MXene@rGO composite aerogel-doped UiO-66-NH 2 for simultaneous detection of cadmium and lead in grain and water samples. Food Chem 2024; 437:137835. [PMID: 37944365 DOI: 10.1016/j.foodchem.2023.137835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
Herein, a novel electrochemical sensing platform is designed for the simultaneous detection of Cd2+ and Pb2+, using MXene@rGO composite aerogel-doped UiO-66-NH2. The MXene@rGO composite aerogel not only serves as the support structure for UiO-66-NH2, but also improves the conductivity of the composite by accelerating the electron transport in the matrix. The amino group of UiO-66-NH2 offers binding sites for heavy-metal ions, and the existence of PhNH2/PhNH3+ in the composite promotes the redox processes of the metal ions to be detected on the electrode surface. The proposed sensing strategy can detect Cd2+ and Pb2+ independently and concurrently, with detection limits of 0.46 ppb and 0.40 ppb, respectively. Remarkably, when this strategy is used for simultaneous detection of Cd2+ and Pb2+ in grain and water samples, it exhibits excellent accuracy and reliability, aligning with the standard method (e.g., AAS and ICP-MS) demonstrating considerable promise in practical applications.
Collapse
Affiliation(s)
- Jiangbo Dong
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Xinyao Li
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Li Wen
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Yi Ma
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yibin 644000, PR China
| | - Jingbing Xu
- Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China
| | - Huibo Luo
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yibin 644000, PR China
| | - Jingzhou Hou
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China; Postdoctoral Research Station, Chongqing University, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China; Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yibin 644000, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China; Postdoctoral Research Station, Chongqing University, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
15
|
Li B, Ashrafizadeh M, Jiao T. Biomedical application of metal-organic frameworks (MOFs) in cancer therapy: Stimuli-responsive and biomimetic nanocomposites in targeted delivery, phototherapy and diagnosis. Int J Biol Macromol 2024; 260:129391. [PMID: 38242413 DOI: 10.1016/j.ijbiomac.2024.129391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
The nanotechnology is an interdisciplinary field that has become a hot topic in cancer therapy. Metal-organic frameworks (MOFs) are porous materials and hybrid composites consisted of organic linkers and metal cations. Despite the wide application of MOFs in other fields, the potential of MOFs for purpose of cancer therapy has been revealed by the recent studies. High surface area and porosity, significant drug loading and encapsulation efficiency are among the benefits of using MOFs in drug delivery. MOFs can deliver genes/drugs with selective targeting of tumor cells that can be achieved through functionalization with ligands. The photosensitizers and photo-responsive nanostructures including carbon dots and gold nanoparticles can be loaded in/on MOFs to cause phototherapy-mediated tumor ablation. The immunogenic cell death induction and increased infiltration of cytotoxic CD8+ and CD4+ T cells can be accelerated by MOF platforms in providing immunotherapy of tumor cells. The stimuli-responsive MOF platforms responsive to pH, redox, enzyme and ion can accelerate release of therapeutics in tumor site. Moreover, MOF nanocomposites can be modified ligands and green polymers to improve their selectivity and biocompatibility for cancer therapy. The application of MOFs for the detection of cancer-related biomarkers can participate in the early diagnosis of patients.
Collapse
Affiliation(s)
- Beixu Li
- School of Policing Studies, Shanghai University of Political Science and Law, Shanghai 201701, China; Shanghai Fenglin Forensic Center, Shanghai 200231, China; State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Department of Pathology, University of Maryland, Baltimore, MD 21201, USA
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.
| | - Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, 155 North Nanjing St, Shenyang 110001, China.
| |
Collapse
|
16
|
Liu W, Huang Y, Ji C, Grimes CA, Liang Z, Hu H, Kang Q, Yan HL, Cai QY, Zhou YG. Eu 3+-Doped Anionic Zinc-Based Organic Framework Ratio Fluorescence Sensing Platform: Supersensitive Visual Identification of Prescription Drugs. ACS Sens 2024; 9:759-769. [PMID: 38306386 DOI: 10.1021/acssensors.3c02069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Advanced techniques for both environmental and biological prescription drug monitoring are of ongoing interest. In this work, a fluorescent sensor based on an Eu3+-doped anionic zinc-based metal-organic framework (Eu3+@Zn-MOF) was constructed for rapid visual analysis of the prescription drug molecule demecycline (DEM), achieving both high sensitivity and selectivity. The ligand 2-amino-[1,1'-biphenyl]-4,4'-dicarboxylic acid (bpdc-NH2) not only provides stable cyan fluorescence (467 nm) for the framework through intramolecular charge transfer of bpdc-NH2 infinitesimal disturbanced by Zn2+ but also chelates Eu3+, resulting in red (617 nm) fluorescence. Through the synergy of photoinduced electron transfer and the antenna effect, a bidirectional response to DEM is achieved, enabling concentration quantification. The Eu3+@Zn-MOF platform exhibits a wide linear range (0.25-2.5 μM) to DEM and a detection limit (LOD) of 10.9 nM. Further, we integrated the DEM sensing platform into a paper-based system and utilized a smartphone for the visual detection of DEM in water samples and milk products, demonstrating the potential for large-scale, low-cost utilization of the technology.
Collapse
Affiliation(s)
- Wensheng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yao Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Chenhui Ji
- Department of Chemistry, Baotou Teachers College, Baotou 014030, China
| | - Craig A Grimes
- Flux Photon Corporation, Alpharetta, Georgia 30005, United States
| | - Zerong Liang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hairong Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qing Kang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Hai-Long Yan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qing-Yun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yi-Ge Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
17
|
Mustafa SK, Khan MF, Sagheer M, Kumar D, Pandey S. Advancements in biosensors for cancer detection: revolutionizing diagnostics. Med Oncol 2024; 41:73. [PMID: 38372827 DOI: 10.1007/s12032-023-02297-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/28/2023] [Indexed: 02/20/2024]
Abstract
Cancer stands as the reigning champion of life-threatening diseases, casting a shadow with the highest global mortality rate. Unleashing the power of early cancer treatment is a vital weapon in the battle for efficient and positive outcomes. Yet, conventional screening procedures wield limitations of exorbitant costs, time-consuming endeavors, and impracticality for repeated testing. Enter bio-marker-based cancer diagnostics, which emerge as a formidable force in the realm of early detection, disease progression assessment, and ultimate cancer therapy. These remarkable devices boast a reputation for their exceptional sensitivity, streamlined setup requirements, and lightning fast response times. In this study, we embark on a captivating exploration of the most recent advancements and enhancements in the field of electrochemical marvels, targeting the detection of numerous cancer biomarkers. With each breakthrough, we inch closer to a future where cancer's grip on humanity weakens, guided by the promise of personalized treatment and improved patient outcomes. Together, we unravel the mysteries that cancer conceals and illuminate a path toward triumph against this daunting adversary. This study celebrates the relentless pursuit of progress, where electrochemical innovations take center stage in the quest for a world free from the clutches of carcinoma.
Collapse
Affiliation(s)
- Syed Khalid Mustafa
- Department of Chemistry, Faculty of Science, University of Tabuk, P.O. Box 741, Zip 71491, Tabuk, Saudi Arabia.
| | - Mohd Farhan Khan
- Faculty of Science, Gagan College of Management & Technology, Aligarh, 202002, India
| | - Mehak Sagheer
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sadanand Pandey
- Faculty of Applied Sciences and Biotechnology, School of Bioengineering and Food Technology, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
18
|
Yang X, Xu J, Wang Z, Zhao J, Shen T, Hu X, Song P, Zhang X, Song YY. Supramolecular host-guest interaction triggered dye extraction from metal-organic framework for dual-mode ATP sensing from serum. Anal Chim Acta 2024; 1290:342180. [PMID: 38246738 DOI: 10.1016/j.aca.2023.342180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024]
Abstract
Adenosine triphosphate (ATP) universally exists in all living organisms and holds a paramount role as a fundamental energy molecule in daily life. The abnormal concentration of ATP is closely related to many diseases, making the highly efficient detection of ATP very urgent. In this study, a dual-mode sensing system was developed to detect ATP sensitively and selectively via both DPV and fluorescence (FL) techniques, based on the strong interaction of ATP and Zn (II) nodes of zeolitic imidazolate framework-90 (ZIF-90). The disassembly of ZIF-90 further induced the subsequent release of pre-loaded rhodamine B (RhB). Benefitting from the robust host-guest recognition of β-cyclodextrin (β-CD) towards RhB, an enzyme-free and highly specific DPV detection strategy was established with the linear detecting range of 10.0-1.0 × 108 pM and the limit of detection (LOD) as low as 0.13 pM. Meanwhile, the FL sensing mode based on RhB exhibits comparable sensing performance with the linearity range of 10.0-1.0 × 107 pM and the LOD of 0.29 pM. Furthermore, the enzyme-free ATP sensing system exhibit outstanding long-term storage stability. The two-mode sensing platform was successfully applied to detect the ATP in human serum samples with the yielded result highly agree with the results of commercial ELISA kits. This dual-mode sensing platform is inspiring and paves the road for developing high-performance biosensor, demonstrating enormous potential for vitro diagnosis and practice clinic.
Collapse
Affiliation(s)
- Xue Yang
- College of Science, Northeastern University, Shenyang, 110819, China
| | - Jing Xu
- College of Science, Northeastern University, Shenyang, 110819, China
| | - Zirui Wang
- College of Science, Northeastern University, Shenyang, 110819, China
| | - Junjian Zhao
- College of Science, Northeastern University, Shenyang, 110819, China
| | - Tian Shen
- College of Science, Northeastern University, Shenyang, 110819, China
| | - Xu Hu
- College of Science, Northeastern University, Shenyang, 110819, China
| | - Pei Song
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China.
| | - Xi Zhang
- College of Science, Northeastern University, Shenyang, 110819, China.
| | - Yan-Yan Song
- College of Science, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
19
|
Shi SS, Li XJ, Ma RN, Shang L, Zhang W, Zhao HQ, Jia LP, Wang HS. A smartphone-based electrochemical POCT for CEA based on signal amplification of Zr 6MOFs. LAB ON A CHIP 2024; 24:367-374. [PMID: 38126214 DOI: 10.1039/d3lc00748k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Carcinoembryonic antigen (CEA) is a biomarker of high expression in cancer cells. Highly sensitive and selective detection of CEA holds significant clinical value in the diagnosis, monitoring and efficacy evaluation of malignant tumors. In this work, a smartphone-based electrochemical point-of-care testing (POCT) platform for the detection of CEA was developed based on a Zr6MOF signal amplification strategy. Ferrocene labeled DNA strands (Fc-DNA) were immobilized on Zr6MOFs to form a Fc-DNA/Zr6MOF signal probe. Double-stranded DNA (dsDNA) formed by complementary DNA (cDNA) and CEA aptamer was assembled on a screen-printed electrode via an Au-S bond. When CEA was added, the aptamer specifically bound with CEA, resulting in the exposure of cDNA. Then, Fc-DNA/Zr6MOF signal probes were introduced on the electrode surface through hybridization between Fc-DNA and cDNA. The detection of CEA was realized by measuring the electrochemical response of Fc. The POCT device was made by connecting a modified electrode with a smartphone through a Sensit Smart USB flash disk. Due to the signal amplification of Zr6MOFs, this POCT platform exhibited high sensitivity, wide linear range, and low detection limit for CEA detection. The developed POCT platform has been used for the detection of CEA in actual human serum samples with satisfactory results.
Collapse
Affiliation(s)
- Shan-Shan Shi
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China.
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China.
| | - Xiao-Jian Li
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China.
| | - Rong-Na Ma
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China.
| | - Lei Shang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China.
| | - Wei Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China.
| | - Huai-Qing Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China.
| | - Li-Ping Jia
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China.
| | - Huai-Sheng Wang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China.
| |
Collapse
|
20
|
Zhang Y, He B, Wang Y, Wang J, Liang Y, Jin H, Wei M, Ren W, Suo Z, Xu Y. Mn 2+-Triggered Swing-Arm Robot Strategy Using Anemone-Like Thi@AuPd@Cu-MOFs as Signaling Probes for the Detection of T-2 Toxin. Anal Chem 2024; 96:92-101. [PMID: 38110328 DOI: 10.1021/acs.analchem.3c03194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Herein, we synthesized anemone-like copper-based metal-organic frameworks (MOFs) loaded with gold-palladium nanoparticles (AuPd@Cu-MOFs) and polyethylenimine-reduced graphene oxide/gold-silver nanosheet composites (PEI-rGO/AuAg NSs) for the first time to construct the sensor and to detect T-2 toxin (T-2) using triple helix molecular switch (THMS) and signal amplification by swing-arm robot. The aptasensor used PEI-rGO/hexagonal AuAg NSs as the electrode modification materials and anemone-like AuPd@Cu-MOFs as the signal materials. The prepared PEI-rGO/hexagonal AuAg NSs had a large specific surface area, excellent electrical conductivity, and good stability, which successfully improved the electrochemical performance of the sensors. The AuPd@Cu-MOFs with high porosity provided a great deal of attachment sites for the signaling molecule thionine (Thi), thereby increasing the signal response. The aptasensor developed in this study demonstrated a remarkable detection limit of 0.054 fg mL-1 under optimized conditions. Furthermore, the successful detection of T-2 in real samples was achieved using the fabricated sensor. The simplicity of the THMS-based method, which entails modifying the aptamer sequence, allows for easy adaptation to different target analytes. Thus, the sensor holds immense potential for applications in quality supervision and food safety.
Collapse
Affiliation(s)
- Yidan Zhang
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Yuling Wang
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Huali Jin
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Min Wei
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Wenjie Ren
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Zhiguang Suo
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Yiwei Xu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
21
|
Liu B, Li Y, Du L, Zhang F, Liu Y, Sun J, Zhang Q, Li C, Li X, Xue Q. "One-to-many" signal-output strategy-based CRISPR/Cas12a system for sensitive label-free fluorescence detection of HBV-DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123338. [PMID: 37683439 DOI: 10.1016/j.saa.2023.123338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
Although CRISPR/Cas12a systems significantly enhance the analytical accuracy and flexibility of fluorescent biosensors, their sensitivity is limited by traditional "one-to-one" mediation types and ineffective signal-output turnover routes. Herein, we demonstrate a "one-to-many" signal-output strategy-based CRISPR/Cas12a systems resembling a "seaweed" to enhance the sensitivity. Based on dendrimer DNA from high-dimensional hybridization chain (HCR) of three hairpin-free DNA building blocks, the 3D magnetic DNA machine was created. The HBV-DNA initiates the rolling circle amplification (RCA) reaction and produces DNA nanowires to activate the CRISPR/Cas12a system. The trans-cleavage of the "seaweed root" by CRISPR/Cas12a system left dendrimer DNA in solution, thus, adding SYBR Green I (SG I) to the high-density DNA duplexes, achieving multiple-turnover label-free fluorescence signal output demonstrated and a low LOD (1.502 pM). However, in the absence of target, the blocked RCA failed to activate the CRISPR/Cas12a system, resulting in complete separation from substrate and negligible fluorescence signals. Moreover, the mandatory RCA-based pre-amplification of the DNA activator could efficiently trigger the multiple-turnover trans-cleavage activity of Cas12a. it can cleave one single-stranded linker of "seaweed-like" DNA machine, thereby releasing massive DNA duplex-enriched dendrimer DNA with a "one-to-many" signal-output turnover. By coupling the periodically extended Cas12a activator generated by RCA with hyperbranched DNA duplex by high-dimensional HCR, compact 3D extension structures were formed, achieving high-density fluorescence distribution in focal volume, avoiding signal dilution and ensuring high enhancement. Additionally, spiked recoveries in physiological media exceeded 95%, demonstrating the potential application of such platforms in clinical diagnosis.
Collapse
Affiliation(s)
- Bingxin Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, PR China
| | - Yanli Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, PR China
| | - Lei Du
- Shandong Public Health Clinical Center, Shandong University, Jinan 250010, P. R. China
| | - Fengqi Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, PR China
| | - Yeling Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, PR China
| | - Jiuming Sun
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, PR China
| | - Qi Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, PR China
| | - Chenzhong Li
- Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Avenue, Longgang District, Shenzhen 518172, China
| | - Xia Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, PR China.
| | - Qingwang Xue
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, PR China.
| |
Collapse
|
22
|
Ganganboina AB, Park EY. Signal-Amplified Nanobiosensors for Virus Detection Using Advanced Nanomaterials. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:381-412. [PMID: 38337075 DOI: 10.1007/10_2023_244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Rapid diagnosis and treatment of infectious illnesses are crucial for clinical outcomes and public health. Biosensing developments enhance diagnostics at the point of care. This is superior to traditional procedures, which need centralized lab facilities, specialized personnel, and large equipment. The emerging coronavirus epidemic threatens global health and economic security. Increasing viral surveillance and regulatory actions against disease transmission necessitate rapid, sensitive testing tools for viruses. Due to their sensitivity and specificity, biosensors offer a possible reliable and quantifiable viral detection method. Current advances in genetic engineering, such as genetic alteration and material engineering, have provided several opportunities to enhance biosensors' sensitivity, selectivity, and recognition efficiency. This chapter explains biosensing techniques, biosensor varieties, and signal amplification technologies. Challenges and potential developments for viral microorganisms based on biosensors and signal amplification were also investigated.
Collapse
Affiliation(s)
- Akhilesh Babu Ganganboina
- International Center for Young Scientists ICYS-NAMIKI, National Institute for Materials Science, Ibaraki, Japan.
| | - Enoch Y Park
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan.
| |
Collapse
|
23
|
Sun Y, Ge S, Liu R, Wang S, Liu C, Li L, Zhao P, Ge S, Yu J. Potential-resolved electrochemiluminescence biosensor for simultaneous determination of multiplex miRNA. Talanta 2024; 266:125063. [PMID: 37572473 DOI: 10.1016/j.talanta.2023.125063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
The multi-target simultaneous detection strategy based on potential-resolved electrochemiluminescence (ECL) has still been a research hotspot in analytical science, but the limited selection of ECL luminophores hinders the development of this field. Herein, polyethyleneimine functionalized perylene derivatives (PTC-PEI) and luminol functionalized gold nanoparticles (Lu-Au NPs) possessed significantly resolved emission potentials as ECL luminophore. The ternary ECL system was constructed with MoS2 nanoflowers and K2S2O8 as the coreaction accelerator and coreactant respectively, which significantly improved the cathode ECL emission of PTC-PEI. Simultaneously, the anode coreaction accelerator ZnO nanoflowers could promote the anode coreactant dissolved O2 reduction, and extremely enhanced the anode ECL emission of Lu-Au NPs. The proposed strategy addressed the major technical challenge of cross interference and competition of the coreactants for dual-biomarker detection, thus enabling accurate detection of miRNA-205 and miRNA-21 from 10 fM to 100 nM, with detection limits of 2.57 and 1.15 fM, respectively. In general, this work achieved a single-step synchronous detection of dual biomarkers, providing a new idea for the ECL detection of multiple biomarkers, and having potential value in the clinical diagnosis.
Collapse
Affiliation(s)
- Yina Sun
- Institute for Advanced Interdisciplinary Research(iAIR), University of Jinan, Jinan, 250022, PR China
| | - Shuo Ge
- Department of Medical Laboratory, Shandong Medical College, Jinan, 250002, PR China
| | - Ruifang Liu
- Institute for Advanced Interdisciplinary Research(iAIR), University of Jinan, Jinan, 250022, PR China
| | - Shujing Wang
- Institute for Advanced Interdisciplinary Research(iAIR), University of Jinan, Jinan, 250022, PR China
| | - Chao Liu
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University; Institute of Stomatology, Shandong University, Jinan, 250012, PR China.
| | - Li Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Peini Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research(iAIR), University of Jinan, Jinan, 250022, PR China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| |
Collapse
|
24
|
Li W, Xu Z, Li P, Liu X, Chen C, Zhang Y, Liu M, Yao S. A sensitive electrochemical sensor for glutathione based on specific recognition induced collapse of silver-contained metal organic frameworks. Mikrochim Acta 2023; 191:49. [PMID: 38141093 DOI: 10.1007/s00604-023-06152-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
An electrochemical sensor capable of detecting glutathione (GSH) with high sensitivity and selectivity was developed based on the unique novel electroactive silver-based metal organic framework (Ag-MOF). The Ag-MOF obtained by silver nitrate and 1,3,5-benzoic acid (H3BTC) was thoroughly characterized and was modified onto the electrode via facile drop-casting method. The electrochemical response of GSH on the Ag-MOF modified electrode showed a significant reduction in the current signal because the Ag-GSH complex had stronger specific affinity than Ag-H3BTC and resulted in the collapse of the Ag-MOF. This sensor demonstrated an extensive linear dynamic range of 0.1 nM-1 µM, along with the low detection limit of 0.018 nM. Additionally, it exhibited good reproducibility, stability, and resistance to interfering compounds. The Ag-MOF modified electrode demonstrated superior performance attributed to its rapid electron transfer rate, outstanding electrochemical redox activity, and specific recognition/competitive reaction. These factors improved both sensitivity and selectivity. The high anti-interference ability allowed for the selective detection of GSH in intricate surroundings. In the real sample testing, the RSD was lower than 3.1% and the recovery was between 98.1 and 103%. This research highlights the potential of Ag-MOFs in developing electrochemical sensors and their promising applications in determining GSH for food screening and early disease diagnosis.
Collapse
Affiliation(s)
- Wenjie Li
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Zhenjuan Xu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Peipei Li
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Xiang Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Chao Chen
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Youyu Zhang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Meiling Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
25
|
Liu Y, Dong Y, Hui M, Xu L, Ye L, Lv J, Yang L, Cui Y. A biosensing array for multiplex clinical evaluation of glucose, creatinine, and uric acid. Biosens Bioelectron 2023; 241:115699. [PMID: 37788580 DOI: 10.1016/j.bios.2023.115699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/02/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023]
Abstract
The multiplex and simultaneous determination of blood glucose, creatinine and uric acid is essential for the early screening of chronic diseases or regular disease monitoring. Here, we report for the first time a biosensing array for the multiplex and simultaneous determination of plasma glucose, creatinine and uric acid. The sensing electrodes are fabricated on a PET surface, including three working electrodes, one reference electrode, and one counter electrode. Each specific enzyme is immobilized on its corresponding working electrode. The biosensing array can exhibit high sensitivity and selectivity for the simultaneous determination of blood glucose, creatinine and uric acid in real blood samples, and the measurement results are accurate and consistent with those from the clinical biochemistry analyzer in the hospital. It is expected that this work could provide new avenues for the fundamental study of biosensing device construction, as well as practical applications of the detection of biomarkers in chronic diseases.
Collapse
Affiliation(s)
- Yiqun Liu
- School of Materials Science and Engineering, First Hospital Interdisciplinary Research Center, Peking University, Beijing, 100871, PR China
| | - Yaping Dong
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, PR China
| | - Miao Hui
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, PR China
| | - Lingyi Xu
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, PR China
| | - Le Ye
- School of Integrated Circuits, Peking University, Beijing, 100871, PR China
| | - Jicheng Lv
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, PR China.
| | - Li Yang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, PR China.
| | - Yue Cui
- School of Materials Science and Engineering, First Hospital Interdisciplinary Research Center, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
26
|
Yan J, Wang K, Liu H, Wang L, Li Y, Zhang G, Deng L. Construction of electrochemical biosensors based on MoSe 2@1T-MoS 2 heterojunction for the sensitive and rapid detection of miRNA-155 biomarker in breast cancer. Bioelectrochemistry 2023; 154:108541. [PMID: 37579553 DOI: 10.1016/j.bioelechem.2023.108541] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023]
Abstract
MiRNA-155 is a typical biomarker for breast cancer. Since its low concentration in the physiological environment and the limitations of conventional miRNA detection methods like Northern imprinting and RT-qPCR, convenient, real-time, and rapid detection methods are urgently needed. In this work, an electrochemical biosensor was constructed based on the flower-like MoSe2@1T-MoS2 heterojunction electrode material and specific RNA recognition probes, which can realize the rapid determination of miRNA-155 content with a wide detection range from 1 fM to 1 nM and a limit of detection (LOD) as low as 0.34 fM. Furthermore, the contents of miRNA-155 in blood samples of tumor-bearing mice and normal mice were measured as 724.93 pM and 21.42 pM, respectively by this biosensor, demonstrating its strong identification ability and miRNA-155 can be regarded as an ideal diagnostic marker. On this basis, a portable sensor platform was designed for on-site detection simulation and showed good recovery efficiency from 95.80% to 98.69%. Meanwhile, compared with the standard detection method RT-qPCR, the accuracy and reliability of the biosensor were verified, indicating that the biosensor has the potential to provide point-of-care testing (POCT) for the early diagnosis of breast cancer.
Collapse
Affiliation(s)
- Jianhua Yan
- Medical College, Guangxi University, Nanning 530004, Guangxi, China
| | - Kaidi Wang
- Medical College, Guangxi University, Nanning 530004, Guangxi, China
| | - Hongjie Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Liwei Wang
- School of Marine Sciences, Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Yixiang Li
- Medical College, Guangxi University, Nanning 530004, Guangxi, China
| | - Guoqing Zhang
- Medical College, Guangxi University, Nanning 530004, Guangxi, China
| | - Li Deng
- Department of Obstetrics, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530003, China
| |
Collapse
|
27
|
Yuan M, Li Q, Wu Z, Zhu H, Gao Y, Zhou M, Luo X, Wang M, Cheng C. Ultralow Ru Single Atoms Confined in Cerium Oxide Nanoglues for Highly-Sensitive and Robust H 2 O 2 -Related Biocatalytic Diagnosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304532. [PMID: 37649195 DOI: 10.1002/smll.202304532] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/21/2023] [Indexed: 09/01/2023]
Abstract
Exploring highly efficient, portable, and robust biocatalysts is a great challenge in colorimetric biosensors. To overcome the challenging states in creating single-atom biocatalysts, such as insufficient activity and stability, here, this work has engineered a unique CeO2 support as nanoglue to tightly anchor the Ru single-atom sites (CeO2 -Ru) with strong electronic coupling for achieving highly sensitive and robust H2 O2 -related biocatalytic diagnosis. The morphology and chemical/electronic structure analysis demonstrates that the Ru atoms are well-dispersed on CeO2 surface to form high-density active sites. Benefiting from the unique structure, the prepared CeO2 -Ru exhibits outstanding peroxidase (POD) like catalytic activity and selectivity to H2 O2 . Steady-state kinetic study results show that the CeO2 -Ru presents the highest Vmax and turnover number than the state-of-the-art POD-like biocatalysts. Consequently, the CeO2 -Ru discloses a high efficiency, good selectivity, and robust stability in the colorimetric detection of L-cysteine, glucose, and uric acid. Notably, the limit of detection (LOD) can reach 0.176 × 10-3 m for the L-cysteine, 0.095 × 10-3 m for the glucose, and 0.088 × 10-3 m for the uric acid via cascade reaction. This work suggests that the proposed unique CeO2 nanoglue will offer a new path to create single-atom noble metal biocatalysts and take a step closer to future biotherapeutic and biocatalytic applications.
Collapse
Affiliation(s)
- Minjia Yuan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zihe Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Huang Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yang Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mi Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mao Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
28
|
Zhu J, He B, Liu Y, Wang Y, Wang J, Liang Y, Jin H, Wei M, Ren W, Suo Z, Xu Y. A novel magneto-mediated electrochemical biosensor integrated DNAzyme motor and hollow nanobox-like Pt@Ni-Co electrocatalyst as dual signal amplifiers for vanilla detection. Biosens Bioelectron 2023; 241:115690. [PMID: 37716157 DOI: 10.1016/j.bios.2023.115690] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Herein, a novel magneto-mediated electrochemical aptasensor using the signal amplification technologies of DNAzyme motor and electrocatalyst for vanilla (VAN) detection was fabricated. The D/B duplex, formed by the DNAzyme motor that was each silenced by a blocker, and hairpin DNA1 (H1) containing adenosine ribonucleotide (rA) site were tethered on the sites of the gold nanoparticles@hollow porphyrinic-Metal-organic framework/polyethyleneimine-reduced graphene oxide (AuHPCN-222/PEI-rGO)-modified gold electrode (AuE). Then, after homogeneous and specific recognition in the presence of the VAN, trigger DNA was released and enriched by magnetic separation technique and introduced to the sensing platform to activate the DNAzyme motor, which efficiently improved target recognition capability and avoided the obstacle of multiple DNA strands tangling. More interestingly, the activated DNAzyme motor could repeatedly bind to and cleave H1 in the presence of Mg2+, leading to the exposure of a plethora of capture probes. The thionine (Thi) functionalized hairpin DNA2 (H2)-Pt@Ni-Co as signal probes could hybridize with capture probes. Additionally, the Pt@Ni-Co electrocatalysts presented catalytic activity towards Thi to obtain stronger electrochemical signals. VAN with concentrations ranging from 1 × 10-6 to 10 μM was determined and a detection limit was down to 0.15 pM. The designed electrochemical sensor was highly selective with specificity, stability, reproducibility, and reliable capability for monitoring the VAN in real samples.
Collapse
Affiliation(s)
- Jingyi Zhu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China.
| | - Yao Liu
- Henan Scientific Research Platform Service Center, Zhengzhou, Henan, 450003, PR China
| | - Yuling Wang
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Huali Jin
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Min Wei
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Wenjie Ren
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Zhiguang Suo
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Yiwei Xu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| |
Collapse
|
29
|
Liu L, Zou Y, Xia T, Zhang J, Xiong M, Long L, Wang K, Hao N. A double-quenching paperclip ECL biosensing platform for ultrasensitive detection of antibiotic resistance genes (mecA) based on Ti 3C 2 MXene-Au NPs as a coreactant accelerator. Biosens Bioelectron 2023; 240:115651. [PMID: 37666010 DOI: 10.1016/j.bios.2023.115651] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
The global spread of environmental biological pollutants, such as antibiotic-resistant bacteria and their antibiotic resistance genes (ARGs), has emerged as a critical public health concern. It is imperative to address this pressing issue due to its potential implications for public health. Herein, a DNA paperclip probe with double-quenching function of target cyclic cleavage was proposed, and an electrochemiluminescence (ECL) biosensing platform was constructed using Ti3C2 MXene in-situ reduction growth of Au NPs (TCM-Au) as a coreactant accelerator, and applied to the sensitive detection of ARGs. Thanks to the excellent catalytic performance, large surface area and Au-S affinity of TCM-Au, the ECL performance of CdS QDs have been significantly improved. By cleverly utilizing the negative charge of the paperclip nucleic acid probe and its modification group, double-quenching of the ECL signal was achieved. This innovative approach, combined with target cyclic amplification, facilitated specific and sensitive detection of the mecA gene. This biosensing platform manifested highly selective and sensitive determination of mecA genes in the range of 10 fM to 100 nM and a low detection limit of 2.7 fM. The credible detectability and anti-interference were demonstrated in Yangtze river and Aeration tank outlet, indicating its promising application toward pollution monitoring of ARGs.
Collapse
Affiliation(s)
- Liqi Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yi Zou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Tiantian Xia
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jiadong Zhang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, School of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, PR China
| | - Meng Xiong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China
| | - Lingliang Long
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Nan Hao
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China.
| |
Collapse
|
30
|
Ren Z, Guo W, Sun S, Liu X, Fan Z, Wang F, Ibrahim AA, Umar A, Alkhanjaf AAM, Baskoutas S. Dual-mode transfer response based on electrochemical and fluorescence signals for the detection of amyloid-beta oligomers (AβO). Mikrochim Acta 2023; 190:438. [PMID: 37843728 DOI: 10.1007/s00604-023-06014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023]
Abstract
An aptamer sensor has been developed utilizing a dual-mode and stimuli-responsive strategy for quantitative detection of AβO (amyloid-beta oligomers) through simultaneous electrochemical and fluorescence detection. To achieve this, we employed UIO-66-NH2 as a carrier container to load MB (Methylene Blue), and Fe3O4 MNPs (iron oxide magnetic nanoparticles) with aptamer (ssDNA-Fe3O4 MNPs) fixed on their surface for biological gating. The ssDNA-Fe3O4 MNPs were immobilized onto the surface of UIO-66-NH2 through hydrogen bonding between the aptamer and the -NH2 group on the surface of UIO-66-NH2, thereby encapsulating MB and forming ssDNA-Fe3O4@MB@UIO-66-NH2. During the detection of AβO, the aptamer selectively reacted with AβO to form the AβO-ssDNA-Fe3O4 complex, leading to its detachment from the surface of UIO-66-NH2. This detachment facilitated the release of MB, enabling its electrochemical detection. Simultaneously, the AβO-ssDNA-Fe3O4 complex was efficiently collected and separated using a magnet after leaving the container's surface. Furthermore, the addition of NaOH facilitated the disconnection of biotin modifications at the 3' end of the aptamer from the avidin modifications on the Fe3O4 MNPs. Consequently, the aptamer detached from the surface of Fe3O4 MNPs, resulting in the restoration of fluorescence intensity of FAM (fluorescein-5'-carboxamidite) modified at its 5' end for fluorescence detection. The dual-mode sensor exhibited significantly enhanced differential pulse voltammetry signals and fluorescence intensity compared to those in the absence of AβO. The sensor demonstrated a wide detection range of 10 fM to 10 μM, with a detection limit of 3.4 fM. It displayed excellent performance in detecting actual samples and holds promising prospects for early diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Zhe Ren
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, 250022, China
| | - Wenjuan Guo
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, 250022, China.
| | - Shuqian Sun
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, 250022, China
| | - Xin Liu
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, 250022, China
| | - Zelong Fan
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, 250022, China
| | - Fangfang Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Ahmed A Ibrahim
- Department of Chemistry, College of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Ahmad Umar
- Department of Chemistry, College of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia.
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA.
| | - Abdulrab Ahmed M Alkhanjaf
- Centre for Health Research, Najran University, Najran, 11001, Kingdom of Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - S Baskoutas
- Department of Materials Science, University of Patras, Patras, Greece
| |
Collapse
|
31
|
Li H, Su C, Liu N, Lu Q, Zhang N, Sun C, Yan X. Zeolitic imidazolate framework/aptamer-based fluorescence assay for the facile and high-sensitivity detection of acetamiprid. Anal Chim Acta 2023; 1276:341641. [PMID: 37573119 DOI: 10.1016/j.aca.2023.341641] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/17/2023] [Indexed: 08/14/2023]
Abstract
Accurate monitoring of trace pesticides in complex matrix remains a challenge in food safety supervision. Herein, we designed a facile zeolitic imidazolate framework (ZIF)-8/aptamer-based assay for the sensitive detection of acetamiprid. ZIF-8 efficiently adsorbs 6-carboxyfluorescein-labeled complementary DNA (cDNA-FAM) via electrostatic interaction, hydrogen bonding and Zn2+ coordination, which contributed to resistance to cDNA-FAM displacement by biological ligands. ZIF-8 serves as an "ion pump" that contains lots of Zn2+ who boosts cDNA-FAM adsorption and triggers the photoinduced electron transfer (PET) effect from FAM to ZIF-8, improving the sensing sensitivity. Acetamiprid could trigger the change in the adsorption state of cDNA-FAM, further tuning the PET effect and causing fluorescence conversion. The fluorescence assay showed a high sensitivity for monitoring acetamiprid with a detection limit of 0.05 ng mL-1 in the apple sample. This ZIF/DNA-based analytical platform provides a powerful tool for facile and low-cost screening of pesticide residues, with promising applications in food safety monitoring.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China; Chongqing Research Institute, Jilin University, PR China
| | - Changshun Su
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China
| | - Ni Liu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China
| | - Qi Lu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China
| | - Ningxin Zhang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China
| | - Xu Yan
- Chongqing Research Institute, Jilin University, PR China; College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China.
| |
Collapse
|
32
|
Jo YM, Jo YK, Lee JH, Jang HW, Hwang IS, Yoo DJ. MOF-Based Chemiresistive Gas Sensors: Toward New Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206842. [PMID: 35947765 DOI: 10.1002/adma.202206842] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The sensing performances of gas sensors must be improved and diversified to enhance quality of life by ensuring health, safety, and convenience. Metal-organic frameworks (MOFs), which exhibit an extremely high surface area, abundant porosity, and unique surface chemistry, provide a promising framework for facilitating gas-sensor innovations. Enhanced understanding of conduction mechanisms of MOFs has facilitated their use as gas-sensing materials, and various types of MOFs have been developed by examining the compositional and morphological dependences and implementing catalyst incorporation and light activation. Owing to their inherent separation and absorption properties and catalytic activity, MOFs are applied as molecular sieves, absorptive filtering layers, and heterogeneous catalysts. In addition, oxide- or carbon-based sensing materials with complex structures or catalytic composites can be derived by the appropriate post-treatment of MOFs. This review discusses the effective techniques to design optimal MOFs, in terms of computational screening and synthesis methods. Moreover, the mechanisms through which the distinctive functionalities of MOFs as sensing materials, heterostructures, and derivatives can be incorporated in gas-sensor applications are presented.
Collapse
Affiliation(s)
- Young-Moo Jo
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Yong Kun Jo
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jong-Heun Lee
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - In-Sung Hwang
- Sentech Gmi Co. Ltd, Seoul, 07548, Republic of Korea
| | - Do Joon Yoo
- SentechKorea Co. Ltd, Paju, 10863, Republic of Korea
| |
Collapse
|
33
|
Bindra AK, Wang D, Zhao Y. Metal-Organic Frameworks Meet Polymers: From Synthesis Strategies to Healthcare Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300700. [PMID: 36848594 DOI: 10.1002/adma.202300700] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Metal-organic frameworks (MOFs) have been at the forefront of nanotechnological research for the past decade owing to their high porosity, high surface area, diverse configurations, and controllable chemical structures. They are a rapidly developing class of nanomaterials that are predominantly applied in batteries, supercapacitors, electrocatalysis, photocatalysis, sensors, drug delivery, gas separation, adsorption, and storage. However, the limited functions and unsatisfactory performance of MOFs resulting from their low chemical and mechanical stability hamper further development. Hybridizing MOFs with polymers is an excellent solution to these problems, because polymers-which are soft, flexible, malleable, and processable-can induce unique properties in the hybrids based on those of the two disparate components while retaining their individuality. This review highlights recent advances in the preparation of MOF-polymer nanomaterials. Furthermore, several applications wherein the incorporation of polymers enhances the MOF performance are discussed, such as anticancer therapy, bacterial elimination, imaging, therapeutics, protection from oxidative stress and inflammation, and environmental remediation. Finally, insights from the focus of existing research and design principles for mitigating future challenges are presented.
Collapse
Affiliation(s)
- Anivind Kaur Bindra
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Dongdong Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
34
|
Pang W, Gao Y, Hu T, Ma X. A disposable and sensitive sensor based on a ZIF-8@graphene modified carbon paper electrode for the quantitative determination of luteolin. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4736-4743. [PMID: 37694277 DOI: 10.1039/d3ay01126g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Rapid and accurate determination of luteolin is of great significance for pharmaceutical quality control. Herein, a disposable and sensitive luteolin sensor was fabricated by a hydrothermal method with carbon paper as substrate where ZIF-8 grew on GR in situ. Notably, the large specific surface area of ZIF-8 provided active sites on the electrode surface and the ability of GR to promote electron transfer greatly improved the sensitivity towards the oxidation of luteolin. Under the optimum conditions, the ZIF-8@GR/CP showed excellent detection performance for luteolin with a linear detection range of 0.04-3.2 μM and 3.2-120 μM, with LOD of 12 nM (S/N = 3). Furthermore, this disposable and sensitive sensor was successfully applied for the quantitative detection of luteolin in a capsule of Lamiophlomis rotata.
Collapse
Affiliation(s)
- Wanyu Pang
- College of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China.
| | - Yali Gao
- College of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China.
| | - Tuoping Hu
- College of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China.
| | - Xuemei Ma
- College of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China.
| |
Collapse
|
35
|
Tavassoli M, Khezerlou A, Khalilzadeh B, Ehsani A, Kazemian H. Aptamer-modified metal organic frameworks for measurement of food contaminants: a review. Mikrochim Acta 2023; 190:371. [PMID: 37646854 DOI: 10.1007/s00604-023-05937-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
The measurement of food contaminants faces a great challenge owing to the increasing demand for safe food, increasing consumption of fast food, and rapidly changing patterns of human consumption. As different types of contaminants in food products can pose different levels of threat to human health, it is desirable to develop specific and rapid methods for their identification and quantification. During the past few years, metal-organic framework (MOF)-based materials have been extensively explored in the development of food safety sensors. MOFs are porous crystalline materials with tunable composition, dynamic porosity, and facile surface functionalization. The construction of high-performance biosensors for a range of applications (e.g., food safety, environmental monitoring, and biochemical diagnostics) can thus be promoted through the synergistic combination of MOFs with aptamers. Accordingly, this review article delineates recent innovations achieved for the aptamer-functionalized MOFs toward the detection of food contaminants. First, we describe the basic concepts involved in the detection of food contaminants in terms of the advantages and disadvantages of the commonly used analytical methods (e.g., DNA-based methods (PCR/real-time PCR/multiplex PCR/digital PCR) and protein-based methods (enzyme-linked immunosorbent assay/immunochromatography assay/immunosensor/mass spectrometry). Afterward, the progress in aptamer-functionalized MOF biosensors is discussed with respect to the sensing mechanisms (e.g., the role of MOFs as signal probes and carriers for loading signal probes) along with their performance evaluation (e.g., in terms of sensitivity). We finally discuss challenges and opportunities associated with the development of aptamer-functionalized MOFs for the measurement of food contaminants.
Collapse
Affiliation(s)
- Milad Tavassoli
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezou Khezerlou
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center (SCRC), Tabriz University of Medical Sciences, Tabriz, 51666-14711, Iran
| | - Ali Ehsani
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hossein Kazemian
- Materials Technology & Environmental Research (MATTER) Lab, University of Northern British Columbia, Prince George, BC, Canada.
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada.
- Environmental Sciences Program, Faculty of Environment, University of Northern British Columbia, Prince George, BC, V2N4Z9, Canada.
| |
Collapse
|
36
|
Yu L, Wang Y, Sun Y, Tang Y, Xiao Y, Wu G, Peng S, Zhou X. Nanoporous Crystalline Materials for the Recognition and Applications of Nucleic Acids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305171. [PMID: 37616525 DOI: 10.1002/adma.202305171] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/12/2023] [Indexed: 08/26/2023]
Abstract
Nucleic acid plays a crucial role in countless biological processes. Hence, there is great interest in its detection and analysis in various fields from chemistry, biology, to medicine. Nanoporous crystalline materials exhibit enormous potential as an effective platform for nucleic acid recognition and application. These materials have highly ordered and uniform pore structures, as well as adjustable surface chemistry and pore size, making them good carriers for nucleic acid extraction, detection, and delivery. In this review, the latest developments in nanoporous crystalline materials, including metal organic frameworks (MOFs), covalent organic frameworks (COFs), and supramolecular organic frameworks (SOFs) for nucleic acid recognition and applications are discussed. Different strategies for functionalizing these materials are explored to specifically identify nucleic acid targets. Their applications in selective separation and detection of nucleic acids are highlighted. They can also be used as DNA/RNA sensors, gene delivery agents, host DNAzymes, and in DNA-based computing. Other applications include catalysis, data storage, and biomimetics. The development of novel nanoporous crystalline materials with enhanced biocompatibility has opened up new avenues in the fields of nucleic acid analysis and therapy, paving the way for the development of sensitive, selective, and cost-effective diagnostic and therapeutic tools with widespread applications.
Collapse
Affiliation(s)
- Long Yu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yuhao Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuqing Sun
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yongling Tang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuxiu Xiao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shuang Peng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
37
|
Dong J, Li X, Zhou S, Liu Y, Deng L, Chen J, Hou J, Hou C, Huo D. CRISPR/Cas12a-Powered EC/FL Dual-Mode Controlled-Release Homogeneous Biosensor for Ultrasensitive and Cross-Validated Detection of Messenger Ribonucleic Acid. Anal Chem 2023; 95:12122-12130. [PMID: 37527175 DOI: 10.1021/acs.analchem.3c02335] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Accurate detection of cancer-associated mRNAs is beneficial to early diagnosis and potential treatment of cancer. Herein, for the first time, we developed a novel CRISPR/Cas12a-powered electrochemical/fluorescent (EC/FL) dual-mode controlled-release homogeneous biosensor for mRNA detection. A functionalized ssDNA P2-capped Fe3O4-NH2 loaded with methylene blue (P2@MB-Fe3O4-NH2) was synthesized as the signal probe, while survivin mRNA was chosen as the target RNA. In the presence of the target mRNA, the nicking endonuclease-mediated rolling circle amplification (NEM-RCA) was triggered to produce significant amounts of ssDNA, activating the collateral activity of Cas12a toward the surrounding single-stranded DNA. Thus, the ssDNA P1 completely complementary to ssDNA P2 was cleaved, resulting in that the ssDNA P2 bio-gate on Fe3O4-NH2 could not be opened due to electrostatic interactions. As a result, there was no or only a little MB in the supernatant after magnetic separation, and the measured EC/FL signal was exceedingly weak. On the contrary, the ssDNA P2 bio-gate was opened, enabling MB to be released into the supernatant, and generating an obvious EC/FL signal. Benefiting from the accuracy of EC/FL dual-mode cross-verification, high amplification efficiency, high specificity of NEM-RCA and CRISPR/Cas12a, and high loading of mesoporous Fe3O4-NH2 on signal molecules, the strategy shows aM-level sensitivity and single-base mismatch specificity. More importantly, the practical applicability of this dual-mode strategy was confirmed by mRNA quantification in complex serum environments and tumor cell lysates, providing a new way for developing a powerful disease diagnosis tool.
Collapse
Affiliation(s)
- Jiangbo Dong
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, Sichuan 400044, PR China
| | - Xinyao Li
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, Sichuan 400044, PR China
| | - Shiying Zhou
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, Sichuan 400044, PR China
| | - Yin Liu
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, Sichuan 400044, PR China
| | - Liyuan Deng
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, Sichuan 400044, PR China
| | - Jian Chen
- Chongqing University Three Gorges Hospital, Chongqing 404000, PR China
| | - Jingzhou Hou
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, Sichuan 400044, PR China
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing 401331, PR China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, Sichuan 400044, PR China
- National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240 Puerto Rico, China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, Sichuan 400044, PR China
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing 401331, PR China
| |
Collapse
|
38
|
Qi H, Wang Z, Li H, Li F. Directionally In Situ Self-Assembled Iridium(III)-Polyimine Complex-Encapsulated Metal-Organic Framework Two-Dimensional Nanosheet Electrode To Boost Electrochemiluminescence Sensing. Anal Chem 2023; 95:12024-12031. [PMID: 37526583 DOI: 10.1021/acs.analchem.3c01882] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Manufacturing electrochemiluminescence (ECL) electrodes to detect analytes with high performance in the aqueous phase for water-insoluble metal complexes is a great challenge. Here, a directional self-assembling avenue for in situ fabricating iridium(III)-polyimine complex-encapsulated metal-organic framework (MOF) two-dimensional electrode Hf-MOF/Ir2PD/APS/ITO is developed. The electrode displayed bright red ECL emission with high stability in the aqueous phase and specific adsorption toward ssDNA against dsDNA and mNs. That is to say, a "high-performance and multifunctional ECL electrode" is presented and explored for sensitive detection of acetamiprid (Ace) with a limit of detection of 0.0025 nM, where Ace-aptamer recognition-switched Exonuclease III-mediated digestion to make large numbers of Fc-labeled ssDNA transform into Fc-mNs. Furthermore, the proposed method was triumphantly employed to monitor the change in the residual concentration of Ace in pakchoi. This work breaks through the bottleneck of metal complex-based ECL emission in organic solvents and provides a novel strategy to develop high-performance ECL sensors.
Collapse
Affiliation(s)
- Hongjie Qi
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zhixin Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Haiyin Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002 Hebei, PR China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| |
Collapse
|
39
|
Liu L, Ma X, Chang Y, Guo H, Wang W. Biosensors with Boronic Acid-Based Materials as the Recognition Elements and Signal Labels. BIOSENSORS 2023; 13:785. [PMID: 37622871 PMCID: PMC10452607 DOI: 10.3390/bios13080785] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023]
Abstract
It is of great importance to have sensitive and accurate detection of cis-diol-containing biologically related substances because of their important functions in the research fields of metabolomics, glycomics, and proteomics. Boronic acids can specifically and reversibly interact with 1,2- or 1,3-diols to form five or six cyclic esters. Based on this unique property, boronic acid-based materials have been used as synthetic receptors for the specific recognition and detection of cis-diol-containing species. This review critically summarizes the recent advances with boronic acid-based materials as recognition elements and signal labels for the detection of cis-diol-containing biological species, including ribonucleic acids, glycans, glycoproteins, bacteria, exosomes, and tumor cells. We also address the challenges and future perspectives for developing versatile boronic acid-based materials with various promising applications.
Collapse
Affiliation(s)
- Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Xiaohua Ma
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu 476000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Hang Guo
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Wenqing Wang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
40
|
Dong J, Wen L, Zhao D, Yang H, Zhao J, Hu Z, Ma Y, Hou C, Huo D. Flexible carbon fiber cloth supports decorated with cerium metal- organic frameworks and multi-walled carbon nanotubes for simultaneous on-site detection of Cd2+ and Pb2+ in food and water samples. Food Chem 2023; 418:135869. [PMID: 37001351 DOI: 10.1016/j.foodchem.2023.135869] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023]
Abstract
The widespread heavy metal pollution endangers human health; hence, accurate on-site detection and quantification of heavy metal content in the surroundings is a vital step in reversing the harmful effect. Herein, an electrochemical sensor based on flexible cerium metal-organic framework@multi-walled carbon nanotubes/carbon cloth (CeMOF@MWCNTs/CC) was constructed for simultaneous on-site detection of Cd2+ and Pb2+ in food and water samples. The rich carboxyl groups of MWCNTs provided abundant sites for the adsorption of Cd2+ and Pb2+, and the mutual conversion of Ce3+ and Ce4+ in CeMOF facilitated the reduction and reoxidation of metal ions. The prepared electrode showed excellent performance in the simultaneous measurement of Cd2+ and Pb2+, with detection limits of 2.2 ppb and 0.64 ppb, respectively. More importantly, the sensing platform has been successfully used to detect simultaneously Cd2+ and Pb2+ in grain and water samples, and the detection results were consistent with the standard methods, showing great potential in environmental monitoring and food safety.
Collapse
|
41
|
Deng D, Chang Y, Liu W, Ren M, Xia N, Hao Y. Advancements in Biosensors Based on the Assembles of Small Organic Molecules and Peptides. BIOSENSORS 2023; 13:773. [PMID: 37622859 PMCID: PMC10452798 DOI: 10.3390/bios13080773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Over the past few decades, molecular self-assembly has witnessed tremendous progress in a variety of biosensing and biomedical applications. In particular, self-assembled nanostructures of small organic molecules and peptides with intriguing characteristics (e.g., structure tailoring, facile processability, and excellent biocompatibility) have shown outstanding potential in the development of various biosensors. In this review, we introduced the unique properties of self-assembled nanostructures with small organic molecules and peptides for biosensing applications. We first discussed the applications of such nanostructures in electrochemical biosensors as electrode supports for enzymes and cells and as signal labels with a large number of electroactive units for signal amplification. Secondly, the utilization of fluorescent nanomaterials by self-assembled dyes or peptides was introduced. Thereinto, typical examples based on target-responsive aggregation-induced emission and decomposition-induced fluorescent enhancement were discussed. Finally, the applications of self-assembled nanomaterials in the colorimetric assays were summarized. We also briefly addressed the challenges and future prospects of biosensors based on self-assembled nanostructures.
Collapse
Affiliation(s)
- Dehua Deng
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Wenjing Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Mingwei Ren
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yuanqiang Hao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
42
|
Gao F, Liu G, Qiao Y, Dong X, Liu L. Streptavidin-Conjugated DNA for the Boronate Affinity-Based Detection of Poly(ADP-Ribose) Polymerase-1 with Improved Sensitivity. BIOSENSORS 2023; 13:723. [PMID: 37504121 PMCID: PMC10377026 DOI: 10.3390/bios13070723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
This work reports the development of a fluorescence method for the detection of poly(ADP-ribose) polymerase-1 (PARP1), in which a phenylboronic acid-modified fluorescein isothiocyanate dye (FITC-PBA) was used to recognize the formed poly(ADP-ribose) (PAR) polymer. The detection system was designed by conjugating recombinant streptavidin (rSA) with PARP1-specific double-stranded DNA (dsDNA) through streptavidin-biotin interaction. Capture of PARP1 via rSA-biotin-dsDNA allowed for the poly-ADP-ribosylation (PARylation) of both rSA and PARP1 in a homogeneous solution. The resulting rSA-biotin-dsDNA/PAR conjugates were then captured and separated via the commercialized nitrilotriacetic acid-nickel ion-modified magnetic bead (MB-NTA-Ni) through the interaction between NTA-Ni on MB surface and oligohistidine (His6) tag in rSA. The PAR polymer could capture the dye of FITC-PBA through the borate ester interaction between the boronic acid moiety in PBA and the cis-diol group in ribose, thus causing a decrease in fluorescence signal. The PARylation of streptavidin and the influence of steric hindrance on PARylation efficiency were confirmed using reasonable detection strategies. The method showed a wide linear range (0.01~20 U) and a low detection limit (0.01 U). This work should be valuable for the development of novel biosensors for the detection of poly(ADP-ribose) polymerases and diol-containing species.
Collapse
Affiliation(s)
- Fengli Gao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Gang Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yishu Qiao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Xiuwen Dong
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
43
|
Liu G, La M, Wang J, Liu J, Han Y, Liu L. Magnetically Assisted Immobilization-Free Detection of microRNAs Based on the Signal Amplification of Duplex-Specific Nuclease. BIOSENSORS 2023; 13:699. [PMID: 37504098 PMCID: PMC10437004 DOI: 10.3390/bios13070699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
The double specific nuclease (DSN)-based methods for microRNAs (miRNAs) detection usually require the immobilization of DNA probes on a solid surface. However, such strategies have the drawbacks of low hybridization and cleavage efficiency caused by steric hindrance effect and high salt concentration on the solid surface. Herein, we proposed an immobilization-free method for miRNA detection on the basic of DSN-assisted signal amplification. The biotin- and fluorophore-labeled probes were captured by streptavidin-modified magnetic beads through streptavidin-biotin interactions, thus producing a poor fluorescence signal. Once the DNA probes were hybridized with target miRNA in solution to form DNA-miRNA duplexes, DNA stands in the duplexes would be selectively digested by DSN. The released target miRNA could initiate the next hybridization/cleavage recycling in the homogeneous solution, finally resulting in the release of numerous fluorophore-labeled fragments. The released fluorophores remained in solution and emitted strong fluorescence after treatment by the streptavidin-modified magnetic beads. The immobilization-free method achieved the assays of miRNA-21 with a detection limit down to 0.01 pM. It was employed to evaluate the expression levels of miRNA-21 in different cancer cells with satisfactory results.
Collapse
Affiliation(s)
- Gang Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ming La
- School of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, China
| | - Jiwei Wang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Jiawen Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yongjun Han
- School of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
44
|
Chen L, You S, Wang X, Li D, Ren S, Chen L. Dual carminic acid/hemin-marked DNA probes for simultaneously detecting CV-A16 and EV-A71 based on the mechanism of dimer to monomer transition. Talanta 2023; 265:124884. [PMID: 37392710 DOI: 10.1016/j.talanta.2023.124884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/09/2023] [Accepted: 06/25/2023] [Indexed: 07/03/2023]
Abstract
This study aimed to prepare two hairpin-structure DNA probes by conjugating carminic acid (CA) or hemin into two ends of specific genes of coxsackievirus A16 (CV-A16) and enterovirus A71 (EV-A71) (probeCV-A16-CA and probeEV-A71-hemin). Then, probeCV-A16-CA and probeEV-A71-hemin as the signal molecules were adsorbed onto NH2-MIL-53 (Al) (MOF). Based on these biocomposites, an electrochemical biosensor with dual-signal outputs for simultaneous assay of CV-A16 and EV-A71 was constructed. The stem-loops of probes switched both CA and hemin monomer to dimer, reducing the electrical activity of both CA and hemin. Subsequently, the target-induced opening of the stem-loop switched both CA and hemin dimers to monomers, resulting in two nonoverlapping increasing electrical signals. This sensitively reflected the concentration of targetCV-A16 and targetEV-A17 ranging from 10-10 to 10-15 M with a detection limit of 0.19 and 0.24 fM. This strategy was mainly applied to the simultaneous determination of targetCV-A16 and targetEV-A17 in 100% serum with satisfactory results. The MOF combined with the high loading capacity broke through the intrinsic limitation on sensitivity using the traditional methods. An increase of three orders of magnitude was observed. This study involved simple one-step detection, and only a simple replacement of a gene could trigger its potential in clinical and diagnostic applications.
Collapse
Affiliation(s)
- Lili Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Shuang You
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xiaotong Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Dong Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Shuna Ren
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Lihua Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
45
|
Li K, Liu Y, Lou B, Tan Y, Chen L, Liu Z. DNA-directed assembly of nanomaterials and their biomedical applications. Int J Biol Macromol 2023:125551. [PMID: 37356694 DOI: 10.1016/j.ijbiomac.2023.125551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
In the past decades, DNA has been widely used in the field of nanostructures due to its unique programmable properties. Besides being used to form its own diverse structures such as the assembly of DNA origami, DNA can also be used for the assembly of nanostructures with other materials. In this review, different strategies for the functionalization of DNA on nanoparticle surfaces are listed, and the roles of DNA in the assembly of nanostructures as well as the influencing factors are discussed. Finally, the biomedical applications of DNA-assembled nanostructures were summarized. This review provided new insight into the application of DNA in nanostructure assembly.
Collapse
Affiliation(s)
- Ke Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Beibei Lou
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yifu Tan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Liwei Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China; Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan Province, PR China.
| |
Collapse
|
46
|
Ma S, Kim JH, Chen W, Li L, Lee J, Xue J, Liu Y, Chen G, Tang B, Tao W, Kim JS. Cancer Cell-Specific Fluorescent Prodrug Delivery Platforms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207768. [PMID: 37026629 PMCID: PMC10238224 DOI: 10.1002/advs.202207768] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/03/2023] [Indexed: 06/04/2023]
Abstract
Targeting cancer cells with high specificity is one of the most essential yet challenging goals of tumor therapy. Because different surface receptors, transporters, and integrins are overexpressed specifically on tumor cells, using these tumor cell-specific properties to improve drug targeting efficacy holds particular promise. Targeted fluorescent prodrugs not only improve intracellular accumulation and bioavailability but also report their own localization and activation through real-time changes in fluorescence. In this review, efforts are highlighted to develop innovative targeted fluorescent prodrugs that efficiently accumulate in tumor cells in different organs, including lung cancer, liver cancer, cervical cancer, breast cancer, glioma, and colorectal cancer. The latest progress and advances in chemical design and synthetic considerations in fluorescence prodrug conjugates and how their therapeutic efficacy and fluorescence can be activated by tumor-specific stimuli are reviewed. Additionally, novel perspectives are provided on strategies behind engineered nanoparticle platforms self-assembled from targeted fluorescence prodrugs, and how fluorescence readouts can be used to monitor the position and action of the nanoparticle-mediated delivery of therapeutic agents in preclinical models. Finally, future opportunities for fluorescent prodrug-based strategies and solutions to the challenges of accelerating clinical translation for the treatment of organ-specific tumors are proposed.
Collapse
Affiliation(s)
- Siyue Ma
- The Youth Innovation Team of Shaanxi UniversitiesShaanxi Key Laboratory of Chemical Additives for IndustryCollege of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'an710021China
- Key Laboratory of Emergency and Trauma, Ministry of EducationCollege of Emergency and TraumaHainan Medical UniversityHaikou571199China
| | - Ji Hyeon Kim
- Department of ChemistryKorea UniversitySeoul02841South Korea
| | - Wei Chen
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Lu Li
- The Youth Innovation Team of Shaanxi UniversitiesShaanxi Key Laboratory of Chemical Additives for IndustryCollege of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'an710021China
| | - Jieun Lee
- Department of ChemistryKorea UniversitySeoul02841South Korea
| | - Junlian Xue
- The Youth Innovation Team of Shaanxi UniversitiesShaanxi Key Laboratory of Chemical Additives for IndustryCollege of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'an710021China
| | - Yuxia Liu
- The Youth Innovation Team of Shaanxi UniversitiesShaanxi Key Laboratory of Chemical Additives for IndustryCollege of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'an710021China
| | - Guang Chen
- The Youth Innovation Team of Shaanxi UniversitiesShaanxi Key Laboratory of Chemical Additives for IndustryCollege of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'an710021China
- College of ChemistryChemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongInstitutes of Biomedical SciencesShandong Normal UniversityJinan250014China
| | - Bo Tang
- College of ChemistryChemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongInstitutes of Biomedical SciencesShandong Normal UniversityJinan250014China
| | - Wei Tao
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Jong Seung Kim
- Department of ChemistryKorea UniversitySeoul02841South Korea
| |
Collapse
|
47
|
Song Z, Zhang QY, Li JJ, Su JL, Liu YH, Yang GJ, Wang HS. Visual and Electrochemical Detection of let-7a: A Tumor Suppressor and Biomarker. J Med Chem 2023. [PMID: 37248170 DOI: 10.1021/acs.jmedchem.3c00499] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Let-7a, a type of low-expressed microRNAs in cancer cells, has been investigated as a promising biomarker and therapeutic target for tumor suppression. Developing simple and sensitive detection methods for let-7a is important for cancer diagnosis and treatment. In this work, the hybridization chain reaction (HCR) was initiated by let-7a via two hairpin primers (H1 and H2). After the HCR, the remaining hairpin H1 was further detected by lateral flow assay (LFA) and electrochemical impedance spectroscopy. For LFA, biotin-modified H1(bio-H1) and free H2 were used for HCR. With the decrease of let-7a concentration, the color of T line gradually increased. As for electrochemical methods, the H1'-AuNP-modified electrode was used for detection of bio-H1 based on the difference of impedance (ΔRct) detected without and with different concentrations of let-7a participating in the HCR. This method could detect let-7a in the range of 10.0 fM and 1.0 nM with detection limits of 4.2 fM.
Collapse
Affiliation(s)
- Zhen Song
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Qiang-Yan Zhang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jia-Jing Li
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jing-Lian Su
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yuan-Hua Liu
- Department of Chemotherapy, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing 210009, P. R. China
| | - Gong-Jun Yang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, P. R. China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Huai-Song Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, P. R. China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
48
|
Xia N, Cheng J, Tian L, Zhang S, Wang Y, Li G. Hybridization Chain Reaction-Based Electrochemical Biosensors by Integrating the Advantages of Homogeneous Reaction and Heterogeneous Detection. BIOSENSORS 2023; 13:543. [PMID: 37232904 PMCID: PMC10216504 DOI: 10.3390/bios13050543] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
The conventional hybridization chain reaction (HCR)-based electrochemical biosensors usually require the immobilization of probes on the electrode surface. This will limit the applications of biosensors due to the shortcomings of complex immobilization processes and low HCR efficiency. In this work, we proposed astrategy for the design of HCR-based electrochemical biosensors by integrating the advantages of homogeneous reaction and heterogeneous detection. Specifically, the targets triggered the autonomous cross-opening and hybridization oftwobiotin-labeled hairpin probes to form long-nicked dsDNA polymers. The HCR products with many biotin tags were then captured by a streptavidin-covered electrode, thus allowing for the attachment of streptavidin-conjugated signal reporters through streptavidin-biotin interactions. By employing DNA and microRNA-21 as the model targets and glucose oxidase as the signal reporter, the analytical performances of the HCR-based electrochemical biosensors were investigated. The detection limits of this method were found to be 0.6 fM and 1 fM for DNA and microRNA-21, respectively. The proposed strategy exhibited good reliability for target analysis in serum and cellular lysates. The strategy can be used to develop various HCR-based biosensors for a wide range of applications because sequence-specific oligonucleotides exhibit high binding affinity to a series of targets. In light of the high stability and commercial availability of streptavidin-modified materials, the strategy can be used for the design of different biosensors by changing the signal reporter and/or the sequence of hairpin probes.
Collapse
Affiliation(s)
- Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | | | | | | | | | | |
Collapse
|
49
|
Dai G, Yao H, Yang L, Ding Y, Du S, Shen H, Mo F. Rapid detection of foodborne pathogens in diverse foodstuffs by universal electrochemical aptasensor based on UiO-66 and methylene blue composites. Food Chem 2023; 424:136244. [PMID: 37244183 DOI: 10.1016/j.foodchem.2023.136244] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/05/2023] [Accepted: 04/24/2023] [Indexed: 05/29/2023]
Abstract
Rapid and sensitive detection of foodborne pathogens in complex environments is essential for food protection. A universal electrochemical aptasensor was fabricated for the detection of three common foodborne pathogens, including Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Salmonella typhimurium (S. typhimurium). The aptasensor was developed based on the homogeneous and membrane filtration strategy. Zirconium-based metal-organic framework (UiO-66)/methylene blue (MB)/aptamer composite was designed as a signal amplification and recognition probe. Bacteria were quantitatively detected by the current changes of MB. By simply changing the aptamer, different bacteria could be detected. The detection limits of E. coli, S. aureus and S. typhimurium were 5, 4 and 3 CFU·mL-1, respectively. In humidity and salt environments, the stability of the aptasensor was satisfactory. The aptasensor exhibited satisfactory detection performance in different real samples. This aptasensor has excellent potential for rapid detection of foodborne pathogens in complex environments.
Collapse
Affiliation(s)
- Ge Dai
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Handong Yao
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China; School of Engineering, Huzhou University, Huzhou 313000, China
| | - Liuhong Yang
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Yifeng Ding
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Shuxin Du
- School of Engineering, Huzhou University, Huzhou 313000, China
| | - Hui Shen
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China.
| | - Fengfeng Mo
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China.
| |
Collapse
|
50
|
Zhou R, Li T, Chen T, Tang Y, Chen Y, Huang X, Gao W. An electrochemiluminescence immunosensor based on signal magnification of luminol using OER-activated NiFe 2O 4@C@CeO 2/Au as effective co-reaction accelerator. Talanta 2023; 260:124580. [PMID: 37141827 DOI: 10.1016/j.talanta.2023.124580] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/29/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023]
Abstract
In this work, a novel, label-free electrochemiluminescence (ECL) immunosensor was constructed for the ultrasensitive detection of carbohydrate antigen 15-3 (CA15-3) by the combined use of NiFe2O4@C@CeO2/Au hexahedral microbox and luminol luminophore. The synthesis of the co-reaction accelerator (NiFe2O4@C@CeO2/Au) was related to the calcination of FeNi-based metal-organic framework (MOF), as well as the ingrowth of CeO2 nanoparticles and modification of Au nanoparticles. To be specific, the electrical conductivity will be boosted due to the Au nanoparticles, the synergetic effect generated between CeO2 and calcination FeNi-MOF could offer better activity of oxygen evolution reaction (OER). Herein, the NiFe2O4@C@CeO2/Au hexahedral microbox as a co-reaction accelerator has excellent OER activity and production of reactive oxygen species (ROS), thus increasing the ECL intensity of luminol in a neutral medium without other co-reactants such as H2O2. Because of these benefits, the constructed ECL immunosensor was applied to detect CA15-3 as an example under optimum conditions, the designed ECL immunosensor exhibited high-level selectivity and sensitivity for CA15-3 biomarker within a linear response range of 0.01-100 U mL-1 and an ultralow detection limit of 0.545 mU mL-1 (S/N = 3), demonstrating its potentially valuable application in the area of clinical analysis.
Collapse
Affiliation(s)
- Runzhi Zhou
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, PR China
| | - Ting Li
- Guangdong Chaozhou Supervision & Inspection Institute of Quality & Metrology, Chaozhou, Guangdong, 521011, PR China
| | - Tufeng Chen
- Analysis & Testing Center, Shantou University, Shantou, Guangdong, 515063, PR China
| | - Yixiang Tang
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, PR China
| | - Yaowen Chen
- Analysis & Testing Center, Shantou University, Shantou, Guangdong, 515063, PR China
| | - Xiaochun Huang
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, PR China.
| | - Wenhua Gao
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, PR China; Analysis & Testing Center, Shantou University, Shantou, Guangdong, 515063, PR China.
| |
Collapse
|