1
|
Yavuz O, Dincel GC, Yildirim S, El-Ashram S, Al-Olayan E. Impact of apoptosis and oxidative stress on pancreatic beta cell pathophysiology in streptozotocin-induced Type 1 diabetes mellitus. Tissue Cell 2024; 91:102552. [PMID: 39255742 DOI: 10.1016/j.tice.2024.102552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/21/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024]
Abstract
AIMS Hyperglycemia plays a crucial role in the islet cells, especially pancreatic beta cell death in type 1 diabetes mellitus (T1DM). However, a few research have concentrated on the pathophysiology of apoptosis and oxidative stress in T1DM. The aim of this study was to determine the expression of Caspase 3, Caspase 9, 8-OHdG, Glutathione Reductase, endothelial and inducible nitric oxide synthase in the pancreatic tissue of streptozotocin (STZ)-induced T1DM patients and to compare the cellular mechanisms underlying this metabolic disorder. METHODS For this purpose, a total of 20 Wistar albino rats were divided into two groups: Control (C) and Diabetes Mellitus (DM). In the DM group, T1DM was induced by STZ. Rats in the C group were injected intravenously with buffer solution. At the end of the day 20, rats were necropsied and immunohistochemical procedures were applied. RESULTS The immunohistochemical examination revealed, strong positive immunoreactions were observed in the islet cells of the DM groups, particularly when all antibody stains were considered. On the other hand, the C groups showed minimal changes. The difference between the C and DM groups in terms of all antibodies was statistically significant (p<0.01). CONCLUSIONS In the present study, it was concluded that apoptosis, oxidative stress and NOS expressions were involved in islet cell destruction in pancreatic tissue in STZ-induced T1DM.
Collapse
Affiliation(s)
- Orhan Yavuz
- Department of Pathology, Faculty of Veterinary Medicine, Dokuz Eylul University, 35890, Kiraz, Izmir, Türkiye
| | - Gungor Cagdas Dincel
- College of Life Science and Engineering, Foshan University, 18 Jiangwan Street, Foshan, 528231, Guangdong Province, China.
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, 25240, Türkiye
| | - Saeed El-Ashram
- College of Life Science and Engineering, Foshan University, 18 Jiangwan Street, Foshan, 528231, Guangdong Province, China; Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt.
| | - Ebtesam Al-Olayan
- Department of Zoology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Moy AB, Kamath A, Ternes S, Kamath J. The Challenges to Advancing Induced Pluripotent Stem Cell-Dependent Cell Replacement Therapy. MEDICAL RESEARCH ARCHIVES 2023; 11:4784. [PMID: 38188933 PMCID: PMC10768945 DOI: 10.18103/mra.v11i11.4784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Induced pluripotent stem cells (iPSC) represent a potentially exciting regenerative-medicine cell therapy for several chronic conditions such as macular degeneration, soft tissue and orthopedic conditions, cardiopulmonary disease, cancer, neurodegenerative disorders and metabolic disorders. The field of iPSC therapeutics currently exists at an early stage of development. There are several important stakeholders that include academia, industry, regulatory agencies, financial institutions and patients who are committed to advance the field. Yet, unlike more established therapeutic modalities like small and large molecules, iPSC therapies pose significant unique challenges with respect to safety, potency, genetic stability, immunogenicity, tumorgenicity, cell reproducibility, scalability and engraftment. The aim of this review article is to highlight the unique technical challenges that need to be addressed before iPSC technology can be fully realized as a cell replacement therapy. Additionally, this manuscript offers some potential solutions and identifies areas of focus that should be considered in order for the iPSC field to achieve its promise. The scope of this article covers the following areas: (1) the impact of different iPSC reprogramming methods on immunogenicity and tumorigenicity; (2) the effect of genetic instability on cell reproducibility and differentiation; (3) the role of growth factors and post-translational modification on differentiation and cell scalability; (4) the potential use of gene editing in improving iPSC differentiation; (5) the advantages and disadvantages between autologous and allogeneic cell therapy; (6) the regulatory considerations in developing a viable and reproducible cell product; and (7) the impact of local tissue inflammation on cell engraftment and cell viability.
Collapse
Affiliation(s)
- Alan B. Moy
- Cellular Engineering Technologies, Inc. Coralville, IA, 52241
- John Paul II Medical Research Institute, Coralville, IA 52241
| | - Anant Kamath
- Cellular Engineering Technologies, Inc. Coralville, IA, 52241
| | - Sara Ternes
- Cellular Engineering Technologies, Inc. Coralville, IA, 52241
| | - Jay Kamath
- John Paul II Medical Research Institute, Coralville, IA 52241
| |
Collapse
|
3
|
Cristelo C, Nunes R, Pinto S, Marques JM, Gama FM, Sarmento B. Targeting β Cells with Cathelicidin Nanomedicines Improves Insulin Function and Pancreas Regeneration in Type 1 Diabetic Rats. ACS Pharmacol Transl Sci 2023; 6:1544-1560. [PMID: 37854630 PMCID: PMC10580391 DOI: 10.1021/acsptsci.3c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Indexed: 10/20/2023]
Abstract
Type 1 diabetes (T1D) is an incurable condition with an increasing incidence worldwide, in which the hallmark is the autoimmune destruction of pancreatic insulin-producing β cells. Cathelicidin-based peptides have been shown to improve β cell function and neogenesis and may thus be relevant while developing T1D therapeutics. In this work, a cathelicidin-derived peptide, LLKKK18, was loaded in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), surface-functionalized with exenatide toward a GLP-1 receptor, aiming the β cell-targeted delivery of the peptide. The NPs present a mean size of around 100 nm and showed long-term stability, narrow size distribution, and negative ζ-potential (-10 mV). The LLKKK18 association efficiency and loading were 62 and 2.9%, respectively, presenting slow and sustained in vitro release under simulated physiologic fluids. Glucose-stimulated insulin release in the INS-1E cell line was observed in the presence of the peptide. In addition, NPs showed a strong association with β cells from isolated rat islets. After administration to diabetic rats, NPs induced a significant reduction of the hyperglycemic state, an improvement in the pancreatic insulin content, and glucose tolerance. Also remarkable, a considerable increase in the β cell mass in the pancreas was observed. Overall, this novel and versatile nanomedicine showed glucoregulatory ability and can pave the way for the development of a new generation of therapeutic approaches for T1D treatment.
Collapse
Affiliation(s)
- Cecília Cristelo
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- Centro
de Engenharia Biológica, Universidade
do Minho, Campus de Gualtar, Braga 4710-057, Portugal
- ICBAS
− Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Rute Nunes
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- IUCS-CESPU, Instituto
Universitário de Ciências
da Saúde, Gandra 4585-116, Portugal
| | - Soraia Pinto
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- ICBAS
− Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Joana Moreira Marques
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- Faculdade
de Farmácia, Universidade do Porto, Porto 4099-002, Portugal
| | - Francisco Miguel Gama
- Centro
de Engenharia Biológica, Universidade
do Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Bruno Sarmento
- i3S
− Instituto de Investigação e Inovação
em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- IUCS-CESPU, Instituto
Universitário de Ciências
da Saúde, Gandra 4585-116, Portugal
| |
Collapse
|
4
|
Ghorbani R, Foroutan M, Kassaeian SS, Sadat Kia N, Gholizade Bajandi B, Haji Ghanbari A, Ghods E. Evaluation of quality of life and depression in family caregivers of patients with type 1 diabetes in Iran: A case-control study. SAGE Open Med 2023; 11:20503121221146055. [PMID: 36643205 PMCID: PMC9834789 DOI: 10.1177/20503121221146055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/01/2022] [Indexed: 01/12/2023] Open
Abstract
Objective Diabetes as a silent epidemic and one of the top four causes of death in the world. This study was designed to evaluate the quality of life and depression in family caregivers of patients with type 1 diabetes in Iran. Methods The study was case-control study (cases, n = 50; controls, n = 50). The cases consisted of family caregivers of patients with type 1 diabetes who referred to the endocrinology clinic of Kosar Hospital in Semnan in 2020. The controls were a random sample from among family caregivers of non-diabetic patients who had referred to the same center in the same year. Demographic and family variables, the 36-Item Short Form Survey questionnaire, and Beck's Depression Inventory were used to collect data. Univariate and multivariable logistic regression models with receiver operator characteristic (ROC) curve were used to data analysis in STATA 14. Results The multivariable logistic regression model showed a significant association between existence of a patient with type 1 diabetes with number of caregivers' children (odds ratio (OR) = 1.77; 95% confidence interval (CI): 1.06-2.94), quality of life (OR = 0.82; 95% CI: 0.74-0.90), sex (OR = 10.04; 95% CI: 2.29-43.99), and income level of caregivers (OR = 6.49; 95% CI: 1.35-31.08); however, it did not show a significant relationship with depression (OR = 1.02; 95% CI: 0.94-1.10). Conclusion The quality of life in family caregivers of type 1 diabetics is low and gender, income level, and number of caregivers' children were the most important factors predicting it. Therefore, psychological interventions to manage stress and improve the quality of life of family caregivers are recommended.
Collapse
Affiliation(s)
- Raheb Ghorbani
- Social Determinants of Health Research
Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Foroutan
- Department of Internal Medicine, School
of Medicine , Semnan University of Medical Sciences, Semnan, Iran
| | - Seyed Saeed Kassaeian
- Department of Community Medicine,
School of Medicine, Social Determinants of Health Research Center, Semnan University
of Medical Science, Semnan, Iran
| | - Naim Sadat Kia
- Department of Community Medicine,
School of Medicine, Social Determinants of Health Research Center, Semnan University
of Medical Science, Semnan, Iran
| | | | | | - Elahe Ghods
- Department of Community Medicine,
School of Medicine, Social Determinants of Health Research Center, Semnan University
of Medical Science, Semnan, Iran,Elahe Ghods, Department of Community
Medicine, School of Medicine, Social Determinants of Health Research Center,
Semnan University of Medical Science, 5 km Damghan Road, Semnan, 3513138111,
Iran.
| |
Collapse
|
5
|
Ye S, Hua S, Zhou M. Transient B-cell depletion and regulatory T-cells mediation in combination with adenovirus mediated IGF-1 prevents and reverses autoimmune diabetes in NOD mice. Autoimmunity 2022; 55:529-537. [PMID: 36226521 DOI: 10.1080/08916934.2022.2128782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Type 1 diabetes (T1D) is one of the T cells mediated autoimmune diseases, although B cells also play an important role in the development. Both T cell and B cell targeted immunotherapies exhibited efficacies in preventing and reversing the T1D. Current study was performed to investigate the protective effects of anti-CD20/CD3 bi-specific antibody (bsAb) in combination with adenovirus mediated mouse insulin-like growth factor 1 (Adv-mIGF-1) gene on T1D in non-obese diabetes (NOD) mice. To simultaneously restore the proportion of Th cells and block the interaction of B cells as well as mediate T cell populations, the NOD model mice were randomly assigned to four groups received the saline, anti-CD20/CD3 bsAb and Adv-mIGF-1 gene alone or combination, respectively. After 16-consecutive weeks intervention, the ELISA, RT-PCR, western blot and histopathological analysis were performed to assess the pancreatic tissues and serum samples to evaluate the treatment effects. Chronic treatment of combination therapy improved T1D morbidity by improving the compartment and function of the CD4+Foxp3+ Tregs, reversing the secretion of insulin, controlling the blood glucose levels (BGLs) and alleviating insulitis as well as cell apoptosis in the NOD model mice. Moreover, current combination therapy also accelerated the proliferation and differentiation of pancreatic β cells via suppressing the apoptosis-related factors, including caspase-3, caspase-8 and Fas, and activating the Bcl-2-related anti-apoptotic pathway. Furthermore, the cytokeratin-19 (CK-19) and pancreatic duodenal homoplasmic box-1 (PDX-1), as two important stem cell markers of pancreas were both significantly improved by treatment of combination therapy. On conclusions, chronic treatment of anti-CD20/CD3 bsAb in combination with Adv-mIGF-1 gene exerts synergistic protection on T1D in the NOD mice.
Collapse
Affiliation(s)
- Shujun Ye
- Department of Pharmacy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, PR China
| | - Saimei Hua
- Department of Pharmacy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, PR China
| | - Meiyang Zhou
- Department of Nephrology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, PR China
| |
Collapse
|
6
|
Raju S, Sheridan PE, Hauer AK, Garrett AE, McConnell DE, Thornton JA, Stokes SL, Emerson J. Cu-Catalyzed Chan-Evans-Lam Coupling reactions of 2-Nitroimidazole with Aryl boronic acids: An effort toward new bioactive agents against S. pneumoniae. Chem Biodivers 2022; 19:e202200327. [PMID: 35819995 PMCID: PMC10184775 DOI: 10.1002/cbdv.202200327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022]
Abstract
The coupling of phenylboronic acids with poorly-activated imidazoles is studied as a model system to explore the use of copper-catalyzed Chan-Evans-Lam (CEL) coupling for targeted C-N bond forming reactions. Optimized CEL reaction conditions are reported for four phenanthroline-based ligand systems, where the ligand 4,5-diazafluoren-9-one (dafo, L2 ) with 1 molar equivalent of potassium carbonate yielded the highest reactivity. The substrate 2-Nitroimidazole (also known as azomycin) has documented antimicrobial activity against a range of microbes. Here N-arylation of 2-nitroimidazole with a range of aryl boronic acids has been successfully developed by copper(II)-catalyzed CEL reactions. Azomycin and a range of newly arylated azomycin derivatives were screened against S. pneumoniae , where 1-(4-(benzyloxy)phenyl)-2-nitro-1H-imidazole ( 3d ) was demonstrated to have a minimal inhibition concentration value of 3.3 μg/mL.
Collapse
Affiliation(s)
- Selvam Raju
- Mississippi State University, Chemistry, Department of Chemistry, 1115 Hand Laboratory, 39762, Mississippi State, UNITED STATES
| | - Patrick E Sheridan
- Mississippi State University, Chemistry, Department of Chemistry, 1115 Hand Lab, 39762, Mississippi State, UNITED STATES
| | - Alanna K Hauer
- Mississippi State University, Chemistry, Department of Chemistry, 1115 Hand Lab, 39762, Mississippi State, UNITED STATES
| | - Allyn E Garrett
- Mississippi State University, Chemistry, Department of Chemistry, 1115 Hand Lab, 39762, Mississippi State, UNITED STATES
| | - Danielle E McConnell
- Mississippi State University, Biological Sciences, Harned Hall, 39762, Mississippi State, UNITED STATES
| | - Justin A Thornton
- Mississippi State University, Biological Sciences, Harned Hall, 39762, Mississippi State, UNITED STATES
| | - Sean L Stokes
- Mississippi State University, Chemistry, 1115 Hand Lab, 39762, Mississippi State, UNITED STATES
| | - Joseph Emerson
- Mississippi State University, Chemistry, 1115 Hand Laboratory, 310 President's circle, 39762, Mississippi State, UNITED STATES
| |
Collapse
|
7
|
Foppa L, Alessi J, Nemetz B, de Matos R, Telo GH, Schaan BD. Quality of care in patients with type 1 diabetes during the COVID-19 pandemic: a cohort study from Southern Brazil. Diabetol Metab Syndr 2022; 14:75. [PMID: 35598019 PMCID: PMC9123820 DOI: 10.1186/s13098-022-00845-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/10/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Optimal glycemic control is the main goal for patients with diabetes. The results of type 1 diabetes patients' neglected demands during the pandemic can determine a long-term negative clinical, social, and economic impact, and result in worse diabetes control and a higher incidence of chronic complications. Therefore, this study aims to evaluate the impact of the COVID-19 outbreak in the quality of care of patients with type 1 diabetes in Southern Brazil. METHODS Cohort study based on electronic medical records of patients with type 1 diabetes, with scheduled appointments between January 1st 2020, and November 6th 2020, at a university public hospital. The quality indicators used were: assessment of albuminuria and/or serum creatinine, lipid profile, thyroid-stimulating hormone, glycated hemoglobin, retinopathy, and neuropathy. McNemar test was used to analyze categorical variables and the Wilcoxon test for continuous variables. RESULTS Out of 289 patients, 49.5% were women aged 40 ± 12 years old. During the pandemic, 252 patients had at least one face-to-face appointment canceled. The quality of care indicators showed a significant worsening during the COVID-19 pandemic compared to the previous year (p < 0.001). In 2019, 23.2% of the participants had all the indicators evaluated, while in 2020, during the pandemic, only 3.5% had all of them evaluated. CONCLUSION The COVID-19 pandemic hindered the offer of comprehensive and quality care to patients with type 1 diabetes.
Collapse
Affiliation(s)
- Luciana Foppa
- Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos 2350, Porto Alegre, RS, 90035-003, Brazil.
- Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2400, 2º andar, Porto Alegre, RS, 90035-003, Brazil.
| | - Janine Alessi
- Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2400, 2º andar, Porto Alegre, RS, 90035-003, Brazil
| | - Betina Nemetz
- Nurse School, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2400, Porto Alegre, RS, 90035-002, Brazil
| | - Rosimeri de Matos
- Hospital São Lucas da Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6680, Jardim Botânico, Porto Alegre, RS, 90619-900, Brazil
| | - Gabriela Heiden Telo
- Hospital São Lucas da Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6680, Jardim Botânico, Porto Alegre, RS, 90619-900, Brazil
- Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, Partenon, Porto Alegre, RS, 668190619-900, Brazil
| | - Beatriz D Schaan
- Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos 2350, Porto Alegre, RS, 90035-003, Brazil
- Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2400, 2º andar, Porto Alegre, RS, 90035-003, Brazil
| |
Collapse
|
8
|
Zeynaloo E, Stone LD, Dikici E, Ricordi C, Deo SK, Bachas LG, Daunert S, Lanzoni G. Delivery of therapeutic agents and cells to pancreatic islets: Towards a new era in the treatment of diabetes. Mol Aspects Med 2022; 83:101063. [PMID: 34961627 PMCID: PMC11328325 DOI: 10.1016/j.mam.2021.101063] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic islet cells, and in particular insulin-producing beta cells, are centrally involved in the pathogenesis of diabetes mellitus. These cells are of paramount importance for the endocrine control of glycemia and glucose metabolism. In Type 1 Diabetes, islet beta cells are lost due to an autoimmune attack. In Type 2 Diabetes, beta cells become dysfunctional and insufficient to counterbalance insulin resistance in peripheral tissues. Therapeutic agents have been developed to support the function of islet cells, as well as to inhibit deleterious immune responses and inflammation. Most of these agents have undesired effects due to systemic administration and off-target effects. Typically, only a small fraction of therapeutic agent reaches the desired niche in the pancreas. Because islets and their beta cells are scattered throughout the pancreas, access to the niche is limited. Targeted delivery to pancreatic islets could dramatically improve the therapeutic effect, lower the dose requirements, and lower the side effects of agents administered systemically. Targeted delivery is especially relevant for those therapeutics for which the manufacturing is difficult and costly, such as cells, exosomes, and microvesicles. Along with therapeutic agents, imaging reagents intended to quantify the beta cell mass could benefit from targeted delivery. Several methods have been developed to improve the delivery of agents to pancreatic islets. Intra-arterial administration in the pancreatic artery is a promising surgical approach, but it has inherent risks. Targeted delivery strategies have been developed based on ligands for cell surface molecules specific to islet cells or inflamed vascular endothelial cells. Delivery methods range from nanocarriers and vectors to deliver pharmacological agents to viral and non-viral vectors for the delivery of genetic constructs. Several strategies demonstrated enhanced therapeutic effects in diabetes with lower amounts of therapeutic agents and lower off-target side effects. Microvesicles, exosomes, polymer-based vectors, and nanocarriers are gaining popularity for targeted delivery. Notably, liposomes, lipid-assisted nanocarriers, and cationic polymers can be bioengineered to be immune-evasive, and their advantages to transport cargos into target cells make them appealing for pancreatic islet-targeted delivery. Viral vectors have become prominent tools for targeted gene delivery. In this review, we discuss the latest strategies for targeted delivery of therapeutic agents and imaging reagents to pancreatic islet cells.
Collapse
Affiliation(s)
- Elnaz Zeynaloo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Chemistry, University of Miami, FL, USA.
| | - Logan D Stone
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA; Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM at University of Miami, Miami, FL, USA
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sapna K Deo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA; Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM at University of Miami, Miami, FL, USA
| | - Leonidas G Bachas
- Department of Chemistry, University of Miami, FL, USA; Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM at University of Miami, Miami, FL, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA; Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM at University of Miami, Miami, FL, USA; Clinical and Translational Science Institute, University of Miami, Miami, FL, USA
| | - Giacomo Lanzoni
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA; Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM at University of Miami, Miami, FL, USA.
| |
Collapse
|
9
|
Vallianou NG, Stratigou T, Geladari E, Tessier CM, Mantzoros CS, Dalamaga M. Diabetes type 1: Can it be treated as an autoimmune disorder? Rev Endocr Metab Disord 2021; 22:859-876. [PMID: 33730229 DOI: 10.1007/s11154-021-09642-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Type 1 Diabetes Mellitus (T1DM) is characterized by progressive autoimmune-mediated destruction of the pancreatic beta-cells leading to insulin deficiency and hyperglycemia. It is associated with significant treatment burden and necessitates life-long insulin therapy. The role of immunotherapy in the prevention and management of T1DM is an evolving area of interest which has the potential to alter the natural history of this disease.In this review, we give insight into recent clinical trials related to the use of immunotherapeutic approaches for T1DM, such as proinflammatory cytokine inhibition, cell-depletion and cell-therapy approaches, autoantigen-specific treatments and stem cell therapies. We highlight the timing of intervention, aspects of therapy including adverse effects and the emergence of a novel lymphocyte crucial in T1DM autoimmunity. We also discuss the role of cardiac autoimmunity and its link to excess CVD risk in T1DM.We conclude that significant advances have been made in development of immunotherapeutic targets and agents for the treatment and prevention of T1DM. These immune-based therapies promise preservation of beta-cells and decreasing insulin dependency. In their current state, immunotherapeutic approaches cannot yet halt the progression from a preclinical state to overt T1DM nor can they replace standard insulin therapy in existing T1DM. It remains to be seen whether immunotherapy will ultimately play a key role in the prevention of progression to overt T1DM and whether it may find a place in our therapeutic armamentarium to improve clinical outcomes and quality of life in established T1DM.
Collapse
Affiliation(s)
- Natalia G Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | - Theodora Stratigou
- Department of Endocrinology, Diabetes and Metabolic Diseases, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527, Athens, Goudi, Greece
| | - Eleni Geladari
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | - Christopher M Tessier
- Endocrinology Section, VA Boston Healthcare System, 1400 VFW Parkway West Roxbury, Boston, MA, 02132, USA.
| | - Christos S Mantzoros
- Endocrinology Section, VA Boston Healthcare System, 1400 VFW Parkway West Roxbury, Boston, MA, 02132, USA
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527, Athens, Goudi, Greece
| |
Collapse
|
10
|
Ríos-Ríos WDJ, Sosa-Luis SA, Torres-Aguilar H. Current advances in using tolerogenic dendritic cells as a therapeutic alternative in the treatment of type 1 diabetes. World J Diabetes 2021; 12:603-615. [PMID: 33995848 PMCID: PMC8107985 DOI: 10.4239/wjd.v12.i5.603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/26/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of insulin-producing β-cells of the pancreatic islets by autoreactive T cells, leading to high blood glucose levels and severe long-term complications. The typical treatment indicated in T1D is exogenous insulin administration, which controls glucose levels; however, it does not stop the autoimmune process. Various strategies have been implemented aimed at stopping β-cell destruction, such as cellular therapy. Dendritic cells (DCs) as an alternative in cellular therapy have gained great interest for autoimmune disease therapy due to their plasticity to acquire immunoregulatory properties both in vivo and in vitro, performing functions such as anti-inflammatory cytokine secretion and suppression of autoreactive lymphocytes, which are dependent of their tolerogenic phenotype, displayed by features such as semimature phenotype, low surface expression of stimulatory molecules to prime T cells, as well as the elevated expression of inhibitory markers. DCs may be obtained and propagated easily in optimal amounts from peripheral blood or bone marrow precursors, such as monocytes or hematopoietic stem cells, respectively; therefore, various protocols have been established for tolerogenic (tol)DCs manufacturing for therapeutic research in the treatment of T1D. In this review, we address the current advances in the use of tolDCs for T1D therapy, encompassing protocols for their manufacturing, the data obtained from preclinical studies carried out, and the status of clinical research evaluating the safety, feasibility, and effectiveness of tolDCs.
Collapse
Affiliation(s)
- William de Jesús Ríos-Ríos
- Department of Biochemical Sciences Faculty, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico
| | - Sorely Adelina Sosa-Luis
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico
| | - Honorio Torres-Aguilar
- Department of Biochemical Sciences Faculty, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico
| |
Collapse
|
11
|
Gao S, Li Y, Xiao D, Zhou M, Cai X, Lin Y. Tetrahedral Framework Nucleic Acids Induce Immune Tolerance and Prevent the Onset of Type 1 Diabetes. NANO LETTERS 2021; 21:4437-4446. [PMID: 33955221 DOI: 10.1021/acs.nanolett.1c01131] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A failure in immune tolerance leads to autoimmune destruction of insulin-producing β-cells, leading to type 1 diabetes (T1D). Inhibiting autoreactive T cells and inducing regulatory T cells (Tregs) to re-establish immune tolerance are promising approaches to prevent the onset of T1D. Here, we investigated the ability of tetrahedral framework nucleic acids (tFNAs) to induce immune tolerance and prevent T1D in nonobese diabetic (NOD) mice. In prediabetic NOD mice, tFNAs treatment led to maintenance of normoglycemia and reduced incidence of diabetes. Moreover, the tFNAs (250 nM) treatment preserved the mass and function of β-cells, increased the frequency of Tregs, and suppressed autoreactive T cells, leading to immune tolerance. Collectively, our results demonstrate that tFNAs treatment aids glycemic control, provides β-cell protection, and prevents the onset of T1D in NOD mice by immunomodulation. These results highlight the potential of tFNAs for the prevention of autoimmune T1D.
Collapse
Affiliation(s)
- Shaojingya Gao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanjing Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mi Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
12
|
Transcriptome Analysis Reveals Possible Immunomodulatory Activity Mechanism of Chlorella sp. Exopolysaccharides on RAW264.7 Macrophages. Mar Drugs 2021; 19:md19040217. [PMID: 33919822 PMCID: PMC8070752 DOI: 10.3390/md19040217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
In this study, the exopolysaccharides of Chlorella sp. (CEP) were isolated to obtain the purified fraction CEP4. Characterization results showed that CEP4 was a sulfated heteropolysaccharide. The main monosaccharide components of CEP4 are glucosamine hydrochloride (40.8%) and glucuronic acid (21.0%). The impact of CEP4 on the immune activity of RAW264.7 macrophage cytokines was detected, and the results showed that CEP4 induced the production of nitric oxide (NO), TNF-α, and IL-6 in a dose-dependent pattern within a range of 6 μg/mL. A total of 4824 differentially expressed genes (DEGs) were obtained from the results of RNA-seq. Gene enrichment analysis showed that immune-related genes such as NFKB1, IL-6, and IL-1β were significantly upregulated, while the genes RIPK1 and TLR4 were significantly downregulated. KEGG pathway enrichment analysis showed that DEGs were significantly enriched in immune-related biological processes, including toll-like receptor (TLR) signaling pathway, cytosolic DNA-sensing pathway, and C-type lectin receptor signaling pathway. Protein–protein interaction (PPI) network analysis showed that HSP90AB1, Rbx1, ISG15, Psmb6, Psmb3, Psmb8, PSMA7, Polr2f, Rpsa, and NEDD8 were the hub genes with an essential role in the immune activity of CEP4. The preliminary results of the present study revealed the potential mechanism of CEP4 in the immune regulation of RAW264.7 macrophages, suggesting that CEP4 is a promising immunoregulatory agent.
Collapse
|
13
|
Cristelo C, Machado A, Sarmento B, Gama FM. The roles of vitamin D and cathelicidin in type 1 diabetes susceptibility. Endocr Connect 2021; 10:R1-R12. [PMID: 33263562 PMCID: PMC7923048 DOI: 10.1530/ec-20-0484] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022]
Abstract
Type 1 diabetes has an increasingly greater incidence and prevalence with no cure available. Vitamin D supplementation is well documented to reduce the risk of developing type 1 diabetes. Being involved in the modulation of cathelicidin expression, the question whether cathelicidin may be one of the underlying cause arises. Cathelicidin has been implicated in both the development and the protection against type 1 diabetes by mediating the interplay between the gut microbiome, the immune system and β cell function. While its potential on type 1 diabetes treatment seems high, the understanding of its effects is still limited. This review aims to contribute to a more comprehensive understanding of the potential of vitamin D and cathelicidin as adjuvants in type 1 diabetes therapy.
Collapse
Affiliation(s)
- Cecília Cristelo
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- CEB – Centro de Engenharia Biológica, Universidade do Minho, Braga, Portugal
| | - Alexandra Machado
- CEB – Centro de Engenharia Biológica, Universidade do Minho, Braga, Portugal
| | - Bruno Sarmento
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal
| | | |
Collapse
|
14
|
Kilanowska A, Ziółkowska A. Role of Phosphodiesterase in the Biology and Pathology of Diabetes. Int J Mol Sci 2020; 21:E8244. [PMID: 33153226 PMCID: PMC7662747 DOI: 10.3390/ijms21218244] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Glucose metabolism is the initiator of a large number of molecular secretory processes in β cells. Cyclic nucleotides as a second messenger are the main physiological regulators of these processes and are functionally divided into compartments in pancreatic cells. Their intracellular concentration is limited by hydrolysis led by one or more phosphodiesterase (PDE) isoenzymes. Literature data confirmed multiple expressions of PDEs subtypes, but the specific roles of each in pancreatic β-cell function, particularly in humans, are still unclear. Isoforms present in the pancreas are also found in various tissues of the body. Normoglycemia and its strict control are supported by the appropriate release of insulin from the pancreas and the action of insulin in peripheral tissues, including processes related to homeostasis, the regulation of which is based on the PDE- cyclic AMP (cAMP) signaling pathway. The challenge in developing a therapeutic solution based on GSIS (glucose-stimulated insulin secretion) enhancers targeted at PDEs is the selective inhibition of their activity only within β cells. Undeniably, PDEs inhibitors have therapeutic potential, but some of them are burdened with certain adverse effects. Therefore, the chance to use knowledge in this field for diabetes treatment has been postulated for a long time.
Collapse
Affiliation(s)
| | - Agnieszka Ziółkowska
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, Zyty 28, 65-046 Zielona Gora, Poland;
| |
Collapse
|
15
|
Therapeutic Potentials of MicroRNAs for Curing Diabetes Through Pancreatic β-Cell Regeneration or Replacement. Pancreas 2020; 49:1131-1140. [PMID: 32852323 DOI: 10.1097/mpa.0000000000001655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
MicroRNAs are a type of noncoding RNAs that regulates the expression of target genes at posttranscriptional level. MicroRNAs play essential roles in regulating the expression of different genes involved in pancreatic development, β-cell mass maintenance, and β-cell function. Alteration in the level of miRNAs involved in β-cell function leads to the diabetes. Being an epidemic, diabetes threatens the life of millions of patients posing a pressing demand for its urgent resolve. However, the currently available therapies are not substantial to cure the diabetic epidemic. Thus, researchers are trying to find new ways to replenish the β-cell mass in patients with diabetes. One promising approach is the in vivo regeneration of β-cell mass or increasing the efficiency of β-cell function. Another clinical strategy is the transplantation of in vitro developed β-like cells. Owing to their role in pancreatic β-cell development, maintenance, functioning and their involvement in diabetes, overexpression or attenuation of different miRNAs can cause β-cell regeneration in vivo or can direct the differentiation of various kinds of stem/progenitor cells to β-like cells in vitro. Here, we will summarize different strategies used by researchers to investigate the therapeutic potentials of miRNAs, with focus on miR-375, for curing diabetes through β-cell regeneration or replacement.
Collapse
|
16
|
Different combinations of GABA, BMP7, and Activin A induced the in vitro differentiation of rat pancreatic ductal stem cells into insulin-secreting islet-like cell clusters. Life Sci 2020; 267:118451. [PMID: 32956667 DOI: 10.1016/j.lfs.2020.118451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 11/22/2022]
Abstract
AIMS We investigated the in vitro differentiation of adult rat PDESCs into β-like cells through supplementation of different combinations of GABA, BMP7, and Activin A in basic culture media. MATERIALS AND METHODS The PDESCs were cultured using different inducement combinations for 28 days and microscopy, dithizone (DTZ) staining, immunohistochemical staining, real-time PCR, and glucose-stimulated insulin secretion (GSIS) assay were used to delineate the differentiation inducement potential of these combinations. KEY FINDINGS The results show that after 28 days, the PDESCs were differentiated into ICCs containing insulin-secreting β-like cells in different groups treated with A + B, A + G, B + G, and A + B + G but not in the control group. Upon DTZ staining the cells in ICCs were stained crimson red, demonstrating the presence of β-like cells in ICCs and the immunohistochemistry showed the expression of Pdx1 and insulin in ICCs. Further, on 28 d the expression of Pdx1 and insulin mRNA was high in inducement groups as compared to the control group and β-like cells in ICCs also secreted insulin and C-peptide upon glucose stimulation. Thus, the supplementation of GABA, BMP7, and Activin A in different combinations in basic culture media can induce the in vitro differentiation of PDESCs into ICCs containing β-like cells. SIGNIFICANCE The in vitro development of β-like cells is a herald for cell therapy of diabetic patients and our results are a step closer towards finding the cure for diabetes.
Collapse
|
17
|
Cobo-Vuilleumier N, Gauthier BR. Time for a paradigm shift in treating type 1 diabetes mellitus: coupling inflammation to islet regeneration. Metabolism 2020; 104:154137. [PMID: 31904355 DOI: 10.1016/j.metabol.2020.154137] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/26/2019] [Accepted: 12/29/2019] [Indexed: 02/07/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease that targets the destruction of islet beta-cells resulting in insulin deficiency, hyperglycemia and death if untreated. Despite advances in medical devices and longer-acting insulin, there is still no robust therapy to substitute and protect beta-cells that are lost in T1DM. Attempts to refrain from the autoimmune attack have failed to achieve glycemic control in patients highlighting the necessity for a paradigm shift in T1DM treatment. Paradoxically, beta-cells are present in T1DM patients indicating a disturbed equilibrium between the immune attack and beta-cell regeneration reminiscent of unresolved wound healing that under normal circumstances progression towards an anti-inflammatory milieu promotes regeneration. Thus, the ultimate T1DM therapy should concomitantly restore immune self-tolerance and replenish the beta-cell mass similar to wound healing. Recently the agonistic activation of the nuclear receptor LRH-1/NR5A2 was shown to induce immune self-tolerance, increase beta-cell survival and promote regeneration through a mechanism of alpha-to-beta cell phenotypic switch. This trans-regeneration process appears to be facilitated by a pancreatic anti-inflammatory environment induced by LRH-1/NR5A2 activation. Herein, we review the literature on the role of LRH1/NR5A2 in immunity and islet physiology and propose that a cross-talk between these cellular compartments is mandatory to achieve therapeutic benefits.
Collapse
Affiliation(s)
- Nadia Cobo-Vuilleumier
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Benoit R Gauthier
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, 28029 Spain.
| |
Collapse
|