1
|
Wang Y, Duan Y, Yang B, Li Y. Nanocomposite Hydrogel Bioinks for 3D Bioprinting of Tumor Models. Biomacromolecules 2024; 25:5288-5299. [PMID: 39083715 DOI: 10.1021/acs.biomac.4c00671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
In vitro tumor models were successfully constructed by 3D bioprinting; however, bioinks with proper viscosity, good biocompatibility, and tunable biophysical and biochemical properties are highly desirable for tumor models that closely recapitulated the main features of native tumors. Here, we developed a nanocomposite hydrogel bioink that was used to construct ovarian and colon cancer models by 3D bioprinting. The nanocomposite bioink was composed of aldehyde-modified cellulose nanocrystals (aCNCs), aldehyde-modified hyaluronic acid (aHA), and gelatin. The hydrogels possessed tunable gelation time, mechanical properties, and printability by controlling the ratio between aCNCs and gelatin. In addition, ovarian and colorectal cancer cells embedded in hydrogels showed high survival rates and rapid growth. By the combination of 3D bioprinting, ovarian and colorectal tumor models were constructed in vitro and used for drug screening. The results showed that gemcitabine had therapeutic effects on ovarian tumor cells. However, the ovarian tumor model showed drug resistance for oxaliplatin treatment.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yixiong Duan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130061, China
| | - Yunfeng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130061, China
| |
Collapse
|
2
|
Ma Y, Morozova SM, Kumacheva E. From Nature-Sourced Polysaccharide Particles to Advanced Functional Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312707. [PMID: 38391153 DOI: 10.1002/adma.202312707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Polysaccharides constitute over 90% of the carbohydrate mass in nature, which makes them a promising feedstock for manufacturing sustainable materials. Polysaccharide particles (PSPs) are used as effective scavengers, carriers of chemical and biological cargos, and building blocks for the fabrication of macroscopic materials. The biocompatibility and degradability of PSPs are advantageous for their uses as biomaterials with more environmental friendliness. This review highlights the progresses in PSP applications as advanced functional materials, by describing PSP extraction, preparation, and surface functionalization with a variety of functional groups, polymers, nanoparticles, and biologically active species. This review also outlines the fabrication of PSP-derived macroscopic materials, as well as their applications in soft robotics, sensing, scavenging, water harvesting, drug delivery, and bioengineering. The paper is concluded with an outlook providing perspectives in the development and applications of PSP-derived materials.
Collapse
Affiliation(s)
- Yingshan Ma
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Sofia M Morozova
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
- Center of Fluid Physics and Soft Matter, N.E. Bauman Moscow State Technical University, 5/1 2-nd Baumanskaya street, Moscow, 105005, Russia
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, 4 Taddle Creek Road, Toronto, Ontario, M5S 3G9, Canada
| |
Collapse
|
3
|
Ben Messaoud G, Stefanopoulou E, Wachendörfer M, Aveic S, Fischer H, Richtering W. Structuring gelatin methacryloyl - dextran hydrogels and microgels under shear. SOFT MATTER 2024; 20:773-787. [PMID: 38165831 DOI: 10.1039/d3sm01365k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Gelatin methacryloyl (GelMA) is a widely used semi-synthetic polymer for a variety of bioapplications. However, the development of versatile GelMA hydrogels requires tuning of their microstructure. Herein, we report the possibility of preparing hydrogels with various microstructures under shear from an aqueous two-phase system (ATPS) consisting of GelMA and dextran. The influence of an applied preshear on dextran/GelMA droplets and bicontinuous systems is investigated by rheology that allows the application of a constant shear and is immediately followed by in situ UV-curing of the GelMA-rich phase. The microstructure of the resulting hydrogels is examined by confocal laser scanning microscopy (CLSM). The results show that the GelMA string phase and GelMA hydrogels with aligned bands can be formed depending on the concentration of dextran and the applied preshear. The influence of the pH of the ATPS is investigated and demonstrates the formation of multiple emulsions upon decreasing the charge density of GelMA. The preshearing of multiple emulsions, following gelation, leads to the formation of porous GelMA microgels. The diversity of the formed structures highlights the application potential of preshearing ATPS in the development of functional soft materials.
Collapse
Affiliation(s)
- Ghazi Ben Messaoud
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany
| | - Evdokia Stefanopoulou
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany
| | - Mattis Wachendörfer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Sanja Aveic
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany
| |
Collapse
|
4
|
Prince E, Morozova S, Chen Z, Adibnia V, Yakavets I, Panyukov S, Rubinstein M, Kumacheva E. Nanocolloidal hydrogel mimics the structure and nonlinear mechanical properties of biological fibrous networks. Proc Natl Acad Sci U S A 2023; 120:e2220755120. [PMID: 38091296 PMCID: PMC10743449 DOI: 10.1073/pnas.2220755120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/03/2023] [Indexed: 12/18/2023] Open
Abstract
Fibrous networks formed by biological polymers such as collagen or fibrin exhibit nonlinear mechanical behavior. They undergo strong stiffening in response to weak shear and elongational strains, but soften under compressional strain, in striking difference with the response to the deformation of flexible-strand networks formed by molecules. The nonlinear properties of fibrous networks are attributed to the mechanical asymmetry of the constituent filaments, for which a stretching modulus is significantly larger than the bending modulus. Studies of the nonlinear mechanical behavior are generally performed on hydrogels formed by biological polymers, which offers limited control over network architecture. Here, we report an engineered covalently cross-linked nanofibrillar hydrogel derived from cellulose nanocrystals and gelatin. The variation in hydrogel composition provided a broad-range change in its shear modulus. The hydrogel exhibited both shear-stiffening and compression-induced softening, in agreement with the predictions of the affine model. The threshold nonlinear stress and strain were universal for the hydrogels with different compositions, which suggested that nonlinear mechanical properties are general for networks formed by rigid filaments. The experimental results were in agreement with an affine model describing deformation of the network formed by rigid filaments. Our results lend insight into the structural features that govern the nonlinear biomechanics of fibrous networks and provide a platform for future studies of the biological impact of nonlinear mechanical properties.
Collapse
Affiliation(s)
- Elisabeth Prince
- Department of Chemistry, University of Toronto, Toronto, ONM5S3H6, Canada
- Department of Chemical Engineering, University of Waterloo, Waterloo, ONN2L3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ONN2L3G1, Canada
| | - Sofia Morozova
- Department of Chemistry, University of Toronto, Toronto, ONM5S3H6, Canada
- N. E. Bauman Moscow State Technical University, Moscow105005, Russia
| | - Zhengkun Chen
- Department of Chemistry, University of Toronto, Toronto, ONM5S3H6, Canada
| | - Vahid Adibnia
- Department of Chemistry, University of Toronto, Toronto, ONM5S3H6, Canada
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NSB3H4R2, Canada
| | - Ilya Yakavets
- Department of Chemistry, University of Toronto, Toronto, ONM5S3H6, Canada
| | - Sergey Panyukov
- Center of Soft Matter and Physics of Fluids, P. N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow117924, Russia
- Department of Theoretical Physics, Moscow Institute of Physics and Technology, Moscow 141700, Russia
| | - Michael Rubinstein
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC27708
- Department of Biomedical Engineering, Duke University, Durham, NC27708
- Department of Physics, Duke University, Durham, NC27708
- Department of Chemistry, Duke University, Durham, NC27708
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo001-0021, Japan
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, Toronto, ONM5S3H6, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ONM5S3E5, Canada
| |
Collapse
|
5
|
Cianciosi A, Simon J, Bartolf-Kopp M, Grausgruber H, Dargaville TR, Forget A, Groll J, Jungst T, Beaumont M. Direct ink writing of multifunctional nanocellulose and allyl-modified gelatin biomaterial inks for the fabrication of mechanically and functionally graded constructs. Carbohydr Polym 2023; 319:121145. [PMID: 37567703 DOI: 10.1016/j.carbpol.2023.121145] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/02/2023] [Accepted: 06/22/2023] [Indexed: 08/13/2023]
Abstract
Recreating the intricate mechanical and functional gradients found in natural tissues through additive manufacturing poses significant challenges, including the need for precise control over time and space and the availability of versatile biomaterial inks. In this proof-of-concept study, we developed a new biomaterial ink for direct ink writing, allowing the creation of 3D structures with tailorable functional and mechanical gradients. Our ink formulation combined multifunctional cellulose nanofibrils (CNFs), allyl-functionalized gelatin (0.8-2.0 wt%), and polyethylene glycol dithiol (3.0-7.5 wt%). The CNF served as a rheology modifier, whereas a concentration of 1.8 w/v % in the inks was chosen for optimal printability and shape fidelity. In addition, CNFs were functionalized with azido groups, enabling the spatial distribution of functional moieties within a 3D structure. These functional groups were further modified using a spontaneous click chemistry reaction. Through additive manufacturing and a readily available static mixer, we successfully demonstrated the fabrication of mechanical gradients - ranging from 3 to 6 kPa in indentation strength - and functional gradients. Additionally, we introduced dual gradients by combining gradient printing with an anisotropic photocrosslinking step. The developed biomaterial ink opens up possibilities for printing intricate multigradient structures, resembling the complex hierarchical organization seen in living tissues.
Collapse
Affiliation(s)
- Alessandro Cianciosi
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg, Pleicherwall 2, Würzburg 97070, Germany
| | - Jonas Simon
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences (BOKU), Konrad-Lorenz-Str. 24, A-3430 Tulln, Austria
| | - Michael Bartolf-Kopp
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg, Pleicherwall 2, Würzburg 97070, Germany
| | - Heinrich Grausgruber
- Department of Crop Sciences, University of Natural Resources and Life Sciences (BOKU), Konrad-Lorenz-Str. 24, A-3430 Tulln, Austria
| | - Tim R Dargaville
- ARC Centre for Cell & Tissue Engineering Technologies, Max Planck Queensland Centre for the Materials Science of Extracellular Matrices, QUT Centre for Materials Science, School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, Australia
| | - Aurélien Forget
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg 79104, Germany
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg, Pleicherwall 2, Würzburg 97070, Germany
| | - Tomasz Jungst
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg, Pleicherwall 2, Würzburg 97070, Germany.
| | - Marco Beaumont
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences (BOKU), Konrad-Lorenz-Str. 24, A-3430 Tulln, Austria.
| |
Collapse
|
6
|
Nasseri R, Bouzari N, Huang J, Golzar H, Jankhani S, Tang XS, Mekonnen TH, Aghakhani A, Shahsavan H. Programmable nanocomposites of cellulose nanocrystals and zwitterionic hydrogels for soft robotics. Nat Commun 2023; 14:6108. [PMID: 37777525 PMCID: PMC10542366 DOI: 10.1038/s41467-023-41874-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023] Open
Abstract
Stimuli-responsive hydrogels have garnered significant attention as a versatile class of soft actuators. Introducing anisotropic properties, and shape-change programmability to responsive hydrogels promises a host of opportunities in the development of soft robots. Herein we report the synthesis of pH-responsive hydrogel nanocomposites with predetermined microstructural anisotropy, shape-transformation, and self-healing. Our hydrogel nanocomposites are largely composed of zwitterionic monomers and asymmetric cellulose nanocrystals. While the zwitterionic nature of the network imparts both self-healing and cytocompatibility to our hydrogel nanocomposites, the shear-induced alignment of cellulose nanocrystals renders their anisotropic swelling and mechanical properties. Thanks to the self-healing properties, we utilized a cut-and-paste approach to program reversible, and complex deformation into our hydrogels. As a proof-of-concept, we demonstrated the transport of light cargo using tethered and untethered soft robots made from our hydrogels. We believe the proposed material system introduce a powerful toolbox for the development of future generations of biomedical soft robots.
Collapse
Affiliation(s)
- Rasool Nasseri
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Negin Bouzari
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Junting Huang
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Hossein Golzar
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Sarah Jankhani
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Xiaowu Shirley Tang
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Tizazu H Mekonnen
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Institute for Polymer Research, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Amirreza Aghakhani
- Institute of Biomaterials and Biomolecular Systems (IBBS), University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Hamed Shahsavan
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
- Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
7
|
Morozova SM, Gevorkian A, Kumacheva E. Design, characterization and applications of nanocolloidal hydrogels. Chem Soc Rev 2023. [PMID: 37464914 DOI: 10.1039/d3cs00387f] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Nanocolloidal gels (NCGs) are an emerging class of soft matter, in which nanoparticles act as building blocks of the colloidal network. Chemical or physical crosslinking enables NCG synthesis and assembly from a broad range of nanoparticles, polymers, and low-molecular weight molecules. The synergistic properties of NCGs are governed by nanoparticle composition, dimensions and shape, the mechanism of nanoparticle bonding, and the NCG architecture, as well as the nature of molecular crosslinkers. Nanocolloidal gels find applications in soft robotics, bioengineering, optically active coatings and sensors, optoelectronic devices, and absorbents. This review summarizes currently scattered aspects of NCG formation, properties, characterization, and applications. We describe the diversity of NCG building blocks, discuss the mechanisms of NCG formation, review characterization techniques, outline NCG fabrication and processing methods, and highlight most common NCG applications. The review is concluded with the discussion of perspectives in the design and development of NCGs.
Collapse
Affiliation(s)
- Sofia M Morozova
- N.E. Bauman Moscow State Technical University, 5/1 2-nd Baumanskaya street, 105005, Moscow, Russia
- Department of Chemistry University of Toronto, 80 Saint George street, Toronto, Ontario M5S 3H6, Canada.
| | - Albert Gevorkian
- Department of Chemistry University of Toronto, 80 Saint George street, Toronto, Ontario M5S 3H6, Canada.
| | - Eugenia Kumacheva
- Department of Chemistry University of Toronto, 80 Saint George street, Toronto, Ontario M5S 3H6, Canada.
- Department of Chemical Engineering and Applied Chemistry University of Toronto, 200 College street, Toronto, Ontario M5S 3E5, Canada
- The Institute of Biomaterials and Biomedical Engineering University of Toronto, 4 Taddle Creek Road, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
8
|
Lu X, Jiao H, Shi Y, Li Y, Zhang H, Fu Y, Guo J, Wang Q, Liu X, Zhou M, Ullah MW, Sun J, Liu J. Fabrication of bio-inspired anisotropic structures from biopolymers for biomedical applications: A review. Carbohydr Polym 2023; 308:120669. [PMID: 36813347 DOI: 10.1016/j.carbpol.2023.120669] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
The anisotropic features play indispensable roles in regulating various life activities in different organisms. Increasing efforts have been made to learn and mimic various tissues' intrinsic anisotropic structure or functionality for broad applications in different areas, especially in biomedicine and pharmacy. This paper discusses the strategies for fabricating biomaterials using biopolymers for biomedical applications with the case study analysis. Biopolymers, including different polysaccharides, proteins, and their derivates, that have been confirmed with sound biocompatibility for different biomedical applications are summarized, with a special focus on nanocellulose. Advanced analytical techniques for understanding and characterizing the biopolymer-based anisotropic structures for various biomedical applications are also summarized. Challenges still exist in precisely constructing biopolymers-based biomaterials with anisotropic structures from molecular to macroscopic levels and fitting the dynamic processes in native tissue. It is foreseeable that with the advancement of biopolymers' molecular functionalization, biopolymer building block orientation manipulation strategies, and structural characterization techniques, developing anisotropic biopolymer-based biomaterials for different biomedical applications would significantly contribute to a friendly disease-curing and healthcare experience.
Collapse
Affiliation(s)
- Xuechu Lu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Haixin Jiao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yifei Shi
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yan Li
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Hongxing Zhang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yinyi Fu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Qianqian Wang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xiang Liu
- Institute of Medicine & Chemical Engineering, Zhenjiang College, Zhenjiang 212028, China
| | - Mengbo Zhou
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Jun Liu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
9
|
Huang Y, Morozova SM, Li T, Li S, Naguib HE, Kumacheva E. Stimulus-Responsive Transport Properties of Nanocolloidal Hydrogels. Biomacromolecules 2023; 24:1173-1183. [PMID: 36580573 DOI: 10.1021/acs.biomac.2c01222] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Applications of polymer hydrogels in separation technologies, environmental remediation, and drug delivery require control of hydrogel transport properties that are largely governed by the pore dimensions. Stimulus-responsive change in pore size offers the capability to change gel's transport properties "on demand". Here, we report a nanocolloidal hydrogel that exhibits temperature-controlled increase in pore size and, as a result, enhanced transport of encapsulated species from the gel. The hydrogel was formed by the covalent cross-linking of aldehyde-modified cellulose nanocrystals and chitosan carrying end-grafted poly(N-isopropylacrylamide) (pNIPAm) molecules. Owing to the temperature-mediated coil-to-globule transition of pNIPAm grafts, they acted as a temperature-responsive "gate" in the hydrogel. At elevated temperature, the size of the pores showed up to a 4-fold increase, with no significant changes in volume, in contrast with conventional pNIPAm-derived gels exhibiting a reduction in both pore size and volume in similar conditions. Temperature-mediated transport properties of the gel were explored by studying diffusion of nanoparticles with different dimensions from the gel, leading to the established correlation between the kinetics of diffusion-governed nanoparticle release and the ratio nanoparticle dimensions-to-pore size. The proposed approach to stimulus-responsive control of hydrogel transport properties has many applications, including their use in nanomedicine and tissue engineering.
Collapse
Affiliation(s)
- Yuhang Huang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, OntarioM5S 3E5, Canada
| | - Sofia M Morozova
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, OntarioM5S 3H6, Canada
- N.E. Bauman Moscow State Technical University, 5/1 Second Baumanskaya Street, Moscow105005, Russian Federation
| | - Terek Li
- Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, OntarioM5S 3E4, Canada
| | - Shangyu Li
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, OntarioM5S 3H6, Canada
| | - Hani E Naguib
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, OntarioM5S 3E5, Canada
- Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, OntarioM5S 3E4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, OntarioM5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, 4 Taddle Creek Road, Toronto, OntarioM5S 3G9, Canada
| | - Eugenia Kumacheva
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, OntarioM5S 3E5, Canada
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, OntarioM5S 3H6, Canada
- Institute of Biomedical Engineering, University of Toronto, 4 Taddle Creek Road, Toronto, OntarioM5S 3G9, Canada
| |
Collapse
|
10
|
Koltsov SI, Statsenko TG, Morozova SM. Modification of Commercial 3D Fused Deposition Modeling Printer for Extrusion Printing of Hydrogels. Polymers (Basel) 2022; 14:polym14245539. [PMID: 36559906 PMCID: PMC9784586 DOI: 10.3390/polym14245539] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
In this paper, we report a simple modification of a commercially available printer with fused deposition modeling (FDM) technology for the implementation of extrusion printing of hydrogels. The main difference between an FDM printer and a gel-extrusion printer is their material propulsion system, which has to deal with ether a solid rod or liquid. By application of plastic 3D printing on an FDM printer, specific details, namely, the plunger system and parts of the gel supply system, were produced and combined with a modified printer. Two types of printing of polymer hydrogels were optimized: droplet and filament modes. The rheological ranges suitable for printing for each method were indicated, and the resolution of the samples obtained and the algorithms for creating g-code via Python scripts were given. We have shown the possibility of droplet printing of microspheres with a diameter of 100 microns and a distance between spheres of 200 microns, as well as filament printing of lines with a thickness of 300-2000 microns, which is appropriate accuracy in comparison with commercial printers. This method, in addition to scientific groups, will be especially promising for educational tasks (as a practical work for engineering students or for the introduction of 3D printing into school classes) and industrial groups, as a way to implement 3D extrusion printing of composite polymer hydrogels in a time- and cost-effective way.
Collapse
Affiliation(s)
- Semyon I. Koltsov
- Center NTI “Digital Materials Science: New Materials and Substances”, N.E. Bauman Moscow State Technical University, 2nd Baumanskaya St. 5/1, 105005 Moscow, Russia
- Infochemistry Scientific Center, ITMO University, Lomonosova street 9, 197101 St. Petersburg, Russia
- Correspondence: (S.I.K.); (S.M.M.); Tel.: +7-961-780-36-60 (S.I.K); +7-985-910-85-02 (S.M.M.)
| | - Tatiana G. Statsenko
- Center NTI “Digital Materials Science: New Materials and Substances”, N.E. Bauman Moscow State Technical University, 2nd Baumanskaya St. 5/1, 105005 Moscow, Russia
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 1 Severniy pr., Chernogolovka, 142432 Moscow, Russia
| | - Sofia M. Morozova
- Center NTI “Digital Materials Science: New Materials and Substances”, N.E. Bauman Moscow State Technical University, 2nd Baumanskaya St. 5/1, 105005 Moscow, Russia
- School of Physics and Engineering, ITMO University, Lomonosov street 9, 197101 St. Peterburg, Russia
- Correspondence: (S.I.K.); (S.M.M.); Tel.: +7-961-780-36-60 (S.I.K); +7-985-910-85-02 (S.M.M.)
| |
Collapse
|
11
|
He X, Lu Q. Design and fabrication strategies of cellulose nanocrystal-based hydrogel and its highlighted application using 3D printing: A review. Carbohydr Polym 2022; 301:120351. [DOI: 10.1016/j.carbpol.2022.120351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/30/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
|
12
|
Chen Z, Khuu N, Xu F, Kheiri S, Yakavets I, Rakhshani F, Morozova S, Kumacheva E. Printing Structurally Anisotropic Biocompatible Fibrillar Hydrogel for Guided Cell Alignment. Gels 2022; 8:685. [PMID: 36354593 PMCID: PMC9689575 DOI: 10.3390/gels8110685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 08/13/2023] Open
Abstract
Many fibrous biological tissues exhibit structural anisotropy due to the alignment of fibers in the extracellular matrix. To study the impact of such anisotropy on cell proliferation, orientation, and mobility, it is important to recapitulate and achieve control over the structure of man-made hydrogel scaffolds for cell culture. Here, we report a chemically crosslinked fibrous hydrogel due to the reaction between aldehyde-modified cellulose nanofibers and gelatin. We explored two ways to induce structural anisotropy in this gel by extruding the hydrogel precursor through two different printheads. The cellulose nanofibers in the hydrogel ink underwent shear-induced alignment during extrusion and retained it in the chemically crosslinked hydrogel. The degree of anisotropy was controlled by the ink composition and extrusion flow rate. The structural anisotropy of the hydrogel extruded through a nozzle affected the orientation of human dermal fibroblasts that were either seeded on the hydrogel surface or encapsulated in the extruded hydrogel. The reported straightforward approach to constructing fibrillar hydrogel scaffolds with structural anisotropy can be used in studies of the biological impact of tissue anisotropy.
Collapse
Affiliation(s)
- Zhengkun Chen
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Nancy Khuu
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Fei Xu
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Sina Kheiri
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Ilya Yakavets
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Faeze Rakhshani
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Sofia Morozova
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- N.E. Bauman Moscow State Technical University, 5/1 2nd Baumanskaya Street, 105005 Moscow, Russia
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
- The Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
13
|
Li S, Dong Q, Peng X, Chen Y, Yang H, Xu W, Zhao Y, Xiao P, Zhou Y. Self-Healing Hyaluronic Acid Nanocomposite Hydrogels with Platelet-Rich Plasma Impregnated for Skin Regeneration. ACS NANO 2022; 16:11346-11359. [PMID: 35848721 DOI: 10.1021/acsnano.2c05069] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of natural hydrogels with sufficient strength and self-healing capacity to accelerate skin wound healing is still challenging. Herein, a hyaluronic acid nanocomposite hydrogel was developed based on aldehyde-modified sodium hyaluronate (AHA), hydrazide-modified sodium hyaluronate (ADA), and aldehyde-modified cellulose nanocrystals (oxi-CNC). This hydrogel was formed in situ using dynamic acylhydrazone bonds via a double-barreled syringe. This hydrogel exhibited improved strength and excellent self-healing ability. Furthermore, platelet-rich plasma (PRP) can be loaded in the hyaluronic acid nanocomposite hydrogels (ADAC) via imine bonds formed between amino groups on PRP (e.g., fibrinogen) and aldehyde groups on AHA or oxi-CNC to promote skin wound healing synergistically. As expected, ADAC hydrogel could protect and release PRP sustainably. In animal experiments, ADAC@PRP hydrogel significantly promoted full-thickness skin wound healing through enhancing the formation of granulation tissue, facilitating collagen deposition, and accelerating re-epithelialization and neovascularization. This self-healing nanocomposite hydrogel with PRP loading appears to be a promising candidate for wound therapy.
Collapse
Affiliation(s)
- Shangzhi Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Qi Dong
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Disease, TaiKang Medical School (School of Basic Medicine Sciences), Wuhan University, Wuhan 430071, People's Republic of China
| | - Xiaotong Peng
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Yun Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Disease, TaiKang Medical School (School of Basic Medicine Sciences), Wuhan University, Wuhan 430071, People's Republic of China
| | - Hongjun Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Yanteng Zhao
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Pu Xiao
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Yingshan Zhou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, People's Republic of China
| |
Collapse
|
14
|
Chen Z, Kheiri S, Young EWK, Kumacheva E. Trends in Droplet Microfluidics: From Droplet Generation to Biomedical Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6233-6248. [PMID: 35561292 DOI: 10.1021/acs.langmuir.2c00491] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Over the past decade, droplet microfluidics has attracted growing interest in biology, medicine, and engineering. In this feature article, we review the advances in droplet microfluidics, primarily focusing on the research conducted by our group. Starting from the introduction to the mechanisms of microfluidic droplet formation and the strategies for cell encapsulation in droplets, we then focus on droplet transformation into microgels. Furthermore, we review three biomedical applications of droplet microfluidics, that is, 3D cell culture, single-cell analysis, and in vitro organ and disease modeling. We conclude with our perspective on future directions in the development of droplet microfluidics for biomedical applications.
Collapse
Affiliation(s)
- Zhengkun Chen
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6
| | - Sina Kheiri
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, Canada, M5S 3G8
| | - Edmond W K Young
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, Canada, M5S 3G8
- Institute of Biomedical Engineering, University of Toronto, Roseburgh Building, 164 College Street, Toronto, Ontario, Canada M5S 3G9
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6
- Institute of Biomedical Engineering, University of Toronto, Roseburgh Building, 164 College Street, Toronto, Ontario, Canada M5S 3G9
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5
| |
Collapse
|
15
|
Biomimetic hydrogel supports initiation and growth of patient-derived breast tumor organoids. Nat Commun 2022; 13:1466. [PMID: 35304464 PMCID: PMC8933543 DOI: 10.1038/s41467-022-28788-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
Patient-derived tumor organoids (PDOs) are a highly promising preclinical model that recapitulates the histology, gene expression, and drug response of the donor patient tumor. Currently, PDO culture relies on basement-membrane extract (BME), which suffers from batch-to-batch variability, the presence of xenogeneic compounds and residual growth factors, and poor control of mechanical properties. Additionally, for the development of new organoid lines from patient-derived xenografts, contamination of murine host cells poses a problem. We propose a nanofibrillar hydrogel (EKGel) for the initiation and growth of breast cancer PDOs. PDOs grown in EKGel have histopathologic features, gene expression, and drug response that are similar to those of their parental tumors and PDOs in BME. In addition, EKGel offers reduced batch-to-batch variability, a range of mechanical properties, and suppressed contamination from murine cells. These results show that EKGel is an improved alternative to BME matrices for the initiation, growth, and maintenance of breast cancer PDOs. Patient-derived tumour organoids are important preclinical models but suffer from variability from the use of basement-membrane extract and cell contamination. Here, the authors report on the development of mimetic nanofibrilar hydrogel which supports tumour organoid growth with reduced batch variability and cell contamination.
Collapse
|
16
|
Mea H, Wan J. Microfluidics-enabled functional 3D printing. BIOMICROFLUIDICS 2022; 16:021501. [PMID: 35282033 PMCID: PMC8896890 DOI: 10.1063/5.0083673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/18/2022] [Indexed: 05/14/2023]
Abstract
Microfluidic technology has established itself as a powerful tool to enable highly precise spatiotemporal control over fluid streams for mixing, separations, biochemical reactions, and material synthesis. 3D printing technologies such as extrusion-based printing, inkjet, and stereolithography share similar length scales and fundamentals of fluid handling with microfluidics. The advanced fluidic manipulation capabilities afforded by microfluidics can thus be potentially leveraged to enhance the performance of existing 3D printing technologies or even develop new approaches to additive manufacturing. This review discusses recent developments in integrating microfluidic elements with several well-established 3D printing technologies, highlighting the trend of using microfluidic approaches to achieve functional and multimaterial 3D printing as well as to identify potential future research directions in this emergent area.
Collapse
Affiliation(s)
- H. Mea
- Department of Chemical Engineering, University of California at Davis, Davis, California 95616, USA
| | - J. Wan
- Department of Chemical Engineering, University of California at Davis, Davis, California 95616, USA
| |
Collapse
|
17
|
Prince E, Kheiri S, Wang Y, Xu F, Cruickshank J, Topolskaia V, Tao H, Young EWK, McGuigan AP, Cescon DW, Kumacheva E. Microfluidic Arrays of Breast Tumor Spheroids for Drug Screening and Personalized Cancer Therapies. Adv Healthc Mater 2022; 11:e2101085. [PMID: 34636180 DOI: 10.1002/adhm.202101085] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/30/2021] [Indexed: 12/20/2022]
Abstract
One of the obstacles limiting progress in the development of effective cancer therapies is the shortage of preclinical models that capture the dynamic nature of tumor microenvironments. Interstitial flow strongly impacts tumor response to chemotherapy; however, conventional in vitro cancer models largely disregard this key feature. Here, a proof of principle microfluidic platform for the generation of large arrays of breast tumor spheroids that are grown under close-to-physiological flow in a biomimetic hydrogel is reported. This cancer spheroids-on-a-chip model is used for time- and labor-efficient studies of the effects of drug dose and supply rate on the chemosensitivity of breast tumor spheroids. The capability to grow large arrays of tumor spheroids from patient-derived cells of different breast cancer subtypes is shown, and the correlation between in vivo drug efficacy and on-chip spheroid drug response is demonstrated. The proposed platform can serve as an in vitro preclinical model for the development of personalized cancer therapies and effective screening of new anticancer drugs.
Collapse
Affiliation(s)
- Elisabeth Prince
- Department of Chemistry University of Toronto 80 St. George St Toronto Ontario M5P 2Y2 Canada
| | - Sina Kheiri
- Department of Mechanical & Industrial Engineering University of Toronto 5 King's College Circle Toronto Ontario M5S 3G8 Canada
| | - Yihe Wang
- Department of Chemistry University of Toronto 80 St. George St Toronto Ontario M5P 2Y2 Canada
| | - Fei Xu
- Department of Chemistry University of Toronto 80 St. George St Toronto Ontario M5P 2Y2 Canada
| | - Jennifer Cruickshank
- Princess Margaret Cancer Centre University Health Network 610 University Ave Toronto Ontario M5G 2C1 Canada
| | - Valentina Topolskaia
- Department of Chemistry University of Toronto 80 St. George St Toronto Ontario M5P 2Y2 Canada
| | - Huachen Tao
- Department of Chemistry University of Toronto 80 St. George St Toronto Ontario M5P 2Y2 Canada
| | - Edmond W. K. Young
- Department of Mechanical & Industrial Engineering University of Toronto 5 King's College Circle Toronto Ontario M5S 3G8 Canada
- Institute of Biomaterials and Biomedical Engineering University of Toronto 164 College St Toronto Ontario M5S 3G9 Canada
| | - Alison. P. McGuigan
- Institute of Biomaterials and Biomedical Engineering University of Toronto 164 College St Toronto Ontario M5S 3G9 Canada
- Department of Chemical Engineering and Applied Chemistry University of Toronto 200 College St Toronto Ontario M5S 3E5 Canada
| | - David W. Cescon
- Princess Margaret Cancer Centre University Health Network 610 University Ave Toronto Ontario M5G 2C1 Canada
| | - Eugenia Kumacheva
- Department of Chemistry University of Toronto 80 St. George St Toronto Ontario M5P 2Y2 Canada
- Institute of Biomaterials and Biomedical Engineering University of Toronto 164 College St Toronto Ontario M5S 3G9 Canada
- Department of Chemical Engineering and Applied Chemistry University of Toronto 200 College St Toronto Ontario M5S 3E5 Canada
| |
Collapse
|
18
|
|
19
|
Khuu N, Kheiri S, Kumacheva E. Structurally anisotropic hydrogels for tissue engineering. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2021.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Zhang P, Shao N, Qin L. Recent Advances in Microfluidic Platforms for Programming Cell-Based Living Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005944. [PMID: 34270839 DOI: 10.1002/adma.202005944] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/20/2020] [Indexed: 06/13/2023]
Abstract
Cell-based living materials, including single cells, cell-laden fibers, cell sheets, organoids, and organs, have attracted intensive interests owing to their widespread applications in cancer therapy, regenerative medicine, drug development, and so on. Significant progress in materials, microfabrication, and cell biology have promoted the development of numerous promising microfluidic platforms for programming these cell-based living materials with a high-throughput, scalable, and efficient manner. In this review, the recent progress of novel microfluidic platforms for programming cell-based living materials is presented. First, the unique features, categories, and materials and related fabrication methods of microfluidic platforms are briefly introduced. From the viewpoint of the design principles of the microfluidic platforms, the recent significant advances of programming single cells, cell-laden fibers, cell sheets, organoids, and organs in turns are then highlighted. Last, by providing personal perspectives on challenges and future trends, this review aims to motivate researchers from the fields of materials and engineering to work together with biologists and physicians to promote the development of cell-based living materials for human healthcare-related applications.
Collapse
Affiliation(s)
- Pengchao Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Ning Shao
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| |
Collapse
|
21
|
Danial WH, Md Bahri NF, Abdul Majid Z. Preparation, Marriage Chemistry and Applications of Graphene Quantum Dots-Nanocellulose Composite: A Brief Review. Molecules 2021; 26:6158. [PMID: 34684739 PMCID: PMC8537986 DOI: 10.3390/molecules26206158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/02/2021] [Accepted: 10/11/2021] [Indexed: 12/03/2022] Open
Abstract
Graphene quantum dots (GQDs) are zero-dimensional carbon-based materials, while nanocellulose is a nanomaterial that can be derived from naturally occurring cellulose polymers or renewable biomass resources. The unique geometrical, biocompatible and biodegradable properties of both these remarkable nanomaterials have caught the attention of the scientific community in terms of fundamental research aimed at advancing technology. This study reviews the preparation, marriage chemistry and applications of GQDs-nanocellulose composites. The preparation of these composites can be achieved via rapid and simple solution mixing containing known concentration of nanomaterial with a pre-defined composition ratio in a neutral pH medium. They can also be incorporated into other matrices or drop-casted onto substrates, depending on the intended application. Additionally, combining GQDs and nanocellulose has proven to impart new hybrid nanomaterials with excellent performance as well as surface functionality and, therefore, a plethora of applications. Potential applications for GQDs-nanocellulose composites include sensing or, for analytical purposes, injectable 3D printing materials, supercapacitors and light-emitting diodes. This review unlocks windows of research opportunities for GQDs-nanocellulose composites and pave the way for the synthesis and application of more innovative hybrid nanomaterials.
Collapse
Affiliation(s)
- Wan Hazman Danial
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
| | - Nur Fathanah Md Bahri
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
| | - Zaiton Abdul Majid
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia;
| |
Collapse
|
22
|
A blueprint of the topology and mechanics of the human ovary for next-generation bioengineering and diagnosis. Nat Commun 2021; 12:5603. [PMID: 34556652 PMCID: PMC8460685 DOI: 10.1038/s41467-021-25934-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 09/07/2021] [Indexed: 02/06/2023] Open
Abstract
Although the first dissection of the human ovary dates back to the 17th century, the biophysical characteristics of the ovarian cell microenvironment are still poorly understood. However, this information is vital to deciphering cellular processes such as proliferation, morphology and differentiation, as well as pathologies like tumor progression, as demonstrated in other biological tissues. Here, we provide the first readout of human ovarian fiber morphology, interstitial and perifollicular fiber orientation, pore geometry, topography and surface roughness, and elastic and viscoelastic properties. By determining differences between healthy prepubertal, reproductive-age, and menopausal ovarian tissue, we unravel and elucidate a unique biophysical phenotype of reproductive-age tissue, bridging biophysics and female fertility. While these data enable to design of more biomimetic scaffolds for the tissue-engineered ovary, our analysis pipeline is applicable for the characterization of other organs in physiological or pathological states to reveal their biophysical markers or design their bioinspired analogs. Although the first dissection of the human ovary dates back to the 17th century, its characterization is still limited. Here, the authors have unraveled a unique biophysical and topological phenotype of reproductive-age tissue, bridging biophysics and female fertility and providing a blueprint for the artificial ovary.
Collapse
|
23
|
Alizadehgiashi M, Nemr CR, Chekini M, Pinto Ramos D, Mittal N, Ahmed SU, Khuu N, Kelley SO, Kumacheva E. Multifunctional 3D-Printed Wound Dressings. ACS NANO 2021; 15:12375-12387. [PMID: 34133121 DOI: 10.1021/acsnano.1c04499] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Personalized wound dressings provide enhanced healing for different wound types; however multicomponent wound dressings with discretely controllable delivery of different biologically active agents are yet to be developed. Here we report 3D-printed multicomponent biocomposite hydrogel wound dressings that have been selectively loaded with small molecules, metal nanoparticles, and proteins for independently controlled release at the wound site. Hydrogel wound dressings carrying antibacterial silver nanoparticles and vascular endothelial growth factor with predetermined release profiles were utilized to study the physiological response of the wound in a mouse model. Compared to controls, the application of dressings resulted in improvement in granulation tissue formation and differential levels of vascular density, dependent on the release profile of the growth factor. Our study demonstrates the versatility of the 3D-printed hydrogel dressings that can yield varied physiological responses in vivo and can further be adapted for personalized treatment of various wound types.
Collapse
Affiliation(s)
- Moien Alizadehgiashi
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Carine R Nemr
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mahshid Chekini
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Daniel Pinto Ramos
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Nitesh Mittal
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
- Linné FLOW Centre, KTH Mechanics, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Sharif U Ahmed
- Department of Pharmaceutical Sciences, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Nancy Khuu
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Shana O Kelley
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Pharmaceutical Sciences, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, 4 Taddle Creek Road, Toronto, Ontario M5S 3G9, Canada
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, 4 Taddle Creek Road, Toronto, Ontario M5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
24
|
Nicu R, Ciolacu F, Ciolacu DE. Advanced Functional Materials Based on Nanocellulose for Pharmaceutical/Medical Applications. Pharmaceutics 2021; 13:1125. [PMID: 34452086 PMCID: PMC8399340 DOI: 10.3390/pharmaceutics13081125] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Nanocelluloses (NCs), with their remarkable characteristics, have proven to be one of the most promising "green" materials of our times and have received special attention from researchers in nanomaterials. A diversity of new functional materials with a wide range of biomedical applications has been designed based on the most desirable properties of NCs, such as biocompatibility, biodegradability, and their special physicochemical properties. In this context and under the pressure of rapid development of this field, it is imperative to synthesize the successes and the new requirements in a comprehensive review. The first part of this work provides a brief review of the characteristics of the NCs (cellulose nanocrystals-CNC, cellulose nanofibrils-CNF, and bacterial nanocellulose-BNC), as well as of the main functional materials based on NCs (hydrogels, nanogels, and nanocomposites). The second part presents an extensive review of research over the past five years on promising pharmaceutical and medical applications of nanocellulose-based materials, which have been discussed in three important areas: drug-delivery systems, materials for wound-healing applications, as well as tissue engineering. Finally, an in-depth assessment of the in vitro and in vivo cytotoxicity of NCs-based materials, as well as the challenges related to their biodegradability, is performed.
Collapse
Affiliation(s)
- Raluca Nicu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania;
| | - Florin Ciolacu
- Department of Natural and Synthetic Polymers, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania
| | - Diana E. Ciolacu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania;
| |
Collapse
|
25
|
Ajdary R, Tardy BL, Mattos BD, Bai L, Rojas OJ. Plant Nanomaterials and Inspiration from Nature: Water Interactions and Hierarchically Structured Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2001085. [PMID: 32537860 PMCID: PMC11468645 DOI: 10.1002/adma.202001085] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/08/2020] [Accepted: 03/20/2020] [Indexed: 05/26/2023]
Abstract
Recent developments in the area of plant-based hydrogels are introduced, especially those derived from wood as a widely available, multiscale, and hierarchical source of nanomaterials, as well as other cell wall elements. With water being fundamental in a hydrogel, water interactions, hydration, and swelling, all critically important in designing, processing, and achieving the desired properties of sustainable and functional hydrogels, are highlighted. A plant, by itself, is a form of a hydrogel, at least at given states of development, and for this reason phenomena such as fluid transport, diffusion, capillarity, and ionic effects are examined. These aspects are highly relevant not only to plants, especially lignified tissues, but also to the porous structures produced after removal of water (foams, sponges, cryogels, xerogels, and aerogels). Thus, a useful source of critical and comprehensive information is provided regarding the synthesis of hydrogels from plant materials (and especially wood nanostructures), and about the role of water, not only for processing but for developing hydrogel properties and uses.
Collapse
Affiliation(s)
- Rubina Ajdary
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16300, AaltoEspooFIN‐00076Finland
| | - Blaise L. Tardy
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16300, AaltoEspooFIN‐00076Finland
| | - Bruno D. Mattos
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16300, AaltoEspooFIN‐00076Finland
| | - Long Bai
- Departments of Chemical & Biological EngineeringChemistry and, Wood ScienceThe University of British Columbia2360 East MallVancouverBCV6T 1Z3Canada
| | - Orlando J. Rojas
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16300, AaltoEspooFIN‐00076Finland
- Departments of Chemical & Biological EngineeringChemistry and, Wood ScienceThe University of British Columbia2360 East MallVancouverBCV6T 1Z3Canada
| |
Collapse
|
26
|
De France K, Zeng Z, Wu T, Nyström G. Functional Materials from Nanocellulose: Utilizing Structure-Property Relationships in Bottom-Up Fabrication. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000657. [PMID: 32267033 PMCID: PMC11468739 DOI: 10.1002/adma.202000657] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 05/19/2023]
Abstract
It is inherently challenging to recapitulate the precise hierarchical architectures found throughout nature (such as in wood, antler, bone, and silk) using synthetic bottom-up fabrication strategies. However, as a renewable and naturally sourced nanoscale building block, nanocellulose-both cellulose nanocrystals and cellulose nanofibrils-has gained significant research interest within this area. Altogether, the intrinsic shape anisotropy, surface charge/chemistry, and mechanical/rheological properties are some of the critical material properties leading to advanced structure-based functionality within nanocellulose-based bottom-up fabricated materials. Herein, the organization of nanocellulose into biomimetic-aligned, porous, and fibrous materials through a variety of fabrication techniques is presented. Moreover, sophisticated material structuring arising from both the alignment of nanocellulose and via specific process-induced methods is covered. In particular, design rules based on the underlying fundamental properties of nanocellulose are established and discussed as related to their influence on material assembly and resulting structure/function. Finally, key advancements and critical challenges within the field are highlighted, paving the way for the fabrication of truly advanced materials from nanocellulose.
Collapse
Affiliation(s)
- Kevin De France
- Laboratory for Cellulose and Wood MaterialsSwiss Federal Laboratories for Materials Science and Technology (Empa)Überlandstrasse 129Dübendorf8600Switzerland
| | - Zhihui Zeng
- Laboratory for Cellulose and Wood MaterialsSwiss Federal Laboratories for Materials Science and Technology (Empa)Überlandstrasse 129Dübendorf8600Switzerland
| | - Tingting Wu
- Laboratory for Cellulose and Wood MaterialsSwiss Federal Laboratories for Materials Science and Technology (Empa)Überlandstrasse 129Dübendorf8600Switzerland
| | - Gustav Nyström
- Laboratory for Cellulose and Wood MaterialsSwiss Federal Laboratories for Materials Science and Technology (Empa)Überlandstrasse 129Dübendorf8600Switzerland
- Department of Health Science and TechnologyETH ZürichSchmelzbergstrasse 9Zürich8092Switzerland
| |
Collapse
|
27
|
Danielsen SPO, Beech HK, Wang S, El-Zaatari BM, Wang X, Sapir L, Ouchi T, Wang Z, Johnson PN, Hu Y, Lundberg DJ, Stoychev G, Craig SL, Johnson JA, Kalow JA, Olsen BD, Rubinstein M. Molecular Characterization of Polymer Networks. Chem Rev 2021; 121:5042-5092. [PMID: 33792299 DOI: 10.1021/acs.chemrev.0c01304] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polymer networks are complex systems consisting of molecular components. Whereas the properties of the individual components are typically well understood by most chemists, translating that chemical insight into polymer networks themselves is limited by the statistical and poorly defined nature of network structures. As a result, it is challenging, if not currently impossible, to extrapolate from the molecular behavior of components to the full range of performance and properties of the entire polymer network. Polymer networks therefore present an unrealized, important, and interdisciplinary opportunity to exert molecular-level, chemical control on material macroscopic properties. A barrier to sophisticated molecular approaches to polymer networks is that the techniques for characterizing the molecular structure of networks are often unfamiliar to many scientists. Here, we present a critical overview of the current characterization techniques available to understand the relation between the molecular properties and the resulting performance and behavior of polymer networks, in the absence of added fillers. We highlight the methods available to characterize the chemistry and molecular-level properties of individual polymer strands and junctions, the gelation process by which strands form networks, the structure of the resulting network, and the dynamics and mechanics of the final material. The purpose is not to serve as a detailed manual for conducting these measurements but rather to unify the underlying principles, point out remaining challenges, and provide a concise overview by which chemists can plan characterization strategies that suit their research objectives. Because polymer networks cannot often be sufficiently characterized with a single method, strategic combinations of multiple techniques are typically required for their molecular characterization.
Collapse
Affiliation(s)
- Scott P O Danielsen
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Haley K Beech
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Bassil M El-Zaatari
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xiaodi Wang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | | | | | - Zi Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Patricia N Johnson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Yixin Hu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - David J Lundberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Georgi Stoychev
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Julia A Kalow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Departments of Biomedical Engineering and Physics, Duke University, Durham, North Carolina 27708, United States.,World Primer Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
28
|
Prince E, Chen Z, Khuu N, Kumacheva E. Nanofibrillar Hydrogel Recapitulates Changes Occurring in the Fibrotic Extracellular Matrix. Biomacromolecules 2021; 22:2352-2362. [PMID: 33783190 DOI: 10.1021/acs.biomac.0c01714] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fibrosis is a pathological condition that leads to excessive deposition of collagen and increased tissue stiffness. Understanding the mechanobiology of fibrotic tissue necessitates the development of effective in vitro models that recapitulate its properties and structure; however, hydrogels that are currently used for this purpose fail to mimic the filamentous structure and mechanical properties of the fibrotic extracellular matrix (ECM). Here, we report a nanofibrillar hydrogel composed of cellulose nanocrystals and gelatin, which addresses this challenge. By altering the composition of the hydrogel, we mimicked the changes in structure, mechanical properties, and chemistry of fibrotic ECM. Furthermore, we decoupled the variations in hydrogel structure, properties, and ligand concentration. We demonstrate that this biocompatible hydrogel supports the three-dimensional culture of cells relevant to fibrotic diseases. This versatile hydrogel can be used for in vitro studies of fibrosis of different tissues, thus enabling the development of novel treatments for fibrotic diseases.
Collapse
Affiliation(s)
- Elisabeth Prince
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6
| | - Zhengkun Chen
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6
| | - Nancy Khuu
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, 4 Taddle Creek Road, Toronto, Ontario, Canada M5S 3G9
| |
Collapse
|
29
|
Li J, Jia X, Yin L. Hydrogel: Diversity of Structures and Applications in Food Science. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2020.1858313] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jinlong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, P.R. China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, P.R. China
| | - Xin Jia
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Lijun Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| |
Collapse
|
30
|
Peng N, Huang D, Gong C, Wang Y, Zhou J, Chang C. Controlled Arrangement of Nanocellulose in Polymeric Matrix: From Reinforcement to Functionality. ACS NANO 2020; 14:16169-16179. [PMID: 33314921 DOI: 10.1021/acsnano.0c08906] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Nanocellulose, the most abundant crystalline polysaccharide nanomaterial on Earth, has been widely used for the reinforcement of polymeric materials owing to its high elastic modulus, low density, high aspect ratio, biocompatibility, and biodegradability. In this Perspective, we offer a brief overview of recent progress in the controllable arrangement of nanocellulose in polymeric matrices, including highly oriented structure, helical structure, and gradient structure. We then discuss the current nanotechnologies that enable the arrangement of nanocellulose in nanocomposite materials. Finally, we describe future opportunities, challenges, and research directions in this active research area.
Collapse
Affiliation(s)
- Na Peng
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, and Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei 430072, China
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Da Huang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, and Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei 430072, China
| | - Chen Gong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, and Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei 430072, China
| | - Yixiang Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec H9X 3 V9, Canada
| | - Jinping Zhou
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, and Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei 430072, China
| | - Chunyu Chang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, and Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
31
|
Shavandi A, Hosseini S, Okoro OV, Nie L, Eghbali Babadi F, Melchels F. 3D Bioprinting of Lignocellulosic Biomaterials. Adv Healthc Mater 2020; 9:e2001472. [PMID: 33103365 DOI: 10.1002/adhm.202001472] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/01/2020] [Indexed: 01/21/2023]
Abstract
The interest in bioprinting of sustainable biomaterials is rapidly growing, and lignocellulosic biomaterials have a unique role in this development. Lignocellulosic materials are biocompatible and possess tunable mechanical properties, and therefore promising for use in the field of 3D-printed biomaterials. This review aims to spotlight the recent progress on the application of different lignocellulosic materials (cellulose, hemicellulose, and lignin) from various sources (wood, bacteria, and fungi) in different forms (including nanocrystals and nanofibers in 3D bioprinting). Their crystallinity, leading to water insolubility and the presence of suspended nanostructures, makes these polymers stand out among hydrogel-forming biomaterials. These unique structures give rise to favorable properties such as high ink viscosity and strength and toughness of the final hydrogel, even when used at low concentrations. In this review, the application of lignocellulosic polymers with other components in inks is reported for 3D bioprinting and identified supercritical CO2 as a potential sterilization method for 3D-printed cellulosic materials. This review also focuses on the areas of potential development by highlighting the opportunities and unmet challenges such as the need for standardization of the production, biocompatibility, and biodegradability of the cellulosic materials that underscore the direction of future research into the 3D biofabrication of cellulose-based biomaterials.
Collapse
Affiliation(s)
- Amin Shavandi
- BioMatter–Biomass Transformation Lab (BTL), École Polytechnique de Bruxelles Université Libre de Bruxelles Avenue F.D. Roosevelt, 50‐CP 165/61 Brussels 1050 Belgium
| | - Soraya Hosseini
- Department of Chemical Engineering National Chung Cheng University Chiayi 62102 Taiwan
| | - Oseweuba Valentine Okoro
- Department of Process Engineering Stellenbosch University Private Bag X1 Matieland 7602 South Africa
| | - Lei Nie
- College of Life Sciences Xinyang Normal University Xinyang 464000 China
| | - Farahnaz Eghbali Babadi
- Bio‐Circular‐Green‐economy Technology & Engineering Center BCGeTEC Department of Chemical Engineering Faculty of Engineering Chulalongkorn University Phayathai Road Bangkok 10330 Thailand
| | - Ferry Melchels
- Institute of Biological Chemistry, Biophysics and Bioengineering School of Engineering and Physical Sciences Heriot‐Watt University Edinburgh EH14 4AS UK
| |
Collapse
|
32
|
Synthesis and applications of anisotropic nanoparticles with precisely defined dimensions. Nat Rev Chem 2020; 5:21-45. [PMID: 37118104 DOI: 10.1038/s41570-020-00232-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
Shape and size play powerful roles in determining the properties of a material; controlling these aspects with precision is therefore an important, fundamental goal of the chemical sciences. In particular, the introduction of shape anisotropy at the nanoscale has emerged as a potent way to access new properties and functionality, enabling the exploration of complex nanomaterials across a range of applications. Recent advances in DNA and protein nanotechnology, inorganic crystallization techniques, and precision polymer self-assembly are now enabling unprecedented control over the synthesis of anisotropic nanoparticles with a variety of shapes, encompassing one-dimensional rods, dumbbells and wires, two-dimensional and three-dimensional platelets, rings, polyhedra, stars, and more. This has, in turn, enabled much progress to be made in our understanding of how anisotropy and particle dimensions can be tuned to produce materials with unique and optimized properties. In this Review, we bring these recent developments together to critically appraise the different methods for the bottom-up synthesis of anisotropic nanoparticles enabling exquisite control over morphology and dimensions. We highlight the unique properties of these materials in arenas as diverse as electron transport and biological processing, illustrating how they can be leveraged to produce devices and materials with otherwise inaccessible functionality. By making size and shape our focus, we aim to identify potential synergies between different disciplines and produce a road map for future research in this crucial area.
Collapse
|
33
|
Huang T, Jones CG, Chung JH, Chen C. Microfibrous Extracellular Matrix Changes the Liver Hepatocyte Energy Metabolism via Integrins. ACS Biomater Sci Eng 2020; 6:5849-5856. [PMID: 33320566 DOI: 10.1021/acsbiomaterials.0c01311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell line-based liver models are critical tools for liver-related studies. However, the conventional monolayer culture of hepatocytes, the most widely used in vitro model, does not have the extracellular matrix (ECM), which contributes to the three-dimensional (3D) arrangement of the hepatocytes in the liver. As a result, the metabolic properties of the hepatocytes in the monolayer tissue culture may not accurately reflect those of the hepatocytes in the liver. Here, we developed a modular platform for 3D hepatocyte cultures on fibrous ECMs produced by electrospinning, a technique that can turn a polymer solution to the micro/nanofibers and has been widely used to produce scaffolds for 3D cell cultures. Metabolomics quantitation by liquid chromatography-mass spectrometry (LC-MS) indicated that Huh7 hepatocytes grown in microfibers electrospun from silk fibroin exhibited reduced glycolysis and tricarboxylic acid (TCA) cycle, as compared to the cells cultured as a monolayer. Further mechanistic studies suggested that integrins were correlated to the ECM's effects. This is the first time to report how an ECM scaffold could affect the fundamental metabolism of the hepatocytes via integrins.
Collapse
Affiliation(s)
- Tianjiao Huang
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Curtis G Jones
- The Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Jay H Chung
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Chengpeng Chen
- The Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
34
|
Wang X, Wang Q, Xu C. Nanocellulose-Based Inks for 3D Bioprinting: Key Aspects in Research Development and Challenging Perspectives in Applications-A Mini Review. Bioengineering (Basel) 2020; 7:E40. [PMID: 32365578 PMCID: PMC7355978 DOI: 10.3390/bioengineering7020040] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
Nanocelluloses have emerged as a catalogue of renewable nanomaterials for bioink formulation in service of 3D bioprinting, thanks to their structural similarity to extracellular matrices and excellent biocompatibility of supporting crucial cellular activities. From a material scientist's viewpoint, this mini-review presents the key research aspects of the development of the nanocellulose-based bioinks in 3D (bio)printing. The nanomaterial properties of various types of nanocelluloses, including bacterial nanocellulose, cellulose nanofibers, and cellulose nanocrystals, are reviewed with respect to their origins and preparation methods. Different cross-linking strategies to integrate into multicomponent nanocellulose-based bioinks are discussed in terms of regulating ink fidelity in direct ink writing as well as tuning the mechanical stiffness as a bioactive cue in the printed hydrogel construct. Furthermore, the impact of surface charge and functional groups on nanocellulose surface on the crucial cellular activities (e.g., cell survival, attachment, and proliferation) is discussed with the cell-matrix interactions in focus. Aiming at a sustainable and cost-effective alternative for end-users in biomedical and pharmaceutical fields, challenging aspects such as biodegradability and potential nanotoxicity of nanocelluloses call for more fundamental comprehension of the cell-matrix interactions and further validation in in vivo models.
Collapse
Affiliation(s)
- Xiaoju Wang
- Laboratory of Natural Materials Technology, Åbo Akademi University, Porthaninkatu 3-5, 20500 Turku, Finland; (Q.W.); (C.X.)
| | | | | |
Collapse
|
35
|
Zhang S, Huang D, Lin H, Xiao Y, Zhang X. Cellulose Nanocrystal Reinforced Collagen-Based Nanocomposite Hydrogel with Self-Healing and Stress-Relaxation Properties for Cell Delivery. Biomacromolecules 2020; 21:2400-2408. [DOI: 10.1021/acs.biomac.0c00345] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Shuang Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Danyang Huang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Hai Lin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yun Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
36
|
Li D, Gao H, Li M, Chen G, Guan L, He M, Tian J, Cao R. Nanochitin/metal ion dual reinforcement in synthetic polyacrylamide network-based nanocomposite hydrogels. Carbohydr Polym 2020; 236:116061. [PMID: 32172876 DOI: 10.1016/j.carbpol.2020.116061] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
Abstract
Nanocomposite hydrogels consisting of a synthetic matrix reinforced by nanosized crystalline polysaccharides offer significant potential in various fields. Different from nanocellulose, the combination of nanochitin with synthetic polymers to obtain nanocomposite hydrogels has not been extensively and systematically studied. Herein, a physically and chemically dual crosslinked nanocomposite hydrogel was successfully synthesized, where chitin nanowhiskers (ChNWs) and Zn2+ were incorporated within polyacrylamide (PAAm) matrix. Nanochitin/metal ion dual reinforcement imparts increased elasticity, enhanced mechanical properties, and improved recovery performance to PAAm network. The PAAm/ChNWs/Zn2+ hydrogel could be stretched to over 13 times its original length with tensile strength of 321.9 ± 8.2 kPa, and restore its original shape rapidly even when compressed at a strain of 95% with a corresponding compressive strength of 6.95 ± 0.20 MPa. The multiple crosslinks and interactions among ChNWs, Zn2+ and synthetic polymeric network were investigated. Moreover, the hydrogel was applied in drug release and soft bioelectronics.
Collapse
Affiliation(s)
- Dongjian Li
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huichang Gao
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Miaosi Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Guangxue Chen
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Liyun Guan
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Minghui He
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Junfei Tian
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Rong Cao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education and Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
37
|
Kurniawan NA. The ins and outs of engineering functional tissues and organs: evaluating the in-vitro and in-situ processes. Curr Opin Organ Transplant 2019; 24:590-597. [PMID: 31389812 PMCID: PMC6749960 DOI: 10.1097/mot.0000000000000690] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW For many disorders that result in loss of organ function, the only curative treatment is organ transplantation. However, this approach is severely limited by the shortage of donor organs. Tissue engineering has emerged as an alternative solution to this issue. This review discusses the concept of tissue engineering from a technical viewpoint and summarizes the state of the art as well as the current shortcomings, with the aim of identifying the key lessons that we can learn to further advance the engineering of functional tissues and organs. RECENT FINDINGS A plethora of tissue-engineering strategies have been recently developed. Notably, these strategies put different emphases on the in-vitro and in-situ processes (i.e. preimplantation and postimplantation) that take place during tissue formation. Biophysical and biomechanical interactions between the cells and the scaffold/biomaterial play a crucial role in all steps and have started to be exploited to steer tissue regeneration. SUMMARY Recent works have demonstrated the need to better understand the in-vitro and in-situ processes during tissue formation, in order to regenerate complex, functional organs with desired cellular organization and tissue architecture. A concerted effort from both fundamental and tissue-specific research has the potential to accelerate progress in the field.
Collapse
Affiliation(s)
- Nicholas A. Kurniawan
- Department of Biomedical Engineering
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
38
|
Wang J, Lou L, Qiu J. Super‐tough hydrogels using ionically crosslinked networks. J Appl Polym Sci 2019. [DOI: 10.1002/app.48182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jilong Wang
- Key Laboratory of Textile Science & Technology of Ministry of EducationCollege of Textiles, Donghua University Shanghai 201620 People's Republic of China
- Department of Mechanical EngineeringTexas Tech University 2500 Broadway, P.O. Box 43061, Lubbock Texas 79409
| | - Lihua Lou
- Department of Environmental ToxicologyTexas Tech University, Reese Center P.O. Box 41163, Lubbock Texas 79416
| | - Jingjing Qiu
- Department of Mechanical EngineeringTexas Tech University 2500 Broadway, P.O. Box 43061, Lubbock Texas 79409
| |
Collapse
|
39
|
Li J, Wu S, Kim E, Yan K, Liu H, Liu C, Dong H, Qu X, Shi X, Shen J, Bentley WE, Payne GF. Electrobiofabrication: electrically based fabrication with biologically derived materials. Biofabrication 2019; 11:032002. [PMID: 30759423 PMCID: PMC7025432 DOI: 10.1088/1758-5090/ab06ea] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
While conventional material fabrication methods focus on form and strength to achieve function, the fabrication of material systems for emerging life science applications will need to satisfy a more subtle set of requirements. A common goal for biofabrication is to recapitulate complex biological contexts (e.g. tissue) for applications that range from animal-on-a-chip to regenerative medicine. In these cases, the material systems will need to: (i) present appropriate surface functionalities over a hierarchy of length scales (e.g. molecular features that enable cell adhesion and topographical features that guide differentiation); (ii) provide a suite of mechanobiological cues that promote the emergence of native-like tissue form and function; and (iii) organize structure to control cellular ingress and molecular transport, to enable the development of an interconnected cellular community that is engaged in cell signaling. And these requirements are not likely to be static but will vary over time and space, which will require capabilities of the material systems to dynamically respond, adapt, heal and reconfigure. Here, we review recent advances in the use of electrically based fabrication methods to build material systems from biological macromolecules (e.g. chitosan, alginate, collagen and silk). Electrical signals are especially convenient for fabrication because they can be controllably imposed to promote the electrophoresis, alignment, self-assembly and functionalization of macromolecules to generate hierarchically organized material systems. Importantly, this electrically based fabrication with biologically derived materials (i.e. electrobiofabrication) is complementary to existing methods (photolithographic and printing), and enables access to the biotechnology toolbox (e.g. enzymatic-assembly and protein engineering, and gene expression) to offer exquisite control of structure and function. We envision that electrobiofabrication will emerge as an important platform technology for organizing soft matter into dynamic material systems that mimic biology's complexity of structure and versatility of function.
Collapse
Affiliation(s)
- Jinyang Li
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, United States of America
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Shojaeiarani J, Bajwa D, Shirzadifar A. A review on cellulose nanocrystals as promising biocompounds for the synthesis of nanocomposite hydrogels. Carbohydr Polym 2019; 216:247-259. [PMID: 31047064 DOI: 10.1016/j.carbpol.2019.04.033] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/10/2019] [Accepted: 04/07/2019] [Indexed: 11/29/2022]
Abstract
Hydrogels are hydrophilic cross-linked polymer networks formed via the simple reaction of one or more monomers with the ability to retain a significant extent of water. Owing to an increased demand for environmentally friendly, biodegradable, and biocompatible products, cellulose nanocrystals (CNCs) with high hydrophilicity have emerged as a promising sustainable material for the formation of hydrogels. The cytocompatibility, swellability, and non-toxicity make CNC hydrogels of great interest in biomedical, biosensing, and wastewater treatment applications. There has been a considerable progress in the research of CNC hydrogels, as the number of scientific publications has exponentially increased (>600%) in the last five years. In this paper, recent progress in CNC hydrogels with particular emphasis on design, materials, and fabrication techniques to control hydrogel architecture, and advanced applications are discussed.
Collapse
Affiliation(s)
- Jamileh Shojaeiarani
- Department of Mechanical Engineering, North Dakota State University, Fargo, ND, 58102, United States.
| | - Dilpreet Bajwa
- Department of Mechanical Engineering, North Dakota State University, Fargo, ND, 58102, United States.
| | - Alimohammad Shirzadifar
- Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND, United States.
| |
Collapse
|
41
|
Nanocellulose Composite Biomaterials in Industry and Medicine. BIOLOGICALLY-INSPIRED SYSTEMS 2019. [DOI: 10.1007/978-3-030-12919-4_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
42
|
Plappert SF, Nedelec JM, Rennhofer H, Lichtenegger HC, Bernstorff S, Liebner FW. Self-Assembly of Cellulose in Super-Cooled Ionic Liquid under the Impact of Decelerated Antisolvent Infusion: An Approach toward Anisotropic Gels and Aerogels. Biomacromolecules 2018; 19:4411-4422. [PMID: 30252450 DOI: 10.1021/acs.biomac.8b01278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Assembly of (bio)polymers into long-range anisotropic nanostructured gels and aerogels is of great interest in advanced material engineering since it enables directional tuning of properties, such as diffusivity, light, heat, and sound propagation, cell proliferation, and mechanical properties. Here we present an approach toward anisotropic cellulose II gels and aerogels that employs specific diffusion and phase separation phenomena occurring during decelerated infusion of an antisolvent into isotropic supercooled solutions of cellulose in an ionic liquid to effectuate supramolecular assembly of cellulose in anisotropic colloidal network structures. At the example of the distillable ionic liquid 1,1,3,3-tetramethylguanidinium acetate, the antisolvent ethanol, and spherocylindrical porous molds, we demonstrate that the proposed facile, environmental-benign and versatile route affords gels and aerogels whose specific anisotropic nanomorphology and properties reflect the preferred supramolecular cellulose orientation during phase separation, which is perpendicular to the direction of antisolvent diffusion. Comprehensive X-ray scattering experiments revealed that the (aero)gels are composed of an interconnected, fibrous, highly crystalline (CrI ≈ 72%), cellulose II with a cross-sectional Guinier radius of the struts of about 2.5 nm, and an order parameter gradient from about 0.1 to 0.2. The obtained gels and aerogels feature high specific surface areas (350-630 m2 g-1) and excellent mechanical properties like high toughness (up to 471 kJ m-3 for a 60% compression, ρB = 80 mg cm-3) and resilience (up to 13.4 kJ m-3, ρB = 65 mg cm-3).
Collapse
Affiliation(s)
- Sven F Plappert
- Division of Chemistry of Renewable Resources , University of Natural Resources and Life Sciences Vienna , Konrad-Lorenz-Straße 24 , 3430 Tulln , Austria.,Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF , F-63000 Clermont-Ferrand , France
| | - Jean-Marie Nedelec
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF , F-63000 Clermont-Ferrand , France
| | - Harald Rennhofer
- Institute of Physics and Material Sciences , University of Natural Resources and Life Sciences Vienna , Peter-Jordan-Straße 82 , 1190 Vienna , Austria
| | - Helga C Lichtenegger
- Institute of Physics and Material Sciences , University of Natural Resources and Life Sciences Vienna , Peter-Jordan-Straße 82 , 1190 Vienna , Austria
| | - Sigrid Bernstorff
- Elettra - Sincrotrone Trieste S.C.p.A., Strada Statale 14 , 34149 Basovizza , Trieste , Italy
| | - Falk W Liebner
- Division of Chemistry of Renewable Resources , University of Natural Resources and Life Sciences Vienna , Konrad-Lorenz-Straße 24 , 3430 Tulln , Austria
| |
Collapse
|
43
|
Alizadehgiashi M, Khuu N, Khabibullin A, Henry A, Tebbe M, Suzuki T, Kumacheva E. Nanocolloidal Hydrogel for Heavy Metal Scavenging. ACS NANO 2018; 12:8160-8168. [PMID: 29979568 DOI: 10.1021/acsnano.8b03202] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We report a nanocolloidal hydrogel that combines the advantages of molecular hydrogels and nanoparticle-based scavengers of heavy metal ions. The hydrogel was formed by the chemical cross-linking of cellulose nanocrystals and graphene quantum dots. Over a range of hydrogel compositions, its structure was changed from lamellar to nanofibrillar, thus enabling the control of hydrogel permeability. Using a microfluidic approach, we generated nanocolloidal microgels and explored their scavenging capacity for Hg2+, Cu2+, Ni2+, and Ag+ ions. Due to the large surface area and abundance of ion-coordinating sites on the surface of nanoparticle building blocks, the microgels exhibited a high ion-sequestration capacity. The microgels were recyclable and were used in several ion scavenging cycles. These features, in addition to the sustainable nature of the nanoparticles, make this nanocolloidal hydrogel a promising ion-scavenging material.
Collapse
Affiliation(s)
- Moien Alizadehgiashi
- Department of Chemistry , University of Toronto , 80 Saint George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Nancy Khuu
- Department of Chemistry , University of Toronto , 80 Saint George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Amir Khabibullin
- Department of Chemistry , University of Toronto , 80 Saint George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Andria Henry
- Department of Chemistry , University of Toronto , 80 Saint George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Moritz Tebbe
- Department of Chemistry , University of Toronto , 80 Saint George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Toyoko Suzuki
- Department of Chemistry , University of Toronto , 80 Saint George Street , Toronto , Ontario M5S 3H6 , Canada
- Graduate School of Engineering , Kobe University , Kobe 657-8501 , Japan
| | - Eugenia Kumacheva
- Department of Chemistry , University of Toronto , 80 Saint George Street , Toronto , Ontario M5S 3H6 , Canada
- Institute of Biomaterials and Biomedical Engineering , University of Toronto , 4 Taddle Creek Road , Toronto , Ontario M5S 3G9 , Canada
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , 200 College Street , Toronto , Ontario M5S 3E5 , Canada
| |
Collapse
|