1
|
Guo X, Fang Q, Zhang K, Liang G, Zhu J, Xiao Z. Enhancing the efficacy of synthesising PHA from nitrogen-limited activated sludge using magnetic field. ENVIRONMENTAL TECHNOLOGY 2024:1-13. [PMID: 39002158 DOI: 10.1080/09593330.2024.2376289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024]
Abstract
Polyhydroxyalkanes (PHA) is a biodegradable biopolyester. In this study, we introduced the biological effects of magnetic field into a sequencing batch reactor (SBR) for PHA production to evaluate the effect of different strength of magnetic field on the efficacy of PHA synthesis by activated sludge and used the magnetic field to enhance the PHA synthesis capacity of nitrogen-limited activated sludge and to optimise the percentage of the content of the two monomers in PHA. The results showed that the magnetic field of appropriate strength was favourable to increase the production of PHA and to increase the percentage of PHV. In addition, microbial community analysis showed that there was an obvious succession of key functional bacteria under different strength of magnetic field. The highest PHA accumulation was achieved after the magnetic field of 16 mT, which reached 57.65% of the dry weight of sludge. In addition, the PHV monomers were more sensitive to the response of the magnetic field, and the magnetic field of 8mT and 16mT positively promoted the synthesis of PHV. It is worth noting that too high a magnetic field would have an inhibitory effect on the synthesis of PHA.
Collapse
Affiliation(s)
- Xiaomin Guo
- Department of Municipal Engineering, School of Civil Engineering, Guangzhou University, Guangzhou, People's Republic of China
| | - Qian Fang
- Department of Municipal Engineering, School of Civil Engineering, Guangzhou University, Guangzhou, People's Republic of China
| | - Kequan Zhang
- Department of Municipal Engineering, School of Civil Engineering, Guangzhou University, Guangzhou, People's Republic of China
| | - Guirong Liang
- Department of Municipal Engineering, School of Civil Engineering, Guangzhou University, Guangzhou, People's Republic of China
| | - Jiang Zhu
- Department of Municipal Engineering, School of Civil Engineering, Guangzhou University, Guangzhou, People's Republic of China
| | - Zilong Xiao
- Department of Municipal Engineering, School of Civil Engineering, Guangzhou University, Guangzhou, People's Republic of China
| |
Collapse
|
2
|
Wang S, Liu Y, Guo H, Meng Y, Xiong W, Liu R, Yang C. Establishment of low-cost production platforms of polyhydroxyalkanoate bioplastics from Halomonas cupida J9. Biotechnol Bioeng 2024; 121:2106-2120. [PMID: 38587130 DOI: 10.1002/bit.28694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/05/2024] [Accepted: 02/27/2024] [Indexed: 04/09/2024]
Abstract
Microbial production of polyhydroxyalkanoate (PHA) is greatly restricted by high production cost arising from high-temperature sterilization and expensive carbon sources. In this study, a low-cost PHA production platform was established from Halomonas cupida J9. First, a marker-less genome-editing system was developed in H. cupida J9. Subsequently, H. cupida J9 was engineered to efficiently utilize xylose for PHA biosynthesis by introducing a new xylose metabolism module and blocking xylonate production. The engineered strain J9UΔxylD-P8xylA has the highest PHA yield (2.81 g/L) obtained by Halomonas with xylose as the sole carbon source so far. This is the first report on the production of short- and medium-chain-length (SCL-co-MCL) PHA from xylose by Halomonas. Interestingly, J9UΔxylD-P8xylA was capable of efficiently utilizing glucose and xylose as co-carbon sources for PHA production. Furthermore, fed-batch fermentation of J9UΔxylD-P8xylA coupled to a glucose/xylose co-feeding strategy reached up to 12.57 g/L PHA in a 5-L bioreactor under open and unsterile condition. Utilization of corn straw hydrolysate as the carbon source by J9UΔxylD-P8xylA reached 7.0 g/L cell dry weight (CDW) and 2.45 g/L PHA in an open fermentation. In summary, unsterile production in combination with inexpensive feedstock highlights the potential of the engineered strain for the low-cost production of PHA from lignocellulose-rich agriculture waste.
Collapse
Affiliation(s)
- Siqi Wang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yujie Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Hongfu Guo
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yan Meng
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Weini Xiong
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Ruihua Liu
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
3
|
Goswami L, Kushwaha A, Napathorn SC, Kim BS. Valorization of organic wastes using bioreactors for polyhydroxyalkanoate production: Recent advancement, sustainable approaches, challenges, and future perspectives. Int J Biol Macromol 2023; 247:125743. [PMID: 37423435 DOI: 10.1016/j.ijbiomac.2023.125743] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Microbial polyhydroxyalkanoates (PHA) are encouraging biodegradable polymers, which may ease the environmental problems caused by petroleum-derived plastics. However, there is a growing waste removal problem and the high price of pure feedstocks for PHA biosynthesis. This has directed to the forthcoming requirement to upgrade waste streams from various industries as feedstocks for PHA production. This review covers the state-of-the-art progress in utilizing low-cost carbon substrates, effective upstream and downstream processes, and waste stream recycling to sustain entire process circularity. This review also enlightens the use of various batch, fed-batch, continuous, and semi-continuous bioreactor systems with flexible results to enhance the productivity and simultaneously cost reduction. The life-cycle and techno-economic analyses, advanced tools and strategies for microbial PHA biosynthesis, and numerous factors affecting PHA commercialization were also covered. The review includes the ongoing and upcoming strategies viz. metabolic engineering, synthetic biology, morphology engineering, and automation to expand PHA diversity, diminish production costs, and improve PHA production with an objective of "zero-waste" and "circular bioeconomy" for a sustainable future.
Collapse
Affiliation(s)
- Lalit Goswami
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Anamika Kushwaha
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | | | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
4
|
Badran I, Riyaz NS. The mechanism of fluorescence quenching of naphthalimide A/C leak detector by copper (II). BMC Chem 2023; 17:69. [PMID: 37407990 DOI: 10.1186/s13065-023-00987-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Fluorescence quenching is an interesting phenomenon with the potential to be applied across various fields. The mechanism is commonly used across analytical applications for monitoring the concentration of trace substances. Naphthalimide and its family of compounds are commonly used as fluorescent detectors. This work investigated an analytical technique through which naphthalimide-based dyes could be quantified. A commercial A/C leak detector was used as the dye and Cu2+ ions as the quencher. Experiments were also conducted to investigate the effect of temperature on quenching. To study the mechanism of quenching further, density functional theory (DFT) was used. RESULTS The method detection limit obtained in this work is 1.7 × 10-6 mol/L. The results from the quenching experiments demonstrated a pattern which fit a modified Stern-Volmer (SV) model, with an R2 value of 0.9886. From the experiments on the effect of temperature, a dynamic quenching behavior was observed given the emission spectra demonstrated an inverse relationship with temperature. CONCLUSIONS The quenching of the commercial A/C dye by Cu2+ ions can be used to develop a rapid and sensitive detection method for metal ions such as Cu2+, and for future fabrication of chemosensors for Cu2+.
Collapse
Affiliation(s)
- Ismail Badran
- Department of Chemistry, Faculty of Sciences, An-Najah National University, Nablus, Palestine.
| | | |
Collapse
|
5
|
Gao L, Li L, Li Y, He C, Zhou L, Qu X, Fang S. Effects of Europium Complex on Thermal and Photoluminescence Properties of Polyurethane-Europium Materials. Polymers (Basel) 2023; 15:1064. [PMID: 36904305 PMCID: PMC10007129 DOI: 10.3390/polym15051064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
A europium complex with double bonds was synthesized with crotonic acid as the ligand and a europium ion as the center ion. Then, the obtained europium complex was added to synthesized poly(urethane-acrylate) macromonomers to prepare the bonded polyurethane-europium materials by the polymerization of the double bonds in the complex and the poly(urethane-acrylate) macromonomers. The prepared polyurethane-europium materials had high transparency, good thermal stability and good fluorescence. The storage moduli of polyurethane-europium materials are obviously higher than those of pure polyurethane. Polyurethane-europium materials exhibit bright red light with good monochromaticity. The light transmittance of the material decreases slightly with increases in the europium complex content, but the luminescence intensity gradually increases. In particular, polyurethane-europium materials possess a long luminescence lifetime, which has potential applications for optical display instruments.
Collapse
Affiliation(s)
- Lijun Gao
- School of Chemical Engineering and Technology, Hebei University of Technology, No.8 Guangrong Road, Tianjin 300130, China
- Henan Provincial Key Laboratory of Surface & Interface Science, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Liuyang Li
- Henan Provincial Key Laboratory of Surface & Interface Science, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Yunqiu Li
- Henan Provincial Key Laboratory of Surface & Interface Science, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Congcong He
- Henan Provincial Key Laboratory of Surface & Interface Science, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Liming Zhou
- Henan Provincial Key Laboratory of Surface & Interface Science, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Xiongwei Qu
- School of Chemical Engineering and Technology, Hebei University of Technology, No.8 Guangrong Road, Tianjin 300130, China
| | - Shaoming Fang
- School of Chemical Engineering and Technology, Hebei University of Technology, No.8 Guangrong Road, Tianjin 300130, China
- Henan Provincial Key Laboratory of Surface & Interface Science, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| |
Collapse
|
6
|
Ray S, Jin JO, Choi I, Kim M. Recent trends of biotechnological production of polyhydroxyalkanoates from C1 carbon sources. Front Bioeng Biotechnol 2023; 10:907500. [PMID: 36686222 PMCID: PMC9852868 DOI: 10.3389/fbioe.2022.907500] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/06/2022] [Indexed: 01/09/2023] Open
Abstract
Growing concerns over the use of limited fossil fuels and their negative impacts on the ecological niches have facilitated the exploration of alternative routes. The use of conventional plastic material also negatively impacts the environment. One such green alternative is polyhydroxyalkanoates, which are biodegradable, biocompatible, and environmentally friendly. Recently, researchers have focused on the utilization of waste gases particularly those belonging to C1 sources derived directly from industries and anthropogenic activities, such as carbon dioxide, methane, and methanol as the substrate for polyhydroxyalkanoates production. Consequently, several microorganisms have been exploited to utilize waste gases for their growth and biopolymer accumulation. Methylotrophs such as Methylobacterium organophilum produced highest amount of PHA up to 88% using CH4 as the sole carbon source and 52-56% with CH3OH. On the other hand Cupriavidus necator, produced 71-81% of PHA by utilizing CO and CO2 as a substrate. The present review shows the potential of waste gas valorization as a promising solution for the sustainable production of polyhydroxyalkanoates. Key bottlenecks towards the usage of gaseous substrates obstructing their realization on a large scale and the possible technological solutions were also highlighted. Several strategies for PHA production using C1 gases through fermentation and metabolic engineering approaches are discussed. Microbes such as autotrophs, acetogens, and methanotrophs can produce PHA from CO2, CO, and CH4. Therefore, this article presents a vision of C1 gas into bioplastics are prospective strategies with promising potential application, and aspects related to the sustainability of the system.
Collapse
Affiliation(s)
- Subhasree Ray
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea,Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, India,*Correspondence: Myunghee Kim, ; Subhasree Ray,
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea,Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea,Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea
| | - Myunghee Kim
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea,Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea,*Correspondence: Myunghee Kim, ; Subhasree Ray,
| |
Collapse
|
7
|
Novel Production Methods of Polyhydroxyalkanoates and Their Innovative Uses in Biomedicine and Industry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238351. [PMID: 36500442 PMCID: PMC9740486 DOI: 10.3390/molecules27238351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Polyhydroxyalkanoate (PHA), a biodegradable polymer obtained from microorganisms and plants, have been widely used in biomedical applications and devices, such as sutures, cardiac valves, bone scaffold, and drug delivery of compounds with pharmaceutical interests, as well as in food packaging. This review focuses on the use of polyhydroxyalkanoates beyond the most common uses, aiming to inform about the potential uses of the biopolymer as a biosensor, cosmetics, drug delivery, flame retardancy, and electrospinning, among other interesting uses. The novel applications are based on the production and composition of the polymer, which can be modified by genetic engineering, a semi-synthetic approach, by changing feeding carbon sources and/or supplement addition, among others. The future of PHA is promising, and despite its production costs being higher than petroleum-based plastics, tools given by synthetic biology, bioinformatics, and machine learning, among others, have allowed for great production yields, monomer and polymer functionalization, stability, and versatility, a key feature to increase the uses of this interesting family of polymers.
Collapse
|
8
|
Xu M, Chang Y, Zhang Y, Wang W, Hong J, Zhao J, Lu X, Tan D. Development and Application of Transcription Terminators for Polyhydroxylkanoates Production in Halophilic Halomonas bluephagenesis TD01. Front Microbiol 2022; 13:941306. [PMID: 35832813 PMCID: PMC9271916 DOI: 10.3389/fmicb.2022.941306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Halomonas bluephagenesis TD01 is one of the ideal chassis for low-cost industrial production based on “Next Generation Industrial Biotechnology,” yet the limited genetically regulatory parts such as transcriptional terminators, which are crucial for tuned regulations on gene expression, have hampered the engineering and applications of the strain. In this study, a series of intrinsic Rho-independent terminators were developed by either genome mining or rational design, and seven of them proved to exhibit higher efficiencies than the canonical strong T7 terminator, among which three terminators displayed high efficiencies over 90%. A preliminary modeling on the sequence-efficiency relationship of the terminators suggested that the poly U sequence regularity, the length and GC content of the stem, and the number and the size of hairpin loops remarkably affected the termination efficiency (TE). The rational and de novo designs of novel synthetic terminators based on the sequence-efficiency relationship and the “main contributor” engineering strategy proved to be effective, and fine-tuned polyhydroxylkanoates production was also achieved by the regulation of these native or synthetic terminators with different efficiencies. Furthermore, a perfectly positive correlation between the promoter activity and the TE was revealed in our study. The study enriches our knowledge of transcriptional termination via its sequence–strength relationship and enables the precise regulation of gene expression and PHA synthesis by intrinsic terminators, contributing to the extensive applications of H. bluephagenesis TD01 in the low-cost production of various chemicals.
Collapse
|
9
|
Le Gal M, Rios De Anda A, Michely L, Simon Colin C, Renard E, Langlois V. Synthesis of Fluorinated Polyhydroxyalkanoates from Marine Bioresources as a Promising Biomaterial Coating. Biomacromolecules 2021; 22:4510-4520. [PMID: 34647729 DOI: 10.1021/acs.biomac.1c00770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
By successive enzymatic and chemical modifications, novel fluorinated polyhydroxyalkanoates were synthesized and characterized. Unsaturated polyhydroxyalkanoate, PHAU, was first produced by fermentation using marine bacteria Pseudomonas raguenesii, and a graft copolymer PHAU-g-C8F17 was further prepared by controlled thiol-ene reaction in the presence of perfluorodecanethiol (PFDT). The PFDT grafting is realized by two different processes. In the first method, PHAU was previously solubilized in toluene. The grafting in solution is more efficient than the direct heterogeneous grafting onto a PHAU film. The degrees of grafting were determined by 1H NMR. The characterization of the microstructure by SEM-EDX and modulated and conventional DSC showed the formation of microdomains due to the organization of the hydrophobic segments of graft PFDT. Biomaterials prepared by 3D printing and coated by PHAU-g-C8F17 have the potential to be used as novel contrast agents as shown by Hahn echo experiments.
Collapse
Affiliation(s)
- Marion Le Gal
- Univ. Paris-Est Créteil, CNRS, ICMPE, F-94010 Cretéil, France.,Univ. Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | | | - Laurent Michely
- Univ. Paris-Est Créteil, CNRS, ICMPE, F-94010 Cretéil, France
| | - Christelle Simon Colin
- Univ. Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Estelle Renard
- Univ. Paris-Est Créteil, CNRS, ICMPE, F-94010 Cretéil, France
| | | |
Collapse
|
10
|
Li M, Ma Y, Zhang X, Zhang L, Chen X, Ye JW, Chen GQ. Tailor-Made Polyhydroxyalkanoates by Reconstructing Pseudomonas Entomophila. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102766. [PMID: 34322928 DOI: 10.1002/adma.202102766] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/29/2021] [Indexed: 06/13/2023]
Abstract
Microbial polyhydroxyalkanoates (PHA) containing short- and medium/long-chain-length monomers, abbreviated as SCL-co-MCL/LCL PHAs, generate suitable thermal and mechanical properties. However, SCL-co-MCL/LCL PHAs with carbon chain longer than nine are difficult to synthesize due to the low specificity of PHA synthase PhaC and the lack of either SCL- or MCL/LCL monomer precursor fluxes. This study succeeds in reprogramming a β-oxidation weakened Pseudomonas entomophila containing synthesis pathways of SCL 3-hydroxybutyryl-CoA (3HB) from glucose and MCL/LCL 3-hydroxyalkanoyl-CoA from fatty acids with carbon chain lengths from 9 to 18, respectively, that are polymerized under a low specificity PhaC61-3 to form P(3HB-co-MCL/LCL 3HA) copolymers. Through rational flux-tuning approaches, the optimized recombinant P. entomophila accumulates 55 wt% poly-3-hydroxybutyrate in 8.4 g L-1 cell dry weight. Combined with weakened β-oxidation, a series of novel P(3HB-co-MCL/LCL 3HA) copolymers with over 60 wt% PHA in 9 g L-1 cell dry weight have been synthesized for the first time. P. entomophila has become a high-performing platform to generate tailor-made new SCL-co-MCL/LCL PHAs.
Collapse
Affiliation(s)
- Mengyi Li
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yueyuan Ma
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xu Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Lizhan Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xinyu Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jian-Wen Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center of Life Sciences, Tsinghua University, Beijing, 100084, China
- MOE Key Lab of Industrial Biocatalysts, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
11
|
Jia K, Bai Y, Wang L, Luo Y, Hu W, He X, Wang P, Marks R, Liu X. Emulsion confinement self-assembly regulated lanthanide coordinating polymeric microparticles for multicolor fluorescent nanofibers. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124043] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
12
|
Muthuraj R, Valerio O, Mekonnen TH. Recent developments in short- and medium-chain- length Polyhydroxyalkanoates: Production, properties, and applications. Int J Biol Macromol 2021; 187:422-440. [PMID: 34324901 DOI: 10.1016/j.ijbiomac.2021.07.143] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
Developing renewable resource-based plastics with complete biodegradability and a minimal carbon footprint can open new opportunities to effectively manage the end-of-life plastics waste and achieve a low carbon society. Polyhydroxyalkanoates (PHAs) are biobased and biodegradable thermoplastic polyesters that accumulate in microorganisms (e.g., bacterial, microalgal, and fungal species) as insoluble and inert intracellular inclusion. The PHAs recovery from microorganisms, which typically involves cell lysis, extraction, and purification, provides high molecular weight and purified polyesters that can be compounded and processed using conventional plastics converting equipment. The physio-chemical, thermal, and mechanical properties of the PHAs are comparable to traditional synthetic polymers such as polypropylene and polyethylene. As a result, it has attracted substantial applications interest in packaging, personal care, coatings, agricultural and biomedical uses. However, PHAs have certain performance limitations (e.g. slow crystallization), and substantially more expensive than many other polymers. As such, more research and development is required to enable them for extensive use. This review provides a critical review of the recent progress achieved in PHAs production using different microorganisms, downstream processing, material properties, processing avenues, recycling, aerobic and anaerobic biodegradation, and applications.
Collapse
Affiliation(s)
- Rajendran Muthuraj
- Worn Again Technologies Ltd, Bio City, Pennyfoot St, NG1 1GF Nottingham, Nottinghamshire, United Kingdom
| | - Oscar Valerio
- Departamento de Ingeniería Química, Universidad de Concepción, Concepción, Chile
| | - Tizazu H Mekonnen
- Department of Chemical Engineering, Institute of Polymer Research, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada.
| |
Collapse
|
13
|
Tan D, Wang Y, Tong Y, Chen GQ. Grand Challenges for Industrializing Polyhydroxyalkanoates (PHAs). Trends Biotechnol 2021; 39:953-963. [PMID: 33431229 DOI: 10.1016/j.tibtech.2020.11.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are a diverse family of sustainable bioplastics synthesized by various bacteria, but their high production cost and unstable material properties make them challenging to use in commercial applications. Current industrial biotechnology (CIB) employs conventional microbial chassis, leading to high production costs. However, next-generation industrial biotechnology (NGIB) approaches, based on fast-growing and contamination-resistant extremophilic Halomonas spp., allow stable continuous processing and thus economical production of PHAs with stable properties. Halomonas spp. designed and constructed using synthetic biology not only produce low-cost intracellular PHAs but also secrete extracellular soluble products for improved process economics. Next-generation industrial biotechnology is expected to reduce the bioproduction cost and process complexity, leading to successful commercial production of PHAs.
Collapse
Affiliation(s)
- Dan Tan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ying Wang
- Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yi Tong
- National Engineering Research Center for Corn Deep Processing, COFCO, Changchun 130033, Jilin, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; MOE Key Lab on Industrial Biocatalyst, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
14
|
Choi SY, Cho IJ, Lee Y, Kim YJ, Kim KJ, Lee SY. Microbial Polyhydroxyalkanoates and Nonnatural Polyesters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907138. [PMID: 32249983 DOI: 10.1002/adma.201907138] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/20/2020] [Indexed: 06/11/2023]
Abstract
Microorganisms produce diverse polymers for various purposes such as storing genetic information, energy, and reducing power, and serving as structural materials and scaffolds. Among these polymers, polyhydroxyalkanoates (PHAs) are microbial polyesters synthesized and accumulated intracellularly as a storage material of carbon, energy, and reducing power under unfavorable growth conditions in the presence of excess carbon source. PHAs have attracted considerable attention for their wide range of applications in industrial and medical fields. Since the first discovery of PHA accumulating bacteria about 100 years ago, remarkable advances have been made in the understanding of PHA biosynthesis and metabolic engineering of microorganisms toward developing efficient PHA producers. Recently, nonnatural polyesters have also been synthesized by metabolically engineered microorganisms, which opened a new avenue toward sustainable production of more diverse plastics. Herein, the current state of PHAs and nonnatural polyesters is reviewed, covering mechanisms of microbial polyester biosynthesis, metabolic pathways, and enzymes involved in biosynthesis of short-chain-length PHAs, medium-chain-length PHAs, and nonnatural polyesters, especially 2-hydroxyacid-containing polyesters, metabolic engineering strategies to produce novel polymers and enhance production capabilities and fermentation, and downstream processing strategies for cost-effective production of these microbial polyesters. In addition, the applications of PHAs and prospects are discussed.
Collapse
Affiliation(s)
- So Young Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - In Jin Cho
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Youngjoon Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yeo-Jin Kim
- School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- BioProcess Engineering Research Center and Bioinformatics Research Center, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
15
|
From biomass resources to functional materials: A fluorescent thermosetting material based on resveratrol via thiol-ene click chemistry. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109416] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Shi M, Cheng T, Zou H, Zhang N, Huang J, Xian M. The Preparation and Biomedical Application of Biopolyesters. Mini Rev Med Chem 2019; 20:331-340. [PMID: 31644401 DOI: 10.2174/1389557519666191015211156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 11/22/2022]
Abstract
Biopolyesters represent a large family that can be obtained by polymerization of variable bio-derived hydroxyalkanoic acids. The monomer composition, molecular weight of the biopolyesters can affect the properties and applications of the polyesters. The majority of biopolyesters can either be biosynthesized from natural biofeedstocks or semi-synthesized (biopreparation of monomers followed by the chemical polymerization of the monomers). With the fast development of synthetic biology and biosynthesis techniques, the biosynthesis of unnatural biopolyesters (like lactate containing and aromatic biopolyesters) with improved performance and function has been a tendency. The presence of novel preparation methods, novel monomer composition has also significantly affected the properties, functions and applications of the biopolyesters. Due to the properties of biodegradability and biocompatibility, biopolyesters have great potential in biomedical applications (as implanting or covering biomaterials, drug carriers). Moreover, biopolyesters can be fused with other functional ingredients to achieve novel applications or improved functions. This study summarizes and compares the updated preparation methods of representative biopolyesters, also introduces the current status and future trends of their applications in biomedical fields.
Collapse
Affiliation(s)
- Mengxun Shi
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.,Department of Chemical and Biological Engineering, Sir Robert Hadfield Building, The University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Tao Cheng
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.,CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.,State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Huibin Zou
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.,CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Nan Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jingling Huang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mo Xian
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
17
|
Affiliation(s)
- Guo-Qiang Chen
- School of Life Sciences, Center for Synthetic and Systems Biology (CSSB), Tsinghua University, Beijing 100084, China
| | - Ann-Christine Albertsson
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
18
|
Zhang M, Ye J, Li C, Xia Y, Wang Z, Feng J, Zhang X. Cytomembrane-Mediated Transport of Metal Ions with Biological Specificity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900835. [PMID: 31508286 PMCID: PMC6724363 DOI: 10.1002/advs.201900835] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/10/2019] [Indexed: 05/17/2023]
Abstract
Metal ions are of significant importance in biomedical science. This study reports a new concept of cytomembrane-mediated biospecific transport of metal ions without using any other materials. For the first time, cytomembranes are exploited for two-step conjugation with metal ions to provide hybrid nanomaterials. The innate biofunction of cell membranes renders the hybrids with superior advantages over common vehicles for metal ions, including excellent biocompatibility, low immunogenic risk, and particularly specific biotargeting functionality. As a proof-of-concept demonstration, cancer cell membranes are used for in vivo delivery of various metal ions, including ruthenium, europium, iron, and manganese, providing a series of tumor-targeted nanohybrids capable of photothermal therapy/imaging, magnetic resonance imaging, photoacoustic imaging, and fluorescence imaging with improved performances. In addition, the special structure of the cell membrane allows easy accommodation of small-molecular agents within the nanohybrids for effective chemotherapy. This study provides a new class of metal-ion-included nanomaterials with versatile biofunctions and offers a novel solution to address the important challenge in the field of in vivo targeted delivery of metal ions.
Collapse
Affiliation(s)
- Ming‐Kang Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of ChemistryWuhan UniversityWuhan430072P.R. China
| | - Jing‐Jie Ye
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of ChemistryWuhan UniversityWuhan430072P.R. China
| | - Chu‐Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of ChemistryWuhan UniversityWuhan430072P.R. China
| | - Yu Xia
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of ChemistryWuhan UniversityWuhan430072P.R. China
| | - Zi‐Yang Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of ChemistryWuhan UniversityWuhan430072P.R. China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of ChemistryWuhan UniversityWuhan430072P.R. China
| | - Xian‐Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of ChemistryWuhan UniversityWuhan430072P.R. China
| |
Collapse
|
19
|
Jain-Beuguel C, LI X, Houel-Renault L, Modjinou T, Simon-Colin C, Gref R, Renard E, Langlois V. Water-Soluble Poly(3-hydroxyalkanoate) Sulfonate: Versatile Biomaterials Used as Coatings for Highly Porous Nano-Metal Organic Framework. Biomacromolecules 2019; 20:3324-3332. [DOI: 10.1021/acs.biomac.9b00870] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Caroline Jain-Beuguel
- Institut de Chimie et des Matériaux Paris-Est, UPEC-CNRS, 2 rue Henry Dunant, 94320 Thiais, France
- Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Technopôle Pointe du Diable, 29280 Plouzané, France
| | - Xue LI
- Institut des Sciences Moléculaires d’Orsay, UMR 8214, CNRS-UPS, Rue André Rivière, 91405 Orsay, France
| | - Ludivine Houel-Renault
- Centre Laser de l’Université Paris-Sud (CLUPS/LUMAT), CNRS-UPS-IOGS, Université Paris-Saclay, 91405 Orsay, France
| | - Tina Modjinou
- Institut de Chimie et des Matériaux Paris-Est, UPEC-CNRS, 2 rue Henry Dunant, 94320 Thiais, France
| | - Christelle Simon-Colin
- Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Technopôle Pointe du Diable, 29280 Plouzané, France
| | - Ruxandra Gref
- Institut des Sciences Moléculaires d’Orsay, UMR 8214, CNRS-UPS, Rue André Rivière, 91405 Orsay, France
| | - Estelle Renard
- Institut de Chimie et des Matériaux Paris-Est, UPEC-CNRS, 2 rue Henry Dunant, 94320 Thiais, France
| | - Valérie Langlois
- Institut de Chimie et des Matériaux Paris-Est, UPEC-CNRS, 2 rue Henry Dunant, 94320 Thiais, France
| |
Collapse
|
20
|
Zhang X, Li Z, Che X, Yu L, Jia W, Shen R, Chen J, Ma Y, Chen GQ. Synthesis and Characterization of Polyhydroxyalkanoate Organo/Hydrogels. Biomacromolecules 2019; 20:3303-3312. [PMID: 31094501 DOI: 10.1021/acs.biomac.9b00479] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthetic organogels/hydrogels are attracting growing interests due to their potential applications in biomedical fields, organic electronics, and photovoltaics. Photogelation methods for synthesis of organogels/hydrogels have been shown particularly promising because of the high efficiency and simple synthetic procedures. This study synthesized new biodegradable polyhydroxyalkanoates (PHA)-based organogels/hydrogels via UV photo-cross-linking using unsaturated PHA copolymer poly[(R)-3-hydroxyundecanoate-co-(R)-3-hydroxy-10-undecenoate] (PHU10U) with polyethylene glycol dithiol (PDT) as a photo-cross-linker. The PHU10U was synthesized by an engineered Pseudomonas entomophila and characterized via Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance (NMR), and 13C NMR. With decreasing the molar ratio of PHU10U to PDT, both the swelling ratio and pore size were decreased. Meanwhile, increasing densities of the gel networks resulted in a higher compressive modulus. Cell cytotoxicity studies based on the CCK-8 assay on both the PHU10U precursor and PHU10U/PDT hydrogels showed that the novel PHA-based biodegradables acting as hydrogels possess good biocompatibility.
Collapse
Affiliation(s)
- Xu Zhang
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Zihua Li
- School of Pharmaceutical Sciences , Tsinghua University , Beijing 100084 , China
| | - Xuemei Che
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China.,Center for Nano- and Micro Mechanics, Tsinghua University , Beijing 100084 , China
| | - Linping Yu
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Wangyue Jia
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Rui Shen
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Jinchun Chen
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Yiming Ma
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Guo-Qiang Chen
- Center of Synthetic and Systems Biology, School of Life Sciences , Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing 100084 , China.,Center for Nano- and Micro Mechanics, Tsinghua University , Beijing 100084 , China.,MOE Key Lab for Industrial Biocatalysis, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| |
Collapse
|