1
|
Chang M, Xu H, Dong Y, Gnawali G, Bi F, Wang W. Dual-Performing Vinyltetrazine for Rapid, Selective Bioconjugation and Functionalization of Cysteine Proteins. ACS Chem Biol 2025; 20:153-161. [PMID: 39707969 PMCID: PMC11747768 DOI: 10.1021/acschembio.4c00610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Although methods for Cys-specific bioconjugation and functionalization of proteins have been developed and widely utilized in biomolecule engineering and therapeutic development, reagents for this purpose are generally designed to accomplish bioconjugation only. Consequently, additional clickable groups must be attached to these reagents to accomplish functionalization. Herein, we describe a new, simple, dual-performing bioconjugation-functionalization reagent, VMeTz, which possesses an electron-withdrawing tetrazine (Tz) substituted vinyl (V) moiety to serve as both a Michael receptor for selective conjugation with Cys and a site for click with TCO derivatives to introduce functionality. Critically, VMeTz contains a methyl group that prevents the formation of multiple Tz-containing Cys-adducts. Reactions of VMeTz with Cys-containing peptides and proteins both in vitro and in live cells produce single stable Michael adducts with high selectivity. Moreover, the Cys-VMeTz peptide and protein conjugates undergo facile click reactions with TCO-functionalized reagents for labeling and protein profiling. Furthermore, VMeTz selectively activates and delivers the TCO-caged toxic substances Dox and PROTAC ARV-771 to cancer cells to produce therapeutic effects that are comparable to those of the parent drugs. Collectively, the studies demonstrate that VMeTz is a useful reagent for therapeutically significant Cys-specific protein bioconjugation and functionalization.
Collapse
Affiliation(s)
- Mengyang Chang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Hang Xu
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Yue Dong
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Giri Gnawali
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Fangchao Bi
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
- University of Arizona Cancer Center, and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
2
|
Wang J, Yin C, Huo F. Recent advances in glutathione fluorescent probes based on small organic molecules and their bioimaging. Analyst 2025; 150:220-239. [PMID: 39670499 DOI: 10.1039/d4an01373e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Glutathione (GSH), as one of the most important biological mercaptans, is involved in a variety of biological processes and is considered an important biomarker in early diagnosis, treatment and disease stage monitoring. Rapid and accurate detection of GSH in complex biological systems is of great significance for pathological analysis. Fluorescence imaging technology is widely used because of its advantages of high sensitivity, high resolution and non-destructiveness. In this paper, the latest research progress on GSH-responsive organic small molecule fluorescence probes in the last five years is summarized, and their response mechanisms are classified and discussed. In addition, the probe design strategy, sensing mechanism and biological application are discussed in this review. Finally, the challenges and future research directions of developing new GSH probes are presented.
Collapse
Affiliation(s)
- Jingdong Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
3
|
Vozgirdaite D, Allard-Vannier E, Velge-Roussel F, Douez E, Jolivet L, Boursin F, Chourpa I, Aubrey N, Hervé-Aubert K. Metformin-encapsulating immunoliposomes conjugated with anti-TROP 2 antibody fragments for the active targeting of triple-negative breast cancer. NANOSCALE 2025. [PMID: 39775761 DOI: 10.1039/d4nr03224a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Trophoblast cell-surface antigen 2 (TROP 2) has re-emerged as a promising biomarker in triple-negative breast cancer (TNBC), with high overexpression in many TNBC cases. However, despite its potential and approval as an antibody-drug-conjugate for TNBC treatment, TROP 2-targeted delivery systems are currently underexplored. Therefore, this study was aimed at exploiting the potential of TROP 2 targeting by encapsulating metformin (Met), an antidiabetic drug associated with tumor growth inhibitory properties, inside liposomes decorated with TROP 2-targeting single-chain variable fragments (scFvs). The optimization of scFv grafting resulted in Met-immunoliposomes with an average diameter of less than 200 nm, low polydispersity index (∼0.1), negative surface charge (<-10 mV), high Met drug loading (>150 mg g-1), and high affinity towards TROP 2 binding. Furthermore, Met-immunoliposomes were reproducible, and the scFv conjugation was stable in the presence of serum for five days. Their cellular uptake increased 4 folds in two-dimensional and 9 folds in three-dimensional TNBC models owing to the high affinity towards TROP 2 binding. Finally, it was observed that the therapeutic effect of Met in suppressing cancer cell growth and proliferation was superior when using anti-TROP 2 scFv-grafted Met-immunoliposomes, which completely stopped the spheroid growth and inhibited the expression of adenosine triphosphate. This study is one of the first reports to explore the combination of nanoparticle-based drug delivery systems to target the TROP 2 protein in TNBC, and to the best of our knowledge, this is the first report to specifically combine the use of scFvs with TROP 2 targeting to deliver therapeutics for TNBC treatment.
Collapse
Affiliation(s)
- Daiva Vozgirdaite
- UPR 4301 CBM, CNRS, NMNS Department, University of Tours, 37200 Tours, France.
| | | | | | - Emmanuel Douez
- UPR 4301 CBM, CNRS, NMNS Department, University of Tours, 37200 Tours, France.
- Pharmacy Department, University Hospital Center of Tours, 37200 Tours, France
| | - Louis Jolivet
- ISP UMR 1282, INRAE, BioMAP team, University of Tours, 37200 Tours, France
| | - Fanny Boursin
- ISP UMR 1282, INRAE, BioMAP team, University of Tours, 37200 Tours, France
| | - Igor Chourpa
- UPR 4301 CBM, CNRS, NMNS Department, University of Tours, 37200 Tours, France.
| | - Nicolas Aubrey
- ISP UMR 1282, INRAE, BioMAP team, University of Tours, 37200 Tours, France
| | - Katel Hervé-Aubert
- UPR 4301 CBM, CNRS, NMNS Department, University of Tours, 37200 Tours, France.
| |
Collapse
|
4
|
Saraya JS, Sammons SR, O'Flaherty DK. Aqueous Compatible Post-Synthetic On-Column Conjugation of Nucleic Acids Using Amino-Modifiers. Chembiochem 2025; 26:e202400643. [PMID: 39333054 PMCID: PMC11727021 DOI: 10.1002/cbic.202400643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 09/29/2024]
Abstract
Nucleic acid conjugation methodologies involve linking the nucleic acid sequence to other (bio)molecules covalently. This typically allows for nucleic acid property enhancement whether it be for therapeutic purposes, biosensing, etc. Here, we report a streamlined, aqueous compatible, on-column conjugation methodology using nucleic acids containing a site-specific amino-modifier. Both monophosphates and carboxylates were amenable to the conjugation strategy, allowing for the introduction of a variety of useful handles including azide, aryl, and hydrophobic groups in DNA. We find that an on-column approach is superior to post-synthetic template-directed synthesis, mainly with respect to product purification and recovery.
Collapse
Affiliation(s)
- Jagandeep S. Saraya
- Department of ChemistryUniversity of Guelph50 Stone Rd EGuelph ONN1G 2 W1Canada
| | - Scott R. Sammons
- Department of ChemistryUniversity of Guelph50 Stone Rd EGuelph ONN1G 2 W1Canada
| | - Derek K. O'Flaherty
- Department of ChemistryUniversity of Guelph50 Stone Rd EGuelph ONN1G 2 W1Canada
| |
Collapse
|
5
|
Hernández-Velázquez ED, Granados-López AJ, López JA, Solorio-Alvarado CR. Multidrug Resistance Reversed by Maleimide Interactions. A Biological and Synthetic Overview for an Emerging Field. Chembiochem 2025; 26:e202400640. [PMID: 39383297 DOI: 10.1002/cbic.202400640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024]
Abstract
Multidrug Resistance (MDR) can be considered one of the most frightening adaptation types in bacteria, fungi, protozoa, and eukaryotic cells. It allows the organisms to survive the attack of many drugs used in the daily basis. This forces the development of new and more complex, highly specific drugs to fight diseases. Given the high usage of medicaments, poor variation in active chemical cores, and self-medication, the appearance of MDR is more frequent each time, and has been established as a serious medical and social problem. Over the years it has been possible the identification of several genes and proteins responsible for MDR and with that the development of blockers of them to reach MDR reversion and try to avoid a global problem. These mechanisms also have been observed in cancer cells, and several calcium channel blockers have been successful in MDR reversion, and the maleimide can be found included in them. In this review, we explore particularly the tree main proteins involved in cancer chemoresistance, MRP1 (encoded by ABCC1), BCRP (encoded by ABCG2) and P-gp (encoded by ABCB1). The participation of P-gp is remarkably important, and several aspects of its regulations are discussed. Additionally, we address the history, mechanisms, reversion efforts, and we specifically focused on the maleimide synthesis as MDR-reversers in co-administration, as well as on how their biological applications are imperative to expand the available information and explore a very plausible MDR reversion source.
Collapse
Affiliation(s)
- Edson D Hernández-Velázquez
- Campus Guanajuato, División de Ciencias Naturales y Exactas, Departamento de Química, Universidad de Guanajuato, Noria Alta S/N, 36050, Guanajuato, Gto., México
| | | | - Jesús Adrián López
- Laboratorio de MicroRNAs y Cáncer, Universidad Autónoma de Zacatecas, 98066, Zacatecas, México
| | - César R Solorio-Alvarado
- Campus Guanajuato, División de Ciencias Naturales y Exactas, Departamento de Química, Universidad de Guanajuato, Noria Alta S/N, 36050, Guanajuato, Gto., México
| |
Collapse
|
6
|
Yang J, Yuan J, Huang Y, Rosenbaum AI. Reference-free thio-succinimide isomerization characterization by electron-activated dissociation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9910. [PMID: 39287024 DOI: 10.1002/rcm.9910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024]
Abstract
RATIONALE Isomerism can be an important aspect in pharmaceutical drug development. Identification of isomers can provide insights into drug pharmacology and contribute to better design of drug molecules. The general approaches to differentiate isomers include Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and circular dichroism. Additionally, a commonly used method to differentiate isomers is liquid chromatography coupled with mass spectrometry (LC-MS). Notably, LC-MS is routinely applied to leucine and isoleucine differentiation to facilitate protein sequencing. This work focuses on isomer differentiation of widely employed thio-succinimide structure bridging the antibody backbone and linker-payload of antibody-drug conjugates (ADCs). Thio-succinimide hydrolysis stabilizes the payload-protein structure while generating a pair of constitutional isomers: thio-aspartyl and thio-isoaspartyl. METHODS This paper introduces a hybrid method using ligand binding assay (LBA) and liquid chromatography coupled with tandem MS (LC-MS/MS) to reveal isomerization details of thio-succinimide hydrolysis over time in plasma samples incubated with ADC. Application of two orthogonal dissociation methods, collision-induced dissociation (CID) and electron-activated dissociation (EAD) revealed different MS/MS spectra for this pair of isomers. This observation enables a unique approach in distinguishing thio-succinimide hydrolysis isomers. RESULTS We observed signature [R1 + Thio + 57 + H]+, [R2 + Succ + H2O - 57 + H]+, and [R2 + Succ + H2O - 44 + 2H]2+ product ions (Succ = succinimide) that differentiated thio-aspartyl and thio-isoaspartyl isomers using EAD. A newly discovered [R2 + ThioSucc + H2O - 44 + 2H]2+ ion also served as additional evidence that further supported our findings. CONCLUSIONS This study is a first-to-date identification of thio-succinimide hydrolysis isomers without using synthesized reference materials. This approach should be applicable to all thio-succinimide-linked molecules. Correct identification of thio-succinimide hydrolysis isomers may eventually benefit the development of ADCs in the future.
Collapse
Affiliation(s)
- Junyan Yang
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, South San Francisco, California, USA
| | - Jiaqi Yuan
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, South San Francisco, California, USA
| | - Yue Huang
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, South San Francisco, California, USA
| | - Anton I Rosenbaum
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, South San Francisco, California, USA
| |
Collapse
|
7
|
Zhang Z, Lu Y, Liu W, Huang Y. Nanomaterial-assisted delivery of CpG oligodeoxynucleotides for boosting cancer immunotherapy. J Control Release 2024; 376:184-199. [PMID: 39368710 DOI: 10.1016/j.jconrel.2024.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/03/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
Cancer immunotherapy aims to improve immunity to not only eliminate the primary tumor but also inhibit metastasis and recurrence. It is considered an extremely promising therapeutic approach that breaks free from the traditional paradigm of oncological treatment. As the medical community learns more about the immune system's mechanisms that "turn off the brake" and "step on the throttle", there is increasingly successful research on immunomodulators. However, there are still more restrictions than countermeasures with immunotherapy related to immunomodulators, such as low responsiveness and immune-related adverse events that cause multiple adverse reactions. Therefore, medical experts and materials scientists attempted to the efficacy of immunomodulatory treatments through various methods, especially nanomaterial-assisted strategies. CpG oligodeoxynucleotides (CpG) not only act as an adjuvant to promote immune responses, but also induce autophagy. In this review, the enhancement of immunotherapy using nanomaterial-based CpG formulations is systematically elaborated, with a focus on the delivery, protection, synergistic promotion of CpG efficacy by nanomaterials, and selection of the timing of treatment. In addition, we also discuss and prospect the existing problems and future directions of research on nanomaterials in auxiliary CpG therapy.
Collapse
Affiliation(s)
- Zhiyu Zhang
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University/Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yu Lu
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University/Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| | - Wenjing Liu
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University/Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
8
|
Sakhaii P, Bohorc B, Olpp T, Mohnicke M, Rieke-Zapp J, Dhal PK. Radio frequency gradient enhanced diffusion-edited semi-solid state NMR spectroscopy for detailed structural characterization of chemically modified hyaluronic acid hydrogels. Sci Rep 2024; 14:28612. [PMID: 39562623 PMCID: PMC11577061 DOI: 10.1038/s41598-024-78731-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
Applications of functionalized hyaluronic acid (HA) hydrogels for numerous biomedical applications requires their detailed structural characterization. Since these materials are prepared by multistep chemical modifications in the solid phase and not amenable to characterization by standard analytical tools, we employed high-resolution solid-state NMR spectroscopy to gain detailed insights into the structures of the functionalized HA hydrogels. Divinyl sulfone crosslinked HA hydrogels were converted into maleimide-functionalized hydrogels, which were subjected to chemoselective thiol-maleimide reaction using L-cysteine as the protein mimetic thiol reagent. To overcome challenges associated with obtaining high-resolution NMR spectra of crosslinked hydrogels (such as line broadening and overlapping of signals of the hydrogel with those of residual reagents and solvents used during multi-step reaction processes on insoluble polymer matrices), we devised a radio frequency mediated diffusion-edited semi solid-state NMR technique. This technique enabled us to record NMR spectra of hydrogels exclusively by effectively suppressing signals associated with low molecular weight impurities. Thus, it became possible to perform in-depth characterization of these chemically modified HA hydrogels including quantification of reaction outcome for each reaction step.
Collapse
Affiliation(s)
- Peyman Sakhaii
- Global CMC Development, Global R&D, Sanofi, Industrial Park Hoechst, D-65926, Frankfurt/Main, Germany.
| | - Bojan Bohorc
- Global CMC Development, Global R&D, Sanofi, Industrial Park Hoechst, D-65926, Frankfurt/Main, Germany
| | - Thomas Olpp
- Global CMC Development, Global R&D, Sanofi, Industrial Park Hoechst, D-65926, Frankfurt/Main, Germany
| | - Mandy Mohnicke
- Global CMC Development, Global R&D, Sanofi, Industrial Park Hoechst, D-65926, Frankfurt/Main, Germany
| | - Joerg Rieke-Zapp
- Manufacturing Science and Analytical Technology, Sanofi, Industrial Park Hoechst, D- 65926, Frankfurt/Main, Germany
| | - Pradeep K Dhal
- Global CMC Development, Global R&D, Sanofi, 350 Water Street, MA 02141, Cambridge, USA.
| |
Collapse
|
9
|
Kunkel GE, Treacy JW, Polite MF, Montgomery HR, Doud EA, Houk KN, Spokoyny AM, Maynard HD. Heterotelechelic Organometallic PEG Reagents Enable Modular Access to Complex Bioconjugates. ACS Macro Lett 2024; 13:1551-1557. [PMID: 39480964 DOI: 10.1021/acsmacrolett.4c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Organometallic oxidative addition complexes (OACs) have recently emerged as a powerful class of reagents for the rapid and chemoselective modification of biomolecules. Notably, the steric and electronic properties of the ligand and aryl group can be modified to tune the kinetic profile of the reaction and permit regioselective S-arylation. Using the recently developed dicyclohexylphosphine-based bidentate P,N-ligated Au(III) OACs, we computationally and experimentally examined the effects of sterically bulky and electron deficient aryl substrates to achieve selective S-arylation. With this mechanistic insight, aryl substrates based on 4-iodoanisole and 3,5-dimethyl-4-iodoanisole were incorporated as end groups to generate a heterotelechelic bis-Au(III) poly(ethylene glycol) (PEG). This reagent performed rapid and regioselective S-arylation with a model biomolecule, designed ankyrin repeat protein (DARPin), to form a protein-polymer OAC in situ. This OAC mediated a second S-arylation with biologically relevant thiolated small molecules (metal chelator, saccharide, and fluorophore) and macromolecules (polymer and therapeutic peptide). It is envisioned that this approach could be utilized for the rapid construction of biomacromolecular heteroconjugates with S-aryl linkages.
Collapse
Affiliation(s)
- Grace E Kunkel
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Joseph W Treacy
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Magdalena F Polite
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Hayden R Montgomery
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Evan A Doud
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Heather D Maynard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
10
|
Ma C, Xu J, Wang X, Wang X, Zhang L, Jing S. Selenenylsulfide covalent-directed chemistry for the detection of sulfhydryl groups using a diselenide fluorescent probe. RSC Adv 2024; 14:36754-36762. [PMID: 39559574 PMCID: PMC11571120 DOI: 10.1039/d4ra05923a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
We report the development of a diglycosyldiselenide-based fluorescent probe for the rapid detection of sulfhydryl-containing biomolecules. The probe facilitates a chemoselective coupling reaction with sulfhydryl groups in aqueous buffer under ambient conditions, resulting in the formation of homogeneous Se-S conjugates within one hour. Using glutathione, a sulfhydryl-containing biomolecule, as a proof of concept, the probe achieved a detection limit of 0.75 μM based on the 3σ criterion. The method was further extended to the fluorescent labeling of cysteine-containing peptides, proteins, and living bacterial cells, showcasing the utility of Se-S covalent-directed chemistry as an analytical tool. This approach underscores the considerable potential of diglycosyldiselenide-based fluorescent probes for broader applications in biochemical research.
Collapse
Affiliation(s)
- Chunqiu Ma
- School of Chemistry and Molecular Engineering, Nanjing Tech University 30 South Puzhu Road Nanjing 211816 Jiangsu China
| | - Jichao Xu
- School of Chemistry and Molecular Engineering, Nanjing Tech University 30 South Puzhu Road Nanjing 211816 Jiangsu China
| | - Xiaolu Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University 30 South Puzhu Road Nanjing 211816 Jiangsu China
| | - Xuewen Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University 30 South Puzhu Road Nanjing 211816 Jiangsu China
| | - Lei Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University 30 South Puzhu Road Nanjing 211816 Jiangsu China
| | - Su Jing
- School of Chemistry and Molecular Engineering, Nanjing Tech University 30 South Puzhu Road Nanjing 211816 Jiangsu China
| |
Collapse
|
11
|
Kirkpatrick BE, Hach GK, Nelson BR, Skillin NP, Lee JS, Hibbard LP, Dhand AP, Grotheer HS, Miksch CE, Salazar V, Hebner TS, Keyser SP, Kamps JT, Sinha J, Macdougall LJ, Fairbanks BD, Burdick JA, White TJ, Bowman CN, Anseth KS. Photochemical Control of Network Topology in PEG Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409603. [PMID: 39340292 PMCID: PMC11567792 DOI: 10.1002/adma.202409603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/19/2024] [Indexed: 09/30/2024]
Abstract
Hydrogels are often synthesized through photoinitiated step-, chain-, and mixed-mode polymerizations, generating diverse network topologies and resultant material properties that depend on the underlying network connectivity. While many photocrosslinking reactions are available, few afford controllable connectivity of the hydrogel network. Herein, a versatile photochemical strategy is introduced for tuning the structure of poly(ethylene glycol) (PEG) hydrogels using macromolecular monomers functionalized with maleimide and styrene moieties. Hydrogels are prepared along a gradient of topologies by varying the ratio of step-growth (maleimide dimerization) to chain-growth (maleimide-styrene alternating copolymerization) network-forming reactions. The initial PEG content and final network physical properties (e.g., modulus, swelling, diffusivity) are tailored in an independent manner, highlighting configurable gel mechanics and reactivity. These photochemical reactions allow high-fidelity photopatterning and 3D printing and are compatible with 2D and 3D cell culture. Ultimately, this photopolymer chemistry allows facile control over network connectivity to achieve adjustable material properties for broad applications.
Collapse
Affiliation(s)
- Bruce E Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Grace K Hach
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Benjamin R Nelson
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Nathaniel P Skillin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Joshua S Lee
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Lea Pearl Hibbard
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Abhishek P Dhand
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Henry S Grotheer
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Connor E Miksch
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Violeta Salazar
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Tayler S Hebner
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Sean P Keyser
- Materials Science & Engineering Program, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Joshua T Kamps
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Jasmine Sinha
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Laura J Macdougall
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Benjamin D Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Jason A Burdick
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Materials Science & Engineering Program, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Timothy J White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- Materials Science & Engineering Program, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- Materials Science & Engineering Program, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Materials Science & Engineering Program, University of Colorado Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
12
|
Swift-Ramirez W, Whalen LA, Thompson LK, Shoemaker KE, Rubio AV, Weiss GA. Catalyst-Free, Three-Component Synthesis of Amidinomaleimides. J Org Chem 2024; 89:13756-13761. [PMID: 39178144 PMCID: PMC11421025 DOI: 10.1021/acs.joc.4c01485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/25/2024]
Abstract
Maleimide and amidine functionalities often appear in medicinal and natural product targets. We describe a catalyst-free, three-component coupling reaction for the synthesis of amidinomaleimides. This one-pot reaction fuses a broad range of secondary amines and aldehydes with azidomaleimides. The conditions are mild, simple, modular, high yielding, and amenable to aqueous solvents. Most reaction products can be sufficiently purified without column chromatography. The synthesis creates complex, multifunctional molecules with four different molecules, including a tripeptide, arrayed around an amidinomaleimide core.
Collapse
Affiliation(s)
- Wyatt
R. Swift-Ramirez
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, United States
| | - Lindsay A. Whalen
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, United States
| | - Lia K. Thompson
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, United States
| | - Kaylee E. Shoemaker
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, United States
| | - Aris V. Rubio
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, United States
| | - Gregory A. Weiss
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, United States
- Department
of Molecular Biology and Biochemistry, University
of California, Irvine, 3205 McGaugh Hall, Irvine, California 92697-3900, United States
- Department
of Pharmaceutical Sciences, University of
California, Irvine, 856
Health Sciences Road, Suite 5400, Irvine, California 92697-3958, United States
| |
Collapse
|
13
|
Feng L, Hu W, Zeng X, Wei Z, Long Y, Li M, Sun S, Guo Z, Lan X, Zhang X, Zhuang R, Jiang D. Development and Evaluation of DOTA-FAPI-Maleimide as a Novel Radiotracer for Tumor Theranostic with Extended Circulation. Mol Pharm 2024; 21:4386-4394. [PMID: 39046432 DOI: 10.1021/acs.molpharmaceut.4c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
This study aimed to evaluate a novel albumin-binding strategy for addressing the challenge of insufficient tumor retention of fibroblast activation protein inhibitors (FAPIs). Maleimide, a molecule capable of covalent binding to free thiol groups, was modified to conjugate with FAPI-04 in order to enhance its binding to endogenous albumin, resulting in an extended blood circulation half-life and increased tumor uptake. DOTA-FAPI-maleimide was prepared and radiolabeled with Ga-68 and Lu-177, followed by cellular assays, pharmacokinetic analysis, PET/CT, and SPECT/CT imaging to assess the probe distribution in various tumor-bearing models. Radiolabeling of the modified probe was successfully achieved with a radiochemical yield of over 99% and remained stable for 144 h. Cellular assays showed that the ligand concentration required for 50% inhibition of the probe was 1.20 ± 0.31 nM, and the Kd was 0.70 ± 0.07 nM with a Bmax of 7.94 ± 0.16 fmol/cell, indicative of higher specificity and affinity of DOTA-FAPI-maleimide compared to other FAPI-04 variants. In addition, DOTA-FAPI-maleimide exhibited a persistent blood clearance half-life of 7.11 ± 0.34 h. PET/CT images showed a tumor uptake of 2.20 ± 0.44%ID/g at 0.5 h p.i., with a tumor/muscle ratio of 5.64 in HT-1080-FAP tumor-bearing models. SPECT/CT images demonstrated long-lasting tumor retention. At 24 h p.i., the tumor uptake of [177Lu]Lu-DOTA-FAPI-maleimide reached 5.04 ± 1.67%ID/g, with stable tumor retention of 3.40 ± 1.95%ID/g after 4 days p.i. In conclusion, we developed and evaluated the thiol group-attaching strategy, which significantly extended the circulation and tumor retention of the adapted FAPI tracer. We envision its potential application for clinical cancer theranostics.
Collapse
Affiliation(s)
- Lixia Feng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Road, Xiamen 361102, China
| | - Wenzhu Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xinying Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Road, Xiamen 361102, China
| | - Zheng Wei
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Long
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Department of Nuclear Medicine, The Second Xiangya Hospital, Central South University, No. 139, Renmin Road Central, Changsha, Hunan 410011, China
| | - Mengting Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Si Sun
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Road, Xiamen 361102, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Road, Xiamen 361102, China
| | - Rongqiang Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Road, Xiamen 361102, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| |
Collapse
|
14
|
Lamba S, Heruka De Zoysa G, Wang K, Lu J, Swift S, Sarojni V. Homo and Hetero-Branched Lipopeptide Dendrimers: Synthesis and Antimicrobial Activity. Bioorg Chem 2024; 150:107567. [PMID: 38936047 DOI: 10.1016/j.bioorg.2024.107567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Di-branched and tetra-branched versions of a previously reported analogue of the lipopeptide battacin were successfully synthesised using thiol-maleimide click and 1, 2, 3-triazole click chemistry. Antimicrobial studies against drug resistant clinical isolates of Escherichia coli (ESBL E. coli Ctx-M14), Pseudomonas aeruginosa (P. aeruginosa Q502), and Methicillin resistant Staphylococcus aureus (MRSA ATCC 33593), as well as clinically isolated Acinetobacter baumannii (A. baumannii ATCC 19606), and P. aeruginosa (ATCC 27853), revealed that the dendrimeric peptides have antimicrobial activity in the low micromolar range (0.5 -- 4 μM) which was 10 times more potent than the monomer peptides. Under high salt concentrations (150 mM NaCl, 2 mM MgCl2, and 2.5 mM CaCl2) the di-branched lipopeptides retained their antimicrobial activity while the monomer peptides were not active (>100 μM). The di-branched triazole click lipopeptide, Peptide 12, was membrane lytic, showed faster killing kinetics, and exhibited antibiofilm activity against A. baumannii and MRSA and eradicated > 85 % preformed biofilms at low micromolar concentrations. The di-branched analogues were > 30-fold potent than the monomers against Candida albicans. Peptide 12 was not haemolytic (HC10 = 932.12 μM) and showed up to 40-fold higher selectivity against bacteria and fungi than the monomer peptide. Peptide 12 exhibited strong proteolytic stability (>80 % not degraded) in rat serum over 24 h whereas > 95 % of the thiol-maleimide analogue (Peptide 10) was degraded. The tetra-branched peptides showed comparable antibacterial potency to the di-branched analogues. These findings indicate that dual branching using triazole click chemistry is a promising strategy to improve the antimicrobial activity and proteolytic stability of battacin based lipopeptides. The information gathered can be used to build effective antimicrobial dendrimeric peptides as new peptide antibiotics.
Collapse
Affiliation(s)
- Saurabh Lamba
- School of Chemical Sciences and The Centre for Green Chemical Science, University of Auckland, Auckland 1142, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
| | - Gayan Heruka De Zoysa
- School of Chemical Sciences and The Centre for Green Chemical Science, University of Auckland, Auckland 1142, New Zealand
| | - Kelvin Wang
- Auckland Bioengineering Institute, University of Auckland, Auckland 1142, New Zealand
| | - Jun Lu
- Auckland Bioengineering Institute, University of Auckland, Auckland 1142, New Zealand
| | - Simon Swift
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Vijayalekshmi Sarojni
- School of Chemical Sciences and The Centre for Green Chemical Science, University of Auckland, Auckland 1142, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand.
| |
Collapse
|
15
|
Das S, Indurthi HK, Saha P, Sharma DK. Coumarin-based fluorescent probes for the detection of ions, biomolecules and biochemical species responsible for diseases. DYES AND PIGMENTS 2024; 228:112257. [DOI: 10.1016/j.dyepig.2024.112257] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Lee JW, Yoon HY, Ko YJ, Kim EH, Song S, Hue S, Gupta N, Malin D, Kim J, Kong B, Kim S, Kim IS, Kwon IC, Yang Y, Kim SH. Dual-Action Protein-siRNA Conjugates for Targeted Disruption of CD47-Signal Regulatory Protein α Axis in Cancer Therapy. ACS NANO 2024; 18:22298-22315. [PMID: 39117621 DOI: 10.1021/acsnano.4c06471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
A series of successes in RNA interference (RNAi) therapies for liver diseases using lipid nanoparticles and N-acetylgalactosamine have heralded a current era of RNA therapeutics. However, alternative delivery strategies are required to take RNAi out of the comfort zone of hepatocytes. Here we report SIRPα IgV/anti-CD47 siRNA (vS-siCD47) conjugates that selectively and persistently disrupt the antiphagocytic CD47/SIRPα axis in solid tumors. Conjugation of the SIRPα IgV domain protein to siRNAs enables tumor dash through CD47-mediated erythrocyte piggyback, primarily blocking the physical interaction between CD47 on cancer cells and SIRPα on phagocytes. After internalization of the vS-siCD47 conjugates within cancer cells, the detached free-standing anti-CD47 siRNAs subsequently attack CD47 through the RNAi mechanism. The dual-action approach of the vS-siCD47 conjugate effectively overcomes the "don't eat me" barrier and stimulates phagocyte-mediated tumor destruction, demonstrating a highly selective and potent CD47-blocking immunotherapy. This delivery strategy, employing IgV domain protein-siRNA conjugates with a dual mode of target suppression, holds promise for expanding RNAi applications beyond hepatocytes and advancing RNAi-based cancer immunotherapies for solid tumors.
Collapse
Affiliation(s)
- Jong Won Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hong Yeol Yoon
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology, Hwarang-ro14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Young Ji Ko
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Eun Hye Kim
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Sukyung Song
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seungmi Hue
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Nilaksh Gupta
- K2B Therapeutics, Cambridge, Massachusetts 02139, United States
| | - Dmitry Malin
- K2B Therapeutics, Cambridge, Massachusetts 02139, United States
| | - Jay Kim
- K2B Therapeutics, Cambridge, Massachusetts 02139, United States
| | - Byoungjae Kong
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Sehoon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Ick Chan Kwon
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yoosoo Yang
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology, Hwarang-ro14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Sun Hwa Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| |
Collapse
|
17
|
Xue E, Lee ACK, Chow KT, Ng DKP. Promotion and Detection of Cell-Cell Interactions through a Bioorthogonal Approach. J Am Chem Soc 2024; 146:17334-17347. [PMID: 38767615 PMCID: PMC11212048 DOI: 10.1021/jacs.4c04317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Manipulation of cell-cell interactions via cell surface modification is crucial in tissue engineering and cell-based therapy. To be able to monitor intercellular interactions, it can also provide useful information for understanding how the cells interact and communicate. We report herein a facile bioorthogonal strategy to promote and monitor cell-cell interactions. It involves the use of a maleimide-appended tetrazine-caged boron dipyrromethene (BODIPY)-based fluorescent probe and a maleimide-substituted bicyclo[6.1.0]non-4-yne (BCN) to modify the membrane of macrophage (RAW 264.7) and cancer (HT29, HeLa, and A431) cells, respectively, via maleimide-thiol conjugation. After modification, the two kinds of cells interact strongly through inverse electron-demand Diels-Alder reaction of the surface tetrazine and BCN moieties. The coupling also disrupts the tetrazine quenching unit, restoring the fluorescence emission of the BODIPY core on the cell-cell interface, and promotes phagocytosis. Hence, this approach can promote and facilitate the detection of intercellular interactions, rendering it potentially useful for macrophage-based immunotherapy.
Collapse
Affiliation(s)
- Evelyn
Y. Xue
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin,
N.T., Hong Kong, China
| | - Alan Chun Kit Lee
- School
of Life Sciences, The Chinese University
of Hong Kong, Shatin, N.T., Hong Kong, China
- Department
of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Kwan T. Chow
- Department
of Biomedical Sciences, City University
of Hong Kong, Kowloon, Hong Kong, China
| | - Dennis K. P. Ng
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin,
N.T., Hong Kong, China
| |
Collapse
|
18
|
Luo R, Xiang X, Jiao Q, Hua H, Chen Y. Photoresponsive Hydrogels for Tissue Engineering. ACS Biomater Sci Eng 2024; 10:3612-3630. [PMID: 38816677 DOI: 10.1021/acsbiomaterials.4c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Hydrophilic and biocompatible hydrogels are widely applied as ideal scaffolds in tissue engineering. The "smart" gelation material can alter its structural, physiochemical, and functional features in answer to various endo/exogenous stimuli to better biomimic the endogenous extracellular matrix for the engineering of cells and tissues. Light irradiation owns a high spatial-temporal resolution, complete biorthogonal reactivity, and fine-tunability and can thus induce physiochemical reactions within the matrix of photoresponsive hydrogels with good precision, efficiency, and safety. Both gel structure (e.g., geometry, porosity, and dimension) and performance (like conductivity and thermogenic or mechanical properties) can hence be programmed on-demand to yield the biochemical and biophysical signals regulating the morphology, growth, motility, and phenotype of engineered cells and tissues. Here we summarize the strategies and mechanisms for encoding light-reactivity into a hydrogel and demonstrate how fantastically such responsive gels change their structure and properties with light irradiation as desired and thus improve their applications in tissue engineering including cargo delivery, dynamic three-dimensional cell culture, and tissue repair and regeneration, aiming to provide a basis for more and better translation of photoresponsive hydrogels in the clinic.
Collapse
Affiliation(s)
- Rui Luo
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Xianjing Xiang
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Qiangqiang Jiao
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Hui Hua
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Yuping Chen
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
19
|
Sun T, Zhao H, Hu L, Shao X, Lu Z, Wang Y, Ling P, Li Y, Zeng K, Chen Q. Enhanced optical imaging and fluorescent labeling for visualizing drug molecules within living organisms. Acta Pharm Sin B 2024; 14:2428-2446. [PMID: 38828150 PMCID: PMC11143489 DOI: 10.1016/j.apsb.2024.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/07/2024] [Accepted: 01/25/2024] [Indexed: 06/05/2024] Open
Abstract
The visualization of drugs in living systems has become key techniques in modern therapeutics. Recent advancements in optical imaging technologies and molecular design strategies have revolutionized drug visualization. At the subcellular level, super-resolution microscopy has allowed exploration of the molecular landscape within individual cells and the cellular response to drugs. Moving beyond subcellular imaging, researchers have integrated multiple modes, like optical near-infrared II imaging, to study the complex spatiotemporal interactions between drugs and their surroundings. By combining these visualization approaches, researchers gain supplementary information on physiological parameters, metabolic activity, and tissue composition, leading to a comprehensive understanding of drug behavior. This review focuses on cutting-edge technologies in drug visualization, particularly fluorescence imaging, and the main types of fluorescent molecules used. Additionally, we discuss current challenges and prospects in targeted drug research, emphasizing the importance of multidisciplinary cooperation in advancing drug visualization. With the integration of advanced imaging technology and molecular design, drug visualization has the potential to redefine our understanding of pharmacology, enabling the analysis of drug micro-dynamics in subcellular environments from new perspectives and deepening pharmacological research to the levels of the cell and organelles.
Collapse
Affiliation(s)
- Ting Sun
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
- Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Huanxin Zhao
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Luyao Hu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xintian Shao
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
- School of Life Sciences, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Zhiyuan Lu
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Yuli Wang
- Tianjin Pharmaceutical DA REN TANG Group Corporation Limited Traditional Chinese Pharmacy Research Institute, Tianjin 300457, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemistry Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Peixue Ling
- Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan 250098, China
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kewu Zeng
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qixin Chen
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| |
Collapse
|
20
|
Gu Y, Wang Z, Wang Y. Bispecific antibody drug conjugates: Making 1+1>2. Acta Pharm Sin B 2024; 14:1965-1986. [PMID: 38799638 PMCID: PMC11119582 DOI: 10.1016/j.apsb.2024.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 05/29/2024] Open
Abstract
Bispecific antibody‒drug conjugates (BsADCs) represent an innovative therapeutic category amalgamating the merits of antibody‒drug conjugates (ADCs) and bispecific antibodies (BsAbs). Positioned as the next-generation ADC approach, BsADCs hold promise for ameliorating extant clinical challenges associated with ADCs, particularly pertaining to issues such as poor internalization, off-target toxicity, and drug resistance. Presently, ten BsADCs are undergoing clinical trials, and initial findings underscore the imperative for ongoing refinement. This review initially delves into specific design considerations for BsADCs, encompassing target selection, antibody formats, and the linker-payload complex. Subsequent sections delineate the extant progress and challenges encountered by BsADCs, illustrated through pertinent case studies. The amalgamation of BsAbs with ADCs offers a prospective solution to prevailing clinical limitations of ADCs. Nevertheless, the symbiotic interplay among BsAb, linker, and payload necessitates further optimizations and coordination beyond a simplistic "1 + 1" to effectively surmount the extant challenges facing the BsADC domain.
Collapse
Affiliation(s)
- Yilin Gu
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhijia Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China
| |
Collapse
|
21
|
Chuang ST, Stein JB, Nevins S, Kilic Bektas C, Choi HK, Ko WK, Jang H, Ha J, Lee KB. Enhancing CAR Macrophage Efferocytosis Via Surface Engineered Lipid Nanoparticles Targeting LXR Signaling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308377. [PMID: 38353580 PMCID: PMC11081841 DOI: 10.1002/adma.202308377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/05/2024] [Indexed: 02/24/2024]
Abstract
The removal of dying cells, or efferocytosis, is an indispensable part of resolving inflammation. However, the inflammatory microenvironment of the atherosclerotic plaque frequently affects the biology of both apoptotic cells and resident phagocytes, rendering efferocytosis dysfunctional. To overcome this problem, a chimeric antigen receptor (CAR) macrophage that can target and engulf phagocytosis-resistant apoptotic cells expressing CD47 is developed. In both normal and inflammatory circumstances, CAR macrophages exhibit activity equivalent to antibody blockage. The surface of CAR macrophages is modified with reactive oxygen species (ROS)-responsive therapeutic nanoparticles targeting the liver X receptor pathway to improve their cell effector activities. The combination of CAR and nanoparticle engineering activated lipid efflux pumps enhances cell debris clearance and reduces inflammation. It is further suggested that the undifferentiated CAR-Ms can transmigrate within a mico-fabricated vessel system. It is also shown that our CAR macrophage can act as a chimeric switch receptor (CSR) to withstand the immunosuppressive inflammatory environment. The developed platform has the potential to contribute to the advancement of next-generation cardiovascular disease therapies and further studies include in vivo experiments.
Collapse
Affiliation(s)
- Skylar T Chuang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Joshua B Stein
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Sarah Nevins
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Cemile Kilic Bektas
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Hye Kyu Choi
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Wan-Kyu Ko
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Hyunjun Jang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Jihun Ha
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
22
|
Yang Y, Nakayama K, Okada S, Sato K, Wada T, Sakaguchi Y, Murayama A, Suzuki T, Sakurai M. ICLAMP: a novel technique to explore adenosine deamination via inosine chemical labeling and affinity molecular purification. FEBS Lett 2024; 598:1080-1093. [PMID: 38523059 DOI: 10.1002/1873-3468.14854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/26/2024]
Abstract
Recent developments in sequencing and bioinformatics have advanced our understanding of adenosine-to-inosine (A-to-I) RNA editing. Surprisingly, recent analyses have revealed the capability of adenosine deaminase acting on RNA (ADAR) to edit DNA:RNA hybrid strands. However, edited inosines in DNA remain largely unexplored. A precise biochemical method could help uncover these potentially rare DNA editing sites. We explore maleimide as a scaffold for inosine labeling. With fluorophore-conjugated maleimide, we were able to label inosine in RNA or DNA. Moreover, with biotin-conjugated maleimide, we purified RNA and DNA containing inosine. Our novel technique of inosine chemical labeling and affinity molecular purification offers substantial advantages and provides a versatile platform for further discovery of A-to-I editing sites in RNA and DNA.
Collapse
Affiliation(s)
- Yuxi Yang
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Koki Nakayama
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Shunpei Okada
- Department of Microbiology, Faculty of Medicine, Shimane University, Izumo-shi, Japan
| | - Kazuki Sato
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda-shi, Japan
| | - Takeshi Wada
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda-shi, Japan
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Japan
| | - Ayaka Murayama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Japan
| | - Masayuki Sakurai
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
23
|
Heuser A, Abdul Rahman W, Bechter E, Blank J, Buhr S, Erdmann D, Fontana P, Mermet-Meillon F, Meyerhofer M, Strang R, Schrapp M, Zimmermann C, Cortes-Cros M, Möbitz H, Hamon J. Challenges for the Discovery of Non-Covalent WRN Helicase Inhibitors. ChemMedChem 2024; 19:e202300613. [PMID: 38334957 DOI: 10.1002/cmdc.202300613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/10/2024]
Abstract
The Werner Syndrome RecQ helicase (WRN) is a synthetic lethal target of interest for the treatment of cancers with microsatellite instability (MSI). Different hit finding approaches were initially tested. The identification of WRN inhibitors proved challenging due to a high propensity for artefacts via protein interference, i. e., hits inhibiting WRN enzymatic activities through multiple, unspecific mechanisms. Previously published WRN Helicase inhibitors (ML216, NSC19630 or NSC617145) were characterized in an extensive set of biochemical and biophysical assays and could be ruled out as specific WRN helicase probes. More innovative screening strategies need to be developed for successful drug discovery of non-covalent WRN helicase inhibitors.
Collapse
Affiliation(s)
- Alisa Heuser
- Novartis Biomedical Research, Novartis Campus, CH-4056, Basel, Switzerland
| | | | - Elisabeth Bechter
- Novartis Biomedical Research, Novartis Campus, CH-4056, Basel, Switzerland
| | - Jutta Blank
- Novartis Biomedical Research, Novartis Campus, CH-4056, Basel, Switzerland
| | - Sylvia Buhr
- Novartis Biomedical Research, Novartis Campus, CH-4056, Basel, Switzerland
| | - Dirk Erdmann
- Novartis Biomedical Research, Novartis Campus, CH-4056, Basel, Switzerland
| | - Patrizia Fontana
- Novartis Biomedical Research, Novartis Campus, CH-4056, Basel, Switzerland
| | | | - Marco Meyerhofer
- Novartis Biomedical Research, Novartis Campus, CH-4056, Basel, Switzerland
| | - Ross Strang
- Novartis Biomedical Research, Novartis Campus, CH-4056, Basel, Switzerland
| | - Maxime Schrapp
- Novartis Biomedical Research, Novartis Campus, CH-4056, Basel, Switzerland
| | | | - Marta Cortes-Cros
- Novartis Biomedical Research, Novartis Campus, CH-4056, Basel, Switzerland
| | - Henrik Möbitz
- Novartis Biomedical Research, Novartis Campus, CH-4056, Basel, Switzerland
| | - Jacques Hamon
- Novartis Biomedical Research, Novartis Campus, CH-4056, Basel, Switzerland
| |
Collapse
|
24
|
Zhang D, Chen Y, Hao M, Xia Y. Putting Hybrid Nanomaterials to Work for Biomedical Applications. Angew Chem Int Ed Engl 2024; 63:e202319567. [PMID: 38429227 PMCID: PMC11478030 DOI: 10.1002/anie.202319567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/03/2024]
Abstract
Hybrid nanomaterials have found use in many biomedical applications. This article provides a comprehensive review of the principles, techniques, and recent advancements in the design and fabrication of hybrid nanomaterials for biomedicine. We begin with an introduction to the general concept of material hybridization, followed by a discussion of how this approach leads to materials with additional functionality and enhanced performance. We then highlight hybrid nanomaterials in the forms of nanostructures, nanocomposites, metal-organic frameworks, and biohybrids, including their fabrication methods. We also showcase the use of hybrid nanomaterials to advance biomedical engineering in the context of nanomedicine, regenerative medicine, diagnostics, theranostics, and biomanufacturing. Finally, we offer perspectives on challenges and opportunities.
Collapse
Affiliation(s)
- Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA)
| | - Yidan Chen
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (USA)
| | - Min Hao
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA)
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA); School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 (USA)
| |
Collapse
|
25
|
Guo Y, Li X, Xie Y, Wang Y. What influences the activity of Degrader-Antibody conjugates (DACs). Eur J Med Chem 2024; 268:116216. [PMID: 38387330 DOI: 10.1016/j.ejmech.2024.116216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
The targeted protein degradation (TPD) technology employing proteolysis-targeting chimeras (PROTACs) has been widely applied in drug chemistry and chemical biology for the treatment of cancer and other diseases. PROTACs have demonstrated significant advantages in targeting undruggable targets and overcoming drug resistance. However, despite the efficient degradation of targeted proteins achieved by PROTACs, they still face challenges related to selectivity between normal and cancer cells, as well as issues with poor membrane permeability due to their substantial molecular weight. Additionally, the noteworthy toxicity resulting from off-target effects also needs to be addressed. To solve these issues, Degrader-Antibody Conjugates (DACs) have been developed, leveraging the targeting and internalization capabilities of antibodies. In this review, we elucidates the characteristics and distinctions between DACs, and traditional Antibody-drug conjugates (ADCs). Meanwhile, we emphasizes the significance of DACs in facilitating the delivery of PROTACs and delves into the impact of various components on DAC activity. These components include antibody targets, drug-antibody ratio (DAR), linker types, PROTACs targets, PROTACs connections, and E3 ligase ligands. The review also explores the suitability of different targets (antibody targets or PROTACs targets) for DACs, providing insights to guide the design of PROTACs better suited for antibody conjugation.
Collapse
Affiliation(s)
- Yaolin Guo
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China
| | - Xiaoxue Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yang Xie
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
26
|
Heble AY, Chen CL. Access to Advanced Functional Materials through Postmodification of Biomimetic Assemblies via Click Chemistry. Biomacromolecules 2024; 25:1391-1407. [PMID: 38422548 DOI: 10.1021/acs.biomac.3c01454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The design, synthesis, and fabrication of functional nanomaterials with specific properties remain a long-standing goal for many scientific fields. The self-assembly of sequence-defined biomimetic synthetic polymers presents a fundamental strategy to explore the chemical space beyond biological systems to create advanced nanomaterials. Moreover, subsequent chemical modification of existing nanostructures is a unique approach for accessing increasingly complex nanostructures and introducing functionalities. Of these modifications, covalent conjugation chemistries, such as the click reactions, have been the cornerstone for chemists and materials scientists. Herein, we highlight some recent advances that have successfully employed click chemistries for the postmodification of assembled one-dimensional (1D) and two-dimensional (2D) nanostructures to achieve applications in molecular recognition, mineralization, and optoelectronics. Specifically, biomimetic nanomaterials assembled from sequence-defined macromolecules such as peptides and peptoids are described.
Collapse
Affiliation(s)
- Annie Y Heble
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
27
|
Lima PHCD, Ribeiro-Viana RM, Plath AMS, Grillo R. Lignocellulosic-biomolecules conjugated systems: green-engineered complexes modified by covalent linkers. J Mater Chem B 2024; 12:2471-2480. [PMID: 38345783 DOI: 10.1039/d3tb02581k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Lignocellulosic biomass represents an abundant and eco-friendly material widely explored in recent years. The main lignocellulosic fractions include cellulose, hemicellulose, and lignin. Nonetheless, the heterogeneity and complexity of these components pose challenges in achieving the desired properties. Conversely, their attractive functional groups can covalently link with other biomolecules, facilitating the creation and enhancement of material properties. Lignocellulosic molecules can form different linkages with other biomolecules through classic and modern methods. Bioconjugation has emerged as a suitable alternative to create new nuances, empowering the linkage between lignocellulosic materials and biomolecules through linkers. These conjugates (lignocellulosic-linkers-biomolecules) attract attention from stakeholders in medicine, chemistry, biology, and agriculture. The plural formations of these biocomplexes highlight the significance of these arrangements. Therefore, this review provides an overview of the progress of lignocellulosic-biomolecule complexes and discusses different types of covalent bioconjugated systems, considering the formation of linkers, applicability, toxicity, and future challenges.
Collapse
Affiliation(s)
- Pedro Henrique Correia de Lima
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP 15385-000, Brazil.
| | - Renato Márcio Ribeiro-Viana
- Departamento Acadêmico de Química, Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil
| | | | - Renato Grillo
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP 15385-000, Brazil.
| |
Collapse
|
28
|
Umemura K, Kawamoto Y, Takahashi Y, Takakura Y. Development of a Cytosolic DNA Sensor Agonist Using GALA Peptide-Conjugated DNA and Long Single-Stranded DNA. Mol Pharm 2024; 21:1204-1213. [PMID: 38319924 DOI: 10.1021/acs.molpharmaceut.3c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Cytosolic DNA sensors (CDSs) recognize DNA molecules that are abnormally located in the cytosol, thus leading to the activation of the stimulator of interferon genes (STING) and the induction of type 1 interferon. In turn, type 1 interferon evokes defensive reactions against viral infections and activates the immune system; therefore, the use of agonists of CDSs as cancer therapeutics and vaccine adjuvants is expected. Double-stranded DNA molecules with dozens to thousands of bases derived from bacteria and viruses are agonists of CDSs. However, DNA is a water-soluble molecule with a high molecular weight, resulting in poor cellular uptake and endosomal escape. In contrast, long single-stranded DNA (lssDNA) obtained by rolling circle amplification is efficiently taken up and localized to endosomes. Here we constructed a CDS-targeting lssDNA via the facilitation of its intracellular transport from endosomes to the cytosol. An endosome-disrupting GALA peptide was used to deliver the lssDNA to the cytosol. A peptide-oligonucleotide conjugate (POC) was successfully obtained via the conjugation of the GALA peptide with an oligonucleotide complementary to the lssDNA. By hybridization of the POC to the complementary lssDNA (POC/lssDNA), the CDS-STING pathway in dendritic cells was efficiently stimulated. GALA peptide-conjugated DNA seems to be a helpful tool for the delivery of DNA to the cytosol.
Collapse
Affiliation(s)
- Keisuke Umemura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yusuke Kawamoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
29
|
Stoppa I, Dianzani C, Clemente N, Bozza A, Bordano V, Garelli S, Cangemi L, Dianzani U, Battaglia L. Alendronate-Grafted Nanoemulsions for Bone-Targeted Vincristine Delivery: Preliminary Studies on Cell and Animal Models. Biomolecules 2024; 14:238. [PMID: 38397475 PMCID: PMC10886946 DOI: 10.3390/biom14020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Bone is a site of distant metastases, which are a common cause of morbidity and mortality with a high socio-economic impact, for many malignant tumours. In order to engineer pharmacological therapies that are suitable for this debilitating disease, this experimental work presents injectable lipid nanoemulsions, which are endowed with a long history of safe clinical usage in parenteral nutrition, their loading with vincristine and their grafting with alendronate, with a dual purpose: merging the anticancer activity of bisphosphonates and vincristine, and enhancing bone-targeted delivery. In cell studies, alendronate synergised with the anti-migration activity of vincristine, which is important as migration plays a key role in the metastatisation process. In preliminary animal studies, carried out thanks to IVIS technology, alendronate conjugation enhanced the bone targeting of fluorescently labelled nanoemulsions. These encouraging results will drive further studies on suitable animal models of the disease.
Collapse
Affiliation(s)
- Ian Stoppa
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont (UPO), via Solaroli 17, 28100 Novara, Italy; (I.S.); (N.C.); (U.D.)
| | - Chiara Dianzani
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (A.B.); (V.B.); (S.G.); (L.C.)
| | - Nausicaa Clemente
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont (UPO), via Solaroli 17, 28100 Novara, Italy; (I.S.); (N.C.); (U.D.)
| | - Annalisa Bozza
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (A.B.); (V.B.); (S.G.); (L.C.)
| | - Valentina Bordano
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (A.B.); (V.B.); (S.G.); (L.C.)
| | - Sara Garelli
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (A.B.); (V.B.); (S.G.); (L.C.)
| | - Luigi Cangemi
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (A.B.); (V.B.); (S.G.); (L.C.)
| | - Umberto Dianzani
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont (UPO), via Solaroli 17, 28100 Novara, Italy; (I.S.); (N.C.); (U.D.)
| | - Luigi Battaglia
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (A.B.); (V.B.); (S.G.); (L.C.)
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Turin, 10124 Turin, Italy
| |
Collapse
|
30
|
Dudchak R, Podolak M, Holota S, Szewczyk-Roszczenko O, Roszczenko P, Bielawska A, Lesyk R, Bielawski K. Click chemistry in the synthesis of antibody-drug conjugates. Bioorg Chem 2024; 143:106982. [PMID: 37995642 DOI: 10.1016/j.bioorg.2023.106982] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Antibody-Drug Conjugates (ADC) are a new class of anticancer therapeutics with immense potential. They have been rapidly advancing in the last two decades. This fast speed of development has become possible due to several new technologies and methods. One of them is Click Chemistry, an approach that was created only two decades ago, but already is actively utilized for bioconjugation, material science and drug discovery. In this review, we researched the impact of Click Chemistry reactions on the synthesis and development of ADCs. The information about the most frequently utilized reactions, such as Michael's addition, Copper-catalyzed azide-alkyne [3+2] cycloaddition (CuAAC), Strain-promoted azide-alkyne [3+2] cycloaddition (SPAAC), oxime bond formation, hydrazine-iso-Pictet-Spengler Ligation (HIPS), Diels-Alder reactions have been summarized. The implementation of thiol-maleimide Click Chemistry reaction in the synthesis of numerous FDA-approved Antibody-Drug Conjugates has been reported. The data amassed in the present review provides better understanding of the importance of Click Chemistry in the synthesis, development and improvement of the Antibody-Drug Conjugates and it will be helpful for further researches related to ADCs.
Collapse
Affiliation(s)
- Rostyslav Dudchak
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, Jana Kilińskiego 1, Bialystok 15-089, Poland
| | - Magdalena Podolak
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, Jana Kilińskiego 1, Bialystok 15-089, Poland
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv 79010, Ukraine
| | - Olga Szewczyk-Roszczenko
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, Jana Kilińskiego 1, Bialystok 15-089, Poland
| | - Piotr Roszczenko
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, Jana Kilińskiego 1, Bialystok 15-089, Poland
| | - Anna Bielawska
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, Jana Kilińskiego 1, Bialystok 15-089, Poland
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv 79010, Ukraine.
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, Jana Kilińskiego 1, Bialystok 15-089, Poland
| |
Collapse
|
31
|
Haggett JG, Domaille DW. ortho-Boronic Acid Carbonyl Compounds and Their Applications in Chemical Biology. Chemistry 2024; 30:e202302485. [PMID: 37967030 DOI: 10.1002/chem.202302485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/07/2023] [Accepted: 11/13/2023] [Indexed: 11/17/2023]
Abstract
Iminoboronates and diazaborines are related classes of compounds that feature an imine ortho to an arylboronic acid (iminoboronate) or a hydrazone that cyclizes with an ortho arylboronic acid (diazaborine). Rather than acting as independent chemical motifs, the arylboronic acid impacts the rate of imine/hydrazone formation, hydrolysis, and exchange with competing nucleophiles. Increasing evidence has shown that the imine/hydrazone functionality also impacts arylboronic acid reactivity toward diols and reactive oxygen and nitrogen species (ROS/RNS). Untangling the communication between C=N linked functionalities and arylboronic acids has revealed a powerful and tunable motif for bioconjugation chemistries and other applications in chemical biology. Here, we survey the applications of iminoboronates and diazaborines in these fields with an eye toward understanding their utility as a function of neighboring group effects.
Collapse
Affiliation(s)
- Jack G Haggett
- Department of Chemistry, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
- Quantitative Biology and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
| |
Collapse
|
32
|
Mir MH, Parmar S, Singh C, Kalia D. Location-agnostic site-specific protein bioconjugation via Baylis Hillman adducts. Nat Commun 2024; 15:859. [PMID: 38286847 PMCID: PMC10825175 DOI: 10.1038/s41467-024-45124-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/15/2024] [Indexed: 01/31/2024] Open
Abstract
Proteins labelled site-specifically with small molecules are valuable assets for chemical biology and drug development. The unique reactivity profile of the 1,2-aminothiol moiety of N-terminal cysteines (N-Cys) of proteins renders it highly attractive for regioselective protein labelling. Herein, we report an ultrafast Z-selective reaction between isatin-derived Baylis Hillman adducts and 1,2-aminothiols to form a bis-heterocyclic scaffold, and employ it for stable protein bioconjugation under both in vitro and live-cell conditions. We refer to our protein bioconjugation technology as Baylis Hillman orchestrated protein aminothiol labelling (BHoPAL). Furthermore, we report a lipoic acid ligase-based technology for introducing the 1,2-aminothiol moiety at any desired site within proteins, rendering BHoPAL location-agnostic (not limited to N-Cys). By using this approach in tandem with BHoPAL, we generate dually labelled protein bioconjugates appended with different labels at two distinct specific sites on a single protein molecule. Taken together, the protein bioconjugation toolkit that we disclose herein will contribute towards the generation of both mono and multi-labelled protein-small molecule bioconjugates for applications as diverse as biophysical assays, cellular imaging, and the production of therapeutic protein-drug conjugates. In addition to protein bioconjugation, the bis-heterocyclic scaffold we report herein will find applications in synthetic and medicinal chemistry.
Collapse
Affiliation(s)
- Mudassir H Mir
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Sangeeta Parmar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Chhaya Singh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Dimpy Kalia
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India.
| |
Collapse
|
33
|
Kastner A, Mendrina T, Babu T, Karmakar S, Poetsch I, Berger W, Keppler BK, Gibson D, Heffeter P, Kowol CR. Stepwise optimization of tumor-targeted dual-action platinum(iv)-gemcitabine prodrugs. Inorg Chem Front 2024; 11:534-548. [PMID: 38235273 PMCID: PMC10790623 DOI: 10.1039/d3qi02032k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024]
Abstract
While platinum-based chemotherapeutic agents have established themselves as indispensable components of anticancer therapy, they are accompanied by a variety of side effects and the rapid occurrence of drug resistance. A promising strategy to address these challenges is the use of platinum(iv) prodrugs, which remain inert until they reach the tumor tissue, thereby mitigating detrimental effects on healthy cells. Typically, platinum drugs are part of combination therapy settings. Consequently, a very elegant strategy is the development of platinum(iv) prodrugs bearing a second, clinically relevant therapeutic in axial position. In the present study, we focused on gemcitabine as an approved antimetabolite, which is highly synergistic with platinum drugs. In addition, to increase plasma half-life and facilitate tumor-specific accumulation, an albumin-binding maleimide moiety was attached. Our investigations revealed that maleimide-cisplatin(iv)-gemcitabine complexes cannot carry sufficient amounts of gemcitabine to induce a significant effect in vivo. Consequently, we designed a carboplatin(iv) analog, that can be applied at much higher doses. Remarkably, this novel analog demonstrated impressive in vivo results, characterized by significant improvements in overall survival. Notably, these encouraging results could also be transferred to an in vivo xenograft model with acquired gemcitabine resistance, indicating the high potential of this approach.
Collapse
Affiliation(s)
- Alexander Kastner
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry Waehringer Str. 42 1090 Vienna Austria
- University of Vienna, Vienna Doctoral School in Chemistry (DoSChem) Waehringer Str. 42 1090 Vienna Austria
| | - Theresa Mendrina
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry Waehringer Str. 42 1090 Vienna Austria
- Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Tomer Babu
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem 9112102 Jerusalem Israel
| | - Subhendu Karmakar
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem 9112102 Jerusalem Israel
| | - Isabella Poetsch
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry Waehringer Str. 42 1090 Vienna Austria
- Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Walter Berger
- Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research" 1090 Vienna Austria
| | - Bernhard K Keppler
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry Waehringer Str. 42 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research" 1090 Vienna Austria
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem 9112102 Jerusalem Israel
| | - Petra Heffeter
- Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research" 1090 Vienna Austria
| | - Christian R Kowol
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry Waehringer Str. 42 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research" 1090 Vienna Austria
| |
Collapse
|
34
|
Wang Q, Wang Y, Jian X, Wang N, Li C, Liu H. Site-specific crosslinking and assembly of tetrameric β-glucuronidase improve glycyrrhizin hydrolysis. Biotechnol Bioeng 2023; 120:3570-3584. [PMID: 37707439 DOI: 10.1002/bit.28556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
In this study, eight nonconserved residues with exposed surfaces and flexible conformations of the homotetrameric PGUS (β-glucuronidase from Aspergillus oryzae Li-3) were identified. Single-point mutation into cysteine enabled the thiol-maleimide reaction and site-specific protein assembly using a two-arm polyethylene glycol (PEG)-maleimide crosslinker (Mal2 ). The Mal2 (1k) (with 1 kDa PEG spacer)-crosslinked PGUS assemblies showed low crosslinking efficiency and unimproved thermostability except for G194C-Mal2 (1k). To improve the crosslinking efficiency, a lengthened crosslinker Mal2 (2k) (with 2 kDa PEG spacer) was used to produce PGUS assembly and a highly improved thermostability was achieved with a half-life of 47.2-169.2 min at 70°C, which is 1.04-3.74 times that of wild type PGUS. It is found that the thermostability of PGUS assembly was closely associated with the formation of inter-tetramer assembly and intratetramer crosslinking, rather than the PEGylation of the enzyme. Therefore, the four-arm PEG-maleimide crosslinker Mal4 (2k) (with 2 kDa PEG spacer) was employed to simultaneously increase the inter-tetramer assembly and intratetramer crosslinking, and the resulting PGUS assemblies showed further improved thermostabilities compared with Mal2 (2k)-crosslinked assemblies. Finally, the application of PGUS assemblies with significantly improved thermostability to the bioconversion of GL proved that the PGUS assembly is a strong catalyst for glycyrrhizin (GL) hydrolysis in industrial applications.
Collapse
Affiliation(s)
- Qibin Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P.R. China
| | - Yingying Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P.R. China
| | - Xing Jian
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P.R. China
| | - Ning Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P.R. China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P.R. China
- Key Laboratory for Industrial Biocatalysis, Department of Chemical Engineering, Ministry of Education, Tsinghua University, Beijing, P.R. China
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, P.R. China
| | - Hu Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P.R. China
| |
Collapse
|
35
|
Fournier L, Abioui-Mourgues M, Chabouh G, Aid R, Taille TDL, Couture O, Vivien D, Orset C, Chauvierre C. rtPA-loaded fucoidan polymer microbubbles for the targeted treatment of stroke. Biomaterials 2023; 303:122385. [PMID: 37952499 DOI: 10.1016/j.biomaterials.2023.122385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
Systemic injection of thrombolytic drugs is the gold standard treatment for non-invasive blood clot resolution. The most serious risks associated with the intravenous injection of tissue plasminogen activator-like proteins are the bleeding complication and the dose related neurotoxicity. Indeed, the drug has to be injected in high concentrations due to its short half-life, the presence of its natural blood inhibitor (PAI-1) and the fast hepatic clearance (0.9 mg/kg in humans, 10 mg/kg in mouse models). Overall, there is a serious need for a dose-reduced targeted treatment to overcome these issues. We present in this article a new acoustic cavitation-based method for polymer MBs synthesis, three times faster than current hydrodynamic-cavitation method. The generated MBs are ultrasound responsive, stable and biocompatible. Their functionalization enabled the efficient and targeted treatment of stroke, without side effects. The stabilizing shell of the MBs is composed of Poly-Isobutyl Cyanoacrylate (PIBCA), copolymerized with fucoidan. Widely studied for its targeting properties, fucoidan exhibit a nanomolar affinity for activated endothelium and activated platelets (P-selectins). Secondly, the thrombolytic agent (rtPA) was loaded onto microbubbles (MBs) with a simple adsorption protocol. Hence, the present study validated the in vivo efficiency of rtPA-loaded Fuco MBs to be over 50 % more efficient than regular free rtPA injection for stroke resolution. In addition, the relative injected rtPA grafted onto targeting MBs was 1/10th of the standard effective dose (1 mg/kg in mouse). As a result, no hemorrhagic event, BBB leakage nor unexpected tissue distribution were observed.
Collapse
Affiliation(s)
- Louise Fournier
- Université Paris Cité, Université Sorbonne Paris Nord, UMR-S U1148 INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France
| | - Myriam Abioui-Mourgues
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France
| | - Georges Chabouh
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France
| | - Rachida Aid
- Université Paris Cité, Université Sorbonne Paris Nord, UMR-S U1148 INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France; Université Paris Cité, UMS 34, Fédération de Recherche en Imagerie Multi-modalité (FRIM), F-75018, Paris, France
| | - Thibault De La Taille
- Université Paris Cité, Université Sorbonne Paris Nord, UMR-S U1148 INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France
| | - Olivier Couture
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France; Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Cyrille Orset
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France
| | - Cédric Chauvierre
- Université Paris Cité, Université Sorbonne Paris Nord, UMR-S U1148 INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France.
| |
Collapse
|
36
|
Teng S, Zhang Z, Li B, Li L, Tan MCL, Jia Z, Loh TP. Thiol-Specific Silicon-Containing Conjugating Reagent: β-Silyl Alkynyl Carbonyl Compounds. Angew Chem Int Ed Engl 2023; 62:e202311906. [PMID: 37721855 DOI: 10.1002/anie.202311906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/20/2023]
Abstract
Site-specific modification of thiol-containing biomolecules has been recognized as a versatile and powerful strategy for probing our biological systems and discovering novel therapeutics. The addition of lipophilic silicon moiety opens up new avenues for multi-disciplinary research with broad applications in both the medicinal and material sciences. However, adhering to the strict biocompatibility requirements, and achieving the introduction of labile silicon handle and high chemo-selectivity have been formidable. In this paper, we report silicon-based conjugating reagents including β-trialkylsilyl and silyl ether-tethered alkynones that selectively react with thiols under physiological conditions. The pH-neutral, metal-free and additive-free reaction yields stable products with broad substrate compatibility and full retention of silicon handles in most cases. Besides simple aliphatic and aromatic thiols, this approach is applicable in the labeling of thiols present in proteins, sugars and payloads, thereby expanding the toolbox of thiol conjugation.
Collapse
Affiliation(s)
- Shenghan Teng
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, China
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Zhenguo Zhang
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Bohan Li
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Lanyang Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Melinda Chor Li Tan
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Zhenhua Jia
- Henan University of Technology, 100 Lianhua Street, Zhongyuan District, Zhengzhou, 450001, China
| | - Teck-Peng Loh
- Henan University of Technology, 100 Lianhua Street, Zhongyuan District, Zhengzhou, 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
37
|
Gober IN, Sharan R, Villain M. Improving the stability of thiol-maleimide bioconjugates via the formation of a thiazine structure. J Pept Sci 2023; 29:e3495. [PMID: 37055943 DOI: 10.1002/psc.3495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/15/2023]
Abstract
Linker stability is critically important for the efficacy and safety of peptide and protein conjugates used for biological applications. One common conjugation strategy, thiol-maleimide coupling, generates a succinimidyl thioether linker with limited stability under physiological conditions. We have shown in previous work that when a peptide with an N-terminal cysteine is conjugated to a maleimide reagent, a thiazine structure is formed via a chemical rearrangement. Our preliminary work indicated that the thiazine linker has favorable stability. Here, we report the evaluation of a thiazine linker as an alternative to the widely used succinimidyl thioether linker for thiol-maleimide bioconjugation. The stability of the thiazine conjugate in comparison to the thioether conjugate was assessed across a broad pH range. Additionally, the propensity for retro-Michael reaction and cross-reactivity with other thiols was evaluated by treating conjugates in the presence of glutathione. The studies indicated that the thiazine linker degrades markedly slower than the thioether conjugate. In addition, the thiazine linker is over 20 times less susceptible to glutathione adduct formation. The NMR study of the thiazine structure confirmed that the formation of the thiazine linker is a stereoselective process that yields a single diastereomer. In summary, we propose the use of the thiazine linker obtained by conjugation of maleimide-containing reagents with peptides or proteins presenting an N-terminal cysteine as a novel approach for bioconjugation. The advantages of this approach are the formation of a linker with a well-defined stereochemical configuration, increased stability at physiological pH, and a strongly reduced propensity for thiol exchange.
Collapse
Affiliation(s)
- Isaiah N Gober
- Research and Development Department, Bachem Americas, Inc., Torrance, CA, USA
| | - Rahul Sharan
- Research and Development Department, Bachem Americas, Inc., Torrance, CA, USA
| | - Matteo Villain
- CMC Development Group, Bachem Americas, Inc., Torrance, CA, USA
| |
Collapse
|
38
|
Gao Q, Luo L, Chen C, Wen K, Zhu Z, Tang X. Transition-Metal-Free Base-Promoted Deaminative Coupling of Gramines with Aminomaleimides. J Org Chem 2023; 88:13303-13314. [PMID: 37668535 DOI: 10.1021/acs.joc.3c01610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The direct utilization of amines for C-C bond formation without prefunctionalization remains a significant challenge. Herein, we report the base-promoted deaminative coupling of gramines with aminomalaimides under redox-neutral conditions. In this operationally simple reaction, a series of indolmethyl-substituted aminomaleimides that emitted fluorescence were synthesized in good-to-excellent yields. Biological evaluation revealed that some products exhibited antiproliferative activity against human cancer cell lines.
Collapse
Affiliation(s)
- Qiwen Gao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, China
| | - Liuting Luo
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 13# Shiliugang Road, Haizhu district, Guangzhou 510315, China
| | - Chen Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, China
| | - Kangmei Wen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, China
| | - Zhibo Zhu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 13# Shiliugang Road, Haizhu district, Guangzhou 510315, China
| | - Xiaodong Tang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, China
| |
Collapse
|
39
|
Wang X, Meng X, Mao K, Chen H, Cong X, Liu F, Wang J, Liu S, Xin Y, Zhu G, Tan H, Yang YG, Sun T. Maleimide as the PEG end-group promotes macrophage-targeted drug delivery of PEGylated nanoparticles in vivo by enhancing interaction with circulating erythrocytes. Biomaterials 2023; 300:122187. [PMID: 37302279 DOI: 10.1016/j.biomaterials.2023.122187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
Radiotherapy (IR) is capable of enhancing antitumor immune responses. However, IR treatment also aggravates the infiltration of peripheral macrophages into the tumor, resulting in reversing the therapeutic effects of antitumor immunity. Thus, a strategy to effectively prevent tumor infiltration by macrophages may further improved the therapeutic efficacy of radiotherapy. Herein, we found that PEGylated solid lipid nanoparticles with maleimide as PEG end-group (SLN-PEG-Mal) show significantly enhanced adsorption onto RBCs through reacting with reactive sulfhydryl groups on RBCs' surface both in vitro and in vivo, and caused significant changes in the surface properties and morphology of RBCs. These RBCs adsorbed by SLN-PEG-Mal were rapidly removed from circulation due to efficient engulfment by reticuloendothelial macrophages, supporting the usefulness of SLN-PEG-Mal for macrophage-targeted drug delivery. While lacking the use of radioisotope tracing (considered the gold standard for PK/BD studies), our data align with the expected pathway of host defense activation through surface-loaded RBCs. Importantly, injection of paclitaxel-loaded SLN-PEG-Mal effectively inhibited the tumor-infiltration by macrophages, and significantly improved the antitumor immune responses in tumor-bearing mice treated with low-dose irradiation. This study provides insights into the effects of maleimide as PEG end-group on enhancing the interaction between PEGylated nanoparticles and RBCs and offers an effective strategy to inhibit tumor infiltration by circulating macrophages.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China; Medical Laboratory Center, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Xiandi Meng
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Kuirong Mao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; International Center of Future Science, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Hongmei Chen
- Department of Oncology Chemotherapy, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Xiuxiu Cong
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Feiqi Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Jialiang Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Shuhan Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Yanbao Xin
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Ge Zhu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Huizhu Tan
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; International Center of Future Science, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; International Center of Future Science, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
40
|
Martínez-Alonso M, Gandioso A, Thibaudeau C, Qin X, Arnoux P, Demeubayeva N, Guérineau V, Frochot C, Jung AC, Gaiddon C, Gasser G. A Novel Near-IR Absorbing Ruthenium(II) Complex as Photosensitizer for Photodynamic Therapy and its Cetuximab Bioconjugates. Chembiochem 2023; 24:e202300203. [PMID: 37017905 DOI: 10.1002/cbic.202300203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/06/2023]
Abstract
A novel Ru(II) cyclometalated photosensitizer (PS), Ru-NH2 , for photodynamic therapy (PDT) of formula [Ru(appy)(bphen)2 ]PF6 (where appy=4-amino-2-phenylpyridine and bphen=bathophenanthroline) and its cetuximab (CTX) bioconjugates, Ru-Mal-CTX and Ru-BAA-CTX (where Mal=maleimide and BAA=benzoylacrylic acid) were synthesised and characterised. The photophysical properties of Ru-NH2 revealed absorption maxima around 580 nm with an absorption up to 725 nm. The generation of singlet oxygen (1 O2 ) upon light irradiation was confirmed with a 1 O2 quantum yield of 0.19 in acetonitrile. Preliminary in vitro experiments revealed the Ru-NH2 was nontoxic in the dark in CT-26 and SQ20B cell lines but showed outstanding phototoxicity when irradiated, reaching interesting phototoxicity indexes (PI) >370 at 670 nm, and >150 at 740 nm for CT-26 cells and >50 with NIR light in SQ20B cells. The antibody CTX was successfully attached to the complexes in view of the selective delivery of the PS to cancer cells. Up to four ruthenium fragments were anchored to the antibody (Ab), as confirmed by MALDI-TOF mass spectrometry. Nonetheless, the bioconjugates were not as photoactive as the Ru-NH2 complex.
Collapse
Affiliation(s)
- Marta Martínez-Alonso
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - Albert Gandioso
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - Chloé Thibaudeau
- Laboratoire de Biologie Tumorale, Institut de cancérologie Strasbourg Europe, 67200, Strasbourg, France
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », 67200, Strasbourg, France
| | - Xue Qin
- Laboratoire de Biologie Tumorale, Institut de cancérologie Strasbourg Europe, 67200, Strasbourg, France
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », 67200, Strasbourg, France
| | - Philippe Arnoux
- Reactions and Chemical Engineering Laboratory, Université de Lorraine, LRGP-CNRS, 54000, Nancy, France
| | - Nurikamal Demeubayeva
- Reactions and Chemical Engineering Laboratory, Université de Lorraine, LRGP-CNRS, 54000, Nancy, France
| | - Vincent Guérineau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Céline Frochot
- Reactions and Chemical Engineering Laboratory, Université de Lorraine, LRGP-CNRS, 54000, Nancy, France
| | - Alain C Jung
- Laboratoire de Biologie Tumorale, Institut de cancérologie Strasbourg Europe, 67200, Strasbourg, France
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », 67200, Strasbourg, France
| | - Christian Gaiddon
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », 67200, Strasbourg, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| |
Collapse
|
41
|
Kastner A, Mendrina T, Bachmann F, Berger W, Keppler BK, Heffeter P, Kowol CR. Tumor-targeted dual-action NSAID-platinum(iv) anticancer prodrugs. Inorg Chem Front 2023; 10:4126-4138. [PMID: 37440920 PMCID: PMC10334471 DOI: 10.1039/d3qi00968h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Platinum(iv) prodrugs are a promising class of anticancer agents designed to overcome the limitations of conventional platinum(ii) therapeutics. In this work, we present oxaliplatin(iv)-based complexes, which upon reduction, release acetylsalicylic acid (aspirin), known for its antitumor activity against colon cancer and currently investigated in combination with oxaliplatin in a phase III clinical study. Comparison with a recently reported cisplatin analog (asplatin) revealed a massive increase in reduction stability for the oxaliplatin complex in mouse serum. This was in line with the cell culture data indicating the desired prodrug properties for the newly synthesized complex. For in vivo studies, a new derivative containing an albumin-binding maleimide unit was synthesized. Indeed, distinctly longer plasma half-life as well as higher tumor accumulation in comparison to asplatin and oxaliplatin were observed, also leading to significantly higher antitumor activity and overall survival of CT26 tumor-bearing mice.
Collapse
Affiliation(s)
- Alexander Kastner
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry Waehringer Str. 42 1090 Vienna Austria
- University of Vienna, Vienna Doctoral School in Chemistry (DoSChem) Waehringer Str. 42 1090 Vienna Austria
| | - Theresa Mendrina
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry Waehringer Str. 42 1090 Vienna Austria
- Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research" 1090 Vienna Austria
| | - Florian Bachmann
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry Waehringer Str. 42 1090 Vienna Austria
| | - Walter Berger
- Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research" 1090 Vienna Austria
| | - Bernhard K Keppler
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry Waehringer Str. 42 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research" 1090 Vienna Austria
| | - Petra Heffeter
- Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research" 1090 Vienna Austria
| | - Christian R Kowol
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry Waehringer Str. 42 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research" 1090 Vienna Austria
| |
Collapse
|
42
|
Wang P, Liu J, Zhu X, Yan Z, Yan J, Jiang J, Fu M, Ge J, Zhu Q, Zheng Y. Modular synthesis of clickable peptides via late-stage maleimidation on C(7)-H tryptophan. Nat Commun 2023; 14:3973. [PMID: 37407547 DOI: 10.1038/s41467-023-39703-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Cyclic peptides have attracted tremendous attention in the pharmaceutical industry owing to their excellent cell penetrability, stability, thermostability, and drug-like properties. However, the currently available facile methodologies for creating such peptides are rather limited. Herein, we report an efficient and direct peptide cyclization via rhodium(III)-catalyzed C(7)-H maleimidation. Notably, this catalytical system has excellent regioselectivity and high tolerance of functional groups which enable late-stage cyclization of peptides. This architecture of cyclic peptides exhibits higher bioactivity than its parent linear peptides. Moreover, the Trp-substituted maleimide displays excellent reactivity toward Michael addition, indicating its potential as a click functional group for applications in chemical biology and medicinal chemistry. As a proof of principle, RGD-GFLG-DOX, which is a peptide-drug-conjugate, is constructed and it displays a strong binding affinity and high antiproliferative activity toward integrin-αvβ3 overexpressed cancer cell lines. The proposed strategy for rapid preparation of stapled peptides would be a robust tool for creating peptide-drug conjugates.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaomei Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhengqing Yan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiahui Yan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jitong Jiang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Manlin Fu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qing Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yuguo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
43
|
Controlled-fabrication and assembly-induced emission enhancement (AIEE) of near-infrared emitted gold nanoclusters capped by thiolactic acid. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
44
|
Foglietta F, Bozza A, Ferraris C, Cangemi L, Bordano V, Serpe L, Martina K, Lazzarato L, Pizzimenti S, Grattarola M, Cucci MA, Dianzani C, Battaglia L. Surface Functionalised Parenteral Nanoemulsions for Active and Homotypic Targeting to Melanoma. Pharmaceutics 2023; 15:pharmaceutics15051358. [PMID: 37242600 DOI: 10.3390/pharmaceutics15051358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Despite recent progressions in cancer genomic and immunotherapies, advanced melanoma still represents a life threat, pushing to optimise new targeted nanotechnology approaches for specific drug delivery to the tumour. To this aim, owing to their biocompatibility and favourable technological features, injectable lipid nanoemulsions were functionalised with proteins owing to two alternative approaches: transferrin was chemically grafted for active targeting, while cancer cell membrane fragments wrapping was used for homotypic targeting. In both cases, protein functionalisation was successfully achieved. Targeting efficiency was preliminarily evaluated using flow cytometry internalisation studies in two-dimensional cellular models, after fluorescence labelling of formulations with 6-coumarin. The uptake of cell-membrane-fragment-wrapped nanoemulsions was higher compared to uncoated nanoemulsions. Instead, the effect of transferrin grafting was less evident in serum-enriched medium, since such ligand probably undergoes competition with the endogenous protein. Moreover, a more pronounced internalisation was achieved when a pegylated heterodimer was employed for conjugation (p < 0.05).
Collapse
Affiliation(s)
- Federica Foglietta
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
| | - Annalisa Bozza
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
| | - Chiara Ferraris
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
| | - Luigi Cangemi
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
| | - Valentina Bordano
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
| | - Loredana Serpe
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
| | - Katia Martina
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
| | - Loretta Lazzarato
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
| | - Stefania Pizzimenti
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Margherita Grattarola
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Marie Angele Cucci
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Chiara Dianzani
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
| | - Luigi Battaglia
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, Università degli Studi di Torino, 10125 Torino, Italy
| |
Collapse
|
45
|
Ahmad R, Tyryshkin AM, Xie L, Hansen WA, Yachnin BJ, Emge TJ, Mashrai A, Khare SD, Knapp S. A Bis(imidazole)-based cysteine labeling tool for metalloprotein assembly. J Inorg Biochem 2023; 244:112206. [PMID: 37030124 DOI: 10.1016/j.jinorgbio.2023.112206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
Precise metal-protein coordination by design remains a considerable challenge. Polydentate, high-metal-affinity protein modifications, both chemical and recombinant, can enable metal localization. However, these constructs are often bulky, conformationally and stereochemically ill-defined, or coordinately saturated. Here, we expand the biomolecular metal-coordination toolbox with the irreversible attachment to cysteine of bis(1-methylimidazol-2-yl)ethene ("BMIE"), which generates a compact imidazole-based metal-coordinating ligand. Conjugate additions of small-molecule thiols (thiocresol and N-Boc-Cys) with BMIE confirm general thiol reactivity. The BMIE adducts are shown to complex the divalent metal ions Cu++ and Zn++ in bidentate (N2) and tridentate (N2S*) coordination geometries. Cysteine-targeted BMIE modification (>90% yield at pH 8.0) of a model protein, the S203C variant of carboxypeptidase G2 (CPG2), measured with ESI-MS, confirms its utility as a site-selective bioconjugation method. ICP-MS analysis confirms mono-metallation of the BMIE-modified CPG2 protein with Zn++, Cu++, and Co++. EPR characterization of the BMIE-modified CPG2 protein reveals the structural details of the site selective 1:1 BMIE-Cu++ coordination and symmetric tetragonal geometry under physiological conditions and in the presence of various competing and exchangeable ligands (H2O/HO-, tris, and phenanthroline). An X-ray protein crystal structure of BMIE-modified CPG2-S203C demonstrates that the BMIE modification is minimally disruptive to the overall protein structure, including the carboxypeptidase active sites, although Zn++ metalation could not be conclusively discerned at the resolution obtained. The carboxypeptidase catalytic activity of BMIE-modified CPG2-S203C was also assayed and found to be minimally affected. These features, combined with ease of attachment, define the new BMIE-based ligation as a versatile metalloprotein design tool, and enable future catalytic and structural applications.
Collapse
Affiliation(s)
- Raheel Ahmad
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ 08854, United States of America
| | - Alexei M Tyryshkin
- Department of Marine and Coastal Sciences, Rutgers The State University of New Jersey, 71 Dudley Road, New Brunswick, NJ 08901, United States of America
| | - Lingjun Xie
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ 08854, United States of America
| | - William A Hansen
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ 08854, United States of America; Rutgers Center for Integrative Proteomics Research, 174 Frelinghuysen Rd, Piscataway, NJ 08854, United States of America
| | - Brahm J Yachnin
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ 08854, United States of America; Rutgers Center for Integrative Proteomics Research, 174 Frelinghuysen Rd, Piscataway, NJ 08854, United States of America
| | - Thomas J Emge
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ 08854, United States of America
| | - Ashraf Mashrai
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ 08854, United States of America; Rutgers Center for Integrative Proteomics Research, 174 Frelinghuysen Rd, Piscataway, NJ 08854, United States of America
| | - Sagar D Khare
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ 08854, United States of America; Rutgers Center for Integrative Proteomics Research, 174 Frelinghuysen Rd, Piscataway, NJ 08854, United States of America
| | - Spencer Knapp
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ 08854, United States of America.
| |
Collapse
|
46
|
Cao W, Maza JC, Chernyak N, Flygare JA, Krska SW, Toste FD, Francis MB. Modification of Cysteine-Substituted Antibodies Using Enzymatic Oxidative Coupling Reactions. Bioconjug Chem 2023; 34:510-517. [PMID: 36787347 DOI: 10.1021/acs.bioconjchem.2c00576] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Cysteines are routinely used as site-specific handles to synthesize antibody-drug conjugates for targeted immunotherapy applications. Michael additions between thiols and maleimides are some of the most common methods for modifying cysteines, but these functional groups can be difficult to prepare on scale, and the resulting linkages have been shown to be reversible under some physiological conditions. Here, we show that the enzyme tyrosinase, which oxidizes conveniently accessed phenols to afford reactive ortho-quinone intermediates, can be used to attach phenolic cargo to cysteines engineered on antibody surfaces. The resulting linkages between the thiols and ortho-quinones are shown to be more resistant than maleimides to reversion under physiological conditions. Using this approach, we construct antibody conjugates bearing cytotoxic payloads, which exhibit targeted cell killing, and further demonstrate this method for the attachment of a variety of cargo to antibodies, including fluorophores and oligonucleotides.
Collapse
Affiliation(s)
- Wendy Cao
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Johnathan C Maza
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Natalia Chernyak
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - John A Flygare
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Shane W Krska
- Department of Discovery Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - F Dean Toste
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Matthew B Francis
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
47
|
Microbubbles for human diagnosis and therapy. Biomaterials 2023; 294:122025. [PMID: 36716588 DOI: 10.1016/j.biomaterials.2023.122025] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Microbubbles (MBs) were observed for the first time in vivo as a curious consequence of quick saline injection during ultrasound (US) imaging of the aortic root, more than 50 years ago. From this serendipitous event, MBs are now widely used as contrast enhancers for US imaging. Their intrinsic properties described in this review, allow a multitude of designs, from shell to gas composition but also from grafting targeting agents to drug payload encapsulation. Indeed, the versatile MBs are deeply studied for their dual potential in imaging and therapy. As presented in this paper, new generations of MBs now opens perspectives for targeted molecular imaging along with the development of new US imaging systems. This review also presents an overview of the different therapeutic strategies with US and MBs for cancer, cardiovascular diseases, and inflammation. The overall aim is to overlap those fields in order to find similarities in the MBs application for treatment enhancement associated with US. To conclude, this review explores the new scales of MBs technologies with nanobubbles development, and along concurrent advances in the US imaging field. This review ends by discussing perspectives for the booming future uses of MBs.
Collapse
|
48
|
Wang Y, Li Z, Mo F, Chen-Mayfield TJ, Saini A, LaMere AM, Hu Q. Chemically engineering cells for precision medicine. Chem Soc Rev 2023; 52:1068-1102. [PMID: 36633324 DOI: 10.1039/d2cs00142j] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cell-based therapy holds great potential to address unmet medical needs and revolutionize the healthcare industry, as demonstrated by several therapeutics such as CAR-T cell therapy and stem cell transplantation that have achieved great success clinically. Nevertheless, natural cells are often restricted by their unsatisfactory in vivo trafficking and lack of therapeutic payloads. Chemical engineering offers a cost-effective, easy-to-implement engineering tool that allows for strengthening the inherent favorable features of cells and confers them new functionalities. Moreover, in accordance with the trend of precision medicine, leveraging chemical engineering tools to tailor cells to accommodate patients individual needs has become important for the development of cell-based treatment modalities. This review presents a comprehensive summary of the currently available chemically engineered tools, introduces their application in advanced diagnosis and precision therapy, and discusses the current challenges and future opportunities.
Collapse
Affiliation(s)
- Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Fanyi Mo
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Ting-Jing Chen-Mayfield
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Aryan Saini
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Afton Martin LaMere
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
49
|
Xue L, Yu D, Sun J, Guan L, Xie C, Wang L, Jia Y, Tian J, Fan H, Sun H. Rapid GSH detection and versatile peptide/protein labelling to track cell penetration using coumarin-based probes. Analyst 2023; 148:532-538. [PMID: 36349786 DOI: 10.1039/d2an01510b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Biothiols play essential roles in balancing the redox state and modulating cellular functions. Fluorescent probes for monitoring/labelling biothiols often suffer from slow reaction rates, strong background fluorescence and cytotoxic byproduct release. Thus, developing facile and versatile probes to overcome the challenges is still in high demand. Here, we report four coumarin-maleimides as fast responding and fluorogenic probes to detect GSH or label peptides/proteins. The probes quantitatively and selectively react with GSH via Michael addition within 1-2 min, achieving an 11-196-fold increase in fluorescence quantum yield via blockage of the photoinduced electron transfer (PET) process. Optimized probe 4 is applied for the detection of GSH in vitro (A549 cells) and in vivo (zebrafish embryos). Taking advantage of the fast Michael addition between the maleimide moiety and the sulfhydryl group, we expand the application of our method for fluorescent labelling of peptides/proteins and for tracking their cellular uptake process. The labelling strategy works for both Cys-bearing and Cys-free proteins after the introduction of a sulfhydryl group using Traut's reagent. Fluorescence assay reveals that the TAT-peptide can efficiently enter cells, but H3 protein, part of nucleosomes, prefers to bind on the cell membrane by electrostatic interactions, shedding light on the cellular uptake activity of nucleosomes and affording a potential membrane staining strategy. Overall, our study illustrates the broad potential of coumarin-maleimide based dual-functional probes for GSH detection and versatile protein labelling in biochemical research.
Collapse
Affiliation(s)
- Li Xue
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China. .,School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121001, P. R. China
| | - Dehao Yu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Jing Sun
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Liangyu Guan
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518132, P. R. China
| | - Chengzhi Xie
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Luo Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Yuanyuan Jia
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Junyu Tian
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Heli Fan
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Huabing Sun
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| |
Collapse
|
50
|
Johansen ML, Vincent J, Rose M, Sloan AE, Brady-Kalnay SM. Comparison of Near-Infrared Imaging Agents Targeting the PTPmu Tumor Biomarker. Mol Imaging Biol 2023:10.1007/s11307-023-01799-5. [PMID: 36695968 DOI: 10.1007/s11307-023-01799-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/26/2023]
Abstract
PURPOSE Maximal, safe resection of solid tumors is considered a critical first step in successful cancer treatment. The advent of fluorescence image-guided surgery (FIGS) using non-specific agents has improved patient outcomes, particularly in the case of glioblastoma. Molecularly targeted agents that recognize specific tumor biomarkers have the potential to augment these gains. Identification of the optimal combination of targeting moiety and fluorophore is needed prior to initiating clinical trials. PROCEDURES A 20-amino acid peptide (SBK2) recognizing the receptor protein-tyrosine phosphatase mu (PTPmu)-derived tumor-specific biomarker, with or without a linker, was conjugated to three different near-infrared fluorophores: indocyanine green (ICG), IRDye® 800CW, and Tide Fluor™ 8WS. The in vivo specificity, time course, and biodistribution were evaluated for each using mice with heterotopic human glioma tumors that express the PTPmu biomarker to identify component combinations with optimal properties for FIGS. RESULTS SBK2 conjugated to ICG demonstrated excellent specificity for gliomas in heterotopic tumors. SBK2-ICG showed significantly higher in vivo tumor labeling compared to the Scram-ICG control from 10 min to 24 h, p < 0.01 at all timepoints, following injection, as well as a significantly higher ex vivo tumor signal at 24 h, p < 0.001. Inserting a six-amino acid linker between the targeting peptide and ICG increased the clearance rate and resulted in significantly higher in vivo tumor signal relative to its linker-containing Scrambled control from 10 min to 8 h, p < 0.05 at all timepoints, after dosing. Agents made with the more hydrophilic IRDye® 800CW and Tide Fluor™ 8WS showed no specific tumor labeling relative to the controls. The IRDye 800CW-conjugated agents cleared within 1 h, while the non-specific fluorescent tumor signal generated by the Tide Fluor 8WS-conjugated agents persists beyond 24 h. CONCLUSIONS The SBK2 PTPmu-targeting peptide conjugated to ICG specifically labels heterotopic human gliomas grown in mice between 10 min and 24 h following injection. Similar molecules constructed with more hydrophilic dyes demonstrated no specificity. These studies present a promising candidate for use in FIGS of PTPmu biomarker-expressing tumors.
Collapse
Affiliation(s)
- Mette L Johansen
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH, 44106, USA
| | - Jason Vincent
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH, 44106, USA
| | - Marissa Rose
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH, 44106, USA
| | - Andrew E Sloan
- Department of Neurological Surgery, Case Western Reserve University and University Hospitals, Cleveland, OH, 44106, USA
- The Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH, 44106, USA
| | - Susann M Brady-Kalnay
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH, 44106, USA.
- The Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH, 44106, USA.
| |
Collapse
|