1
|
Yang S, Yu Y, Jo S, Lee Y, Son S, Lee KH. Calcium ion-triggered liquid-liquid phase separation of silk fibroin and spinning through acidification and shear stress. Nat Commun 2024; 15:10394. [PMID: 39614109 DOI: 10.1038/s41467-024-54588-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/15/2024] [Indexed: 12/01/2024] Open
Abstract
Many studies try to comprehend and replicate the natural silk spinning process due to its energy-efficient and eco-friendly process. In contrast to spider silk, the mechanisms of how silkworm silk fibroin (SF) undergoes liquid-liquid phase separation (LLPS) concerning the various environmental factors in the silk glands or how the SF coacervates transform into fibers remain unexplored. Here, we show that calcium ions, among the most abundant metal ions inside the silk glands, induce LLPS of SF under macromolecular crowded conditions by increasing both hydrophobic and electrostatic interactions between SF. Furthermore, SF coacervates assemble and further develop into fibrils under acidification and shear force. Finally, we prepare SF fiber using a pultrusion-based dry spinning, mirroring the natural silk spinning system. Unlike previous artificial spinning methods requiring concentrated solutions or harsh solvents, our process uses a less concentrated aqueous SF solution and minimal shear force, offering a biomimetic approach to fiber production.
Collapse
Affiliation(s)
- Sejun Yang
- Department of Agriculture, Forestry and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yeonwoo Yu
- Department of Agriculture, Forestry and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seonghyeon Jo
- Department of Agriculture, Forestry and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yehee Lee
- Department of Agriculture, Forestry and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seojin Son
- Department of Agriculture, Forestry and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Samsung SDI, 150-20, Gongse-ro, Giheung-gu, Yongin, Gyeonggi-do, 17084, Republic of Korea
| | - Ki Hoon Lee
- Department of Agriculture, Forestry and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Wu C, Duan Y, Yu L, Hu Y, Zhao C, Ji C, Guo X, Zhang S, Dai X, Ma P, Wang Q, Ling S, Yang X, Dai Q. In-situ observation of silk nanofibril assembly via graphene plasmonic infrared sensor. Nat Commun 2024; 15:4643. [PMID: 38821959 PMCID: PMC11143229 DOI: 10.1038/s41467-024-49076-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/20/2024] [Indexed: 06/02/2024] Open
Abstract
Silk nanofibrils (SNFs), the fundamental building blocks of silk fibers, endow them with exceptional properties. However, the intricate mechanism governing SNF assembly, a process involving both protein conformational transitions and protein molecule conjunctions, remains elusive. This lack of understanding has hindered the development of artificial silk spinning techniques. In this study, we address this challenge by employing a graphene plasmonic infrared sensor in conjunction with multi-scale molecular dynamics (MD). This unique approach allows us to probe the secondary structure of nanoscale assembly intermediates (0.8-6.2 nm) and their morphological evolution. It also provides insights into the dynamics of silk fibroin (SF) over extended molecular timeframes. Our novel findings reveal that amorphous SFs undergo a conformational transition towards β-sheet-rich oligomers on graphene. These oligomers then connect to evolve into SNFs. These insights provide a comprehensive picture of SNF assembly, paving the way for advancements in biomimetic silk spinning.
Collapse
Affiliation(s)
- Chenchen Wu
- CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing, 100190, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Duan
- CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing, 100190, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
| | - Lintao Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| | - Yao Hu
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chenxi Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| | - Chunwang Ji
- CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing, 100190, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xiangdong Guo
- CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing, 100190, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shu Zhang
- CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing, 100190, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaokang Dai
- CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing, 100190, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Puyi Ma
- CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing, 100190, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Wang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China.
| | - Xiaoxia Yang
- CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing, 100190, China.
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qing Dai
- CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing, 100190, China.
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Wu D, Koscic A, Schneider S, Dubini RCA, Rodriguez Camargo DC, Schneider S, Rovó P. Unveiling the Dynamic Self-Assembly of a Recombinant Dragline-Silk-Mimicking Protein. Biomacromolecules 2024; 25:1759-1774. [PMID: 38343096 PMCID: PMC10934265 DOI: 10.1021/acs.biomac.3c01239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 03/12/2024]
Abstract
Despite the considerable interest in the recombinant production of synthetic spider silk fibers that possess mechanical properties similar to those of native spider silks, such as the cost-effectiveness, tunability, and scalability realization, is still lacking. To address this long-standing challenge, we have constructed an artificial spider silk gene using Golden Gate assembly for the recombinant bacterial production of dragline-mimicking silk, incorporating all the essential components: the N-terminal domain, a 33-residue-long major-ampullate-spidroin-inspired segment repeated 16 times, and the C-terminal domain (N16C). This designed silk-like protein was successfully expressed in Escherichia coli, purified, and cast into films from formic acid. We produced uniformly 13C-15N-labeled N16C films and employed solid-state magic-angle spinning nuclear magnetic resonance (NMR) for characterization. Thus, we could demonstrate that our bioengineered silk-like protein self-assembles into a film where, when hydrated, the solvent-exposed layer of the rigid, β-nanocrystalline polyalanine core undergoes a transition to an α-helical structure, gaining mobility to the extent that it fully dissolves in water and transforms into a highly dynamic random coil. This hydration-induced behavior induces chain dynamics in the glycine-rich amorphous soft segments on the microsecond time scale, contributing to the elasticity of the solid material. Our findings not only reveal the presence of structurally and dynamically distinct segments within the film's superstructure but also highlight the complexity of the self-organization responsible for the exceptional mechanical properties observed in proteins that mimic dragline silk.
Collapse
Affiliation(s)
- Dongqing Wu
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Anamaria Koscic
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Sonja Schneider
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Romeo C. A. Dubini
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Center
for Nanoscience (CeNS), Faculty of Physics, Ludwig-Maximilians-Universität München, 80799 Munich, Germany
| | - Diana C. Rodriguez Camargo
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Sabine Schneider
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Petra Rovó
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Institute
of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
4
|
Peng X, Liu Z, Gao J, Zhang Y, Wang H, Li C, Lv X, Gao Y, Deng H, Zhao B, Gao T, Li H. Influence of Spider Silk Protein Structure on Mechanical and Biological Properties for Energetic Material Detection. Molecules 2024; 29:1025. [PMID: 38474537 PMCID: PMC10934110 DOI: 10.3390/molecules29051025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Spider silk protein, renowned for its excellent mechanical properties, biodegradability, chemical stability, and low immune and inflammatory response activation, consists of a core domain with a repeat sequence and non-repeating sequences at the N-terminal and C-terminal. In this review, we focus on the relationship between the silk structure and its mechanical properties, exploring the potential applications of spider silk materials in the detection of energetic materials.
Collapse
Affiliation(s)
- Xinying Peng
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Zhiyong Liu
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Junhong Gao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Yuhao Zhang
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Hong Wang
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Cunzhi Li
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Xiaoqiang Lv
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Yongchao Gao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Hui Deng
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Bin Zhao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Ting Gao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Huan Li
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| |
Collapse
|
5
|
Tolmachev DA, Malkamäki M, Linder MB, Sammalkorpi M. Spidroins under the Influence of Alcohol: Effect of Ethanol on Secondary Structure and Molecular Level Solvation of Silk-Like Proteins. Biomacromolecules 2023; 24:5638-5653. [PMID: 38019577 PMCID: PMC10716855 DOI: 10.1021/acs.biomac.3c00637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/30/2023]
Abstract
Future sustainable materials based on designer biomolecules require control of the solution assembly, but also interfacial interactions. Alcohol treatments of protein materials are an accessible means to this, making understanding of the process at the molecular level of seminal importance. We focus here on the influence of ethanol on spidroins, the main proteins of silk. By large-scale atomistically detailed molecular dynamics (MD) simulations and interconnected experiments, we characterize the protein aggregation, secondary structure changes, molecular level origins of them, and solvation environment changes for the proteins, as induced by ethanol as a solvation additive. The MD and circular dichoroism (CD) findings jointly show that ethanol promotes ordered structure in the protein molecules, leading to an increase of helix content and turns but also increased aggregation, as revealed by dynamic light scattering (DLS) and light microscopy. The structural changes correlate at the molecular level with increased intramolecular hydrogen bonding. The simulations reveal that polar amino acids, such as glutamine and serine, are most influenced by ethanol, whereas glycine residues are most prone to be involved in the ethanol-induced secondary structure changes. Furthermore, ethanol engages in interactions with the hydrophobic alanine-rich regions of the spidroin, significantly decreasing the hydrophobic interactions of the protein with itself and its surroundings. The protein solutes also change the microstructure of water/ethanol mixtures, essentially decreasing the level of larger local clustering. Overall, the work presents a systematic characterization of ethanol effects on a widely used, common protein type, spidroins, and generalizes the findings to other intrinsically disordered proteins by pinpointing the general features of the response. The results can aid in designing effective alcohol treatments for proteins, but also enable design and tuning of protein material properties by a relatively controllable solvation handle, the addition of ethanol.
Collapse
Affiliation(s)
- Dmitry A. Tolmachev
- Department
of Chemistry and Materials Science, Aalto
University, P.O. Box 16100, FI-00076 Aalto, Finland
- Academy
of Finland Center of Excellence in Life-Inspired Hybrid Materials
(LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Maaria Malkamäki
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Academy
of Finland Center of Excellence in Life-Inspired Hybrid Materials
(LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Markus B. Linder
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Academy
of Finland Center of Excellence in Life-Inspired Hybrid Materials
(LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Maria Sammalkorpi
- Department
of Chemistry and Materials Science, Aalto
University, P.O. Box 16100, FI-00076 Aalto, Finland
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Academy
of Finland Center of Excellence in Life-Inspired Hybrid Materials
(LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| |
Collapse
|
6
|
Saric M, Scheibel T. Two-in-One Spider Silk Protein with Combined Mechanical Features in All-Aqueous Spun Fibers. Biomacromolecules 2023; 24:1744-1750. [PMID: 36913547 DOI: 10.1021/acs.biomac.2c01500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Major ampullate (MA) spider silk reveals outstanding mechanical properties in terms of a unique combination of high tensile strength and extensibility, unmatched by most other known native or synthetic fiber materials. MA silk contains at least two spider silk proteins (spidroins), and here, a novel two-in-one (TIO) spidroin was engineered, resembling amino acid sequences of such two of the European garden spider. The combination of mechanical and chemical features of both underlying proteins facilitated the hierarchical self-assembly into β-sheet-rich superstructures. Due to the presence of native terminal dimerization domains, highly concentrated aqueous spinning dopes could be prepared from recombinant TIO spidroins. Subsequently, fibers were spun in a biomimetic, aqueous wet-spinning process, yielding mechanical properties at least twice as high as fibers spun from individual spidroins or blends. The presented processing route holds great potential for future applications using ecological green high-performance fibers.
Collapse
Affiliation(s)
- Merisa Saric
- Lehrstuhl Biomaterialien, Universität Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien, Universität Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany.,Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany.,Bayreuther Materialzentrum (BayMat), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany.,Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany.,Bayrisches Polymerinstitut (BPI), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
7
|
Rising A, Harrington MJ. Biological Materials Processing: Time-Tested Tricks for Sustainable Fiber Fabrication. Chem Rev 2023; 123:2155-2199. [PMID: 36508546 DOI: 10.1021/acs.chemrev.2c00465] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is an urgent need to improve the sustainability of the materials we produce and use. Here, we explore what humans can learn from nature about how to sustainably fabricate polymeric fibers with excellent material properties by reviewing the physical and chemical aspects of materials processing distilled from diverse model systems, including spider silk, mussel byssus, velvet worm slime, hagfish slime, and mistletoe viscin. We identify common and divergent strategies, highlighting the potential for bioinspired design and technology transfer. Despite the diversity of the biopolymeric fibers surveyed, we identify several common strategies across multiple systems, including: (1) use of stimuli-responsive biomolecular building blocks, (2) use of concentrated fluid precursor phases (e.g., coacervates and liquid crystals) stored under controlled chemical conditions, and (3) use of chemical (pH, salt concentration, redox chemistry) and physical (mechanical shear, extensional flow) stimuli to trigger the transition from fluid precursor to solid material. Importantly, because these materials largely form and function outside of the body of the organisms, these principles can more easily be transferred for bioinspired design in synthetic systems. We end the review by discussing ongoing efforts and challenges to mimic biological model systems, with a particular focus on artificial spider silks and mussel-inspired materials.
Collapse
Affiliation(s)
- Anna Rising
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 141 52, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | | |
Collapse
|
8
|
Wen R, Wang S, Wang K, Yang D, Zan X, Meng Q. Complete gene sequence and mechanical property of the fourth type of major ampullate silk protein. Acta Biomater 2023; 155:282-291. [PMID: 36427684 DOI: 10.1016/j.actbio.2022.11.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Spiders spin a great diversity of silk types for daily survival and reproduction. Of the six orb-weaver silk types, the dragline silk forming orb web frame attracts the most attention because of its extremely high tensile strength and toughness. So far, four types of major ampullate silk proteins (MaSp1-4) that make up dragline silk have been identified. These MaSp types have diversified amino acid motifs that underlie the impressive mechanical property of dragline silk by forming particular structures. Existing knowledge of MaSp4 proteins is fragmented, making it difficult to illuminate the structure and function of MaSp4. Here, we report the full-length MaSp4 gene with 11,334 bp from the orb-weaving spider Araneus ventricosus. Removing the only intron, the spliced complete transcript of MaSp4 gene is 6897 bp and encodes 2298 amino acids. Analysis of the primary structure of A. ventricosus MaSp4 protein reveals the repetitive region lacks poly-A and GGX motifs but has the unique GPGPQ motifs. Quantitative real-time PCR analyses show high levels of MaSp4 mRNA were detected in major ampullate gland. Structural characterization using CD- and FTIR sepctroscopy reveals a mainly α-helical solution conformation and a very high β-turn content within fibers. Collectively, our new findings provide complete template for recombinant silk protein with specific properties and support that the GPGPQ motif found in MaSp4 could increase flexibility in dragline silk by packing in more β-turns, expanding the repertoire of sequences known to form β-turn that is available for artificial chimeric silk fibers. STATEMENT OF SIGNIFICANCE: Dragline silk forming orb web frame attracts the most attention because of its extremely high tensile strength and toughness. So far, four types of major ampullate silk proteins (MaSp1-4) that make up dragline silk have been identified. Existing knowledge of MaSp4 proteins is fragmented, making it difficult to illuminate the structure and function of MaSp4. Here, we report the full-length MaSp4 gene from the orb-weaving spider Araneus ventricosus. We further identify the sequence, structure, and mechanical property of MaSp4 protein, providing a new insight into the structure-funtion relationships associated with MaSp4. Collectively, our new findings provide complete template for recombinant silk protein with specific properties and support that the GPGPQ motif found in MaSp4 could increase flexibility in dragline silk by packing in more β-turns, expanding the repertoire of sequences known to form β-turn that is available for artificial chimeric silk fibers.
Collapse
Affiliation(s)
- Rui Wen
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Department of Anesthesiology, Wenzhou Key Laboratory of perioperative medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Suyang Wang
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | - Kangkang Wang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Dong Yang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Department of Anesthesiology, Wenzhou Key Laboratory of perioperative medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
9
|
Yu N, Yang Z, Fan Z, Liu Z. Classification and functional characterization of spidroin genes in a wandering spider, Pardosa pseudoannulata. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 151:103862. [PMID: 36328175 DOI: 10.1016/j.ibmb.2022.103862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Spiders impress us with their sophisticated use of silk and the stunningly distinct silk proteins (spidroins) in each spider species. Understanding how silks and spidroins function and evolve within the spider world is one profound interest to expand our knowledge on spider evolution. Spidroins are characterized with the divergent repeat core region flanked with the relatively conserved N- and C-terminus. The structure and number of the repeats contribute to the unique mechanical properties of the spidroin and the silk. Spidroins have been intensively studied in web-weaver spiders, but information regarding their diversity in wandering spiders remains scarce. Here, twenty spidroin genes were identified in the pond wolf spider, Pardosa pseudoannulata, belonging to the retrolateral tibial apophysis (RTA) clade. These spidroins were categorized into four classes, including twelve ampullate spidroin (AmpSp), four aciniform spidroin (AcSp), one tubuliform spidroin (TuSp), one pyriform spidroin (PiSp), and two spidroin-like proteins. Multiple copies of the AmpSp and AcSp genes were tandemly arranged in a cluster within the genome, and the N-terminal domains and repetitive sequences of the proximately located spidroins were highly similar, suggesting that the spidroin genes diversified via tandem duplication. Only four types of morphologically distinct silk glands were found in P. pseudoannulata, namely Ma, Mi, Ac, and Pi glands, consistent with the glandular affiliation hypothesis that spidroins co-evolved with glandular specialization to fit species-specific needs. Expression profiling revealed that the single tubuliform spidroin (TuSp) gene was highly expressed in gravid females and two AcSp genes displayed synchronous expression. Knock-down of the TuSp gene via RNAi resulted in fragile and cracked eggsacs and prolonged the female pre-oviposition period, validating its importance in spider reproduction. The genome-scale characterization and functional study of spidroin genes allows associating the presence of specific spidroins with silk utility in P. pseudoannulata and will expand our knowledge of spider evolution.
Collapse
Affiliation(s)
- Na Yu
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Zhiming Yang
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Zheng Fan
- School of Life Sciences, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Zewen Liu
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China.
| |
Collapse
|
10
|
Ramezaniaghdam M, Nahdi ND, Reski R. Recombinant Spider Silk: Promises and Bottlenecks. Front Bioeng Biotechnol 2022; 10:835637. [PMID: 35350182 PMCID: PMC8957953 DOI: 10.3389/fbioe.2022.835637] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/01/2022] [Indexed: 02/02/2023] Open
Abstract
Spider silk threads have exceptional mechanical properties such as toughness, elasticity and low density, which reach maximum values compared to other fibre materials. They are superior even compared to Kevlar and steel. These extraordinary properties stem from long length and specific protein structures. Spider silk proteins can consist of more than 20,000 amino acids. Polypeptide stretches account for more than 90% of the whole protein, and these domains can be repeated more than a hundred times. Each repeat unit has a specific function resulting in the final properties of the silk. These properties make them attractive for innovative material development for medical or technical products as well as cosmetics. However, with livestock breeding of spiders it is not possible to reach high volumes of silk due to the cannibalistic behaviour of these animals. In order to obtain spider silk proteins (spidroins) on a large scale, recombinant production is attempted in various expression systems such as plants, bacteria, yeasts, insects, silkworms, mammalian cells and animals. For viable large-scale production, cost-effective and efficient production systems are needed. This review describes the different types of spider silk, their proteins and structures and discusses the production of these difficult-to-express proteins in different host organisms with an emphasis on plant systems.
Collapse
Affiliation(s)
- Maryam Ramezaniaghdam
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS at FIT – Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Nadia D. Nahdi
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS at FIT – Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Laity PR, Holland C. Seeking Solvation: Exploring the Role of Protein Hydration in Silk Gelation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020551. [PMID: 35056868 PMCID: PMC8781151 DOI: 10.3390/molecules27020551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 02/05/2023]
Abstract
The mechanism by which arthropods (e.g., spiders and many insects) can produce silk fibres from an aqueous protein (fibroin) solution has remained elusive, despite much scientific investigation. In this work, we used several techniques to explore the role of a hydration shell bound to the fibroin in native silk feedstock (NSF) from Bombyx mori silkworms. Small angle X-ray and dynamic light scattering (SAXS and DLS) revealed a coil size (radius of gyration or hydrodynamic radius) around 12 nm, providing considerable scope for hydration. Aggregation in dilute aqueous solution was observed above 65 °C, matching the gelation temperature of more concentrated solutions and suggesting that the strength of interaction with the solvent (i.e., water) was the dominant factor. Infrared (IR) spectroscopy indicated decreasing hydration as the temperature was raised, with similar changes in hydration following gelation by freezing or heating. It was found that the solubility of fibroin in water or aqueous salt solutions could be described well by a relatively simple thermodynamic model for the stability of the protein hydration shell, which suggests that the affected water is enthalpically favoured but entropically penalised, due to its reduced (vibrational or translational) dynamics. Moreover, while the majority of this investigation used fibroin from B. mori, comparisons with published work on silk proteins from other silkworms and spiders, globular proteins and peptide model systems suggest that our findings may be of much wider significance.
Collapse
|
12
|
Wen R, Wang K, Yang D, Yu T, Zan X, Meng Q. The novel aciniform silk protein (AcSp2-v2) reveals the unique repetitive domain with high acid and thermal stability and self-assembly capability. Int J Biol Macromol 2021; 202:91-101. [PMID: 34973994 DOI: 10.1016/j.ijbiomac.2021.12.088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 12/01/2022]
Abstract
Orb-weaving spiders spin a mechanically and functionally diverse range of silk fibers, each composed of one or more specific silk proteins. Of all silk types, wrapping silk combines high strength and extensibility and is made of multiple aciniform silk proteins (AcSp) that can be grouped into two AcSp types (AcSp1 and AcSp2) according to their distinct repetitive regions. Here, we present a novel and complete AcSp gene from orb weaving spider Araneus ventricosus. Phylogenetic analysis of the terminal regions of spidroins reveals that the new silk protein and the published A. ventricosus AcSp2 together form a subclade, indicating that this protein is a member of AcSp2 subclass and therefore named AcSp2 variant 2 (AcSp2-v2). The repetitive region of A. ventricosus AcSp2-v2 contains 24 cysteine residues, which is the first time that cysteine has been found in repetitive regions of spidroins. Moreover, the discovery of the ability of AcSp2-v2 repetitive domain to self-assemble into silk fibers expands the repertoire of known self-assembling sequences.
Collapse
Affiliation(s)
- Rui Wen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China; Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | - Kangkang Wang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Dong Yang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Tiantian Yu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Xingjie Zan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
13
|
Li X, Qi X, Cai YM, Sun Y, Wen R, Zhang R, Johansson J, Meng Q, Chen G. Customized Flagelliform Spidroins Form Spider Silk-like Fibers at pH 8.0 with Outstanding Tensile Strength. ACS Biomater Sci Eng 2021; 8:119-127. [PMID: 34908395 PMCID: PMC8753598 DOI: 10.1021/acsbiomaterials.1c01354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spider flagelliform silk shows the best extensibility among various types of silk, but its biomimetic preparation has not been much studied. Herein, five customized flagelliform spidroins (FlSps: S and NTDFl-Sn-CTDFl, n = 1-4), in which the repetitive region (S) and N-/C- terminal domains (NTDFl and CTDFl) are from the same spidroin and spider species, were produced recombinantly. The recombinant spidroins with terminal domains were able to form silk-like fibers with diameters of ∼5 μm by manual pulling at pH 8.0, where the secondary structure transformation occurred. The silk-like fibers from NTDFl-S4-CTDFl showed the highest tensile strength (∼250 MPa), while those ones with 1-3 S broke at a similar stress (∼180 MPa), suggesting that increasing the amounts of the repetitive region can improve the tensile strength, but a certain threshold might need to be reached. This study shows successful preparation of flagelliform silk-like fibers with good mechanical properties, providing general insights into efficient biomimetic preparations of spider silks.
Collapse
Affiliation(s)
- Xue Li
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, 200092 Shanghai, China.,Institute of Biological Sciences and Biotechnology, Donghua University, 201620 Shanghai, China
| | - Xingmei Qi
- The Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Yu-Ming Cai
- Institute for Life Sciences, University of Southampton, SO17 1BJ Southampton, Hampshire, U.K
| | - Yuan Sun
- Institute of Biological Sciences and Biotechnology, Donghua University, 201620 Shanghai, China
| | - Rui Wen
- Institute of Biological Sciences and Biotechnology, Donghua University, 201620 Shanghai, China
| | - Rui Zhang
- Department of Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, 14157 Huddinge, Sweden
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, 201620 Shanghai, China
| | - Gefei Chen
- Department of Biosciences and Nutrition, Karolinska Institutet, 14157 Huddinge, Sweden
| |
Collapse
|
14
|
Hu CF, Qian ZG, Peng Q, Zhang Y, Xia XX. Unconventional Spidroin Assemblies in Aqueous Dope for Spinning into Tough Synthetic Fibers. ACS Biomater Sci Eng 2021; 7:3608-3617. [PMID: 34259496 DOI: 10.1021/acsbiomaterials.1c00492] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spider dragline silk is a remarkable fiber made by spiders from an aqueous solution of spidroins, and this feat is largely attributed to the tripartite domain architecture of the silk proteins leading to the hierarchical assembly at the nano- and microscales. Although individual amino- and carboxy-terminal domains have been proposed to relate to silk protein assembly, their tentative synergizing roles in recombinant spidroin storage and spinning into synthetic fibers remain elusive. Here, we show biosynthesis and self-assembly of a mimic spidroin composed of amino- and carboxy-terminal domains bracketing 16 consensus repeats of the core region from spider Trichonephila clavipes. The presence of both termini was found essential for self-assembly of the mimic spidroin termed N16C into fibril-like (rather than canonical micellar) nanostructures in concentrated aqueous dope and ordered alignment of these nanofibrils upon extrusion into an acidic coagulation bath. This ultimately led to continuous, macroscopic fibers with a tensile fracture toughness of 100.9 ± 13.2 MJ m-3, which is comparable to that of their natural counterparts. We also found that the recombinant proteins lacking one or both termini were unable to similarly preassemble into fibrillar nanostructures in dopes and thus yielded inferior fiber properties. This work thereby highlights the synergizing role of terminal domains in the storage and processing of recombinant analogues into tough synthetic fibers.
Collapse
Affiliation(s)
- Chun-Fei Hu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Qingfa Peng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibres and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
15
|
Saric M, Eisoldt L, Döring V, Scheibel T. Interplay of Different Major Ampullate Spidroins during Assembly and Implications for Fiber Mechanics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006499. [PMID: 33496360 PMCID: PMC11468934 DOI: 10.1002/adma.202006499] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Major ampullate (MA) spider silk has fascinating mechanical properties combining strength and elasticity. All known natural MA silks contain at least two or more different spidroins; however, it is unknown why and if there is any interplay in the spinning dope. Here, two different spidroins from Araneus diadematus are co-produced in Escherichia coli to study the possible dimerization and effects thereof on the mechanical properties of fibers. During the production of the two spidroins, a mixture of homo- and heterodimers is formed triggered by the carboxyl-terminal domains. Interestingly, homodimeric species of the individual spidroins self-assemble differently in comparison to heterodimers, and stoichiometric mixtures of homo- and heterodimers yield spidroin networks upon assembly with huge impact on fiber mechanics upon spinning. The obtained results provide the basis for man-made tuning of spinning dopes to yield high-performance fibers.
Collapse
Affiliation(s)
- Merisa Saric
- Lehrstuhl BiomaterialienUniversität BayreuthProf‐Rüdiger‐Bormann‐Str. 1Bayreuth95447Germany
| | - Lukas Eisoldt
- Lehrstuhl BiomaterialienUniversität BayreuthProf‐Rüdiger‐Bormann‐Str. 1Bayreuth95447Germany
| | - Volker Döring
- Lehrstuhl BiomaterialienUniversität BayreuthProf‐Rüdiger‐Bormann‐Str. 1Bayreuth95447Germany
| | - Thomas Scheibel
- Lehrstuhl BiomaterialienUniversität BayreuthProf‐Rüdiger‐Bormann‐Str. 1Bayreuth95447Germany
| |
Collapse
|
16
|
Arndt T, Laity PR, Johansson J, Holland C, Rising A. Native-like Flow Properties of an Artificial Spider Silk Dope. ACS Biomater Sci Eng 2021; 7:462-471. [PMID: 33397078 PMCID: PMC7869106 DOI: 10.1021/acsbiomaterials.0c01308] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Recombinant
spider silk has emerged as a biomaterial that can circumvent
problems associated with synthetic and naturally derived polymers,
while still fulfilling the potential of the native material. The artificial
spider silk protein NT2RepCT can be produced and spun into fibers
without the use of harsh chemicals and here we evaluate key properties of NT2RepCT
dope at native-like concentrations. We show that NT2RepCT recapitulates
not only the overall secondary structure content of a native silk
dope but also emulates its viscoelastic rheological properties. We
propose that these properties are key to biomimetic spinning and that
optimization of rheological properties could facilitate successful
spinning of artificial dopes into fibers.
Collapse
Affiliation(s)
- Tina Arndt
- Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Neo, Blickagången 16, Huddinge 141 52, Sweden
| | - Peter R Laity
- Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, United Kingdom
| | - Jan Johansson
- Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Neo, Blickagången 16, Huddinge 141 52, Sweden
| | - Chris Holland
- Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, United Kingdom
| | - Anna Rising
- Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Neo, Blickagången 16, Huddinge 141 52, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| |
Collapse
|
17
|
Chakraborty R, Fan JS, Lai CC, Raghuvamsi PV, Chee PX, Anand GS, Yang D. Structural Basis of Oligomerization of N-Terminal Domain of Spider Aciniform Silk Protein. Int J Mol Sci 2020; 21:ijms21124466. [PMID: 32586030 PMCID: PMC7352312 DOI: 10.3390/ijms21124466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 01/28/2023] Open
Abstract
Spider silk is self-assembled from water-soluble silk proteins through changes in the environment, including pH, salt concentrations, and shear force. The N-terminal domains of major and minor ampullate silk proteins have been found to play an important role in the assembly process through salt- and pH-dependent dimerization. Here, we identified the sequences of the N-terminal domains of aciniform silk protein (AcSpN) and major ampullate silk protein (MaSpN) from Nephila antipodiana (NA). Different from MaSpN, our biophysical characterization indicated that AcSpN assembles to form large oligomers, instead of a dimer, upon condition changes from neutral to acidic pH and/or from a high to low salt concentration. Our structural studies, by nuclear magnetic resonance spectroscopy and homology modelling, revealed that AcSpN and MaSpN monomers adopt similar overall structures, but have very different charge distributions contributing to the differential self-association features. The intermolecular interaction interfaces for AcSp oligomers were identified using hydrogen–deuterium exchange mass spectrometry and mutagenesis. On the basis of the monomeric structure and identified interfaces, the oligomeric structures of AcSpN were modelled. The structural information obtained will facilitate an understanding of silk fiber formation mechanisms for aciniform silk protein.
Collapse
|
18
|
Abstract
Spider web proteins are unique materials created by nature that, considering the combination of their properties, do not have analogues among natural or human-created materials. Obtaining significant amounts of these proteins from natural sources is not feasible. Biotechnological manufacturing in heterological systems is complicated by the very high molecular weight of spidroins and their specific amino acid composition. Obtaining recombinant analogues of spidroins in heterological systems, mainly in bacteria and yeast, has become a compromise solution. Because they can self-assemble, these proteins can form various materials, such as fibers, films, 3D-foams, hydrogels, tubes, and microcapsules. The effectiveness of spidroin hydrogels in deep wound healing, as 3D scaffolds for bone tissue regeneration and as oriented fibers for axon growth and nerve tissue regeneration, was demonstrated in animal models. The possibility to use spidroin micro- and nanoparticles for drug delivery was demonstrated, including the use of modified spidroins for virus-free DNA delivery into animal cell nuclei. In the past few years, significant interest has arisen concerning the use of these materials as biocompatible and biodegradable soft optics to construct photonic crystal super lenses and fiber optics and as soft electronics to use in triboelectric nanogenerators. This review summarizes the latest achievements in the field of spidroin production, the creation of materials based on them, the study of these materials as a scaffold for the growth, proliferation, and differentiation of various types of cells, and the prospects for using these materials for medical applications (e.g., tissue engineering, drug delivery, coating medical devices), soft optics, and electronics. Accumulated data suggest the use of recombinant spidroins in medical practice in the near future.
Collapse
Affiliation(s)
- Vladimir G Debabov
- State Research Institute for Genetics and Selection of Industrial Microorganisms of National Research Center "Kurchatov Institute" (NRC "Kurchatov Institute"-GOSNIIGENETIKA), Moscow 117545, Russia
| | - Vladimir G Bogush
- State Research Institute for Genetics and Selection of Industrial Microorganisms of National Research Center "Kurchatov Institute" (NRC "Kurchatov Institute"-GOSNIIGENETIKA), Moscow 117545, Russia
| |
Collapse
|
19
|
Saric M, Scheibel T. Engineering of silk proteins for materials applications. Curr Opin Biotechnol 2019; 60:213-220. [DOI: 10.1016/j.copbio.2019.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 05/07/2019] [Indexed: 11/26/2022]
|
20
|
Nanostructured, Self-Assembled Spider Silk Materials for Biomedical Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1174:187-221. [PMID: 31713200 DOI: 10.1007/978-981-13-9791-2_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The extraordinary mechanical properties of spider silk fibers result from the interplay of composition, structure and self-assembly of spider silk proteins (spidroins). Genetic approaches enabled the biotechnological production of recombinant spidroins which have been employed to unravel the self-assembly and spinning process. Various processing conditions allowed to explore non-natural morphologies including nanofibrils, particles, capsules, hydrogels, films or foams. Recombinant spider silk proteins and materials made thereof can be utilized for biomedical applications, such as drug delivery, tissue engineering or 3D-biomanufacturing.
Collapse
|