1
|
Hao S, Guthrie B, Kim SK, Balanda S, Kubicek J, Murtaza B, Khan NA, Khakbaz P, Su J, Goddard WA. Steviol rebaudiosides bind to four different sites of the human sweet taste receptor (T1R2/T1R3) complex explaining confusing experiments. Commun Chem 2024; 7:236. [PMID: 39424933 PMCID: PMC11489721 DOI: 10.1038/s42004-024-01324-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Sucrose provides both sweetness and energy by binding to both Venus flytrap domains (VFD) of the heterodimeric sweet taste receptor (T1R2/T1R3). In contrast, non-caloric sweeteners such as sucralose and aspartame only bind to one specific domain (VFD2) of T1R2, resulting in high-intensity sweetness. In this study, we investigate the binding mechanism of various steviol glycosides, artificial sweeteners, and a negative allosteric modulator (lactisole) at four distinct binding sites: VFD2, VFD3, transmembrane domain 2 (TMD2), and TMD3 through binding experiments and computational docking studies. Our docking results reveal multiple binding sites for the tested ligands, including the radiolabeled ligands. Our experimental evidence demonstrates that the C20 carboxy terminus of the Gα protein can bind to the intracellular region of either TMD2 or TMD3, altering GPCR affinity to the high-affinity state for steviol glycosides. These findings provide a mechanistic understanding of the structure and function of this heterodimeric sweet taste receptor.
Collapse
Affiliation(s)
- Shuang Hao
- Wyant College of Optical Sciences and Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | - Brian Guthrie
- Global Core Research and Development Group, Cargill, Inc. 14800 28th Avenue N, Plymouth, MN, 55447, USA
| | - Soo-Kyung Kim
- Materials and Process Simulation Center (MSC), California Institute of Technology, Pasadena, CA, 91125, USA
| | - Sergej Balanda
- Cube Biotech, Creative Campus Monheim, Creative-Campus-Allee 12, 40789, Monheim, Germany
| | - Jan Kubicek
- Cube Biotech, Creative Campus Monheim, Creative-Campus-Allee 12, 40789, Monheim, Germany
| | - Babar Murtaza
- Physiologie de Nutrition & Toxicologie, UB 1231 Center for Translational & Molecular Medicine (CTM), Université de Bourgogne, 21000 Dijon, France
| | - Naim A Khan
- Physiologie de Nutrition & Toxicologie, UB 1231 Center for Translational & Molecular Medicine (CTM), Université de Bourgogne, 21000 Dijon, France
| | - Pouyan Khakbaz
- Global Core Research and Development Group, Cargill, Inc. 14800 28th Avenue N, Plymouth, MN, 55447, USA
| | - Judith Su
- Wyant College of Optical Sciences and Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, USA.
| | - William A Goddard
- Materials and Process Simulation Center (MSC), California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
2
|
Granizo E, Kriukova I, Escudero-Villa P, Samokhvalov P, Nabiev I. Microfluidics and Nanofluidics in Strong Light-Matter Coupling Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1520. [PMID: 39330676 PMCID: PMC11435064 DOI: 10.3390/nano14181520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024]
Abstract
The combination of micro- or nanofluidics and strong light-matter coupling has gained much interest in the past decade, which has led to the development of advanced systems and devices with numerous potential applications in different fields, such as chemistry, biosensing, and material science. Strong light-matter coupling is achieved by placing a dipole (e.g., an atom or a molecule) into a confined electromagnetic field, with molecular transitions being in resonance with the field and the coupling strength exceeding the average dissipation rate. Despite intense research and encouraging results in this field, some challenges still need to be overcome, related to the fabrication of nano- and microscale optical cavities, stability, scaling up and production, sensitivity, signal-to-noise ratio, and real-time control and monitoring. The goal of this paper is to summarize recent developments in micro- and nanofluidic systems employing strong light-matter coupling. An overview of various methods and techniques used to achieve strong light-matter coupling in micro- or nanofluidic systems is presented, preceded by a brief outline of the fundamentals of strong light-matter coupling and optofluidics operating in the strong coupling regime. The potential applications of these integrated systems in sensing, optofluidics, and quantum technologies are explored. The challenges and prospects in this rapidly developing field are discussed.
Collapse
Affiliation(s)
- Evelyn Granizo
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Irina Kriukova
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Pedro Escudero-Villa
- Facultad de Ingeniería, Universidad Nacional de Chimborazo, Riobamba 060108, Ecuador
| | - Pavel Samokhvalov
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Igor Nabiev
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, 115409 Moscow, Russia
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
- BioSpectroscopie Translationnelle (BioSpecT)-UR 7506, Université de Reims Champagne-Ardenne, 51100 Reims, France
| |
Collapse
|
3
|
Gin A, Nguyen PD, Melzer JE, Li C, Strzelinski H, Liggett SB, Su J. Label-free, real-time monitoring of membrane binding events at zeptomolar concentrations using frequency-locked optical microresonators. Nat Commun 2024; 15:7445. [PMID: 39198447 PMCID: PMC11358326 DOI: 10.1038/s41467-024-51320-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
G-protein coupled receptors help regulate cellular function and communication, and are targets of small molecule drug discovery efforts. Conventional techniques to probe these interactions require labels and large amounts of receptor to achieve satisfactory sensitivity. Here, we use frequency-locked optical microtoroids for label-free characterization of membrane interactions in vitro at zeptomolar concentrations for the kappa opioid receptor and its native agonist dynorphin A 1-13, as well as big dynorphin (dynorphin A and dynorphin B) using a supported biomimetic membrane. The measured affinity of the agonist dynorphin A 1-13 to the κ-opioid receptor was also measured and found to be 3.1 nM. Radioligand assays revealed a dissociation constant in agreement with this value (1.1 nM). The limit of detection for the κOR/DynA 1-13 was calculated as 180 zM. The binding of Cholera Toxin B-monosialotetrahexosyl ganglioside was also monitored in real-time and an equilibrium dissociation constant of 1.53 nM was found. Our biosensing platform provides a method for highly sensitive real-time characterization of membrane embedded protein binding kinetics that is rapid and label-free, for drug discovery and toxin screening among other applications.
Collapse
Affiliation(s)
- Adley Gin
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ, 85721, USA
| | - Phuong-Diem Nguyen
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | - Jeffrey E Melzer
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ, 85721, USA
| | - Cheng Li
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ, 85721, USA
| | - Hannah Strzelinski
- Department of Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Stephen B Liggett
- Department of Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Judith Su
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ, 85721, USA.
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
4
|
Hao S, Suebka S, Su J. Single 5-nm quantum dot detection via microtoroid optical resonator photothermal microscopy. LIGHT, SCIENCE & APPLICATIONS 2024; 13:195. [PMID: 39160151 PMCID: PMC11333578 DOI: 10.1038/s41377-024-01536-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024]
Abstract
Label-free detection techniques for single particles and molecules play an important role in basic science, disease diagnostics, and nanomaterial investigations. While fluorescence-based methods are tools for single molecule detection and imaging, they are limited by available molecular probes and photoblinking and photobleaching. Photothermal microscopy has emerged as a label-free imaging technique capable of detecting individual nanoabsorbers with high sensitivity. Whispering gallery mode (WGM) microresonators can confine light in a small volume for enhanced light-matter interaction and thus are a promising ultra-sensitive photothermal microscopy platform. Previously, microtoroid optical resonators were combined with photothermal microscopy to detect 250 nm long gold nanorods and 100 nm long polymers. Here, we combine microtoroids with photothermal microscopy to spatially detect single 5 nm diameter quantum dots (QDs) with a signal-to-noise ratio exceeding 104. Photothermal images were generated by point-by-point scanning of the pump laser. Single particle detection was confirmed for 18 nm QDs by high sensitivity fluorescence imaging and for 5 nm QDs via comparison with theory. Our system demonstrates the capability to detect a minimum heat dissipation of 0.75 pW. To achieve this, we integrated our microtoroid based photothermal microscopy setup with a low amplitude modulated pump laser and utilized the proportional-integral-derivative controller output as the photothermal signal source to reduce noise and enhance signal stability. The heat dissipation of these QDs is below that from single dye molecules. We anticipate that our work will have application in a wide variety of fields, including the biological sciences, nanotechnology, materials science, chemistry, and medicine.
Collapse
Affiliation(s)
- Shuang Hao
- Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Sartanee Suebka
- Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Judith Su
- Wyant College of Optical Sciences and Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
5
|
Wang Z, Zhou B, Zhang AP. High-Q WGM microcavity-based optofluidic sensor technologies for biological analysis. BIOMICROFLUIDICS 2024; 18:041502. [PMID: 39219592 PMCID: PMC11364460 DOI: 10.1063/5.0200166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
High-quality-factor (Q) optical microcavities have attracted extensive interest due to their unique ability to confine light for resonant circulation at the micrometer scale. Particular attention has been paid to optical whispering-gallery mode (WGM) microcavities to harness their strong light-matter interactions for biological applications. Remarkably, the combination of high-Q optical WGM microcavities with microfluidic technologies can achieve a synergistic effect in the development of high-sensitivity optofluidic sensors for many emerging biological analysis applications, such as the detection of proteins, nucleic acids, viruses, and exosomes. They can also be utilized to investigate the behavior of living cells in human organisms, which may provide new technical solutions for studies in cell biology and biophysics. In this paper, we briefly review recent progress in high-Q microcavity-based optofluidic sensor technologies and their applications in biological analysis.
Collapse
Affiliation(s)
- Zhizheng Wang
- Department of Electrical and Electronic Engineering, Photonics Research Institute, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Bin Zhou
- Department of Electrical and Electronic Engineering, Photonics Research Institute, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - A. Ping Zhang
- Department of Electrical and Electronic Engineering, Photonics Research Institute, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
6
|
Zhao Q, Chen Z, Shan CW, Zhan T, Han CY, Han GC, Feng XZ, Kraatz HB. Construction and evaluation of AuNPs enhanced electrochemical immunosensors with [Fe(CN) 6] 3-/4- and PPy probe for highly sensitive detection of human chorionic gonadotropin. Int J Biol Macromol 2024; 273:132963. [PMID: 38852725 DOI: 10.1016/j.ijbiomac.2024.132963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Human chorionic gonadotropin (HCG), a vital protein for pregnancy determination and a marker for trophoblastic diseases, finds application in monitoring early pregnancy and ectopic pregnancy. This study presents an innovative approach employing electrochemical immunosensors for enhanced HCG detection, utilizing Anti-HCG antibodies and gold nanoparticles (AuNPs) in the sensor platform. Two sensor configurations were optimized: BSA/Anti-HCG/c-AuNPs/MEL/e-AuNPs/SPCE with [Fe(CN)6]3-/4- as a redox probe (1) and BSA/Anti-HCG/PPy/e-AuNPs/SPCE using polypyrrole (PPy) as a redox probe (2). The first sensor offers linear correlation in the 0.10-500.00 pg∙mL-1 HCG range, with a limit of detection (LOD) of 0.06 pg∙mL-1, sensitivity of 32.25 μA∙pg-1∙mL∙cm-2, RSD <2.47 %, and a recovery rate of 101.03-104.81 %. The second sensor widens the HCG detection range (40.00 fg∙mL-1-5.00 pg∙mL-1) with a LOD of 16.53 fg∙mL-1, ensuring precision (RSD <1.04 %) and a recovery range of 94.61-106.07 % in serum samples. These electrochemical immunosensors have transformative potential in biomarker detection, offering enhanced sensitivity, selectivity, and stability for advanced healthcare diagnostics.
Collapse
Affiliation(s)
- Qi Zhao
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Zhencheng Chen
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Chen-Wei Shan
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Tao Zhan
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Chen-Yang Han
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Guo-Cheng Han
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin 541004, PR China.
| | - Xiao-Zhen Feng
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin 541004, PR China.
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada.
| |
Collapse
|
7
|
Gin A, Nguyen PD, Serrano G, Alexander G, Su J. Towards Early Diagnosis and Screening of Alzheimer's Disease Using Frequency Locked Whispering Gallery Mode Microtoroid Biosensors. RESEARCH SQUARE 2024:rs.3.rs-4355995. [PMID: 38798660 PMCID: PMC11118682 DOI: 10.21203/rs.3.rs-4355995/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Alzheimer's disease (AD) is a progressive form of dementia affecting almost 55 million people worldwide. It is characterized by the abnormal deposition of amyloid plaques and neurofibrillary tangles within the brain, leading to a pathological cascade of neuron degeneration and death as well as memory loss and cognitive decline. Amyloid beta (Aβ) is an AD biomarker present in cerebrospinal fluid and blood serum and correlates with the presence of amyloid plaques and tau tangles in the brain. Measuring the levels of Aβ can help with early diagnosis of AD, which is key for studying novel AD drugs and delaying the symptoms of dementia. However, this goal is difficult to achieve due to the low levels of AD biomarkers in biofluids. Here we demonstrate for the first time the use of FLOWER (frequency locked optical whispering evanescent resonator) for quantifying the levels of post-mortem cerebrospinal fluid (CSF) Aβ42 in clinicopathologically classified control, mild cognitive impairment (MCI), and AD participants. FLOWER is capable of measuring CSF Aβ42 (area under curve, AUC = 0.92) with higher diagnostic performance than standard ELISA (AUC = 0.82) and was also able to distinguish between control and MCI samples. Our results demonstrate the capability of FLOWER for screening CSF samples for early diagnosis of Alzheimer's pathology.
Collapse
|
8
|
Kim SK, Suebka S, Gin A, Nguyen PD, Tang Y, Su J, Goddard WA. Methotrexate Inhibits the Binding of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Receptor Binding Domain to the Host-Cell Angiotensin-Converting Enzyme-2 (ACE-2) Receptor. ACS Pharmacol Transl Sci 2024; 7:348-362. [PMID: 38357278 PMCID: PMC10863433 DOI: 10.1021/acsptsci.3c00197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 02/16/2024]
Abstract
As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus mutates, finding effective drugs becomes more challenging. In this study, we use ultrasensitive frequency locked microtoroid optical resonators in combination with in silico screening to search for COVID-19 drugs that can stop the virus from attaching to the human angiotensin-converting enzyme 2 (hACE2) receptor in the lungs. We found 29 promising candidates that could block the binding site and selected four of them that were likely to bind very strongly. We tested three of these candidates using frequency locked optical whispering evanescent resonator (FLOWER), a label-free sensing method based on microtoroid resonators. FLOWER has previously been used for sensing single macromolecules. Here we show, for the first time, that FLOWER can provide accurate binding affinities and sense the inhibition effect of small molecule drug candidates without labels, which can be prohibitive in drug discovery. One of the candidates, methotrexate, showed binding to the spike protein 1.8 million times greater than that to the receptor binding domain (RBD) binding to hACE2, making it difficult for the virus to enter cells. We tested methotrexate against different variants of the SARS-CoV-2 virus and found that it is effective against all four of the tested variants. People taking methotrexate for other conditions have also shown protection against the original SARS-CoV-2 virus. Normally, it is assumed that methotrexate inhibits the replication and release of the virus. However, our findings suggest that it may also block the virus from entering cells. These studies additionally demonstrate the possibility of extracting candidate ligands from large databases, followed by direct receptor-ligand binding experiments on the best candidates using microtoroid resonators, thus creating a workflow that enables the rapid discovery of new drug candidates for a variety of applications.
Collapse
Affiliation(s)
- Soo-Kyung Kim
- Materials
and Process Simulation Center, California
Institute of Technology, Pasadena, California 91125, United States
| | - Sartanee Suebka
- Wyant
College of Optical Sciences, The University
of Arizona, Tucson, Arizona 85721, United States
| | - Adley Gin
- Wyant
College of Optical Sciences, The University
of Arizona, Tucson, Arizona 85721, United States
- Department
of Biomedical Engineering, The University
of Arizona, Tucson, Arizona 85721, United States
| | - Phuong-Diem Nguyen
- Department
of Biomedical Engineering, The University
of Arizona, Tucson, Arizona 85721, United States
| | - Yisha Tang
- Department
of Biomedical Engineering, The University
of Arizona, Tucson, Arizona 85721, United States
| | - Judith Su
- Wyant
College of Optical Sciences, The University
of Arizona, Tucson, Arizona 85721, United States
| | - William A. Goddard
- Materials
and Process Simulation Center, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
9
|
Xu Y, Stanko AM, Cerione CS, Lohrey TD, McLeod E, Stoltz BM, Su J. Low Part-Per-Trillion, Humidity Resistant Detection of Nitric Oxide Using Microtoroid Optical Resonators. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5120-5128. [PMID: 38240231 DOI: 10.1021/acsami.3c16012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The nitric oxide radical plays pivotal roles in physiological as well as atmospheric contexts. Although the detection of dissolved nitric oxide in vivo has been widely explored, highly sensitive (i.e., low part-per-trillion level), selective, and humidity-resistant detection of gaseous nitric oxide in air remains challenging. In the field, humidity can have dramatic effects on the accuracy and selectivity of gas sensors, confounding data, and leading to overestimation of gas concentration. Highly selective and humidity-resistant gaseous NO sensors based on laser-induced graphene were recently reported, displaying a limit of detection (LOD) of 8.3 ppb. Although highly sensitive (LOD = 590 ppq) single-wall carbon nanotube NO sensors have been reported, these sensors lack selectivity and humidity resistance. In this report, we disclose a highly sensitive (LOD = 2.34 ppt), selective, and humidity-resistant nitric oxide sensor based on a whispering-gallery mode microtoroid optical resonator. Excellent analyte selectivity was enabled via novel ferrocene-containing polymeric coatings synthesized via reversible addition-fragmentation chain-transfer polymerization. Utilizing a frequency locked optical whispering evanescent resonator system, the microtoroid's real-time resonance frequency shift response to nitric oxide was tracked with subfemtometer resolution. The lowest concentration experimentally detected was 6.4 ppt, which is the lowest reported to date. Additionally, the performance of the sensor remained consistent across different humidity environments. Lastly, the impact of the chemical composition and molecular weight of the novel ferrocene-containing polymeric coatings on sensing performance was evaluated. We anticipate that our results will have impact on a wide variety of fields where NO sensing is important such as medical diagnostics through exhaled breath, determination of planetary habitability, climate change, air quality monitoring, and treating cardiovascular and neurological disorders.
Collapse
Affiliation(s)
- Yinchao Xu
- Wyant College of Optical Sciences, The University of Arizona, Tucson, Arizona 85721, United States
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Allison M Stanko
- The Warren and Catherine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Chloe S Cerione
- The Warren and Catherine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Trevor D Lohrey
- The Warren and Catherine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Euan McLeod
- Wyant College of Optical Sciences, The University of Arizona, Tucson, Arizona 85721, United States
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Brian M Stoltz
- The Warren and Catherine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Judith Su
- Wyant College of Optical Sciences, The University of Arizona, Tucson, Arizona 85721, United States
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
10
|
Gin A, Nguyen PD, Melzer JE, Li C, Strzelinski H, Liggett SB, Su J. Label-free, real-time monitoring of membrane binding events at zeptomolar concentrations using frequency-locked optical microresonators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558657. [PMID: 37786702 PMCID: PMC10541581 DOI: 10.1101/2023.09.20.558657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Binding events to elements of the cell membrane act as receptors which regulate cellular function and communication and are the targets of many small molecule drug discovery efforts for agonists and antagonists. Conventional techniques to probe these interactions generally require labels and large amounts of receptor to achieve satisfactory sensitivity. Whispering gallery mode microtoroid optical resonators have demonstrated sensitivity to detect single-molecule binding events. Here, we demonstrate the use of frequency-locked optical microtoroids for characterization of membrane interactions in vitro at zeptomolar concentrations using a supported biomimetic membrane. Arrays of microtoroids were produced using photolithography and subsequently modified with a biomimetic membrane, providing high quality (Q) factors (> 10 6 ) in aqueous environments. Fluorescent recovery after photobleaching (FRAP) experiments confirmed the retained fluidity of the microtoroid supported-lipid membrane with a diffusion coefficient of 3.38 ± 0.26 μm 2 ⋅ s - 1 . Utilizing this frequency-locked membrane-on-a-chip model combined with auto-balanced detection and non-linear post-processing techniques, we demonstrate zeptomolar detection levels The binding of Cholera Toxin B- monosialotetrahexosyl ganglioside (GM1) was monitored in real-time, with an apparent equilibrium dissociation constant k d = 1.53 nM . The measured affiny of the agonist dynorphin A 1-13 to the κ -opioid receptor revealed a k d = 3.1 nM using the same approach. Radioligand binding competition with dynorphin A 1-13 revealed a k d in agreement (1.1 nM) with the unlabeled method. The biosensing platform reported herein provides a highly sensitive real-time characterization of membrane embedded protein binding kinetics, that is rapid and label-free, for toxin screening and drug discovery, among other applications.
Collapse
Affiliation(s)
- Adley Gin
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ 85721
| | - Phuong-Diem Nguyen
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721
| | - Jeffrey E. Melzer
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ 85721
| | - Cheng Li
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ 85721
| | - Hannah Strzelinski
- Department of Medicine, University of South Florida Morsani College of Medicine, Tampa, FL 33612
| | - Stephen B. Liggett
- Department of Medicine, University of South Florida Morsani College of Medicine, Tampa, FL 33612
| | - Judith Su
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ 85721
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721
| |
Collapse
|
11
|
Luu GT, Ge C, Tang Y, Li K, Cologna SM, Godwin AK, Burdette JE, Su J, Sanchez LM. An Integrated Approach to Protein Discovery and Detection From Complex Biofluids. Mol Cell Proteomics 2023; 22:100590. [PMID: 37301378 PMCID: PMC10388710 DOI: 10.1016/j.mcpro.2023.100590] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023] Open
Abstract
Ovarian cancer, a leading cause of cancer-related deaths among women, has been notoriously difficult to screen for and diagnose early, as early detection significantly improves survival. Researchers and clinicians seek routinely usable and noninvasive screening methods; however, available methods (i.e., biomarker screening) lack desirable sensitivity/specificity. The most fatal form, high-grade serous ovarian cancer, often originate in the fallopian tube; therefore, sampling from the vaginal environment provides more proximal sources for tumor detection. To address these shortcomings and leverage proximal sampling, we developed an untargeted mass spectrometry microprotein profiling method and identified cystatin A, which was validated in an animal model. To overcome the limits of detection inherent to mass spectrometry, we demonstrated that cystatin A is present at 100 pM concentrations using a label-free microtoroid resonator and translated our workflow to patient-derived clinical samples, highlighting the potential utility of early stage detection where biomarker levels would be low.
Collapse
Affiliation(s)
- Gordon T Luu
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, USA
| | - Chang Ge
- Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona, USA
| | - Yisha Tang
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| | - Kailiang Li
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; The University of Kansas Cancer Center, Kansas City, Kansas, USA
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Judith Su
- Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona, USA; Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA.
| | - Laura M Sanchez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, USA.
| |
Collapse
|
12
|
Choi G, Su J. Impact of stimulated Raman scattering on dark soliton generation in a silica microresonator. JPHYS PHOTONICS 2023; 5:014001. [PMID: 36698962 PMCID: PMC9855653 DOI: 10.1088/2515-7647/aca8e1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 05/09/2023] Open
Abstract
Generating a coherent optical frequency comb at an arbitrary wavelength is important for fields such as precision spectroscopy and optical communications. Dark solitons which are coherent states of optical frequency combs in normal dispersion microresonators can extend the operating wavelength range of these combs. While the existence and dynamics of dark solitons has been examined extensively, requirements for the modal interaction for accessing the soliton state in the presence of a strong Raman interaction at near visible wavelengths has been less explored. Here, analysis on the parametric and Raman gain in a silica microresonator is performed, revealing that four-wave mixing parametric gain which can be created by a modal-interaction-aided additional frequency shift is able to exceed the Raman gain. The existence range of the dark soliton is analyzed as a function of pump power and detuning for given modal coupling conditions. We anticipate these results will benefit fields requiring optical frequency combs with high efficiency and selectable wavelength such as biosensing applications using silica microcavities that have a strong Raman gain in the normal dispersion regime.
Collapse
Affiliation(s)
- Gwangho Choi
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ 85721, United States of America
| | - Judith Su
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ 85721, United States of America
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, United States of America
- Author to whom any correspondence should be addressed
| |
Collapse
|
13
|
Guo Z, Zhao X, Zhou Y, Li Y, Liu Z, Luo M, Wu X, Wang Y, Zhang M, Yang X. Label-free detection of cardiac troponin-I with packaged thin-walled microbubble resonators. JOURNAL OF BIOPHOTONICS 2022; 15:e202200151. [PMID: 35762487 DOI: 10.1002/jbio.202200151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
The measurement of cardiac troponin-I (cTnI) is widely used for diagnosing acute myocardial infarction (AMI) diseases because of its myocardial specificity. Packaged microbubble resonators with thin wall are utilized for label-free and specific detection of cTnI based on whispering gallery mode (WGM). This packaged structure can provide a good protection for the biosensor, improve the anti-interference ability of the sensor and reduce the system noise. The theoretical detection limit of the biosensors for cTnI in phosphate buffer saline (PBS) is 0.4 ag mL-1 (0.02 aM ). Furthermore, we demonstrated that the biosensors can be used to detect cTnI molecules in simulated serum and the theoretical detection limit is also 0.4 ag mL-1 (0.02 aM ). These results are much far below the clinical cut-off value and show a huge application potential for the detection of cardiac biomarkers of AMI.
Collapse
Affiliation(s)
- Zhihe Guo
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra Precision Optical Manufacturing, Fudan University, Shanghai, China
| | - Xuyang Zhao
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra Precision Optical Manufacturing, Fudan University, Shanghai, China
| | - Yi Zhou
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra Precision Optical Manufacturing, Fudan University, Shanghai, China
| | - Yuxiang Li
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra Precision Optical Manufacturing, Fudan University, Shanghai, China
| | - Zhiran Liu
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra Precision Optical Manufacturing, Fudan University, Shanghai, China
| | - Man Luo
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra Precision Optical Manufacturing, Fudan University, Shanghai, China
| | - Xiang Wu
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra Precision Optical Manufacturing, Fudan University, Shanghai, China
| | - You Wang
- Key Laboratory of Laser Device Technology, China North Industries Group Corporation Limited, Southwest Institute of Technical Physics, Chengdu, China
| | - Meng Zhang
- Key Laboratory of Laser Device Technology, China North Industries Group Corporation Limited, Southwest Institute of Technical Physics, Chengdu, China
| | - Xi Yang
- Key Laboratory of Laser Device Technology, China North Industries Group Corporation Limited, Southwest Institute of Technical Physics, Chengdu, China
| |
Collapse
|
14
|
Li C, Lohrey T, Nguyen PD, Min Z, Tang Y, Ge C, Sercel ZP, McLeod E, Stoltz BM, Su J. Part-per-Trillion Trace Selective Gas Detection Using Frequency Locked Whispering-Gallery Mode Microtoroids. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42430-42440. [PMID: 36049126 DOI: 10.1021/acsami.2c11494] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rapid detection of toxic and hazardous gases at trace concentrations plays a vital role in industrial, battlefield, and laboratory scenarios. Of interest are both sensitive as well as highly selective sensors. Whispering-gallery mode (WGM) microresonator-based biochemical sensors are among the most sensitive sensors in existence due to their long photon confinement times. One main concern with these devices, however, is their selectivity toward specific classes of target analytes. Here, we employ frequency locked WGM microtoroid optical resonators covalently modified with various polymer coatings to selectively detect the chemical warfare agent surrogate diisopropyl methylphosphonate (DIMP) as well as the toxic industrial chemicals formaldehyde and ammonia at parts-per-trillion concentrations (304, 434, and 117 ppt, respectively). This is 1-2 orders of magnitude better than previously reported, depending on the target, except for pristine graphene and pristine carbon nanotube sensors, which demonstrate similar detection levels but in vacuum and without selectivity. Selective polymer coatings include polyethylene glycol for DIMP sensing, accessed by the modification of commercially available materials, and 3-(triethoxysilyl) propyl-terminated polyvinyl acetate (PVAc) for ammonia sensing. Notably, we developed for the first time an efficient one-pot procedure to access 3-(triethoxysilyl) propyl-terminated PVAc that utilizes cobalt-mediated living radical polymerization and a nitroxyl polymer-terminating agent. Alkaline hydrolysis of PVAc coatings to form polyvinyl alcohol coatings directly bound to the microtoroid proved to be reliable and reproducible, leading to WGM sensors capable of the rapid and selective detection of formaldehyde vapors. The selectivity of these three polymer coatings as sensing media was predicted, in part, based on their functional group content and known reactivity patterns with the target analytes. Furthermore, we demonstrate that microtoroids coated with a mixture of polymers can serve as an all-in-one sensor that can detect multiple agents. We anticipate that our results will facilitate rapid early detection of chemical agents, as well as their surrogates and precursors.
Collapse
Affiliation(s)
- Cheng Li
- Wyant College of Optical Sciences, The University of Arizona, 1630 E University Blvd, Tucson, Arizona85721, United States
| | - Trevor Lohrey
- The Warren and Katherine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California91125, United States
| | - Phuong-Diem Nguyen
- Department of Biomedical Engineering, The University of Arizona, 1630 E University Blvd, Tucson, Arizona85721, United States
| | - Zhouyang Min
- Department of Biomedical Engineering, The University of Arizona, 1630 E University Blvd, Tucson, Arizona85721, United States
| | - Yisha Tang
- Department of Biomedical Engineering, The University of Arizona, 1630 E University Blvd, Tucson, Arizona85721, United States
| | - Chang Ge
- Wyant College of Optical Sciences, The University of Arizona, 1630 E University Blvd, Tucson, Arizona85721, United States
| | - Zachary P Sercel
- The Warren and Katherine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California91125, United States
| | - Euan McLeod
- Wyant College of Optical Sciences, The University of Arizona, 1630 E University Blvd, Tucson, Arizona85721, United States
| | - Brian M Stoltz
- The Warren and Katherine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California91125, United States
| | - Judith Su
- Wyant College of Optical Sciences, The University of Arizona, 1630 E University Blvd, Tucson, Arizona85721, United States
- Department of Biomedical Engineering, The University of Arizona, 1630 E University Blvd, Tucson, Arizona85721, United States
| |
Collapse
|
15
|
Wu Z, Xue H, Zheng M, Chen H, Chen G, Xu L. Nanogold/graphene as sensing platform coupled with ferrocene/gold as signal amplifier for sandwich-like voltammetric immunosensor of human chorionic gonadotropin. Am J Transl Res 2022; 14:3972-3979. [PMID: 35836878 PMCID: PMC9274591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/25/2021] [Indexed: 06/15/2023]
Abstract
An effective method to detect human chorionic gonadotropin (hCG) is of significance for early pregnancy testing and clinical diagnosis of non-pregnancy related diseases. Herein, a sensitive sandwich-like electrochemical immunosensor of hCG was constructed by introducing nanogold/graphene (Au/GNS) hybrids and ferrocene/gold nanoparticles (Fc/Au) as the sensing platform and signal amplifier, respectively. In this sensing platform, the Au/GNS hybrid was dedicated to increasing the loading capacity of primary antibody (Ab1) and accelerate the electron transport, and Au is devoted to assembling secondary antibodies (Ab2) and Fc derivative (Fc-SH) to fabricate signal amplifier (Ab2-AuNPs-Fc). By selecting Fc as the signal probe, results revealed that peak currents increased when the special recognition among Ab1, hCG, and Ab2 occurred. A novel and sensitive sandwich-like immunosensor of hCG was thus constructed. After optimizing various testing conditions, a wide linearity from 0.005 to 7.0 ng mL-1 and a low detection limit of 1.0 pg mL-1 were achieved for hCG analysis, suggesting this method is useful for hCG analysis.
Collapse
Affiliation(s)
- Zhihui Wu
- Department of Laboratory Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical UniversityFuzhou 350001, Fujian, China
| | - Heng Xue
- Department of Laboratory Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical UniversityFuzhou 350001, Fujian, China
| | - Miao Zheng
- Department of Laboratory Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical UniversityFuzhou 350001, Fujian, China
| | - Huiyu Chen
- Department of Laboratory Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical UniversityFuzhou 350001, Fujian, China
| | - Guolong Chen
- Department of Child Healthcare Centre, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical UniversityFuzhou 350001, Fujian, China
| | - Liangpu Xu
- Department of The Prenatal Diagnosis Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth DefectFuzhou 350001, Fujian, China
| |
Collapse
|
16
|
Gao D, Cheng F, Wang X, Yang H, Liu C, Li C, Yang EM, Cheng G, He W. Developing G value as an indicator for assessing the molecular status of immobilized antibody. Colloids Surf B Biointerfaces 2022; 217:112593. [PMID: 35665639 DOI: 10.1016/j.colsurfb.2022.112593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/08/2022] [Accepted: 05/21/2022] [Indexed: 10/18/2022]
Abstract
Antibody-functionalized nanoparticles (Ab-NPs) are widely used in bioassays due to their excellent affinity, specificity toward antigen, and ease of operation. However, the uncontrollable molecular status of antibodies on NPs severely limits their applications. This work aims at developing a simple method to evaluate the antigen-binding activity of Ab-NPs using two parameters, i.e., antibody adsorption amount and antigen-binding strength. Herein, we proposed a mathematical expression, G, to quantitively describe the amount and strength of Ab-NPs. G value could be used to assess the antigen-binding performance of NPs influenced by surface and solution factors. Seven types of polymers with different surface properties, including four positively and three negatively charged polymer brushes, were grown from silica NPs via surface-initiated atom transfer radical polymerization (SI-ATRP). A pair of antigen and antibody, human chorionic gonadotropin (hCG) and anti-hCG, were selected to screen the antibody immobilization property of polymer brushes. Among them, the G values of 2 polymer-NPs with opposite charges reached maximum, resulting in low detection limits for hCG, where pDMAEA-NP and pMMA-NP represent Poly[N,N-(dimethylamino)ethyl acrylate]-NP and poly(methyl methacrylate)-NP, respectively. The G value of Ab-NPs makes it feasible to estimate the molecular status of the adsorbed antibodies on surfaces, thus showing great potential for in vitro biosensing and bioseparation.
Collapse
Affiliation(s)
- Dongdong Gao
- Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; Department of Polymer Science & Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China
| | - Fang Cheng
- Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; Department of Polymer Science & Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China; Ningbo Institute of Dalian University of Technology, Ningbo 315211, China.
| | - Xinglong Wang
- Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Heqing Yang
- Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Chong Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; Department of Polymer Science & Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China
| | - Chunmei Li
- Tsinglan School, Songshan Lake, Dongguan 523000, China
| | | | - Gang Cheng
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Wei He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; Department of Polymer Science & Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China
| |
Collapse
|
17
|
Choi G, Gin A, Su J. Optical frequency combs in aqueous and air environments at visible to near-IR wavelengths. OPTICS EXPRESS 2022; 30:8690-8699. [PMID: 35299315 PMCID: PMC8970704 DOI: 10.1364/oe.451631] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 05/24/2023]
Abstract
The ability to detect and identify molecules at high sensitivity without the use of labels or capture agents is important for medical diagnostics, threat identification, environmental monitoring, and basic science. Microtoroid optical resonators, when combined with noise reduction techniques, have been shown capable of label-free single molecule detection; however, they still require a capture agent and prior knowledge of the target molecule. Optical frequency combs can potentially provide high precision spectroscopic information on molecules within the evanescent field of the microresonator; however, this has not yet been demonstrated in air or aqueous biological sensing. For aqueous solutions in particular, impediments include coupling and thermal instabilities, reduced Q factor, and changes to the mode spectrum. Here we overcome a key challenge toward single-molecule spectroscopy using optical microresonators: the generation of a frequency comb at visible to near-IR wavelengths when immersed in either air or aqueous solution. The required dispersion is achieved via intermodal coupling, which we show is attainable using larger microtoroids, but with the same shape and material that has previously been shown ideal for ultra-high sensitivity biosensing. We believe that the continuous evolution of this platform will allow us in the future to simultaneously detect and identify single molecules in both gas and liquid at any wavelength without the use of labels.
Collapse
Affiliation(s)
- Gwangho Choi
- College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - Adley Gin
- College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - Judith Su
- College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
18
|
Suebka S, Nguyen PD, Gin A, Su J. How Fast It Can Stick: Visualizing Flow Delivery to Microtoroid Biosensors. ACS Sens 2021; 6:2700-2708. [PMID: 34078073 DOI: 10.1021/acssensors.1c00748] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sensitive and rapid biosensors are of critical importance for a variety of applications including infectious disease detection and monitoring as well as medical diagnostics and drug discovery. Whispering gallery mode microtoroid optical resonators are among the most sensitive biochemical sensors in existence. When combined with frequency-locking and data-processing techniques, these sensors have been shown to be capable of single-molecule detection in under 30 s. The sensitivity of these sensors is affected by how a concentration of analyte molecules is transported to the surface of the sensors and the average time it takes the molecules to bind at that concentration. Currently, one question in the field is that at these low concentrations, how these microsensors achieve such rapid response times. Here, we reconcile theory and experiment and demonstrate through flow visualization experiments and finite-element simulations that the total analyte arrival and binding time can be on the order of seconds. This fast response time provides an advantage over nanoscale sensors such as nanowires or nanorods. We anticipate that these results can help us to control, with confidence, when and how many molecules bind to these sensors, thus enabling the building of faster and more sensitive sensors.
Collapse
Affiliation(s)
- Sartanee Suebka
- Wyant College of Optical Sciences, The University of Arizona, 1630 E University Blvd, Tucson, Arizona 85721, United States
| | - Phuong-Diem Nguyen
- Department of Biomedical Engineering, The University of Arizona, 1630 E University Blvd, Tucson, Arizona 85721, United States
| | - Adley Gin
- Wyant College of Optical Sciences, The University of Arizona, 1630 E University Blvd, Tucson, Arizona 85721, United States
| | - Judith Su
- Wyant College of Optical Sciences, The University of Arizona, 1630 E University Blvd, Tucson, Arizona 85721, United States
- Department of Biomedical Engineering, The University of Arizona, 1630 E University Blvd, Tucson, Arizona 85721, United States
| |
Collapse
|
19
|
Liu X, Wang K, Cao B, Shen L, Ke X, Cui D, Zhong C, Li W. Multifunctional Nano-Sunflowers with Color-Magnetic-Raman Properties for Multimodal Lateral Flow Immunoassay. Anal Chem 2021; 93:3626-3634. [DOI: 10.1021/acs.analchem.0c05354] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xinyi Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Kan Wang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Bo Cao
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Lisong Shen
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai 200092, People’s Republic of China
| | - Xing Ke
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai 200092, People’s Republic of China
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Chunmei Zhong
- Zhejiang Orient Gene Biotech Co., Ltd., 3787 East Yangguang Avenue, Anji 313300 Zhejiang, People’s Republic of China
| | - Wanwan Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| |
Collapse
|
20
|
Dell'Olio F, Su J, Huser T, Sottile V, Cortés-Hernández LE, Alix-Panabières C. Photonic technologies for liquid biopsies: recent advances and open research challenges. LASER & PHOTONICS REVIEWS 2021; 15:2000255. [PMID: 35360260 PMCID: PMC8966629 DOI: 10.1002/lpor.202000255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Indexed: 05/15/2023]
Abstract
The recent development of sophisticated techniques capable of detecting extremely low concentrations of circulating tumor biomarkers in accessible body fluids, such as blood or urine, could contribute to a paradigm shift in cancer diagnosis and treatment. By applying such techniques, clinicians can carry out liquid biopsies, providing information on tumor presence, evolution, and response to therapy. The implementation of biosensing platforms for liquid biopsies is particularly complex because this application domain demands high selectivity/specificity and challenging limit-of-detection (LoD) values. The interest in photonics as an enabling technology for liquid biopsies is growing owing to the well-known advantages of photonic biosensors over competing technologies in terms of compactness, immunity to external disturbance, and ultra-high spatial resolution. Some encouraging experimental results in the field of photonic devices and systems for liquid biopsy have already been achieved by using fluorescent labels and label-free techniques and by exploiting super-resolution microscopy, surface plasmon resonance, surface-enhanced Raman scattering, and whispering gallery mode resonators. This paper critically reviews the current state-of-the-art, starting from the requirements imposed by the detection of the most common circulating biomarkers. Open research challenges are considered together with competing technologies, and the most promising paths of improvement are discussed for future applications.
Collapse
Affiliation(s)
- Francesco Dell'Olio
- Department of Electrical and Information Engineering, Polytechnic University of Bari, 70125, Italy
| | - Judith Su
- Department of Biomedical Engineering, College of Optical Sciences, and BIO5 Institute, University of Arizona, 85721, USA
| | - Thomas Huser
- Biomolecular Photonics, Department of Physics, University of Bielefeld, 33615 Germany
| | - Virginie Sottile
- Department of Molecular Medicine, University of Pavia, 27100, Italy
| | | | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Center of Montpellier, 34093 CEDEX 5, France
| |
Collapse
|
21
|
Rho D, Breaux C, Kim S. Label-Free Optical Resonator-Based Biosensors. SENSORS 2020; 20:s20205901. [PMID: 33086566 PMCID: PMC7589515 DOI: 10.3390/s20205901] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022]
Abstract
The demand for biosensor technology has grown drastically over the last few decades, mainly in disease diagnosis, drug development, and environmental health and safety. Optical resonator-based biosensors have been widely exploited to achieve highly sensitive, rapid, and label-free detection of biological analytes. The advancements in microfluidic and micro/nanofabrication technologies allow them to be miniaturized and simultaneously detect various analytes in a small sample volume. By virtue of these advantages and advancements, the optical resonator-based biosensor is considered a promising platform not only for general medical diagnostics but also for point-of-care applications. This review aims to provide an overview of recent progresses in label-free optical resonator-based biosensors published mostly over the last 5 years. We categorized them into Fabry-Perot interferometer-based and whispering gallery mode-based biosensors. The principles behind each biosensor are concisely introduced, and recent progresses in configurations, materials, test setup, and light confinement methods are described. Finally, the current challenges and future research topics of the optical resonator-based biosensor are discussed.
Collapse
|
22
|
Chen L, Li C, Liu Y, Su J, McLeod E. Three-Dimensional Simulation of Particle-Induced Mode Splitting in Large Toroidal Microresonators. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5420. [PMID: 32971751 PMCID: PMC7571196 DOI: 10.3390/s20185420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022]
Abstract
Whispering gallery mode resonators such as silica microtoroids can be used as sensitive biochemical sensors. One sensing modality is mode-splitting, where the binding of individual targets to the resonator breaks the degeneracy between clockwise and counter-clockwise resonant modes. Compared to other sensing modalities, mode-splitting is attractive because the signal shift is theoretically insensitive to the polar coordinate where the target binds. However, this theory relies on several assumptions, and previous experimental and numerical results have shown some discrepancies with analytical theory. More accurate numerical modeling techniques could help to elucidate the underlying physics, but efficient 3D electromagnetic finite-element method simulations of large microtoroid (diameter ~90 µm) and their resonance features have previously been intractable. In addition, applications of mode-splitting often involve bacteria or viruses, which are too large to be accurately described by the existing analytical dipole approximation theory. A numerical simulation approach could accurately explain mode splitting induced by these larger particles. Here, we simulate mode-splitting in a large microtoroid using a beam envelope method with periodic boundary conditions in a wedge-shaped domain. We show that particle sizing is accurate to within 11% for radii a<λ/7, where the dipole approximation is valid. Polarizability calculations need only be based on the background media and need not consider the microtoroid material. This modeling approach can be applied to other sizes and shapes of microresonators in the future.
Collapse
Affiliation(s)
- Lei Chen
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China;
| | - Cheng Li
- College of Optical Sciences, University of Arizona, Tucson, AZ 85721, USA; (C.L.); (J.S.)
| | - Yumin Liu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Judith Su
- College of Optical Sciences, University of Arizona, Tucson, AZ 85721, USA; (C.L.); (J.S.)
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA
| | - Euan McLeod
- College of Optical Sciences, University of Arizona, Tucson, AZ 85721, USA; (C.L.); (J.S.)
| |
Collapse
|
23
|
Guo Z, Qin Y, Chen P, Hu J, Zhou Y, Zhao X, Liu Z, Fei Y, Jiang X, Wu X. Hyperboloid-Drum Microdisk Laser Biosensors for Ultrasensitive Detection of Human IgG. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000239. [PMID: 32510822 DOI: 10.1002/smll.202000239] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/15/2020] [Accepted: 04/29/2020] [Indexed: 05/25/2023]
Abstract
Whispering gallery mode (WGM) microresonators have been used as optical sensors in fundamental research and practical applications. The majority of WGM sensors are passive resonators that require complex systems, thereby limiting their practicality. Active resonators enable the remote excitation and collection of WGM-modulated fluorescence spectra, without requiring complex systems, and can be used as alternatives to passive microresonators. This paper demonstrates an active microresonator, which is a microdisk laser in a hyperboloid-drum (HD) shape. The HD microdisk lasers are a combination of a rhodamine B-doped photoresist and a silica microdisk. These HD microdisk lasers can be utilized for the detection of label-free biomolecules. The biomolecule concentration can be as low as 1 ag mL-1 , whereas the theoretical detection limit of the biosensor for human IgG in phosphate buffer saline is 9 ag mL-1 (0.06 aM ). Additionally, the biosensors are able to detect biomolecules in an artificial serum, with a theoretical detection limit of 9 ag mL-1 (0.06 aM ). These results are approximately four orders of magnitude more sensitive than those for the typical active WGM biosensors. The proposed HD microdisk laser biosensors show enormous detection potential for biomarkers in protein secretions or body fluids.
Collapse
Affiliation(s)
- Zhihe Guo
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra Precision Optical Manufacturing, Fudan University, Shanghai, 200433, China
| | - Yingchun Qin
- National Laboratory of Solid State Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Peizong Chen
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, 200433, China
| | - Jinliang Hu
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra Precision Optical Manufacturing, Fudan University, Shanghai, 200433, China
| | - Yi Zhou
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra Precision Optical Manufacturing, Fudan University, Shanghai, 200433, China
| | - Xuyang Zhao
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra Precision Optical Manufacturing, Fudan University, Shanghai, 200433, China
| | - Zhiran Liu
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra Precision Optical Manufacturing, Fudan University, Shanghai, 200433, China
| | - Yiyan Fei
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra Precision Optical Manufacturing, Fudan University, Shanghai, 200433, China
| | - Xiaoshun Jiang
- National Laboratory of Solid State Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Xiang Wu
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra Precision Optical Manufacturing, Fudan University, Shanghai, 200433, China
| |
Collapse
|
24
|
Gandham S, Su X, Wood J, Nocera AL, Alli SC, Milane L, Zimmerman A, Amiji M, Ivanov AR. Technologies and Standardization in Research on Extracellular Vesicles. Trends Biotechnol 2020; 38:1066-1098. [PMID: 32564882 PMCID: PMC7302792 DOI: 10.1016/j.tibtech.2020.05.012] [Citation(s) in RCA: 269] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs) are phospholipid bilayer membrane-enclosed structures containing RNAs, proteins, lipids, metabolites, and other molecules, secreted by various cells into physiological fluids. EV-mediated transfer of biomolecules is a critical component of a variety of physiological and pathological processes. Potential applications of EVs in novel diagnostic and therapeutic strategies have brought increasing attention. However, EV research remains highly challenging due to the inherently complex biogenesis of EVs and their vast heterogeneity in size, composition, and origin. There is a need for the establishment of standardized methods that address EV heterogeneity and sources of pre-analytical and analytical variability in EV studies. Here, we review technologies developed for EV isolation and characterization and discuss paths toward standardization in EV research.
Collapse
Affiliation(s)
- Srujan Gandham
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Xianyi Su
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - Jacqueline Wood
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - Angela L Nocera
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Sarath Chandra Alli
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA; Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Lara Milane
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Alan Zimmerman
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Alexander R Ivanov
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Rossini EL, Kulyk DS, Ansu-Gyeabourh E, Sahraeian T, Pezza HR, Badu-Tawiah AK. Direct Analysis of Doping Agents in Raw Urine Using Hydrophobic Paper Spray Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1212-1222. [PMID: 32357004 PMCID: PMC7891915 DOI: 10.1021/jasms.0c00063] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, the direct analysis of doping agents in urine samples with no sample preparation by a modified paper spray mass spectrometry (PS-MS) methodology has been demonstrated for the first time. We have described a paper surface treatment with trichloromethylsilane using a gas-phase reaction to increase the ionization of target compounds. This approach was applied for the analysis of two classes of banned substances in urine samples: anabolic agents (trenbolone and clenbuterol) and diuretics (furosemide and hydrochlorothiazide). Under optimized conditions, the developed methods presented satisfactory repeatability, and an analysis of variance showed linearity without lack-of-fit. Highly sensitive detections as low as sub-nanogram per milliliter levels, which is below the minimum required performance levels proposed by the World Anti-Doping Agency, have been reached using the hydrophobic PS-MS analysis without any preconcentration and cleanup step.
Collapse
Affiliation(s)
- Eduardo Luiz Rossini
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
- Institute of Chemistry, Department of Analytical Chemistry, UNESP - São Paulo State University, R. Prof. Francisco Degni 55, P.O. Box 355, 14800-900, Araraquara, SP, Brazil
| | - Dmytro S. Kulyk
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
| | - Emelia Ansu-Gyeabourh
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
| | - Taghi Sahraeian
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
| | - Helena Redigolo Pezza
- Institute of Chemistry, Department of Analytical Chemistry, UNESP - São Paulo State University, R. Prof. Francisco Degni 55, P.O. Box 355, 14800-900, Araraquara, SP, Brazil
| | - Abraham K. Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|