1
|
Lin X, Xu T, Hou W, Dong X, Sun Y. Cationic Surface Charge Engineering of Recombinant Transthyretin Remarkably Increases the Inhibitory Potency Against Amyloid β-Protein Fibrillogenesis. Molecules 2024; 29:5023. [PMID: 39519665 PMCID: PMC11547489 DOI: 10.3390/molecules29215023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The deposition of amyloid β-protein (Aβ) in the brain is the main pathogenesis of Alzheimer's disease (AD). The development of potent inhibitors against Aβ aggregation is one of the effective strategies to combat AD. Endogenous transthyretin (TTR) can inhibit Aβ fibrillization via hydrophobic interactions, but its weak inhibitory potency hinders its application in AD therapy. Here, different recombinant TTRs were designed by cationic surface charge engineering. Compared with TTR, all positively charged recombinant TTRs showed enhanced capability in inhibiting Aβ aggregation, especially the recombinant protein obtained by mutating the acidic amino acid in TTR to arginine (TTR-nR) exhibited excellent inhibitory effect. Among them, TTR-7R remarkably increased the inhibitory potency against Aβ, which could effectively inhibit Aβ40 fibrillization at a very low concentration (0.5 μM). In addition, TTR-7R increased cultured cell viability from 62% to 89%, scavenged amyloid plaques in AD nematodes, and prolonged nematode lifespan by 5 d at 2 μM. Thermodynamic studies demonstrated that TTR-7R, enriching in positive charges, presented hydrophobic interactions and enhanced electrostatic interactions with Aβ40, leading to a significantly enhanced inhibitory capacity of TTR-7R. The research provided insights into the development of efficient recombinant protein inhibitors for AD treatment.
Collapse
Affiliation(s)
- Xiaoding Lin
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Ting Xu
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Wenqi Hou
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| |
Collapse
|
2
|
Lamisa AB, Ahammad I, Bhattacharjee A, Hossain MU, Ishtiaque A, Chowdhury ZM, Das KC, Salimullah M, Keya CA. A meta-analysis of bulk RNA-seq datasets identifies potential biomarkers and repurposable therapeutics against Alzheimer's disease. Sci Rep 2024; 14:24717. [PMID: 39433822 PMCID: PMC11494203 DOI: 10.1038/s41598-024-75431-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
Alzheimer's disease (AD) poses a major challenge due to its impact on the elderly population and the lack of effective early diagnosis and treatment options. In an effort to address this issue, a study focused on identifying potential biomarkers and therapeutic agents for AD was carried out. Using RNA-Seq data from AD patients and healthy individuals, 12 differentially expressed genes (DEGs) were identified, with 9 expressing upregulation (ISG15, HRNR, MTATP8P1, MTCO3P12, DTHD1, DCX, ST8SIA2, NNAT, and PCDH11Y) and 3 expressing downregulation (LTF, XIST, and TTR). Among them, TTR exhibited the lowest gene expression profile. Interestingly, functional analysis tied TTR to amyloid fiber formation and neutrophil degranulation through enrichment analysis. These findings suggested the potential of TTR as a diagnostic biomarker for AD. Additionally, druggability analysis revealed that the FDA-approved drug Levothyroxine might be effective against the Transthyretin protein encoded by the TTR gene. Molecular docking and dynamics simulation studies of Levothyroxine and Transthyretin suggested that this drug could be repurposed to treat AD. However, additional studies using in vitro and in vivo models are necessary before these findings can be applied in clinical applications.
Collapse
Affiliation(s)
- Anika Bushra Lamisa
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka, 1229, Bangladesh
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Savar, Dhaka, 1349, Ashulia, Bangladesh
| | - Ishtiaque Ahammad
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Savar, Dhaka, 1349, Ashulia, Bangladesh
| | - Arittra Bhattacharjee
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Savar, Dhaka, 1349, Ashulia, Bangladesh
| | - Mohammad Uzzal Hossain
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Savar, Dhaka, 1349, Ashulia, Bangladesh
| | - Ahmed Ishtiaque
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Zeshan Mahmud Chowdhury
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Savar, Dhaka, 1349, Ashulia, Bangladesh
| | - Keshob Chandra Das
- Molecular Biotechnology Division, National Institute of Biotechnology, Ganakbari, Savar, Dhaka, 1349, Ashulia, Bangladesh
| | - Md Salimullah
- Molecular Biotechnology Division, National Institute of Biotechnology, Ganakbari, Savar, Dhaka, 1349, Ashulia, Bangladesh
| | - Chaman Ara Keya
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka, 1229, Bangladesh.
| |
Collapse
|
3
|
Wang Y, Liu W, Sun Y, Dong X. Transthyretin-Penetratin: A Potent Fusion Protein Inhibitor against Alzheimer's Amyloid-β Fibrillogenesis with High Blood Brain Barrier Crossing Capability. Bioconjug Chem 2024; 35:419-431. [PMID: 38450606 DOI: 10.1021/acs.bioconjchem.4c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The design of a potent amyloid-β protein (Aβ) inhibitor plays a pivotal role in the prevention and treatment of Alzheimer's disease (AD). Despite endogenous transthyretin (TTR) being recognized as an Aβ inhibitor, the weak inhibitory and blood brain barrier (BBB) crossing capabilities hinder it for Aβ aggregation inhibition and transport. Therefore, we have herein designed a recombinant TTR by conjugating a cationic cell penetrating peptide (penetratin, Pen), which not only enabled the fusion protein, TTR-Pen (TP), to present high BBB penetration but also greatly enhanced the potency of Aβ inhibition. Namely, the protein fusion made TP positively charged, leading to a potent suppression of Aβ40 fibrillization at a low concentration (1.5 μM), while a TTR concentration as high as 12.5 μM was required to gain a similar function. Moreover, TP could mitigate Aβ-induced neuronal death, increase cultured cell viability from 72% to 92% at 2.5 μM, and extend the lifespan of AD nematodes from 14 to 18 d. Thermodynamic studies revealed that TP, enriched in positive charges, presented extensive electrostatic interactions with Aβ40. Importantly, TP showed excellent BBB penetration performance, with a 10 times higher BBB permeability than TTR, which would allow TP to enter the brain of AD patients and participate in the transport of Aβ species out of the brain. Thus, it is expected that the fusion protein has great potential for drug development in AD treatment.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Wei Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
4
|
Rinauro DJ, Chiti F, Vendruscolo M, Limbocker R. Misfolded protein oligomers: mechanisms of formation, cytotoxic effects, and pharmacological approaches against protein misfolding diseases. Mol Neurodegener 2024; 19:20. [PMID: 38378578 PMCID: PMC10877934 DOI: 10.1186/s13024-023-00651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/17/2023] [Indexed: 02/22/2024] Open
Abstract
The conversion of native peptides and proteins into amyloid aggregates is a hallmark of over 50 human disorders, including Alzheimer's and Parkinson's diseases. Increasing evidence implicates misfolded protein oligomers produced during the amyloid formation process as the primary cytotoxic agents in many of these devastating conditions. In this review, we analyze the processes by which oligomers are formed, their structures, physicochemical properties, population dynamics, and the mechanisms of their cytotoxicity. We then focus on drug discovery strategies that target the formation of oligomers and their ability to disrupt cell physiology and trigger degenerative processes.
Collapse
Affiliation(s)
- Dillon J Rinauro
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, 10996, USA.
| |
Collapse
|
5
|
Medegan Fagla B, Buhimschi IA. Protein Misfolding in Pregnancy: Current Insights, Potential Mechanisms, and Implications for the Pathogenesis of Preeclampsia. Molecules 2024; 29:610. [PMID: 38338354 PMCID: PMC10856193 DOI: 10.3390/molecules29030610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Protein misfolding disorders are a group of diseases characterized by supra-physiologic accumulation and aggregation of pathogenic proteoforms resulting from improper protein folding and/or insufficiency in clearance mechanisms. Although these processes have been historically linked to neurodegenerative disorders, such as Alzheimer's disease, evidence linking protein misfolding to other pathologies continues to emerge. Indeed, the deposition of toxic protein aggregates in the form of oligomers or large amyloid fibrils has been linked to type 2 diabetes, various types of cancer, and, in more recent years, to preeclampsia, a life-threatening pregnancy-specific disorder. While extensive physiological mechanisms are in place to maintain proteostasis, processes, such as aging, genetic factors, or environmental stress in the form of hypoxia, nutrient deprivation or xenobiotic exposures can induce failure in these systems. As such, pregnancy, a natural physical state that already places the maternal body under significant physiological stress, creates an environment with a lower threshold for aberrant aggregation. In this review, we set out to discuss current evidence of protein misfolding in pregnancy and potential mechanisms supporting a key role for this process in preeclampsia pathogenesis. Improving our understanding of this emerging pathophysiological process in preeclampsia can lead to vital discoveries that can be harnessed to create better diagnoses and treatment modalities for the disorder.
Collapse
Affiliation(s)
| | - Irina Alexandra Buhimschi
- Department of Obstetrics and Gynecology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
6
|
Joshi SM, Wilson TC, Li Z, Preshlock S, Gómez-Vallejo V, Gouverneur V, Llop J, Arsequell G. Synthesis and PET Imaging Biodistribution Studies of Radiolabeled Iododiflunisal, a Transthyretin Tetramer Stabilizer, Candidate Drug for Alzheimer's Disease. Molecules 2024; 29:488. [PMID: 38257401 PMCID: PMC10818730 DOI: 10.3390/molecules29020488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The small-molecule iododiflunisal (IDIF) is a transthyretin (TTR) tetramer stabilizer and acts as a chaperone of the TTR-Amyloid beta interaction. Oral administration of IDIF improves Alzheimer's Disease (AD)-like pathology in mice, although the mechanism of action and pharmacokinetics remain unknown. Radiolabeling IDIF with positron or gamma emitters may aid in the in vivo evaluation of IDIF using non-invasive nuclear imaging techniques. In this work, we report an isotopic exchange reaction to obtain IDIF radiolabeled with 18F. [19F/18F]exchange reaction over IDIF in dimethyl sulfoxide at 160 °C resulted in the formation of [18F]IDIF in 7 ± 3% radiochemical yield in a 20 min reaction time, with a final radiochemical purity of >99%. Biodistribution studies after intravenous administration of [18F]IDIF in wild-type mice using positron emission tomography (PET) imaging showed capacity to cross the blood-brain barrier (ca. 1% of injected dose per gram of tissue in the brain at t > 10 min post administration), rapid accumulation in the liver, long circulation time, and progressive elimination via urine. Our results open opportunities for future studies in larger animal species or human subjects.
Collapse
Affiliation(s)
- Sameer M. Joshi
- CIC BiomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, Parque Tecnológico de San Sebastián, 20009 Donostia-San Sebastián, Spain; (S.M.J.); (V.G.-V.)
- Department of Radiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Thomas C. Wilson
- Chemistry Research Laboratory, Oxford University, Oxford OX1 3TA, UK; (T.C.W.); (V.G.)
| | - Zibo Li
- Department of Radiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Sean Preshlock
- Chemistry Research Laboratory, Oxford University, Oxford OX1 3TA, UK; (T.C.W.); (V.G.)
| | - Vanessa Gómez-Vallejo
- CIC BiomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, Parque Tecnológico de San Sebastián, 20009 Donostia-San Sebastián, Spain; (S.M.J.); (V.G.-V.)
| | - Véronique Gouverneur
- Chemistry Research Laboratory, Oxford University, Oxford OX1 3TA, UK; (T.C.W.); (V.G.)
| | - Jordi Llop
- CIC BiomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, Parque Tecnológico de San Sebastián, 20009 Donostia-San Sebastián, Spain; (S.M.J.); (V.G.-V.)
| | - Gemma Arsequell
- Institut de Química Avançada de Catalunya (IQAC), Spanish National Research Council (CSIC), 08034 Barcelona, Spain
| |
Collapse
|
7
|
Abidi SMS, Sharma C, Randhawa S, Shukla AK, Acharya A. A review on nanotechnological perspective of "the amyloid cascade hypothesis" for neurodegenerative diseases. Int J Biol Macromol 2023; 253:126821. [PMID: 37690655 DOI: 10.1016/j.ijbiomac.2023.126821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Neurodegenerative diseases (NDs) are characterized by progressive degeneration of neurons which deteriorates the brain functions. An early detection of the onset of NDs is utmost important, as it will provide the fast treatment strategies to prevent further progression of the disease. Conventionally, accurate diagnosis of the brain related disorders is difficult in their early phase. To solve this problem, nanotechnology based neurofunctional imaging and biomarker detection techniques have been developed which allows high specificity and sensitivity towards screening and diagnosis of NDs. Another challenge to treat the brain related disorders is to overcome the complex integrity of blood-brain-barrier (BBB) for the delivery of theranostic agents. Fortunately, utilization of nanomaterials has been pursued as promising strategy to address this challenge. Herein, we critically highlighted the recent improvements in the field of neurodiagnostic and therapeutic approaches involving innovative strategies for diagnosis, and inhibition of protein aggregates. We have provided particular emphasis on the use of nanotechnology which can push forward the blooming research growth in this field to win the battle against devastating NDs.
Collapse
Affiliation(s)
- Syed M S Abidi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chandni Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shiwani Randhawa
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashish K Shukla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
8
|
Schmid SY, Lachowski K, Chiang HT, Pozzo L, De Yoreo J, Zhang S. Mechanisms of Biomolecular Self-Assembly Investigated Through In Situ Observations of Structures and Dynamics. Angew Chem Int Ed Engl 2023; 62:e202309725. [PMID: 37702227 DOI: 10.1002/anie.202309725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Indexed: 09/14/2023]
Abstract
Biomolecular self-assembly of hierarchical materials is a precise and adaptable bottom-up approach to synthesizing across scales with considerable energy, health, environment, sustainability, and information technology applications. To achieve desired functions in biomaterials, it is essential to directly observe assembly dynamics and structural evolutions that reflect the underlying energy landscape and the assembly mechanism. This review will summarize the current understanding of biomolecular assembly mechanisms based on in situ characterization and discuss the broader significance and achievements of newly gained insights. In addition, we will also introduce how emerging deep learning/machine learning-based approaches, multiparametric characterization, and high-throughput methods can boost the development of biomolecular self-assembly. The objective of this review is to accelerate the development of in situ characterization approaches for biomolecular self-assembly and to inspire the next generation of biomimetic materials.
Collapse
Affiliation(s)
- Sakshi Yadav Schmid
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kacper Lachowski
- Chemical Engineering, University of Washington, Seattle, WA 98105, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98105, USA
| | - Huat Thart Chiang
- Chemical Engineering, University of Washington, Seattle, WA 98105, USA
| | - Lilo Pozzo
- Chemical Engineering, University of Washington, Seattle, WA 98105, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98105, USA
- Materials Science and Engineering, University of Washington, Seattle, WA 98105, USA
| | - Jim De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
- Materials Science and Engineering, University of Washington, Seattle, WA 98105, USA
| | - Shuai Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98105, USA
- Materials Science and Engineering, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
9
|
Ciccone L, Camodeca C, Tonali N, Barlettani L, Rossello A, Fruchart Gaillard C, Kaffy J, Petrarolo G, La Motta C, Nencetti S, Orlandini E. New Hybrid Compounds Incorporating Natural Products as Multifunctional Agents against Alzheimer's Disease. Pharmaceutics 2023; 15:2369. [PMID: 37896129 PMCID: PMC10610016 DOI: 10.3390/pharmaceutics15102369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 10/29/2023] Open
Abstract
A series of new hybrid derivatives 1a-c, 2a-c, 3a-c, 4a-c, 5a-c, inspired by nature, were synthesized and studied as multifunctional agents for the treatment of Alzheimer's disease (AD). These compounds were designed to merge together the trifluoromethyl benzyloxyaminic bioactive moiety, previously identified, with different acids available in nature. The ability of the synthesized compounds to chelate biometals, such as Cu2+, Zn2+ and Fe2+, was studied by UV-Vis spectrometer, and through a preliminary screening their antioxidant activity was evaluated by DPPH. Then, selected compounds were tested by in vitro ABTS free radical method and ex vivo rat brain TBARS assay. Compounds 2a-c, combining the strongest antioxidant and biometal chelators activities, were studied for their ability to contrast Aβ1-40 fibrillization process. Finally, starting from the promising profile obtained for compound 2a, we evaluated if it could be able to induce a positive cross-interaction between transthyretin (TTR) and Aβ in presence and in absence of Cu2+.
Collapse
Affiliation(s)
- Lidia Ciccone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (C.C.); (L.B.); (A.R.); (G.P.); (C.L.M.)
| | - Caterina Camodeca
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (C.C.); (L.B.); (A.R.); (G.P.); (C.L.M.)
| | - Nicolò Tonali
- CNRS, BioCIS, Bâtiment Henri Moissan, Université Paris-Saclay, 17 Av. des Sciences, 91400 Orsay, France; (N.T.); (J.K.)
| | - Lucia Barlettani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (C.C.); (L.B.); (A.R.); (G.P.); (C.L.M.)
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (C.C.); (L.B.); (A.R.); (G.P.); (C.L.M.)
- Research Center “E. Piaggio”, University of Pisa, 56122 Pisa, Italy;
| | - Carole Fruchart Gaillard
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Université Paris Saclay, 91191 Gif-sur-Yvette, France;
| | - Julia Kaffy
- CNRS, BioCIS, Bâtiment Henri Moissan, Université Paris-Saclay, 17 Av. des Sciences, 91400 Orsay, France; (N.T.); (J.K.)
| | - Giovanni Petrarolo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (C.C.); (L.B.); (A.R.); (G.P.); (C.L.M.)
| | - Concettina La Motta
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (C.C.); (L.B.); (A.R.); (G.P.); (C.L.M.)
| | - Susanna Nencetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (C.C.); (L.B.); (A.R.); (G.P.); (C.L.M.)
| | - Elisabetta Orlandini
- Research Center “E. Piaggio”, University of Pisa, 56122 Pisa, Italy;
- Department of Earth Sciences, University of Pisa, Via Santa Maria 53, 56126 Pisa, Italy
| |
Collapse
|
10
|
Sulatsky MI, Belousov MV, Kosolapova AO, Mikhailova EV, Romanenko MN, Antonets KS, Kuznetsova IM, Turoverov KK, Nizhnikov AA, Sulatskaya AI. Amyloid Fibrils of Pisum sativum L. Vicilin Inhibit Pathological Aggregation of Mammalian Proteins. Int J Mol Sci 2023; 24:12932. [PMID: 37629113 PMCID: PMC10454621 DOI: 10.3390/ijms241612932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Although incurable pathologies associated with the formation of highly ordered fibrillar protein aggregates called amyloids have been known for about two centuries, functional roles of amyloids have been studied for only two decades. Recently, we identified functional amyloids in plants. These amyloids formed using garden pea Pisum sativum L. storage globulin and vicilin, accumulated during the seed maturation and resisted treatment with gastric enzymes and canning. Thus, vicilin amyloids ingested with food could interact with mammalian proteins. In this work, we analyzed the effects of vicilin amyloids on the fibril formation of proteins that form pathological amyloids. We found that vicilin amyloids inhibit the fibrillogenesis of these proteins. In particular, vicilin amyloids decrease the number and length of lysozyme amyloid fibrils; the length and width of β-2-microglobulin fibrils; the number, length and the degree of clustering of β-amyloid fibrils; and, finally, they change the structure and decrease the length of insulin fibrils. Such drastic influences of vicilin amyloids on the pathological amyloids' formation cause the alteration of their toxicity for mammalian cells, which decreases for all tested amyloids with the exception of insulin. Taken together, our study, for the first time, demonstrates the anti-amyloid effect of vicilin fibrils and suggests the mechanisms underlying this phenomenon.
Collapse
Affiliation(s)
- Maksim I. Sulatsky
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (M.I.S.); (E.V.M.); (I.M.K.); (K.K.T.)
| | - Mikhail V. Belousov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.V.B.); (A.O.K.); (M.N.R.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anastasiia O. Kosolapova
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.V.B.); (A.O.K.); (M.N.R.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Ekaterina V. Mikhailova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (M.I.S.); (E.V.M.); (I.M.K.); (K.K.T.)
| | - Maria N. Romanenko
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.V.B.); (A.O.K.); (M.N.R.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.V.B.); (A.O.K.); (M.N.R.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Irina M. Kuznetsova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (M.I.S.); (E.V.M.); (I.M.K.); (K.K.T.)
| | - Konstantin K. Turoverov
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (M.I.S.); (E.V.M.); (I.M.K.); (K.K.T.)
| | - Anton A. Nizhnikov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.V.B.); (A.O.K.); (M.N.R.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anna I. Sulatskaya
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (M.I.S.); (E.V.M.); (I.M.K.); (K.K.T.)
| |
Collapse
|
11
|
Ghosh S, Ali R, Verma S. Aβ-oligomers: A potential therapeutic target for Alzheimer's disease. Int J Biol Macromol 2023; 239:124231. [PMID: 36996958 DOI: 10.1016/j.ijbiomac.2023.124231] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023]
Abstract
The cascade of amyloid formation relates to multiple complex events at the molecular level. Previous research has established amyloid plaque deposition as the leading cause of Alzheimer's disease (AD) pathogenesis, detected mainly in aged population. The primary components of the plaques are two alloforms of amyloid-beta (Aβ), Aβ1-42 and Aβ1-40 peptides. Recent studies have provided considerable evidence contrary to the previous claim indicating that amyloid-beta oligomers (AβOs) as the main culprit responsible for AD-associated neurotoxicity and pathogenesis. In this review, we have discussed the primary features of AβOs, such as assembly formation, the kinetics of oligomer formation, interactions with various membranes/membrane receptors, the origin of toxicity, and oligomer-specific detection methods. Recently, the discovery of rationally designed antibodies has opened a gateway for using synthesized peptides as a grafting component in the complementarity determining region (CDR) of antibodies. Thus, the Aβ sequence motif or the complementary peptide sequence in the opposite strand of the β-sheet (extracted from the Protein Data Bank: PDB) helps design oligomer-specific inhibitors. The microscopic event responsible for oligomer formation can be targeted, and thus prevention of the overall macroscopic behaviour of the aggregation or the associated toxicity can be achieved. We have carefully reviewed the oligomer formation kinetics and associated parameters. Besides, we have depicted a thorough understanding of how the synthesized peptide inhibitors can impede the early aggregates (oligomers), mature fibrils, monomers, or a mixture of the species. The oligomer-specific inhibitors (peptides or peptide fragments) lack in-depth chemical kinetics and optimization control-based screening. In the present review, we have proposed a hypothesis for effectively screening oligomer-specific inhibitors using the chemical kinetics (determining the kinetic parameters) and optimization control strategy (cost-dependent analysis). Further, it may be possible to implement the structure-kinetic-activity-relationship (SKAR) strategy instead of structure-activity-relationship (SAR) to improve the inhibitor's activity. The controlled optimization of the kinetic parameters and dose usage will be beneficial for narrowing the search window for the inhibitors.
Collapse
|
12
|
Begum A, Zhang J, Derbyshire D, Wu X, Konradsson P, Hammarström P, von Castelmur E. Transthyretin Binding Mode Dichotomy of Fluorescent trans-Stilbene Ligands. ACS Chem Neurosci 2023; 14:820-828. [PMID: 36780206 PMCID: PMC9982997 DOI: 10.1021/acschemneuro.2c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
The orientations of ligands bound to the transthyretin (TTR) thyroxine (T4) binding site are difficult to predict. Conflicting binding modes of resveratrol have been reported. We previously reported two resveratrol based trans-stilbene fluorescent ligands, (E)-4-(2-(naphthalen-1-yl)vinyl)benzene-1,2-diol (SB-11) and (E)-4-(2-(naphthalen-2-yl)vinyl)benzene-1,2-diol (SB-14), that bind native and misfolded protofibrillar TTR. The binding orientations of these two analogous ligands to native tetrameric TTR were predicted to be opposite. Herein we report the crystal structures of these TTR:ligand complexes. Opposite binding modes were verified but were different than predicted. The reverse binding mode (SB-14) placing the naphthalene moiety toward the opening of the binding pocket renders the fluorescent ligand pH sensitive due to changes in Lys15 amine protonation. Conversely, the forward binding mode (SB-11) placing the naphthalene inward mediates a stabilizing conformational change, allowing intersubunit H-bonding between Ser117 of different monomers across the dimer interface. Our structures of TTR complexes answer important questions in ligand design and interpretation of trans-stilbene binding modes to the TTR T4 binding site.
Collapse
Affiliation(s)
- Afshan Begum
- Linköping University, IFM-Department of Physics, Chemistry and Biology, 58183 Linköping, Sweden
| | - Jun Zhang
- Linköping University, IFM-Department of Physics, Chemistry and Biology, 58183 Linköping, Sweden
| | - Dean Derbyshire
- Linköping University, IFM-Department of Physics, Chemistry and Biology, 58183 Linköping, Sweden
| | - Xiongyu Wu
- Linköping University, IFM-Department of Physics, Chemistry and Biology, 58183 Linköping, Sweden
| | - Peter Konradsson
- Linköping University, IFM-Department of Physics, Chemistry and Biology, 58183 Linköping, Sweden
| | - Per Hammarström
- Linköping University, IFM-Department of Physics, Chemistry and Biology, 58183 Linköping, Sweden
| | - Eleonore von Castelmur
- Linköping University, IFM-Department of Physics, Chemistry and Biology, 58183 Linköping, Sweden
| |
Collapse
|
13
|
Porosk L, Härk HH, Bicev RN, Gaidutšik I, Nebogatova J, Armolik EJ, Arukuusk P, da Silva ER, Langel Ü. Aggregation Limiting Cell-Penetrating Peptides Derived from Protein Signal Sequences. Int J Mol Sci 2023; 24:ijms24054277. [PMID: 36901707 PMCID: PMC10002422 DOI: 10.3390/ijms24054277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease (ND) and the leading cause of dementia. It is characterized by non-linear, genetic-driven pathophysiological dynamics with high heterogeneity in the biological alterations and the causes of the disease. One of the hallmarks of the AD is the progression of plaques of aggregated amyloid-β (Aβ) or neurofibrillary tangles of Tau. Currently there is no efficient treatment for the AD. Nevertheless, several breakthroughs in revealing the mechanisms behind progression of the AD have led to the discovery of possible therapeutic targets. Some of these include the reduction in inflammation in the brain, and, although highly debated, limiting of the aggregation of the Aβ. In this work we show that similarly to the Neural cell adhesion molecule 1 (NCAM1) signal sequence, other Aβ interacting protein sequences, especially derived from Transthyretin, can be used successfully to reduce or target the amyloid aggregation/aggregates in vitro. The modified signal peptides with cell-penetrating properties reduce the Aβ aggregation and are predicted to have anti-inflammatory properties. Furthermore, we show that by expressing the Aβ-EGFP fusion protein, we can efficiently assess the potential for reduction in aggregation, and the CPP properties of peptides in mammalian cells.
Collapse
Affiliation(s)
- Ly Porosk
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
- Correspondence:
| | - Heleri Heike Härk
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Renata Naporano Bicev
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Ilja Gaidutšik
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | | | - Eger-Jasper Armolik
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Piret Arukuusk
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | | | - Ülo Langel
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
- Department Biochemistry and Biophysics, Stockholm University, S.Arrheniusv. 16B, Room C472, 106 91 Stockholm, Sweden
| |
Collapse
|
14
|
Lazarev VF, Dutysheva EA, Kanunikov IE, Guzhova IV, Margulis BA. Protein Interactome of Amyloid-β as a Therapeutic Target. Pharmaceuticals (Basel) 2023; 16:312. [PMID: 37259455 PMCID: PMC9965366 DOI: 10.3390/ph16020312] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 04/12/2024] Open
Abstract
The amyloid concept of Alzheimer's disease (AD) assumes the β-amyloid peptide (Aβ) as the main pathogenic factor, which injures neural and other brain cells, causing their malfunction and death. Although Aβ has been documented to exert its cytotoxic effect in a solitary manner, there is much evidence to claim that its toxicity can be modulated by other proteins. The list of such Aβ co-factors or interactors includes tau, APOE, transthyretin, and others. These molecules interact with the peptide and affect the ability of Aβ to form oligomers or aggregates, modulating its toxicity. Thus, the list of potential substances able to reduce the harmful effects of the peptide should include ones that can prevent the pathogenic interactions by specifically binding Aβ and/or its partners. In the present review, we discuss the data on Aβ-based complexes in AD pathogenesis and on the compounds directly targeting Aβ or the destructors of its complexes with other polypeptides.
Collapse
Affiliation(s)
- Vladimir F. Lazarev
- Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Elizaveta A. Dutysheva
- Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Igor E. Kanunikov
- Biological Faculty, St. Petersburg State University, 199034 Saint Petersburg, Russia
| | - Irina V. Guzhova
- Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Boris A. Margulis
- Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| |
Collapse
|
15
|
Omega-3 PUFAs as a Dietary Supplement in Senile Systemic Amyloidosis. Nutrients 2023; 15:nu15030749. [PMID: 36771455 PMCID: PMC9921273 DOI: 10.3390/nu15030749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Eicosapentaenoic acid (EPA; 20:5) and docosahexaenoic acid (DHA; 22:6), two omega-3 poly-unsaturated fatty acids (PUFAs), are the main components in oil derived from fish and other marine organisms. EPA and DHA are commercially available as dietary supplements and are considered to be very safe and contribute to guaranteeing human health. Studies report that PUFAs have a role in contrasting neurodegenerative processes related to amyloidogenic proteins, such as β-amyloid for AD, α-synuclein in PD, and transthyretin (TTR) in TTR amyloidosis. In this context, we investigated if EPA and DHA can interact directly with TTR, binding inside the thyroxin-binding pockets (T4BP) that contribute to the tetramer stabilization. The data obtained showed that EPA and DHA can contribute to stabilizing the TTR tetramer through interactions with T4BP.
Collapse
|
16
|
Sedov I, Khaibrakhmanova D. Molecular Mechanisms of Inhibition of Protein Amyloid Fibril Formation: Evidence and Perspectives Based on Kinetic Models. Int J Mol Sci 2022; 23:13428. [PMID: 36362217 PMCID: PMC9657184 DOI: 10.3390/ijms232113428] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Inhibition of fibril formation is considered a possible treatment strategy for amyloid-related diseases. Understanding the molecular nature of inhibitor action is crucial for the design of drug candidates. In the present review, we describe the common kinetic models of fibril formation and classify known inhibitors by the mechanism of their interactions with the aggregating protein and its oligomers. This mechanism determines the step or steps of the aggregation process that become inhibited and the observed changes in kinetics and equilibrium of fibril formation. The results of numerous studies indicate that possible approaches to antiamyloid inhibitor discovery include the search for the strong binders of protein monomers, cappers blocking the ends of the growing fibril, or the species absorbing on the surface of oligomers preventing nucleation. Strongly binding inhibitors stabilizing the native state can be promising for the structured proteins while designing the drug candidates targeting disordered proteins is challenging.
Collapse
Affiliation(s)
- Igor Sedov
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia
- Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
| | | |
Collapse
|
17
|
Connor JP, Quinn SD, Schaefer C. Sticker-and-spacer model for amyloid beta condensation and fibrillation. Front Mol Neurosci 2022; 15:962526. [PMID: 36311031 PMCID: PMC9611774 DOI: 10.3389/fnmol.2022.962526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
A major pathogenic hallmark of Alzheimer's disease is the presence of neurotoxic plaques composed of amyloid beta (Aβ) peptides in patients' brains. The pathway of plaque formation remains elusive, though some clues appear to lie in the dominant presence of Aβ1 − 42 in these plaques despite Aβ1−40 making up approximately 90% of the Aβ pool. We hypothesize that this asymmetry is driven by the hydrophobicity of the two extra amino acids that are incorporated in Aβ1−42. To investigate this hypothesis at the level of single molecules, we have developed a molecular “sticker-and-spacer lattice model” of unfolded Aβ. The model protein has a single sticker that may reversibly dimerise and elongate into semi-flexible linear chains. The growth is hampered by excluded-volume interactions that are encoded by the hydrophilic spacers but are rendered cooperative by the attractive interactions of hydrophobic spacers. For sufficiently strong hydrophobicity, the chains undergo liquid-liquid phase-separation (LLPS) into condensates that facilitate the nucleation of fibers. We find that a small fraction of Aβ1−40 in a mixture of Aβ1−40 and Aβ1−42 shifts the critical concentration for LLPS to lower values. This study provides theoretical support for the hypothesis that LLPS condensates act as a precursor for aggregation and provides an explanation for the Aβ1−42-enrichment of aggregates in terms of hydrophobic interactions.
Collapse
Affiliation(s)
- Jack P. Connor
- Department of Biology, University of York, York, United Kingdom
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- *Correspondence: Jack P. Connor
| | - Steven D. Quinn
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Charley Schaefer
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
- Charley Schaefer
| |
Collapse
|
18
|
Österlund N, Vosselman T, Leppert A, Gräslund A, Jörnvall H, Ilag LL, Marklund EG, Elofsson A, Johansson J, Sahin C, Landreh M. Mass Spectrometry and Machine Learning Reveal Determinants of Client Recognition by Antiamyloid Chaperones. Mol Cell Proteomics 2022; 21:100413. [PMID: 36115577 PMCID: PMC9563204 DOI: 10.1016/j.mcpro.2022.100413] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 01/18/2023] Open
Abstract
The assembly of proteins and peptides into amyloid fibrils is causally linked to serious disorders such as Alzheimer's disease. Multiple proteins have been shown to prevent amyloid formation in vitro and in vivo, ranging from highly specific chaperone-client pairs to completely nonspecific binding of aggregation-prone peptides. The underlying interactions remain elusive. Here, we turn to the machine learning-based structure prediction algorithm AlphaFold2 to obtain models for the nonspecific interactions of β-lactoglobulin, transthyretin, or thioredoxin 80 with the model amyloid peptide amyloid β and the highly specific complex between the BRICHOS chaperone domain of C-terminal region of lung surfactant protein C and its polyvaline target. Using a combination of native mass spectrometry (MS) and ion mobility MS, we show that nonspecific chaperoning is driven predominantly by hydrophobic interactions of amyloid β with hydrophobic surfaces in β-lactoglobulin, transthyretin, and thioredoxin 80, and in part regulated by oligomer stability. For C-terminal region of lung surfactant protein C, native MS and hydrogen-deuterium exchange MS reveal that a disordered region recognizes the polyvaline target by forming a complementary β-strand. Hence, we show that AlphaFold2 and MS can yield atomistic models of hard-to-capture protein interactions that reveal different chaperoning mechanisms based on separate ligand properties and may provide possible clues for specific therapeutic intervention.
Collapse
Affiliation(s)
- Nicklas Österlund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Thibault Vosselman
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Axel Leppert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Hans Jörnvall
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Leopold L. Ilag
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Erik G. Marklund
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Arne Elofsson
- Science for Life Laboratory and Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Huddinge, Sweden
| | - Cagla Sahin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden,Department of Biology, University of Copenhagen, Denmark,For correspondence: Michael Landreh; Cagla Sahin
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden,For correspondence: Michael Landreh; Cagla Sahin
| |
Collapse
|
19
|
Murakami K, Ono K. Interactions of amyloid coaggregates with biomolecules and its relevance to neurodegeneration. FASEB J 2022; 36:e22493. [PMID: 35971743 DOI: 10.1096/fj.202200235r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 01/16/2023]
Abstract
The aggregation of amyloidogenic proteins is a pathological hallmark of various neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. In these diseases, oligomeric intermediates or toxic aggregates of amyloids cause neuronal damage and degeneration. Despite the substantial effort made over recent decades to implement therapeutic interventions, these neurodegenerative diseases are not yet understood at the molecular level. In many cases, multiple disease-causing amyloids overlap in a sole pathological feature or a sole disease-causing amyloid represents multiple pathological features. Various amyloid pathologies can coexist in the same brain with or without clinical presentation and may even occur in individuals without disease. From sparse data, speculation has arisen regarding the coaggregation of amyloids with disparate amyloid species and other biomolecules, which are the same characteristics that make diagnostics and drug development challenging. However, advances in research related to biomolecular condensates and structural analysis have been used to overcome some of these challenges. Considering the development of these resources and techniques, herein we review the cross-seeding of amyloidosis, for example, involving the amyloids amyloid β, tau, α-synuclein, and human islet amyloid polypeptide, and their cross-inhibition by transthyretin and BRICHOS. The interplay of nucleic acid-binding proteins, such as prions, TAR DNA-binding protein 43, fused in sarcoma/translated in liposarcoma, and fragile X mental retardation polyglycine, with nucleic acids in the pathology of neurodegeneration are also described, and we thereby highlight the potential clinical applications in central nervous system therapy.
Collapse
Affiliation(s)
- Kazuma Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kenjiro Ono
- Department of Neurology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
20
|
Calcium Binds to Transthyretin with Low Affinity. Biomolecules 2022; 12:biom12081066. [PMID: 36008960 PMCID: PMC9406000 DOI: 10.3390/biom12081066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
The plasma protein transthyretin (TTR), a transporter for thyroid hormones and retinol in plasma and cerebrospinal fluid, is responsible for the second most common type of systemic (ATTR) amyloidosis either in its wild type form or as a result of destabilizing genetic mutations that increase its aggregation propensity. The association between free calcium ions (Ca2+) and TTR is still debated, although recent work seems to suggest that calcium induces structural destabilization of TTR and promotes its aggregation at non-physiological low pH in vitro. We apply high-resolution NMR spectroscopy to investigate calcium binding to TTR showing the formation of labile interactions, which leave the native structure of TTR substantially unaltered. The effect of calcium binding on TTR-enhanced aggregation is also assessed at physiological pH through the mechano-enzymatic mechanism. Our results indicate that, even if the binding is weak, about 7% of TTR is likely to be Ca2+-bound in vivo and therefore more aggregation prone as we have shown that this interaction is able to increase the protein susceptibility to the proteolytic cleavage that leads to aggregation at physiological pH. These events, even if involving a minority of circulating TTR, may be relevant for ATTR, a pathology that takes several decades to develop.
Collapse
|
21
|
Amelianchik A, Sweetland-Martin L, Norris EH. The effect of dietary fat consumption on Alzheimer's disease pathogenesis in mouse models. Transl Psychiatry 2022; 12:293. [PMID: 35869065 PMCID: PMC9307654 DOI: 10.1038/s41398-022-02067-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is a fatal cognitive disorder with proteinaceous brain deposits, neuroinflammation, cerebrovascular dysfunction, and extensive neuronal loss over time. AD is a multifactorial disease, and lifestyle factors, including diet, are likely associated with the development of AD pathology. Since obesity and diabetes are recognized as risk factors for AD, it might be predicted that a high-fat diet (HFD) would worsen AD pathology. However, modeling HFD-induced obesity in AD animal models has yielded inconclusive results. Some studies report a deleterious effect of HFD on Aβ accumulation, neuroinflammation, and cognitive function, while others report that HFD worsens memory without affecting AD brain pathology. Moreover, several studies report no major effect of HFD on AD-related phenotypes in mice, while other studies show that HFD might, in fact, be protective. The lack of a clear association between dietary fat consumption and AD-related pathology and cognitive function in AD mouse models might be explained by experimental variations, including AD mouse model, sex and age of the animals, composition of the HFD, and timeline of HFD consumption. In this review, we summarize recent studies that aimed at elucidating the effect of HFD-induced obesity on AD-related pathology in mice and provide an overview of the factors that may have contributed to the results reported in these studies. Based on the heterogeneity of these animal model studies and given that the human population itself is quite disparate, it is likely that people will benefit most from individualized nutritional plans based on their medical history and clinical profiles.
Collapse
Affiliation(s)
- Anna Amelianchik
- Patricia and John Rosenwald Laboratory of Neurobiology & Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, USA
| | - Lauren Sweetland-Martin
- Patricia and John Rosenwald Laboratory of Neurobiology & Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, USA
| | - Erin H Norris
- Patricia and John Rosenwald Laboratory of Neurobiology & Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, USA.
| |
Collapse
|
22
|
Pal T, Paul R, Paul S. Phenylpropanoids on the Inhibition of β-Amyloid Aggregation and the Movement of These Molecules through the POPC Lipid Bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7775-7790. [PMID: 35687701 DOI: 10.1021/acs.langmuir.2c00827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Alzheimer's disease (AD), caused by Aβ aggregation, is a major concern in medical research. It is a neurodegenerative disorder, leading to a loss of cognitive abilities, which is still claiming the lives of many people all over the world. This poses a challenge before the scientific community to discover effective drugs which can prevent such toxic aggregation. Recent experimental findings suggest the potency of two naturally-occurring phenylpropanoids, Schizotenuin A (SCH) and Lycopic Acid B (LAB) which can effectively combat the deleterious effects of Aβ aggregation, although nothing is known about their mechanism of inhibition. In this work, we deal with an extensive computational study on the inhibitory effects of these inhibitors by using an all-atom molecular dynamics simulation to interpret the underlying mechanism of their inhibitory processes. A series of investigations is carried out while studying the various structural and conformational changes of the peptide chains in the absence and presence of inhibitors. To investigate the details of the interactions between the peptide residues and inhibitors, nonbonding energy calculations, the radial distribution function, the coordination number of water and inhibitor molecules around the peptide residues, and hydrogen-bonding interactions are calculated. The potential of mean force (PMF) is calculated to estimate aggregate formation from their free-energy profiles. It is seen that the hydrophobic core of the KLVFFAE undergoes aggregation and that these inhibitors show great promise in preventing the onset of AD in the future by preventing Aβ aggregation. Also, the translocation studies on these inhibitors through a model POPC lipid bilayer shed light on their permeation properties and biocompatibility.
Collapse
Affiliation(s)
- Triasha Pal
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India 781039
| | - Rabindranath Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India 781039
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India 781039
| |
Collapse
|
23
|
Larsson JNK, Nyström S, Hammarström P. HSP10 as a Chaperone for Neurodegenerative Amyloid Fibrils. Front Neurosci 2022; 16:902600. [PMID: 35769706 PMCID: PMC9234269 DOI: 10.3389/fnins.2022.902600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/12/2022] [Indexed: 11/30/2022] Open
Abstract
Neurodegenerative diseases (NDs) are associated with accumulated misfolded proteins (MPs). MPs oligomerize and form multiple forms of amyloid fibril polymorphs that dictate fibril propagation and cellular dysfunction. Protein misfolding processes that impair protein homeostasis are implicated in onset and progression of NDs. A wide variety of molecular chaperones safeguard the cell from MP accumulation. A rather overlooked molecular chaperone is HSP10, known as a co-chaperone for HSP60. Due to the ubiquitous presence in human tissues and protein overabundance compared with HSP60, we studied how HSP10 alone influences fibril formation in vitro of Alzheimer’s disease-associated Aβ1–42. At sub-stoichiometric concentrations, eukaryotic HSP10s (human and Drosophila) significantly influenced the fibril formation process and the fibril structure of Aβ1–42, more so than the prokaryotic HSP10 GroES. Similar effects were observed for prion disease-associated prion protein HuPrP90–231. Paradoxically, for a chaperone, low concentrations of HSP10 appeared to promote fibril nucleation by shortened lag-phases, which were chaperone and substrate dependent. Higher concentrations of chaperone while still sub-stoichiometric extended the nucleation and/or the elongation phase. We hypothesized that HSP10 by means of its seven mobile loops provides the chaperone with high avidity binding to amyloid fibril ends. The preserved sequence of the edge of the mobile loop GGIM(V)L (29–33 human numbering) normally dock to the HSP60 apical domain. Interestingly, this segment shows sequence similarity to amyloidogenic core segments of Aβ1–42, GGVVI (37–41), and HuPrP90-231 GGYML (126–130) likely allowing efficient competitive binding to fibrillar conformations of these MPs. Our results propose that HSP10 can function as an important molecular chaperone in human proteostasis in NDs.
Collapse
|
24
|
Pathak GA, De Lillo A, Wendt FR, De Angelis F, Koller D, Mendoza BC, Jacoby D, Miller EJ, Buxbaum JN, Polimanti R. The integration of genetically-regulated transcriptomics and electronic health records highlights a pattern of medical outcomes related to increased hepatic transthyretin expression. Amyloid 2022; 29:110-119. [PMID: 34935565 PMCID: PMC9213571 DOI: 10.1080/13506129.2021.2018678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Transthyretin (TTR) is the precursor of the fibrils that compromise organ function in hereditary and sporadic systemic amyloidoses (ATTR). RNA-interference and anti-sense therapeutics targeting TTR hepatic transcription have been shown to reduce TTR amyloid formation. In the present study, we leveraged genetic and phenotypic information from the UK Biobank and transcriptomic profiles from the Genotype-Tissue Expression project to test the association of genetically regulated TTR gene expression with 7149 traits assessed in 420,531 individuals. We conducted a multi-tissue analysis of TTR transcription and identified an association with a operational procedure related to bone fracture (p = 5.46×10-6). Using tissue-specific TTR expression information, we demonstrated that the association is driven by the genetic regulation of TTR hepatic expression (odds ratio [OR] = 3.46, p = 9.51×10-5). Using the UK Biobank electronic health records (EHRs), we investigated the comorbidities affecting individuals undergoing this surgical procedure. Excluding bone fracture EHRs, we identified a pattern of health outcomes previously associated with ATTR manifestations. These included osteoarthritis (OR = 3.18, p = 9.18×10-8), carpal tunnel syndrome (OR = 2.15, p = .002), and a history of gastrointestinal diseases (OR = 2.01, p = 8.07×10-4). In conclusion, our study supports that TTR hepatic expression can affect health outcomes linked to physiological and pathological processes presumably related to the encoded protein.
Collapse
Affiliation(s)
- Gita A. Pathak
- Department of Psychiatry, Yale School of Medicine, West Haven, CT 06516, USA
- VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Antonella De Lillo
- Department of Psychiatry, Yale School of Medicine, West Haven, CT 06516, USA
- Department of Biology, University of Rome Tor Vergata, Rome 00133, Italy
| | - Frank R. Wendt
- Department of Psychiatry, Yale School of Medicine, West Haven, CT 06516, USA
- VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Flavio De Angelis
- Department of Psychiatry, Yale School of Medicine, West Haven, CT 06516, USA
- VA CT Healthcare Center, West Haven, CT 06516, USA
- Department of Biology, University of Rome Tor Vergata, Rome 00133, Italy
| | - Dora Koller
- Department of Psychiatry, Yale School of Medicine, West Haven, CT 06516, USA
- VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Brenda Cabrera Mendoza
- Department of Psychiatry, Yale School of Medicine, West Haven, CT 06516, USA
- VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Daniel Jacoby
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Edward J. Miller
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine, West Haven, CT 06516, USA
- VA CT Healthcare Center, West Haven, CT 06516, USA
- Corresponding author: Renato Polimanti, Ph.D., Yale University School of Medicine, Department of Psychiatry. VA CT 116A2, 950 Campbell Avenue, West Haven, CT 06516, USA. Phone: +1 (203) 932-5711 x5745. Fax: +1 (203) 937-3897.
| |
Collapse
|
25
|
Yamaguchi H, Kawahara H, Kodera N, Kumaki A, Tada Y, Tang Z, Sakai K, Ono K, Yamada M, Hanayama R. Extracellular Vesicles Contribute to the Metabolism of Transthyretin Amyloid in Hereditary Transthyretin Amyloidosis. Front Mol Biosci 2022; 9:839917. [PMID: 35402512 PMCID: PMC8983912 DOI: 10.3389/fmolb.2022.839917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Hereditary (variant) transthyretin amyloidosis (ATTRv amyloidosis), which is caused by variants in the transthyretin (TTR) gene, leads to TTR amyloid deposits in multiple organs and various symptoms such as limb ataxia, muscle weakness, and cardiac failure. Interaction between amyloid proteins and extracellular vesicles (EVs), which are secreted by various cells, is known to promote the clearance of the proteins, but it is unclear whether EVs are involved in the formation and deposition of TTR amyloid in ATTRv amyloidosis. To clarify the relationship between ATTRv amyloidosis and EVs, serum-derived EVs were analyzed. In this study, we showed that cell-derived EVs are involved in the formation of TTR amyloid deposits on the membrane of small EVs, as well as the deposition of TTR amyloid in cells. Human serum-derived small EVs also altered the degree of aggregation and deposition of TTR. Furthermore, the amount of TTR aggregates in serum-derived small EVs in patients with ATTRv amyloidosis was lower than that in healthy controls. These results indicate that EVs contribute to the metabolism of TTR amyloid, and suggest that TTR in serum-derived small EVs is a potential target for future ATTRv amyloidosis diagnosis and therapy.
Collapse
Affiliation(s)
- Hiroki Yamaguchi
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- Department of Neurology and Neurobiology of Aging, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hironori Kawahara
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Japan
- *Correspondence: Hironori Kawahara, ; Rikinari Hanayama,
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Ayanori Kumaki
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yasutake Tada
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- Department of Neurology and Neurobiology of Aging, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Zixin Tang
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kenji Sakai
- Department of Neurology and Neurobiology of Aging, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kenjiro Ono
- Department of Neurology and Neurobiology of Aging, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- Department of Internal Medicine, Division of Neurology, Kudanzaka Hospital, Tokyo, Japan
| | - Rikinari Hanayama
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Japan
- *Correspondence: Hironori Kawahara, ; Rikinari Hanayama,
| |
Collapse
|
26
|
Gharibyan AL, Wasana Jayaweera S, Lehmann M, Anan I, Olofsson A. Endogenous Human Proteins Interfering with Amyloid Formation. Biomolecules 2022; 12:biom12030446. [PMID: 35327638 PMCID: PMC8946693 DOI: 10.3390/biom12030446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 01/09/2023] Open
Abstract
Amyloid formation is a pathological process associated with a wide range of degenerative disorders, including Alzheimer’s disease, Parkinson’s disease, and diabetes mellitus type 2. During disease progression, abnormal accumulation and deposition of proteinaceous material are accompanied by tissue degradation, inflammation, and dysfunction. Agents that can interfere with the process of amyloid formation or target already formed amyloid assemblies are consequently of therapeutic interest. In this context, a few endogenous proteins have been associated with an anti-amyloidogenic activity. Here, we review the properties of transthyretin, apolipoprotein E, clusterin, and BRICHOS protein domain which all effectively interfere with amyloid in vitro, as well as displaying a clinical impact in humans or animal models. Their involvement in the amyloid formation process is discussed, which may aid and inspire new strategies for therapeutic interventions.
Collapse
Affiliation(s)
- Anna L. Gharibyan
- Department of Clinical Microbiology, Umeå University, 901 87 Umeå, Sweden;
- Correspondence: (A.L.G.); (A.O.)
| | | | - Manuela Lehmann
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden; (M.L.); (I.A.)
| | - Intissar Anan
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden; (M.L.); (I.A.)
| | - Anders Olofsson
- Department of Clinical Microbiology, Umeå University, 901 87 Umeå, Sweden;
- Correspondence: (A.L.G.); (A.O.)
| |
Collapse
|
27
|
Tatar M. The role of Aβ in Alzheimer's Disease as an Evolutionary Outcome of Optimized Innate Immune Defense. J Prev Alzheimers Dis 2022; 9:580-588. [PMID: 36281662 PMCID: PMC10535726 DOI: 10.14283/jpad.2022.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Alzheimer's Disease is a progressive manifestation of aging associated with accumulated Amyloid β. It remains frustratingly unclear why this protein accumulates and how it contributes to Alzheimer's Disease pathology. In one recent hypothesis, Amyloid β is suggested to function as an antimicrobial peptide in innate immune defense within the brain, where Amyloid β gains toxicity when it becomes abundant. This essay proposes an evolutionary explanation for why Amyloid β expression is regulated at an optimum based on its function as a defense and how this leads to disease. Among its potential physiological functions, Amyloid β confers benefits to reduce direct pathogen damage while this simultaneously entails cellular cost of defense. Optimal Amyloid β expression occurs when the gain in fitness from an incremental increase is balanced by the marginal cost of this increase. It proposes that natural selection acting upon the young favored systems to maintain Amyloid β at an optimal level through mechanisms that induce the defense and repress its expression. With age, the force of natural selection declines and permits mechanisms of negative feedback repression to degenerate. Consequently, Amyloid β is expressed beyond its optimum. Age also elevates cumulative pathogen exposure, reduces pathogen barriers and reactivates latent pathogens. The net effect is elevated, chronic induction of Amyloid β in the brain. The model recommends attention to innate immune negative regulation in the brain to discover ways to restore these functions toward a youthful state in the elderly.
Collapse
Affiliation(s)
- M Tatar
- Marc Tatar, Department of Ecology, Evolution and Organismal Biology, Box GW, Walter Hall Brown University, Providence RI 02912, USA, Office: +1 401-863-3455, Fax: +1 401-863-2166,
| |
Collapse
|
28
|
Nagaraj M, Najarzadeh Z, Pansieri J, Biverstål H, Musteikyte G, Smirnovas V, Matthews S, Emanuelsson C, Johansson J, Buxbaum JN, Morozova-Roche L, Otzen DE. Chaperones mainly suppress primary nucleation during formation of functional amyloid required for bacterial biofilm formation. Chem Sci 2022; 13:536-553. [PMID: 35126986 PMCID: PMC8729806 DOI: 10.1039/d1sc05790a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/11/2021] [Indexed: 11/21/2022] Open
Abstract
Unlike misfolding in neurodegenerative diseases, aggregation of functional amyloids involved in bacterial biofilm, e.g. CsgA (E. coli) and FapC (Pseudomonas), is carefully regulated.
Collapse
Affiliation(s)
- Madhu Nagaraj
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK – 8000 Aarhus C, Denmark
| | - Zahra Najarzadeh
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK – 8000 Aarhus C, Denmark
| | - Jonathan Pansieri
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187, Umeå, Sweden
| | - Henrik Biverstål
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, S – 141 83 Huddinge, Sweden
| | - Greta Musteikyte
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Steve Matthews
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW72AZ, UK
| | - Cecilia Emanuelsson
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, PO Box 124, SE-22100 Lund, Sweden
| | - Janne Johansson
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, S – 141 83 Huddinge, Sweden
| | - Joel N. Buxbaum
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | - Daniel E. Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK – 8000 Aarhus C, Denmark
| |
Collapse
|
29
|
Heterotypic amyloid interactions: Clues to polymorphic bias and selective cellular vulnerability? Curr Opin Struct Biol 2021; 72:176-186. [PMID: 34942566 DOI: 10.1016/j.sbi.2021.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/18/2022]
Abstract
The number of atomic-resolution structures of disease-associated amyloids has greatly increased in recent years. These structures have confirmed not only the polymorphic nature of amyloids but also the association of specific polymorphs to particular proteinopathies. These observations are strengthening the view that amyloid polymorphism is a marker for specific pathological subtypes (e.g. in tauopathies or synucleinopathies). The nature of this association and how it relates to the selective cellular vulnerability of amyloid nucleation, propagation and toxicity are still unclear. Here, we provide an overview of the mechanistic insights provided by recent patient-derived amyloid structures. We discuss the framework organisation of amyloid polymorphism and how heterotypic amyloid interactions with the physiological environment could modify the solubility and assembly of amyloidogenic proteins. We conclude by hypothesising how such interactions could contribute to selective cellular vulnerability.
Collapse
|
30
|
Cotrina EY, Santos LM, Rivas J, Blasi D, Leite JP, Liz MA, Busquets MA, Planas A, Prohens R, Gimeno A, Jiménez-Barbero J, Gales L, Llop J, Quintana J, Cardoso I, Arsequell G. Targeting transthyretin in Alzheimer's disease: Drug discovery of small-molecule chaperones as disease-modifying drug candidates for Alzheimer's disease. Eur J Med Chem 2021; 226:113847. [PMID: 34555615 DOI: 10.1016/j.ejmech.2021.113847] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022]
Abstract
Transthyretin (TTR) has a well-established role in neuroprotection in Alzheimer's Disease (AD). We have setup a drug discovery program of small-molecule compounds that act as chaperones enhancing TTR/Amyloid-beta peptide (Aβ) interactions. A combination of computational drug repurposing approaches and in vitro biological assays have resulted in a set of molecules which were then screened with our in-house validated high-throughput screening ternary test. A prioritized list of chaperones was obtained and corroborated with ITC studies. Small-molecule chaperones have been discovered, among them our lead compound Iododiflunisal (IDIF), a molecule in the discovery phase; one investigational drug (luteolin); and 3 marketed drugs (sulindac, olsalazine and flufenamic), which could be directly repurposed or repositioned for clinical use. Not all TTR tetramer stabilizers behave as chaperones in vitro. These chemically diverse chaperones will be used for validating TTR as a target in vivo, and to select one repurposed drug as a candidate to enter clinical trials as AD disease-modifying drug.
Collapse
Affiliation(s)
- Ellen Y Cotrina
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), E-08034, Barcelona, Spain
| | - Luis Miguel Santos
- IBMC - Instituto de Biologia Molecular e Celular, PT-4200-135, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PT-4200-135, Porto, Portugal
| | - Josep Rivas
- Plataforma Drug Discovery, Parc Científic de Barcelona (PCB), E-08028, Barcelona, Spain
| | - Daniel Blasi
- Plataforma Drug Discovery, Parc Científic de Barcelona (PCB), E-08028, Barcelona, Spain
| | - José Pedro Leite
- IBMC - Instituto de Biologia Molecular e Celular, PT-4200-135, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PT-4200-135, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), PT-4050-013, Porto, Portugal
| | - Márcia A Liz
- IBMC - Instituto de Biologia Molecular e Celular, PT-4200-135, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PT-4200-135, Porto, Portugal
| | - Maria Antònia Busquets
- Facultat de Farmàcia i Ciències de l'Alimentació, University of Barcelona, E-08028, Barcelona, Spain
| | - Antoni Planas
- Institut Químic de Sarrià, Universitat Ramon Llull, E-08017, Barcelona, Spain
| | - Rafel Prohens
- Centres Científics i Tecnologics, Universitat de Barcelona, E-08028, Barcelona, Spain
| | - Ana Gimeno
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, E-48160, Derio, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, E-48160, Derio, Spain; Ikerbasque, Basque Foundation for Science, E-48009, Bilbao, Spain
| | - Luis Gales
- IBMC - Instituto de Biologia Molecular e Celular, PT-4200-135, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PT-4200-135, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), PT-4050-013, Porto, Portugal
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), E-20014, San Sebastian, Spain
| | - Jordi Quintana
- Plataforma Drug Discovery, Parc Científic de Barcelona (PCB), E-08028, Barcelona, Spain.
| | - Isabel Cardoso
- IBMC - Instituto de Biologia Molecular e Celular, PT-4200-135, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PT-4200-135, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), PT-4050-013, Porto, Portugal.
| | - Gemma Arsequell
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), E-08034, Barcelona, Spain.
| |
Collapse
|
31
|
Rejc L, Gómez-Vallejo V, Rios X, Cossío U, Baz Z, Mujica E, Gião T, Cotrina EY, Jiménez-Barbero J, Quintana J, Arsequell G, Cardoso I, Llop J. Oral Treatment with Iododiflunisal Delays Hippocampal Amyloid-β Formation in a Transgenic Mouse Model of Alzheimer's Disease: A Longitudinal in vivo Molecular Imaging Study1. J Alzheimers Dis 2021; 77:99-112. [PMID: 32804152 DOI: 10.3233/jad-200570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Transthyretin (TTR) is a tetrameric, amyloid-β (Aβ)-binding protein, which reduces Aβ toxicity. The TTR/Aβ interaction can be enhanced by a series of small molecules that stabilize its tetrameric form. Hence, TTR stabilizers might act as disease-modifying drugs in Alzheimer's disease. OBJECTIVE We monitored the therapeutic efficacy of two TTR stabilizers, iododiflunisal (IDIF), which acts as small-molecule chaperone of the TTR/Aβ interaction, and tolcapone, which does not behave as a small-molecule chaperone, in an animal model of Alzheimer's disease using positron emission tomography (PET). METHODS Female mice (AβPPswe/PS1A246E/TTR+/-) were divided into 3 groups (n = 7 per group): IDIF-treated, tolcapone-treated, and non-treated. The oral treatment (100 mg/Kg/day) was started at 5 months of age. Treatment efficacy assessment was based on changes in longitudinal deposition of Aβ in the hippocampus (HIP) and the cortex (CTX) and determined using PET-[18F]florbetaben. Immunohistochemical analysis was performed at age = 14 months. RESULTS Standard uptake values relative to the cerebellum (SUVr) of [18F]florbetaben in CTX and HIP of non-treated animals progressively increased from age = 5 to 11 months and stabilized afterwards. In contrast, [18F]florbetaben uptake in HIP of IDIF-treated animals remained constant between ages = 5 and 11 months and significantly increased at 14 months. In the tolcapone-treated group, SUVr progressively increased with time, but at lower rate than in the non-treated group. No significant treatment effect was observed in CTX. Results from immunohistochemistry matched the in vivo data at age = 14 months. CONCLUSION Our work provides encouraging preliminary results on the ability of small-molecule chaperones to ameliorate Aβ deposition in certain brain regions.
Collapse
Affiliation(s)
- Luka Rejc
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Ljubljana, Slovenia
| | - Vanessa Gómez-Vallejo
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, Guipúzcoa, Spain
| | - Xabier Rios
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, Guipúzcoa, Spain
| | - Unai Cossío
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, Guipúzcoa, Spain
| | - Zuriñe Baz
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, Guipúzcoa, Spain
| | - Edurne Mujica
- Biochemistry and Molecular Biology, EHU-UPV, Leioa, Spain
| | - Tiago Gião
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ellen Y Cotrina
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), Barcelona, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.,Department Organic Chemistry II, Faculty Science & Technology, EHU-UPV, Leioa, Spain
| | - Jordi Quintana
- Plataforma Drug Discovery, Parc Científic de Barcelona (PCB), Barcelona, Spain
| | - Gemma Arsequell
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), Barcelona, Spain
| | - Isabel Cardoso
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, Guipúzcoa, Spain.,Centro de Investigación Biomédica en Red - Enfermedades Respiratorias (CIBERES)
| |
Collapse
|
32
|
Serum Proteomic Analysis of Cannabis Use Disorder in Male Patients. Molecules 2021; 26:molecules26175311. [PMID: 34500744 PMCID: PMC8434053 DOI: 10.3390/molecules26175311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/18/2022] Open
Abstract
Cannabis use has been growing recently and it is legally consumed in many countries. Cannabis has a variety of phytochemicals including cannabinoids, which might impair the peripheral systems responses affecting inflammatory and immunological pathways. However, the exact signaling pathways that induce these effects need further understanding. The objective of this study is to investigate the serum proteomic profiling in patients diagnosed with cannabis use disorder (CUD) as compared with healthy control subjects. The novelty of our study is to highlight the differentially changes proteins in the serum of CUD patients. Certain proteins can be targeted in the future to attenuate the toxicological effects of cannabis. Blood samples were collected from 20 male individuals: 10 healthy controls and 10 CUD patients. An untargeted proteomic technique employing two-dimensional difference in gel electrophoresis coupled with mass spectrometry was employed in this study to assess the differentially expressed proteins. The proteomic analysis identified a total of 121 proteins that showed significant changes in protein expression between CUD patients (experimental group) and healthy individuals (control group). For instance, the serum expression of inactive tyrosine protein kinase PEAK1 and tumor necrosis factor alpha-induced protein 3 were increased in CUD group. In contrast, the serum expression of transthyretin and serotransferrin were reduced in CUD group. Among these proteins, 55 proteins were significantly upregulated and 66 proteins significantly downregulated in CUD patients as compared with healthy control group. Ingenuity pathway analysis (IPA) found that these differentially expressed proteins are linked to p38MAPK, interleukin 12 complex, nuclear factor-κB, and other signaling pathways. Our work indicates that the differentially expressed serum proteins between CUD and control groups are correlated to liver X receptor/retinoid X receptor (RXR), farnesoid X receptor/RXR activation, and acute phase response signaling.
Collapse
|
33
|
Rahman MM, Lendel C. Extracellular protein components of amyloid plaques and their roles in Alzheimer's disease pathology. Mol Neurodegener 2021; 16:59. [PMID: 34454574 PMCID: PMC8400902 DOI: 10.1186/s13024-021-00465-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 06/11/2021] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is pathologically defined by the presence of fibrillar amyloid β (Aβ) peptide in extracellular senile plaques and tau filaments in intracellular neurofibrillary tangles. Extensive research has focused on understanding the assembly mechanisms and neurotoxic effects of Aβ during the last decades but still we only have a brief understanding of the disease associated biological processes. This review highlights the many other constituents that, beside Aβ, are accumulated in the plaques, with the focus on extracellular proteins. All living organisms rely on a delicate network of protein functionality. Deposition of significant amounts of certain proteins in insoluble inclusions will unquestionably lead to disturbances in the network, which may contribute to AD and copathology. This paper provide a comprehensive overview of extracellular proteins that have been shown to interact with Aβ and a discussion of their potential roles in AD pathology. Methods that can expand the knowledge about how the proteins are incorporated in plaques are described. Top-down methods to analyze post-mortem tissue and bottom-up approaches with the potential to provide molecular insights on the organization of plaque-like particles are compared. Finally, a network analysis of Aβ-interacting partners with enriched functional and structural key words is presented.
Collapse
Affiliation(s)
- M Mahafuzur Rahman
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| | - Christofer Lendel
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| |
Collapse
|
34
|
Ge F, Zhu D, Tian M, Shi J. The Role of Thyroid Function in Alzheimer's Disease. J Alzheimers Dis 2021; 83:1553-1562. [PMID: 34420955 DOI: 10.3233/jad-210339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The thyroid gland is crucial for the regulation of metabolism, growth, and development of various tissues, organs, systems, including the central nervous system. Recent studies have implicated the role of thyroid dysfunction in the etiology of Alzheimer's disease (AD), while AD leads to a significant increase in the prevalence of thyroid dysfunction. In this review, we have analyzed the role of thyroid function in the pathophysiology of AD as well as its biomarkers. The present review aims to provide encouraging targets for early screening of AD risk factors and intervention strategies.
Collapse
Affiliation(s)
- Feifei Ge
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Donglin Zhu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Minjie Tian
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jingping Shi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
35
|
Sharma S, Modi P, Sharma G, Deep S. Kinetics theories to understand the mechanism of aggregation of a protein and to design strategies for its inhibition. Biophys Chem 2021; 278:106665. [PMID: 34419715 DOI: 10.1016/j.bpc.2021.106665] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022]
Abstract
Protein aggregation phenomenon is closely related to the formation of amyloids which results in many neurodegenerative diseases like Alzheimer's, Parkinson's, Huntington's, and Amyotrophic Lateral Sclerosis. In order to prevent and treat these diseases, a clear understanding of the mechanism of misfolding and self-assembly of peptides and proteins is very crucial. The aggregation of a protein may involve various microscopic events. Multiple simulations utilizing the solutions of the master equation have given a better understanding of the kinetic profiles involved in the presence and absence of a particular microscopic event. This review focuses on understanding the contribution of these molecular events to protein aggregation based on the analysis of kinetic profiles of aggregation. We also discuss the effect of inhibitors, which target various species of aggregation pathways, on the kinetic profile of protein aggregation. At the end of this review, some strategies for the inhibition of aggregation that can be utilized by combining the chemical kinetics approach with thermodynamics are proposed.
Collapse
Affiliation(s)
- Shilpa Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Priya Modi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Gargi Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
36
|
Mazzei G, Ikegami R, Abolhassani N, Haruyama N, Sakumi K, Saito T, Saido TC, Nakabeppu Y. A high-fat diet exacerbates the Alzheimer's disease pathology in the hippocampus of the App NL-F/NL-F knock-in mouse model. Aging Cell 2021; 20:e13429. [PMID: 34245097 PMCID: PMC8373331 DOI: 10.1111/acel.13429] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 06/01/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance and diabetes mellitus are major risk factors for Alzheimer's disease (AD), and studies with transgenic mouse models of AD have provided supportive evidence with some controversies. To overcome potential artifacts derived from transgenes, we used a knock‐in mouse model, AppNL−F/NL−F, which accumulates Aβ plaques from 6 months of age and shows mild cognitive impairment at 18 months of age, without the overproduction of APP. In the present study, 6‐month‐old male AppNL−F/NL−F and wild‐type mice were fed a regular or high‐fat diet (HFD) for 12 months. HFD treatment caused obesity and impaired glucose tolerance (i.e., T2DM conditions) in both wild‐type and AppNL−F/NL−F mice, but only the latter animals exhibited an impaired cognitive function accompanied by marked increases in both Aβ deposition and microgliosis as well as insulin resistance in the hippocampus. Furthermore, HFD‐fed AppNL−F/NL−F mice exhibited a significant decrease in volume of the granule cell layer in the dentate gyrus and an increased accumulation of 8‐oxoguanine, an oxidized guanine base, in the nuclei of granule cells. Gene expression profiling by microarrays revealed that the populations of the cell types in hippocampus were not significantly different between the two mouse lines, regardless of the diet. In addition, HFD treatment decreased the expression of the Aβ binding protein transthyretin (TTR) in AppNL−F/NL−F mice, suggesting that the depletion of TTR underlies the increased Aβ deposition in the hippocampus of HFD‐fed AppNL−F/NL−F mice.
Collapse
Affiliation(s)
- Guianfranco Mazzei
- Division of Neurofunctional Genomics Department of Immunobiology and Neuroscience Medical Institute of Bioregulation Kyushu University Fukuoka Japan
| | - Ryohei Ikegami
- Division of Neurofunctional Genomics Department of Immunobiology and Neuroscience Medical Institute of Bioregulation Kyushu University Fukuoka Japan
| | - Nona Abolhassani
- Division of Neurofunctional Genomics Department of Immunobiology and Neuroscience Medical Institute of Bioregulation Kyushu University Fukuoka Japan
| | - Naoki Haruyama
- Division of Neurofunctional Genomics Department of Immunobiology and Neuroscience Medical Institute of Bioregulation Kyushu University Fukuoka Japan
| | - Kunihiko Sakumi
- Division of Neurofunctional Genomics Department of Immunobiology and Neuroscience Medical Institute of Bioregulation Kyushu University Fukuoka Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience RIKEN Center for Brain Science Saitama Japan
- Department of Neurocognitive Science Institute of Brain Science Nagoya City University Graduate School of Medical Sciences Nagoya Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience RIKEN Center for Brain Science Saitama Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics Department of Immunobiology and Neuroscience Medical Institute of Bioregulation Kyushu University Fukuoka Japan
| |
Collapse
|
37
|
Ghadami SA, Ahmadi Z, Moosavi-Nejad Z. The albumin-based nanoparticle formation in relation to protein aggregation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119489. [PMID: 33524819 DOI: 10.1016/j.saa.2021.119489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Albumin is an attractive protein for the preparation of nanoparticle with possible therapeutic applications, due to its biodegradable, nontoxic, non-immunogenic, and metabolizable properties. Many studies have investigated the formation of albumin nanoparticles, generally by the desolvation or coacervation approaches. One of the most important parameters that should be considered in the formation of nanoparticles is their morphology (size and shape). There are many proposals to control the nanoparticle size, but it remains a challenge for researchers yet. In this study, we showed that control of BSA-based nanoparticles/microparticles size could be achieved by varying the temperature and pH and therefore controlling the rate of aggregation. The aggregation behavior was monitored by UV-Vis spectroscopy, SEM, and dye-binding assay. Our results provide more options for the size and shape control of BSA-based nanoparticle in natural buffer systems. The aggregation of BSA at different temperatures within the range of 50-80 °C were studied under the effect of different pHs in the range of 4.7-6.2. In this research, we found that protein aggregation under extreme conditions of pH and temperature, or at the pH near to pI appears to be amorphous, and at the pH above the pI seems to be the amyloid fibril structure. In some instances where the aggregation is neither too fast nor too slow, in the initial phase of the aggregation process, nanoparticle structures can be identified and separated by mechanistic approaches. This observation suggests that the best condition for monitoring the formation of albumin-based nanoparticles could be pH 5.7, 70 °C. Satisfactory rationalization of all aspects of our experimental observation requires further and more detailed study.
Collapse
Affiliation(s)
| | - Zahra Ahmadi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Zahra Moosavi-Nejad
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| |
Collapse
|
38
|
Wasana Jayaweera S, Surano S, Pettersson N, Oskarsson E, Lettius L, Gharibyan AL, Anan I, Olofsson A. Mechanisms of Transthyretin Inhibition of IAPP Amyloid Formation. Biomolecules 2021; 11:biom11030411. [PMID: 33802170 PMCID: PMC8001701 DOI: 10.3390/biom11030411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022] Open
Abstract
Amyloid-formation by the islet amyloid polypeptide (IAPP), produced by the β-cells in the human pancreas, has been associated with the development of type II diabetes mellitus (T2DM). The human plasma-protein transthyretin (TTR), a well-known amyloid-inhibiting protein, is interestingly also expressed within the IAPP producing β-cells. In the present study, we have characterized the ability of TTR to interfere with IAPP amyloid-formation, both in terms of its intrinsic stability as well as with regard to the effect of TTR-stabilizing drugs. The results show that TTR can prolong the lag-phase as well as impair elongation in the course of IAPP-amyloid formation. We also show that the interfering ability correlates inversely with the thermodynamic stability of TTR, while no such correlation was observed as a function of kinetic stability. Furthermore, we demonstrate that the ability of TTR to interfere is maintained also at the low pH environment within the IAPP-containing granules of the pancreatic β-cells. However, at both neutral and low pH, the addition of TTR-stabilizing drugs partly impaired its efficacy. Taken together, these results expose mechanisms of TTR-mediated inhibition of IAPP amyloid-formation and highlights a potential therapeutic target to prevent the onset of T2DM.
Collapse
Affiliation(s)
- Sanduni Wasana Jayaweera
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden; (S.W.J.); (S.S.); (N.P.); (E.O.); (L.L.); (A.L.G.)
| | - Solmaz Surano
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden; (S.W.J.); (S.S.); (N.P.); (E.O.); (L.L.); (A.L.G.)
| | - Nina Pettersson
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden; (S.W.J.); (S.S.); (N.P.); (E.O.); (L.L.); (A.L.G.)
| | - Elvira Oskarsson
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden; (S.W.J.); (S.S.); (N.P.); (E.O.); (L.L.); (A.L.G.)
| | - Lovisa Lettius
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden; (S.W.J.); (S.S.); (N.P.); (E.O.); (L.L.); (A.L.G.)
| | - Anna L. Gharibyan
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden; (S.W.J.); (S.S.); (N.P.); (E.O.); (L.L.); (A.L.G.)
| | - Intissar Anan
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden;
| | - Anders Olofsson
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden; (S.W.J.); (S.S.); (N.P.); (E.O.); (L.L.); (A.L.G.)
- Correspondence: ; Tel.: +46-70-354-3301
| |
Collapse
|
39
|
Cotrina EY, Gimeno A, Llop J, Jiménez-Barbero J, Quintana J, Prohens R, Cardoso I, Arsequell G. An Assay for Screening Potential Drug Candidates for Alzheimer's Disease That Act as Chaperones of the Transthyretin and Amyloid-β Peptides Interaction. Chemistry 2020; 26:17462-17469. [PMID: 32761825 DOI: 10.1002/chem.202002933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/03/2020] [Indexed: 11/08/2022]
Abstract
The protein transthyretin (TTR) modulates amyloid-β (Aβ) peptides deposition and processing and this physiological effect is further enhanced by treatment with iododiflunisal (IDIF), a small-molecule compound (SMC) with TTR tetramer stabilization properties, which behaves as chaperone of the complex. This knowledge has prompted us to design and optimize a rapid and simple high-throughput assay that relies on the ability of test compounds to form ternary soluble complexes TTR/Aβ/SMC that prevent Aβ aggregation. The method uses the shorter Aβ(12-28) sequence which is cheaper and simpler to use while retaining the aggregation properties of their parents Aβ(1-40) and Aβ(1-42). The test is carried out in 96-plate wells that are UV monitored for turbidity during 6 h. Given its reproducibility, we propose that this test can be a powerful tool for efficient screening of SMCs that act as chaperones of the TTR/Aβ interaction that may led to potential AD therapies.
Collapse
Affiliation(s)
- Ellen Y Cotrina
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Ana Gimeno
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Spain.,Ikerbasque-Basque Foundation for Science, Maria Diaz de Haro 13, 48009, Bilbao, Spain.,Department of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country, 48940, Leioa, Bizkaia, Spain
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014, San Sebastian, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Spain.,Ikerbasque-Basque Foundation for Science, Maria Diaz de Haro 13, 48009, Bilbao, Spain.,Department of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country, 48940, Leioa, Bizkaia, Spain
| | - Jordi Quintana
- Research Programme on Biomedical Informatics, Universitat Pompeu Fabra (UPF-IMIM), 08003, Barcelona, Spain
| | - Rafel Prohens
- Unitat de Polimorfisme i Calorimetria, Centres Científics i Tecnologics, Universitat de Barcelona, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Isabel Cardoso
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Gemma Arsequell
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), Jordi Girona 18-26, 08034, Barcelona, Spain
| |
Collapse
|
40
|
Dohrn MF, Ihne S, Hegenbart U, Medina J, Züchner SL, Coelho T, Hahn K. Targeting transthyretin - Mechanism-based treatment approaches and future perspectives in hereditary amyloidosis. J Neurochem 2020; 156:802-818. [PMID: 33155274 DOI: 10.1111/jnc.15233] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022]
Abstract
The liver-derived, circulating transport protein transthyretin (TTR) is the cause of systemic hereditary (ATTRv) and wild-type (ATTRwt) amyloidosis. TTR stabilization and knockdown are approved therapies to mitigate the otherwise lethal disease course. To date, the variety in phenotypic penetrance is not fully understood. This systematic review summarizes the current literature on TTR pathophysiology with its therapeutic implications. Tetramer dissociation is the rate-limiting step of amyloidogenesis. Besides destabilizing TTR mutations, other genetic (RBP4, APCS, AR, ATX2, C1q, C3) and external (extracellular matrix, Schwann cell interaction) factors influence the type of onset and organ tropism. The approved small molecule tafamidis stabilizes the tetramer and significantly decelerates the clinical course. By sequence-specific mRNA knockdown, the approved small interfering RNA (siRNA) patisiran and antisense oligonucleotide (ASO) inotersen both significantly reduce plasma TTR levels and improve neuropathy and quality of life compared to placebo. With enhanced hepatic targeting capabilities, GalNac-conjugated siRNA and ASOs have recently entered phase III clinical trials. Bivalent TTR stabilizers occupy both binding groves in vitro, but have not been tested in trials so far. Tolcapone is another stabilizer with the potential to cross the blood-brain barrier, but its half-life is short and liver failure a potential side effect. Amyloid-directed antibodies and substances like doxycycline aim at reducing the amyloid load, however, none of the yet developed antibodies has successfully passed clinical trials. ATTR-amyloidosis has become a model disease for pathophysiology-based treatment. Further understanding of disease mechanisms will help to overcome the remaining limitations, including application burden, side effects, and blood-brain barrier permeability.
Collapse
Affiliation(s)
- Maike F Dohrn
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Sandra Ihne
- Interdisciplinary Amyloidosis Center of Northern Bavaria, University Hospital of Würzburg, Würzburg, Germany.,Department of Internal Medicine II, Hematology, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center (CHFC), University and University Hospital Würzburg, Würzburg, Germany
| | - Ute Hegenbart
- Amyloidosis Center Heidelberg, Department of Internal Medicine V, Division of Hematology/Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jessica Medina
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Stephan L Züchner
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Teresa Coelho
- Andrade's Center for Familial Amyloidosis, University of Porto, Porto, Portugal.,Department of Neurosciences, Hospital de Santo António, Centro Hospitalar Do Porto, University of Porto, Porto, Portugal
| | - Katrin Hahn
- Department of Neurology, Charité University Medicine, Berlin, Germany.,Amyloidosis Center Charité Berlin (ACCB), Charité University Medicine, Berlin, Germany
| |
Collapse
|
41
|
The Function of Transthyretin Complexes with Metallothionein in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21239003. [PMID: 33256250 PMCID: PMC7730073 DOI: 10.3390/ijms21239003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most frequently diagnosed types of dementia in the elderly. An important pathological feature in AD is the aggregation and deposition of the β-amyloid (Aβ) in extracellular plaques. Transthyretin (TTR) can cleave Aβ, resulting in the formation of short peptides with less activity of amyloid plaques formation, as well as being able to degrade Aβ peptides that have already been aggregated. In the presence of TTR, Aβ aggregation decreases and toxicity of Aβ is abolished. This may prevent amyloidosis but the malfunction of this process leads to the development of AD. In the context of Aβplaque formation in AD, we discuss metallothionein (MT) interaction with TTR, the effects of which depend on the type of MT isoform. In the brains of patients with AD, the loss of MT-3 occurs. On the contrary, MT-1/2 level has been consistently reported to be increased. Through interaction with TTR, MT-2 reduces the ability of TTR to bind to Aβ, while MT-3 causes the opposite effect. It increases TTR-Aβ binding, providing inhibition of Aβ aggregation. The protective effect, assigned to MT-3 against the deposition of Aβ, relies also on this mechanism. Additionally, both Zn7MT-2 and Zn7MT-3, decrease Aβ neurotoxicity in cultured cortical neurons probably because of a metal swap between Zn7MT and Cu(II)Aβ. Understanding the molecular mechanism of metals transfer between MT and other proteins as well as cognition of the significance of TTR interaction with different MT isoforms can help in AD treatment and prevention.
Collapse
|
42
|
Kreiser RP, Wright AK, Block NR, Hollows JE, Nguyen LT, LeForte K, Mannini B, Vendruscolo M, Limbocker R. Therapeutic Strategies to Reduce the Toxicity of Misfolded Protein Oligomers. Int J Mol Sci 2020; 21:ijms21228651. [PMID: 33212787 PMCID: PMC7696907 DOI: 10.3390/ijms21228651] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
The aberrant aggregation of proteins is implicated in the onset and pathogenesis of a wide range of neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases. Mounting evidence indicates that misfolded protein oligomers produced as intermediates in the aggregation process are potent neurotoxic agents in these diseases. Because of the transient and heterogeneous nature of these elusive aggregates, however, it has proven challenging to develop therapeutics that can effectively target them. Here, we review approaches aimed at reducing oligomer toxicity, including (1) modulating the oligomer populations (e.g., by altering the kinetics of aggregation by inhibiting, enhancing, or redirecting the process), (2) modulating the oligomer properties (e.g., through the size–hydrophobicity–toxicity relationship), (3) modulating the oligomer interactions (e.g., by protecting cell membranes by displacing oligomers), and (4) reducing oligomer toxicity by potentiating the protein homeostasis system. We analyze examples of these complementary approaches, which may lead to the development of compounds capable of preventing or treating neurodegenerative disorders associated with protein aggregation.
Collapse
Affiliation(s)
- Ryan P. Kreiser
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Aidan K. Wright
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Natalie R. Block
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Jared E. Hollows
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Lam T. Nguyen
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Kathleen LeForte
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Benedetta Mannini
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK;
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK;
- Correspondence: (M.V.); (R.L.)
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
- Correspondence: (M.V.); (R.L.)
| |
Collapse
|
43
|
Saponaro F, Kim JH, Chiellini G. Transthyretin Stabilization: An Emerging Strategy for the Treatment of Alzheimer's Disease? Int J Mol Sci 2020; 21:ijms21228672. [PMID: 33212973 PMCID: PMC7698513 DOI: 10.3390/ijms21228672] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/14/2020] [Accepted: 11/15/2020] [Indexed: 12/27/2022] Open
Abstract
Transthyretin (TTR), previously named prealbumin is a plasma protein secreted mainly by the liver and choroid plexus (CP) that is a carrier for thyroid hormones (THs) and retinol (vitamin A). The structure of TTR, with four monomers rich in β-chains in a globular tetrameric protein, accounts for the predisposition of the protein to aggregate in fibrils, leading to a rare and severe disease, namely transthyretin amyloidosis (ATTR). Much effort has been made and still is required to find new therapeutic compounds that can stabilize TTR ("kinetic stabilization") and prevent the amyloid genetic process. Moreover, TTR is an interesting therapeutic target for neurodegenerative diseases due to its recognized neuroprotective properties in the cognitive impairment context and interestingly in Alzheimer's disease (AD). Much evidence has been collected regarding the neuroprotective effects in AD, including through in vitro and in vivo studies as well as a wide range of clinical series. Despite this supported hypothesis of neuroprotection for TTR, the mechanisms are still not completely clear. The aim of this review is to highlight the most relevant findings on the neuroprotective role of TTR, and to summarize the recent progress on the development of TTR tetramer stabilizers.
Collapse
Affiliation(s)
| | - Jin Hae Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea;
| | - Grazia Chiellini
- Department of Pathology, University of Pisa, 56100 Pisa, Italy;
- Correspondence:
| |
Collapse
|
44
|
Rezvani Boroujeni E, Hosseini SM, Fani G, Cecchi C, Chiti F. Soluble Prion Peptide 107-120 Protects Neuroblastoma SH-SY5Y Cells against Oligomers Associated with Alzheimer's Disease. Int J Mol Sci 2020; 21:E7273. [PMID: 33019683 PMCID: PMC7582777 DOI: 10.3390/ijms21197273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia and soluble amyloid β (Aβ) oligomers are thought to play a critical role in AD pathogenesis. Cellular prion protein (PrPC) is a high-affinity receptor for Aβ oligomers and mediates some of their toxic effects. The N-terminal region of PrPC can interact with Aβ, particularly the region encompassing residues 95-110. In this study, we identified a soluble and unstructured prion-derived peptide (PrP107-120) that is external to this region of the sequence and was found to successfully reduce the mitochondrial impairment, intracellular ROS generation and cytosolic Ca2+ uptake induced by oligomeric Aβ42 ADDLs in neuroblastoma SH-SY5Y cells. PrP107-120 was also found to rescue SH-SY5Y cells from Aβ42 ADDL internalization. The peptide did not change the structure and aggregation pathway of Aβ42 ADDLs, did not show co-localization with Aβ42 ADDLs in the cells and showed a partial colocalization with the endogenous cellular PrPC. As a sequence region that is not involved in Aβ binding but in PrP self-recognition, the peptide was suggested to protect against the toxicity of Aβ42 oligomers by interfering with cellular PrPC and/or activating a signaling that protected the cells. These results strongly suggest that PrP107-120 has therapeutic potential for AD.
Collapse
Affiliation(s)
- Elham Rezvani Boroujeni
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran;
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B Morgagni 50, 50134 Florence, Italy; (G.F.); (C.C.)
| | - Seyed Masoud Hosseini
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran;
| | - Giulia Fani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B Morgagni 50, 50134 Florence, Italy; (G.F.); (C.C.)
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B Morgagni 50, 50134 Florence, Italy; (G.F.); (C.C.)
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B Morgagni 50, 50134 Florence, Italy; (G.F.); (C.C.)
| |
Collapse
|
45
|
Dąbkowska M, Łuczkowska K, Rogińska D, Sobuś A, Wasilewska M, Ulańczyk Z, Machaliński B. Novel design of (PEG-ylated)PAMAM-based nanoparticles for sustained delivery of BDNF to neurotoxin-injured differentiated neuroblastoma cells. J Nanobiotechnology 2020; 18:120. [PMID: 32867843 PMCID: PMC7457365 DOI: 10.1186/s12951-020-00673-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is essential for the development and function of human neurons, therefore it is a promising target for neurodegenerative disorders treatment. Here, we studied BDNF-based electrostatic complex with dendrimer nanoparticles encapsulated in polyethylene glycol (PEG) in neurotoxin-treated, differentiated neuroblastoma SH-SY5Y cells, a model of neurodegenerative mechanisms. PEG layer was adsorbed at dendrimer-protein core nanoparticles to decrease their cellular uptake and to reduce BDNF-other proteins interactions for a prolonged time. Cytotoxicity and confocal microscopy analysis revealed PEG-ylated BDNF-dendrimer nanoparticles can be used for continuous neurotrophic factor delivery to the neurotoxin-treated cells over 24 h without toxic effect. We offer a reliable electrostatic route for efficient encapsulation and controlled transport of fragile therapeutic proteins without any covalent cross-linker; this could be considered as a safe drug delivery system. Understanding the polyvalent BDNF interactions with dendrimer core nanoparticles offers new possibilities for design of well-ordered protein drug delivery systems.
Collapse
Affiliation(s)
- Maria Dąbkowska
- Department of Medical Chemistry, Pomeranian Medical University, Rybacka 1, 70-204, Szczecin, Poland.
| | - Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, Rybacka 1, 70-204, Szczecin, Poland
| | - Dorota Rogińska
- Department of General Pathology, Pomeranian Medical University, Rybacka 1, 70-204, Szczecin, Poland
| | - Anna Sobuś
- Department of General Pathology, Pomeranian Medical University, Rybacka 1, 70-204, Szczecin, Poland
| | - Monika Wasilewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239, Cracow, Poland
| | - Zofia Ulańczyk
- Department of General Pathology, Pomeranian Medical University, Rybacka 1, 70-204, Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Rybacka 1, 70-204, Szczecin, Poland.
| |
Collapse
|
46
|
Eye lens crystallin proteins inhibit the autocatalytic amyloid amplification nature of mature α-synuclein fibrils. PLoS One 2020; 15:e0235198. [PMID: 32598365 PMCID: PMC7323979 DOI: 10.1371/journal.pone.0235198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/10/2020] [Indexed: 11/19/2022] Open
Abstract
Parkinson´s disease is characterized by the accumulation of proteinaceous aggregates in Lewy bodies and Lewy Neurites. The main component found in such aggregates is α-synuclein. Here, we investigate how bovine eye lens crystallin proteins influence the aggregation kinetics of α-synuclein at mildly acidic pH (5.5) where the underlying aggregation mechanism of this protein is dominated by secondary nucleation of monomers on fibril surface providing an autocatalytic amyloid amplification process. Bovine α-, βH- and γB-crystallins were found to display chaperone-like activity inhibiting α-synuclein aggregation. This effect was shown to be time-dependent, with early additions of α-crystallin capable of retarding and even inhibiting aggregation during the time frame of the experiment. The inhibitory nature of crystallins was further investigated using trap and seed kinetic experiments. We propose crystallins interact with mature α-synuclein fibrils, possibly binding along the surfaces and at fibril free ends, inhibiting both elongation and monomer-dependent secondary nucleation processes in a mechanism that may be generic to some chaperones that prevent the onset of protein misfolding related pathologies.
Collapse
|
47
|
Ciccone L, Shi C, di Lorenzo D, Van Baelen AC, Tonali N. The Positive Side of the Alzheimer's Disease Amyloid Cross-Interactions: The Case of the Aβ 1-42 Peptide with Tau, TTR, CysC, and ApoA1. Molecules 2020; 25:E2439. [PMID: 32456156 PMCID: PMC7288020 DOI: 10.3390/molecules25102439] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) represents a progressive amyloidogenic disorder whose advancement is widely recognized to be connected to amyloid-β peptides and Tau aggregation. However, several other processes likely contribute to the development of AD and some of them might be related to protein-protein interactions. Amyloid aggregates usually contain not only single type of amyloid protein, but also other type of proteins and this phenomenon can be rationally explained by the process of protein cross-seeding and co-assembly. Amyloid cross-interaction is ubiquitous in amyloid fibril formation and so a better knowledge of the amyloid interactome could help to further understand the mechanisms of amyloid related diseases. In this review, we discuss about the cross-interactions of amyloid-β peptides, and in particular Aβ1-42, with other amyloids, which have been presented either as integrated part of Aβ neurotoxicity process (such as Tau) or conversely with a preventive role in AD pathogenesis by directly binding to Aβ (such as transthyretin, cystatin C and apolipoprotein A1). Particularly, we will focus on all the possible therapeutic strategies aiming to rescue the Aβ toxicity by taking inspiration from these protein-protein interactions.
Collapse
Affiliation(s)
- Lidia Ciccone
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Chenghui Shi
- CNRS, BioCIS, Université Paris-Saclay, rue Jean-Baptiste Clément 5, 92290 Châtenay-Malabry, France; (C.S.); (D.d.L.)
| | - Davide di Lorenzo
- CNRS, BioCIS, Université Paris-Saclay, rue Jean-Baptiste Clément 5, 92290 Châtenay-Malabry, France; (C.S.); (D.d.L.)
| | - Anne-Cécile Van Baelen
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, Université Paris Saclay, SIMoS, 91191 Gif-sur-Yvette, France;
| | - Nicolo Tonali
- CNRS, BioCIS, Université Paris-Saclay, rue Jean-Baptiste Clément 5, 92290 Châtenay-Malabry, France; (C.S.); (D.d.L.)
| |
Collapse
|
48
|
Österlund N, Lundqvist M, Ilag LL, Gräslund A, Emanuelsson C. Amyloid-β oligomers are captured by the DNAJB6 chaperone: Direct detection of interactions that can prevent primary nucleation. J Biol Chem 2020; 295:8135-8144. [PMID: 32350108 PMCID: PMC7294096 DOI: 10.1074/jbc.ra120.013459] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/23/2020] [Indexed: 12/16/2022] Open
Abstract
A human molecular chaperone protein, DnaJ heat shock protein family (Hsp40) member B6 (DNAJB6), efficiently inhibits amyloid aggregation. This inhibition depends on a unique motif with conserved serine and threonine (S/T) residues that have a high capacity for hydrogen bonding. Global analysis of kinetics data has previously shown that DNAJB6 especially inhibits the primary nucleation pathways. These observations indicated that DNAJB6 achieves this remarkably effective and sub-stoichiometric inhibition by interacting not with the monomeric unfolded conformations of the amyloid-β symbol (Aβ) peptide but with aggregated species. However, these pre-nucleation oligomeric aggregates are transient and difficult to study experimentally. Here, we employed a native MS-based approach to directly detect oligomeric forms of Aβ formed in solution. We found that WT DNAJB6 considerably reduces the signals from the various forms of Aβ (1–40) oligomers, whereas a mutational DNAJB6 variant in which the S/T residues have been substituted with alanines does not. We also detected signals that appeared to represent DNAJB6 dimers and trimers to which varying amounts of Aβ are bound. These data provide direct experimental evidence that it is the oligomeric forms of Aβ that are captured by DNAJB6 in a manner which depends on the S/T residues. We conclude that, in agreement with the previously observed decrease in primary nucleation rate, strong binding of Aβ oligomers to DNAJB6 inhibits the formation of amyloid nuclei.
Collapse
Affiliation(s)
- Nicklas Österlund
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Martin Lundqvist
- Department of Biochemistry and Structural Biology, Lund University, Sweden
| | - Leopold L Ilag
- Department of Materials and Environmental Chemistry, Stockholm University, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | | |
Collapse
|
49
|
Wang W, Liu W, Xu S, Dong X, Sun Y. Design of Multifunctional Agent Based on Basified Serum Albumin for Efficient In Vivo β-Amyloid Inhibition and Imaging. ACS APPLIED BIO MATERIALS 2020; 3:3365-3377. [DOI: 10.1021/acsabm.0c00295] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Wenjuan Wang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Wei Liu
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Shaoying Xu
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| |
Collapse
|
50
|
Undiscovered Roles for Transthyretin: From a Transporter Protein to a New Therapeutic Target for Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21062075. [PMID: 32197355 PMCID: PMC7139926 DOI: 10.3390/ijms21062075] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 12/27/2022] Open
Abstract
Transthyretin (TTR), an homotetrameric protein mainly synthesized by the liver and the choroid plexus, and secreted into the blood and the cerebrospinal fluid, respectively, has been specially acknowledged for its functions as a transporter protein of thyroxine and retinol (the latter through binding to the retinol-binding protein), in these fluids. Still, this protein has managed to stay in the spotlight as it has been assigned new and varied functions. In this review, we cover knowledge on novel TTR functions and the cellular pathways involved, spanning from neuroprotection to vascular events, while emphasizing its involvement in Alzheimer’s disease (AD). We describe details of TTR as an amyloid binding protein and discuss its interaction with the amyloid Aβ peptides, and the proposed mechanisms underlying TTR neuroprotection in AD. We also present the importance of translating advances in the knowledge of the TTR neuroprotective role into drug discovery strategies focused on TTR as a new target in AD therapeutics.
Collapse
|