1
|
Xing G, Tang Y, Wang S, Jiang J, Tang C, Liu Z, Zhao K. Intelligent antibacterial coatings based on sensitive response and periodic fast drug release for long-term defense against corrosion induced by sulfate-reducing bacteria. J Colloid Interface Sci 2025; 684:331-345. [PMID: 39798429 DOI: 10.1016/j.jcis.2025.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Pitting corrosion caused by sulfate-reducing bacteria (SRB) significantly shortens the lifespan of metallic pipelines. Antibacterial coatings containing S2--responsive drug-loaded nanocontainers represent a promising method to mitigate SRB corrosion. However, the challenge of balancing rapid bactericide release with continuous antibacterial effect limits their practical application. In this study, a S2- and pH dual-responsive periodic drug release system was developed based on raspberry-like mesoporous silica intelligent nanocontainers (BAC-RMSNs@Cu-BTA) loaded with bactericide benzalkonium chloride (BAC) and blocked by copper-benzotriazole nano valves (Cu-BTA). When S2- concentration exceeded 0.5 mM or pH fell below 6.3, the intelligent nanocontainers accelerated drug release. Under simultaneous S2- and pH stimulation, the drug release rate was increased by 91 %, compared to isolated S2- stimulation. The sustained release duration exceeded 384 h, which was more than twice that of existing S2--responsive nanocontainers. The reversible dissociation-complexation transition of Cu-BTA nano valves and the adsorption effect of the raspberry structure facilitated an inhibition of drug release after the stimulation disappeared, thereby enabling cyclic drug release and extending the antibacterial duration. The epoxy coating embedded with BAC-RMSNs@Cu-BTA showed excellent repeatable sterilization, long-term antibacterial adhesion and corrosion medium barrier ability in the SRB environment. Based on active intelligent sterilization and passive physical barrier effects, the composite coating's resistance to SRB corrosion in the simulated internal environment of pipelines was 14.6 times that of coating containing BAC-RMSNs. This study aims to provide valuable insights for the design of innovative long-acting antibacterial coatings.
Collapse
Affiliation(s)
- Guoxin Xing
- Department of Materials Science and Engineering, Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an 710048 PR China
| | - Yufei Tang
- Department of Materials Science and Engineering, Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an 710048 PR China.
| | - Siyi Wang
- Department of Materials Science and Engineering, Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an 710048 PR China
| | - Junyi Jiang
- Department of Materials Science and Engineering, Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an 710048 PR China
| | - Chen Tang
- Department of Materials Science and Engineering, Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an 710048 PR China
| | - Zhaowei Liu
- Department of Materials Science and Engineering, Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an 710048 PR China
| | - Kang Zhao
- Department of Materials Science and Engineering, Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an 710048 PR China
| |
Collapse
|
2
|
Song K, Bao F, Wang Z, Chang S, Yao N, Ma H, Li Y, Zhu C, Xia H, Lu F, Song Y, Wang J, Ji M. Modulation of RuO 2 Nanocrystals with Facile Annealing Method for Enhancing the Electrocatalytic Activity on Overall Water Splitting in Acid Solution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409249. [PMID: 39812221 DOI: 10.1002/advs.202409249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/04/2024] [Indexed: 01/16/2025]
Abstract
RuO2-based materials are considered an important kind of electrocatalysts on oxygen evolution reaction and water electrolysis, but the reported discrepancies of activities exist among RuO2 electrocatalysts prepared via different processes. Herein, a highly efficient RuO2 catalysts via a facile hydrolysis-annealing approach is reported for water electrolysis. The RuO2 catalyst dealt with at 200 °C (RuO2-200) performs the highest activities on both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in acid with overpotentials of 200 mV for OER and 66 mV for HER to reach a current density of 100 mA cm-2 as well as stable operation for100 h. The high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) characterizations show that the activities of as-prepared RuO2 rely on the hydroxide group/lattice oxygen (OH-/O2-) ratio, size, and crystalline of RuO2. The density functional theory (DFT) calculation also reveal that the OH- would enhance the activities of RuO2 for HER and OER via modifying the electronic structure to facilitate intermediate adsorption, thereby reducing the energy barrier of the rate-determining step. The water electrolysis by using RuO2-200 as the catalyst on both anode and cathode demonstrates a stable generation of hydrogen and oxygen with high Faradic efficiency at a current density of ≈30 mA cm-2 and a potential of below 1.47 V.
Collapse
Affiliation(s)
- Kangjin Song
- Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, College of Chemical and Chemical Engineering, Shantou University, Shantou, 515041, P. R. China
| | - Feng Bao
- College of Chemical and Environment Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zheling Wang
- Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, College of Chemical and Chemical Engineering, Shantou University, Shantou, 515041, P. R. China
| | - Shengding Chang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Na Yao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei, 430073, P. R. China
| | - Haiqing Ma
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yadong Li
- College of Chemical and Environment Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Caizhen Zhu
- College of Chemical and Environment Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hong Xia
- Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, College of Chemical and Chemical Engineering, Shantou University, Shantou, 515041, P. R. China
| | - Fushen Lu
- Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, College of Chemical and Chemical Engineering, Shantou University, Shantou, 515041, P. R. China
| | - Yibing Song
- Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, College of Chemical and Chemical Engineering, Shantou University, Shantou, 515041, P. R. China
| | - Jin Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Key Laboratory of Functional Molecular Solids Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Muwei Ji
- Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, College of Chemical and Chemical Engineering, Shantou University, Shantou, 515041, P. R. China
| |
Collapse
|
3
|
Abdul Rahman N, Jose Jol C, Albania Linus A, Taib SNL, Parabi A, Kwong Ming C, Parabi ASL, James A, Samsol NS, John SB, Jitai AA, Abang Abdul Hamid DFA. Unveiling challenges of aluminium electrode fouling and passivation in electrocoagulation treatment system for sustainable water management of coastal Borneo peatlands: A focused review. ENVIRONMENTAL RESEARCH 2025; 270:121005. [PMID: 39889876 DOI: 10.1016/j.envres.2025.121005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/30/2024] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
The treatment of brackish peat water presents a formidable challenge due to its elevated levels of natural organic matter and salinity which not only hinder conventional water treatment systems but also necessitate an innovative approach to effectively manage these complex water characteristics. In response to these challenges, electrocoagulation has emerged as a promising alternative by utilizing electrochemical processes to efficiently destabilize and eliminate contaminants in brackish peat water sources. As such, this review aims to unveil challenges of aluminium electrodes fouling and passivation in electrocoagulation treatment system for sustainable water management of coastal Borneo peatlands. Several studies in the literature highlight that key operating parameters, especially electric current and voltage which play a pivotal role in influencing the overall effectiveness of these electrocoagulation systems. Although aluminium electrodes demonstrate high contaminants removal efficiencies, it remains susceptible to fouling and passivation due to contaminant buildup and oxide layer formation which increase electrical resistance and decrease electroactivity of redox reactions. The novelty of this review lies in its focused synthesis of fouling and passivation dynamics through the integration of Tafel plot analyses and advanced characterization techniques, particularly Energy Dispersive X-Ray (EDX) spectroscopy. Furthermore, a thorough understanding of the adsorption mechanisms, particularly through the interaction between aluminium hydroxides and contaminants is essential for enhancing system efficiency and mitigating fouling. Additionally, optimizing the electrocoagulation treatment system and conducting a detailed analysis of adsorption mechanisms, particularly through Tafel plot analysis are pivotal for enhancing the system efficiency. Advanced analytical methods such as Energy Dispersive X-Ray (EDX) spectroscopy provide deeper insights into floc composition that essential for improving contaminants removal strategies. Overall, this review offers a focused assessment on the interplay between brackish peat water and electrocoagulation in order to provide a foundation for future research aimed at developing sustainable treatment systems for coastal Borneo peatlands.
Collapse
Affiliation(s)
- Nazeri Abdul Rahman
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, Jalan Datuk Mohammad Musa, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Calvin Jose Jol
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, Jalan Datuk Mohammad Musa, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Allene Albania Linus
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, Jalan Datuk Mohammad Musa, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Siti Noor Linda Taib
- Department of Civil Engineering, Faculty of Engineering, Universiti Malaysia Sarawak, Jalan Datuk Mohammad Musa, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Arif Parabi
- Faculty of Engineering, Universitas Panca Bhakti, 78113, Pontianak, Kalimantan Barat, Indonesia
| | - Chieng Kwong Ming
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, Jalan Datuk Mohammad Musa, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Astisza Syahla Ludmilla Parabi
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, Jalan Datuk Mohammad Musa, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Anthonette James
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, Jalan Datuk Mohammad Musa, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Nur Syazwa Samsol
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, Jalan Datuk Mohammad Musa, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Sebastian Belun John
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, Jalan Datuk Mohammad Musa, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Airul Azhar Jitai
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, Jalan Datuk Mohammad Musa, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Dayang Fadhilatul Aishah Abang Abdul Hamid
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, Jalan Datuk Mohammad Musa, 94300, Kota Samarahan, Sarawak, Malaysia
| |
Collapse
|
4
|
Kwon RG, Kiguye C, Jeong J, Kim GW, Kim JY. Enhanced Performance of Polymer Photodetectors Using a Metal-Doped Zinc Oxide Interfacial Layer. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4239-4246. [PMID: 39763140 DOI: 10.1021/acsami.4c19448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Organic photodetectors (OPDs) are cheaper and more flexible than conventional photodetectors based on inorganic precursors, but their wider commercial application is limited by their low electron extraction efficiency under reverse bias conditions (when operating under photoconductive mode). Zinc oxide (ZnO) has shown promise as an electron transport layer for OPDs owing to its wide band gap, but its electron extraction efficiency has been limited by issues such as photoinstability and the formation of surface detects. This study investigated the effects of doping ZnO nanoparticles with indium gallium (i.e., Indium gallium zinc oxide (IGZO)) and ytterbium gallium (i.e., Ytterbium gallium zinc oxide (YGZO)) on the electron extraction efficiency, conductivity, and dark current suppression of the resulting OPD. Both dopants blended uniformly into the sol-gel ZnO framework, which reduced the roughness and improved the surface properties. Compared with ZnO, both IGZO and YGZO slightly shifted the absorption spectra and reduced the dark current density while improving the specific detectivity under reverse bias conditions. We introduce a metric called the Jones factor (JF) as the ratio of the specific detectivity under zero bias conditions to the specific detectivity under reverse bias conditions. Both IGZO and YGZO had much lower JF values than ZnO, which indicates that their specific detectivity drops much less than that of ZnO when the OPD shifts from photovoltaic mode (i.e., zero bias) to photoconductive mode (i.e., reverse bias). Thus, they are potentially better materials for the electron transport layer of the OPDs with a higher electron extraction efficiency.
Collapse
Affiliation(s)
- Ri Gyeong Kwon
- Department of Semiconductor Engineering, Gyeongsang National University, Jinjudae-ro 501beon-gil, Jinju-si, Gyeongsangnam-do, Republic of Korea
| | - Collins Kiguye
- Department of Semiconductor Engineering, Gyeongsang National University, Jinjudae-ro 501beon-gil, Jinju-si, Gyeongsangnam-do, Republic of Korea
| | - Jaebum Jeong
- Department of Semiconductor Engineering, Gyeongsang National University, Jinjudae-ro 501beon-gil, Jinju-si, Gyeongsangnam-do, Republic of Korea
| | - Gun Woong Kim
- Department of Semiconductor Engineering, Gyeongsang National University, Jinjudae-ro 501beon-gil, Jinju-si, Gyeongsangnam-do, Republic of Korea
| | - Jun Young Kim
- Department of Semiconductor Engineering, Gyeongsang National University, Jinjudae-ro 501beon-gil, Jinju-si, Gyeongsangnam-do, Republic of Korea
| |
Collapse
|
5
|
Ma YF, Zhang ML, Lu XY, Ren YX, Yang XG. Artificial light harvesting system of CM6@Zn-MOF nanosheets with highly enhanced photoelectric performance. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125152. [PMID: 39332073 DOI: 10.1016/j.saa.2024.125152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 09/15/2024] [Indexed: 09/29/2024]
Abstract
As donors for effective energy transfer, metal-organic frameworks (MOFs) have attracted the attention of many experts in the field of artificial light-harvesting materials. This study introduces a novel two-dimensional Zn-MOF, synthesized using flexible 1,3-phenyldiacetic acid (H2mpda) and rigid 1,3,5-tris(1-imidazolyl)benzene (tib) as organic ligands. Through atomic force microscopy (AFM), we have determined the monolayer thickness of this novel material to be 5 nm. Achieving two-dimensional Zn-MOF nanosheets with large BET surface area was made possible by employing ultrasonic stripping techniques. The fluorescence emission spectrum of Zn-MOF nanosheets overlaps with the UV-vis absorption spectrum of coumarin 6 (CM6), so they can be used as a donor and acceptor for fluorescence resonance energy transfer (FRET) to construct an artificial light-harvesting system (ALHS). Compared with single crystal Zn-MOF, CM6@Zn-MOF(2) has a larger BET surface area (41 m2/g), higher quantum yield (Φfl, 30.56 %), narrower energy gap (Eg, 2.87 eV), and the light-harvesting range extends to the visible green light area. Notably, CM6@Zn-MOF(2) demonstrates a robust photocurrent response, characterized by a photocurrent on/off ratio (Ilight/Idark) of 21, and a maximum photocurrent density that surpasses that of pure Zn-MOF (2.25:1). This study successfully designed a high-performance photoelectric conversion material CM6@Zn-MOF(2), which laid a certain theoretical foundation for new artificial optical acquisition systems and electrochemical material selection.
Collapse
Affiliation(s)
- Ya-Fei Ma
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Mei-Li Zhang
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, PR China.
| | - Xue-Ying Lu
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Yi-Xia Ren
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Xiao-Gang Yang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| |
Collapse
|
6
|
Liu J, Shi Y, Xu J, Yang Y, Yang W. Bifunctional bimetallic zeolitic imidazolate frameworks with a nanoflower structure for sodium-ion storage and non-enzymatic glucose sensing. Dalton Trans 2025; 54:1127-1138. [PMID: 39606812 DOI: 10.1039/d4dt02779e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Although zeolitic imidazolate frameworks (ZIFs) are widely applied in the energy storage and catalysis fields, their multifunctional applications are extremely limited by their closed rhombohedral dodecahedron structure. Herein, a bimetallic CoFe-ZIF with an open nanoflower structure is synthesized via a simple one-step stirring strategy at room temperature. CoFe-ZIF exhibits superior sodium-ion storage performance as the anode for sodium-ion batteries (SIBs) and glucose sensing performance as the electrode for a non-enzymatic glucose sensor, as a result of the synergistic effect between the metal ions and highly open nanoflower structure. CoFe-ZIF exhibits a specific capacity of 410.32 mA h g-1 at a current density of 0.10 A g-1 after 500 cycles for SIBs and a high sensitivity of 1484.22 μA mM-1 cm-2 in the range of 0.30-2.00 mM for glucose sensing, which also shows a low detection limit of less than 25 μM. This work also provides insight into designing bimetallic MOFs via a simple strategy for multifunctional device applications.
Collapse
Affiliation(s)
- Jingjing Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China.
| | - Yu Shi
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China.
| | - Jianhua Xu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China.
| | - Yajie Yang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China.
| | - Wenyao Yang
- Chongqing Engineering Research Center of New Energy Storage Devices and Applications, Chongqing University of Arts and Sciences, Chongqing, 402160, P. R. China.
| |
Collapse
|
7
|
Bisquert J, Keene ST. Using the Transversal Admittance to Understand Organic Electrochemical Transistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410393. [PMID: 39587828 PMCID: PMC11744701 DOI: 10.1002/advs.202410393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/27/2024] [Indexed: 11/27/2024]
Abstract
The transient behavior of organic electrochemical transistors (OECTs) is complex due to mixed ionic-electronic properties that play a central role in bioelectronics and neuromorphic applications. Some works applied impedance spectroscopy in OECTs for understanding transport properties and the frequency-dependent response of devices. The transversal admittance (drain current vs gate voltage) is used for sensing applications. However, a general theory of the transversal admittance, until now, has been incomplete. The derive a model that combines electronic motion along the channel and vertical ion diffusion by insertion from the electrolyte, depending on several features as the chemical capacitance, the diffusion coefficient of ions, and the electronic mobility. Based on transport and charge conservation equations, it is shown that the vertical impedance produces a standard result of diffusion in intercalation systems, while the transversal impedance contains the electronic parameters of hole accumulation and transport along the channel. The spectral shapes of drain and gate currents and the complex admittance spectra are established by reference to equivalent circuit models for the vertical and transversal impedances, that describe well the measurements of a PEDOT:PSS OECT. New insights are provided to the determination of mobility by the ratio between drain and gate currents.
Collapse
Affiliation(s)
- Juan Bisquert
- Instituto de Tecnología Química (Universitat Politècnica de València‐Agencia Estatal Consejo Superior de Investigaciones Científicas)Av. dels TarongersValència46022Spain
| | - Scott T. Keene
- Department of EngineeringElectrical Engineering DivisionUniversity of CambridgeCambridgeCB3 0FAUK
- Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeCambridgeCB3 0HEUK
- Department of Materials Science and NanoEngineeringRice UniversityHoustonTX77030USA
| |
Collapse
|
8
|
Du Z, Cheng X, Yang X, Ran G, Liu H, He S, Hua Z. Sulfur occupancy-induced construction of ant-nest-like NiMo/CF(N) electrode for highly efficient hydrogen evolution. J Colloid Interface Sci 2025; 677:665-676. [PMID: 39116564 DOI: 10.1016/j.jcis.2024.07.247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
The microstructure of the electrocatalyst plays a critical role in the reaction efficiency and stability during electrochemical water splitting. Designing an efficient and stable electrocatalyst, further clarifying the synthesis mechanism, is still an important problem to be solved urgently. Inspired by the copper pyrometallurgy theory, an exceptionally active NiMo/CF(N) electrode, consisting of an ant-nest-like copper foam substrate (defined as CF(N)) and deposited NiMo layer, was fabricated for the alkaline hydrogen evolution reaction (HER). Our findings expounded the structure construction mechanism and highlighted the pivotal role of the spatial occupancy of sulfur atoms in the construction of the ant-nest-like structure. The NiMo/CF(N) composite, characterized by channels with a 2 μm diameter, showcases strong electronic interactions, increased catalytic active sites, enhanced electron/ion transport, and facilitated gas release during HER. Remarkably, NiMo/CF(N) demonstrates ultralow overpotentials of 21 mV to deliver a current density of 10 mA cm-2 in 1 M KOH. This electrode also exhibits outstanding durability, maintaining a current density of 200 mA cm-2 for 110 h, attributed to the chemical and structural integrity of its catalytic surface and the excellent mechanical properties of the electrode. This work advances the fundamental understanding of constructing micro/nano-structured electrocatalysts for highly efficient water splitting.
Collapse
Affiliation(s)
- Zhongde Du
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Anhui University of Technology), Ministry of Education, Maanshan 243002, China; School of Materials Science and Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| | - Xu Cheng
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| | - Xu Yang
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| | - Gaojun Ran
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| | - Huan Liu
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Anhui University of Technology), Ministry of Education, Maanshan 243002, China; School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China.
| | - Shiwei He
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| | - Zhongsheng Hua
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China.
| |
Collapse
|
9
|
Roselló-Márquez G, García-García DM, Cifre-Herrando M, García-Antón J. Electropolymerization of PPy, PEDOT, and PANi on WO 3 nanostructures for high-performance anodes in Li-ion batteries. Heliyon 2024; 10:e41075. [PMID: 39759364 PMCID: PMC11700239 DOI: 10.1016/j.heliyon.2024.e41075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
In this research work, four distinct WO3 electrodes were synthesized and coated with three different polymers, known as polypyrrole (PPy), poly(3,4-ethylenedioxythiophene) in poly(4-styrenesulfonate) (PEDOT:PSS) and polyaniline (PANi), using electropolymerization techniques. The morphological features of the samples were thoroughly characterized through Field Emission Scanning Electron Microscopy (FE-SEM) and Atomic Force Microscopy (AFM) analyses. Additionally, contact angle measurements and electrochemical characterizations were used to verify the performance of each electrode, aiding in the prediction of their suitability for energy storage applications in lithium-ion batteries. The electrodes were subsequently employed as anodes in lithium-ion batteries, and charge-discharge cycles were performed to analyze its specific capacity, and the Electrochemical Impedance Spectroscopy (EIS) technique was employed to analyze its behavior both before and after cycling. The results revealed superior performance for WO3 electrodes with PEDOT:PSS coating electropolymerized during 100 min at 0.4 mA. This comprehensive investigation not only sheds light on the synthesis and morphological characteristics of WO3 electrodes but also highlights the crucial role of PEDOT:PSS in enhancing electrochemical behavior for efficient energy storage applications.
Collapse
Affiliation(s)
- Gemma Roselló-Márquez
- Ingeniería Electroquímica y Corrosión, Instituto Unversitario de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de València, C/Camino de Vera s/n, 46022, Valencia, Spain
| | - Dionisio Miguel García-García
- Ingeniería Electroquímica y Corrosión, Instituto Unversitario de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de València, C/Camino de Vera s/n, 46022, Valencia, Spain
| | - Mireia Cifre-Herrando
- Ingeniería Electroquímica y Corrosión, Instituto Unversitario de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de València, C/Camino de Vera s/n, 46022, Valencia, Spain
| | - José García-Antón
- Ingeniería Electroquímica y Corrosión, Instituto Unversitario de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de València, C/Camino de Vera s/n, 46022, Valencia, Spain
| |
Collapse
|
10
|
Wang K, Wang S, Margolis S, Cho JM, Zhu E, Dupuy A, Yin J, Park SK, Magyar CE, Adeyiga OB, Jensen KS, Belperio JA, Passam F, Zhao P, Hsiai TK. Rapid prediction of acute thrombosis via nanoengineered immunosensors with unsupervised clustering for multiple circulating biomarkers. SCIENCE ADVANCES 2024; 10:eadq6778. [PMID: 39661669 PMCID: PMC11633740 DOI: 10.1126/sciadv.adq6778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
The recent SARS-CoV-2 pandemic underscores the need for rapid and accurate prediction of clinical thrombotic events. Here, we developed nanoengineered multichannel immunosensors for rapid detection of circulating biomarkers associated with thrombosis, including C-reactive protein (CRP), calprotectin, soluble platelet selectin (sP-selectin), and D-dimer. We fabricated the immunosensors using fiber laser engraving of carbon nanotubes and CO2 laser cutting of microfluidic channels, along with the electrochemical deposition of gold nanoparticles to conjugate with biomarker-specific aptamers and antibody. Using unsupervised clustering based on four biomarker concentrations, we predicted thrombotic events in 49 of 53 patients. The four-biomarker combination yielded an area under the receiver operating characteristic curve (AUC) of 0.95, demonstrating high sensitivity and specificity for acute thrombosis prediction compared to the AUC values for individual biomarkers: CRP (0.773), calprotectin (0.711), sP-selectin (0.683), and D-dimer (0.739). Thus, a nanoengineered multichannel platform with unsupervised clustering provides accurate and efficient methods for predicting thrombosis, guiding personalized medicine.
Collapse
Affiliation(s)
- Kaidong Wang
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073, USA
| | - Shaolei Wang
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Samuel Margolis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jae Min Cho
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073, USA
| | - Enbo Zhu
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Alexander Dupuy
- Department of Haematology, Royal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia
- Central Clinical School, Faculty Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Junyi Yin
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Seul-Ki Park
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073, USA
| | - Clara E. Magyar
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Oladunni B. Adeyiga
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kristin Schwab Jensen
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - John A. Belperio
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Freda Passam
- Department of Haematology, Royal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia
- Central Clinical School, Faculty Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Peng Zhao
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Tzung K. Hsiai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073, USA
| |
Collapse
|
11
|
Wu YC, Li F, Cheng X, Tan Y, Huang X, Luo JD, Chen S, Pan R, Yin YC, Liang Z, Yao HB. Interface Degradation of LaCl 3-Based Solid Electrolytes Coupled with Ultrahigh-Nickel Cathodes. NANO LETTERS 2024; 24:15540-15546. [PMID: 39587084 DOI: 10.1021/acs.nanolett.4c03502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Despite competitive compatibility with high-nickel cathodes, chloride solid electrolytes (SEs) still experience inevitable side reactions at the cathode/SE interface, causing capacity decay in all-solid-state lithium batteries (ASSLBs) during cycling. Herein, a three-electrode ASSLB testing device is developed to comprehensively reveal the interface failure mechanisms of the ultrahigh-nickel LiNi0.92Co0.05Mn0.03O2 (NCM92) cathode paired with LaCl3-based chloride SE Li0.447La0.475Zr0.059Ta0.179Cl3 (LLZTC). Distribution of relaxation time (DRT) analysis clearly shows the ASSLB degradation accompanied by a significant NCM92/LLZTC interface impedance increase, which becomes more pronounced at the higher cutoff charging voltage of 4.8 V vs Li+/Li. Furthermore, time-of-flight secondary ion mass spectrometry (ToF-SIMS) and focused ion beam scanning electron microscopy (FIB-SEM) analysis also confirm the deterioration arising from active lattice oxygen and loss of physical contact at the NCM92/LLZTC interface. These findings reveal both electrochemical degradation and physical contact failure at the cathode/SE interface as key causes of the ASSLBs' capacity decay.
Collapse
Affiliation(s)
- Ye-Chao Wu
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Feng Li
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaobin Cheng
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yihong Tan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Huang
- Hefei Gotion High-tech Power Energy Co., Ltd., Hefei, Anhui 230012, China
| | - Jin-Da Luo
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shu Chen
- Hefei Gotion High-tech Power Energy Co., Ltd., Hefei, Anhui 230012, China
| | - Ruijun Pan
- Hefei Gotion High-tech Power Energy Co., Ltd., Hefei, Anhui 230012, China
| | - Yi-Chen Yin
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zheng Liang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong-Bin Yao
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
12
|
Tang Z, Jiang D, Fu Z, Zhou J, Liu R, Zhang R, Sun D, Dhmees AS, Tang Y, Wang H. Regulating Pseudo-Graphitic Domain and Closed Pores to Facilitate Plateau Sodium Storage Capacity and Kinetics for Hard Carbon. SMALL METHODS 2024; 8:e2400509. [PMID: 38932554 DOI: 10.1002/smtd.202400509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Hard carbon anode demonstrates exceptional potential in sodium-ion batteries due to their cost-effectivenss and superior plateau capacity. However, the proximity of the plateau capacity to the cut-off voltage of battery operation and the premature cut-off voltage response caused by polarization at high rates greatly limit the exploitation of plateau capacities, raising big concerns about inferior rate performance of high-plateau-capacity hard carbon. In this work, a facile pre-oxidation strategy is proposed for fabricating lignin-derived hard carbon. Both high-plateau capacity and sodiation kinetics are significantly enhanced due to the introduction of expanded pseudo-graphitic domains and high-speed closed pores. Impressively, the optimized hard carbon exhibits an increased reversible capacity from 252.1 to 302.0 mAh g-1, alongside superior rate performance (174.7 mAh g-1 at 5 C) and stable cyclability over 500 cycles. This study paves a low-cost and effective pathway to modulate the microstructure of biomass-derived hard carbon materials for facilitating plateau sodium storage kinetics.
Collapse
Affiliation(s)
- Zhi Tang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
- Hunan Nake New Material Co., LTD, Changsha, 410000, P. R. China
| | - Dan Jiang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
- Hunan Nake New Material Co., LTD, Changsha, 410000, P. R. China
| | - Zhouhao Fu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
- Hunan Nake New Material Co., LTD, Changsha, 410000, P. R. China
| | - Jia Zhou
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
- Hunan Nake New Material Co., LTD, Changsha, 410000, P. R. China
| | - Rui Liu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
- Hunan Nake New Material Co., LTD, Changsha, 410000, P. R. China
| | - Rui Zhang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
- Hunan Nake New Material Co., LTD, Changsha, 410000, P. R. China
| | - Dan Sun
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
- Hunan Nake New Material Co., LTD, Changsha, 410000, P. R. China
| | - Abdelghaffar S Dhmees
- Department of Analysis and Evaluation, Egyptian Petroleum Research Institute, Cairo, 11727, Egypt
| | - Yougen Tang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
- Hunan Nake New Material Co., LTD, Changsha, 410000, P. R. China
| | - Haiyan Wang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
- Hunan Nake New Material Co., LTD, Changsha, 410000, P. R. China
| |
Collapse
|
13
|
Bello JLG, Luna TB, Lara Lafargue A, Ciria HMC, Zulueta YA. Bioimpedance formalism: A new approach for accessing the health status of cell and tissues. Bioelectrochemistry 2024; 160:108799. [PMID: 39173547 DOI: 10.1016/j.bioelechem.2024.108799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
This manuscript describes a novel methodology for studying relaxation dynamics in tissues and cells using characteristic frequency of bioimpedance spectroscopy measurements. The Bioimpedance Formalism allows for the simultaneous study of bioelectrical parameters in the frequency and time domains, providing insight into possible relaxation processes occurring in the tissue or cell of interest. Results from the Cole-Cole analysis showed no multiple relaxation processes associated with heterogeneity, with a visible age group separation in males compared with females. The study of the relaxation dynamic in the time domain revealed that the β parameter can be used to analyse the charge carriers in tissues, cells, or cancer cells, potentially leading to new diagnostic and therapeutic approaches for cancer and other diseases. Overall, this approach presents a promising area of research for gaining insights into the electrical properties of tissues and cells using bioimpedance methods.
Collapse
Affiliation(s)
- Jose Luis García Bello
- Autonomous University of Santo Domingo (UASD), San Francisco de Macorís Campus, Dominican Republic.
| | - Taira Batista Luna
- Autonomous University of Santo Domingo (UASD), UASD Nagua Center, Dominican Republic.
| | - Alcibíades Lara Lafargue
- National Center for Applied Electromagnetism (CNEA), Universidad de Oriente, CP 90500, Santiago de Cuba, Cuba.
| | - Héctor Manuel Camué Ciria
- National Center for Applied Electromagnetism (CNEA), Universidad de Oriente, CP 90500, Santiago de Cuba, Cuba.
| | - Yohandys A Zulueta
- Departamento de Física, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, CP 90500, Santiago de Cuba, Cuba.
| |
Collapse
|
14
|
Schott C, Schneider PM, Song KT, Yu H, Götz R, Haimerl F, Gubanova E, Zhou J, Schmidt TO, Zhang Q, Alexandrov V, Bandarenka AS. How to Assess and Predict Electrical Double Layer Properties. Implications for Electrocatalysis. Chem Rev 2024; 124:12391-12462. [PMID: 39527623 PMCID: PMC11613321 DOI: 10.1021/acs.chemrev.3c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 09/07/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024]
Abstract
The electrical double layer (EDL) plays a central role in electrochemical energy systems, impacting charge transfer mechanisms and reaction rates. The fundamental importance of the EDL in interfacial electrochemistry has motivated researchers to develop theoretical and experimental approaches to assess EDL properties. In this contribution, we review recent progress in evaluating EDL characteristics such as the double-layer capacitance, highlighting some discrepancies between theory and experiment and discussing strategies for their reconciliation. We further discuss the merits and challenges of various experimental techniques and theoretical approaches having important implications for aqueous electrocatalysis. A strong emphasis is placed on the substantial impact of the electrode composition and structure and the electrolyte chemistry on the double-layer properties. In addition, we review the effects of temperature and pressure and compare solid-liquid interfaces to solid-solid interfaces.
Collapse
Affiliation(s)
- Christian
M. Schott
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Peter M. Schneider
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Kun-Ting Song
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Haiting Yu
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Rainer Götz
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Felix Haimerl
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
- BMW
AG, Petuelring 130, 80809 München, Germany
| | - Elena Gubanova
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Jian Zhou
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Thorsten O. Schmidt
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Qiwei Zhang
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
- State
Key Laboratory of Urban Water Resource and Environment, School of
Environment, Harbin Institute of Technology, Harbin 150090, People’s Republic of China
| | - Vitaly Alexandrov
- Department
of Chemical and Biomolecular Engineering and Nebraska Center for Materials
and Nanoscience, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Aliaksandr S. Bandarenka
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
- Catalysis
Research Center, Technical University of
Munich, Ernst-Otto-Fischer-Straße 1, 85748 Garching bei München, Germany
| |
Collapse
|
15
|
Chen CC, Hung CH, Zhu HX, Chen JZ. High-Sensitivity Electrical Admittance Sensor with Regression Analysis for Measuring Mixed Electrolyte Concentrations. SENSORS (BASEL, SWITZERLAND) 2024; 24:7379. [PMID: 39599155 PMCID: PMC11598230 DOI: 10.3390/s24227379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/10/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024]
Abstract
Electrolyte balance is essential for the proper functioning of the body, and imbalances can lead to various health issues, some of which may be life-threatening. Therefore, measuring electrolyte concentrations is becoming increasingly important, particularly for athletes engaged in high-intensity and prolonged physical activity. In this project, we developed a highly sensitive sensing device capable of accurately and rapidly measuring electrolyte concentrations in mixed solutions, providing precise analysis of trace electrolyte levels. The sensor device requires no complex operational procedures and can quickly complete measurements, making it well-suited for point-of-care applications. Integration of regression models further enhances the device's ability to estimate concentrations in mixed electrolyte solutions. The test results demonstrate that the device can detect subtle concentration variations, with a precision as low as 0.5 mM. This proposed sensing device offers a cost-effective and efficient solution for real-time monitoring of electrolyte levels in healthcare.
Collapse
Affiliation(s)
- Chun-Chi Chen
- Electrical Engineering Department, National Chiayi University, Chiayi 600355, Taiwan
| | | | | | | |
Collapse
|
16
|
Seifi A, Afkhami A, Madrakian T. Improved MnO 2 based electrode performance arising from step by step heat treatment during electrodeposition of MnO 2 for determination of paracetamol, 4-aminophenol, and 4-nitrophenol. Sci Rep 2024; 14:26577. [PMID: 39496733 PMCID: PMC11535433 DOI: 10.1038/s41598-024-78487-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/31/2024] [Indexed: 11/06/2024] Open
Abstract
The design of electrochemical sensors is crucial considering important factors such as efficiency, low cost, biocompatibility, and availability. Manganese oxides are readily available, low-cost, and biocompatible materials, but their low conductivity limits their efficiency as sensors. Today, morphology engineering of manganese oxide has been one of the most common research topics, because manganese oxides' electrochemical properties are highly dependent on their morphologies. In this study, a method for reducing the charge transfer resistance (Rct) of MnO2-based electrodes was established by the cyclic voltammetry technique accompanied by step-by-step heat treatment to electrodeposition MnO2 nanofilm, which remarkably improved the Rct. Next, the sensing performance of MnO2/FTO for two separate measurements was examined, one for the simultaneous measurement of paracetamol (PAR) and 4-aminophenol (4-APh), and the other for the measurement of 4-nitrophenol (4-NP). Under the optimum conditions, the linear ranges of 4-APh, PAR, and 4-NP, were 0.8 to 22.0 µM, 2.0 to 55.0 µM, and 0.1-250 µM, with limits of detection (LOD) of 0.19 µM, 0.60 µM, and 0.01 µM, respectively. It also was unaffected by a 200-fold excess of interferences. In addition, the designed sensor was successfully applied to the analysis of real samples.
Collapse
Affiliation(s)
- Afsaneh Seifi
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Abbas Afkhami
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran.
- D-8 International University, Hamedan, Iran.
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
17
|
Jing LC, Geng WH, Bao ZL, Qian PF, Chang RY, Li TY, Guo YL, Zhang D, Geng HZ. Synthesis of polyaniline tannate-modified carbon nanotubes by oxidative copolymerization as highly efficient corrosion inhibitors for mild steel in HCl solution. J Colloid Interface Sci 2024; 680:479-495. [PMID: 39522243 DOI: 10.1016/j.jcis.2024.10.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Corrosion is a prevalent issue in industrial production, directly impacting the production process and causing severe damages. To mitigate this problem, corrosion inhibitors are highly desired. Herein, a novel type of nano corrosion inhibitor, referred to as PTCNT, was synthesized through an oxidative copolymerization method utilizing aniline, ammonium persulfate (APS), and tannic acid (TA)-modified multiwalled carbon nanotubes (MWCNTs). The results demonstrated that the PTCNT effectively inhibited the corrosion of mild steel in 1 M HCl solution, achieving the corrosion inhibition efficiency of 90.6 % at the concentration of 75 mg/L. Characterization results implied that the PTCNT adsorbed onto the surface of the mild steel, forming a protective shielding layer. Potentiodynamic polarization measurements proved that the PTCNT functioned as the hybrid corrosion inhibitor. Furthermore, the adsorption of PTCNT on the mild steel surface was investigated using adsorption isotherm and adsorption kinetic modeling. Quantum chemical calculations were used to elucidate the adsorption mechanism of PTCNT. These findings raise new avenues for the development of highly efficient corrosion inhibitors for the mild steel in HCl solutions.
Collapse
Affiliation(s)
- Li-Chao Jing
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wen-Hao Geng
- Tianji Zhencai Technology (Hebei) Co., Ltd., Cangzhou 061000, China.
| | - Ze-Long Bao
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Peng-Fei Qian
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Ru-Yu Chang
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Tong-Yu Li
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yu-Long Guo
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Di Zhang
- Tianji Zhencai Technology (Hebei) Co., Ltd., Cangzhou 061000, China; School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China.
| | - Hong-Zhang Geng
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China; Tianji Zhencai Technology (Hebei) Co., Ltd., Cangzhou 061000, China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China.
| |
Collapse
|
18
|
Zhou T, Huang X, Zhang D, Liu W, Li X. Design and Simulation for Minimizing Non-Radiative Recombination Losses in CsGeI 2Br Perovskite Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1650. [PMID: 39452985 PMCID: PMC11510213 DOI: 10.3390/nano14201650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
CsGeI2Br-based perovskites, with their favorable band gap and high absorption coefficient, are promising candidates for the development of efficient lead-free perovskite solar cells (PSCs). However, bulk and interfacial carrier non-radiative recombination losses hinder the further improvement of power conversion efficiency and stability in PSCs. To overcome this challenge, the photovoltaic potential of the device is unlocked by optimizing the optical and electronic parameters through rigorous numerical simulation, which include tuning perovskite thickness, bulk defect density, and series and shunt resistance. Additionally, to make the simulation data as realistic as possible, recombination processes, such as Auger recombination, must be considered. In this simulation, when the Auger capture coefficient is increased to 10-29 cm6 s-1, the efficiency drops from 31.62% (without taking Auger recombination into account) to 29.10%. Since Auger recombination is unavoidable in experiments, carrier losses due to Auger recombination should be included in the analysis of the efficiency limit to avoid significantly overestimating the simulated device performance. Therefore, this paper provides valuable insights for designing realistic and efficient lead-free PSCs.
Collapse
Affiliation(s)
- Tingxue Zhou
- Institute of Advanced Materials, Jiangsu Provincial Engineering Research Center of Low Dimensional Physics and New Energy, School of Science, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China; (T.Z.); (X.H.)
| | - Xin Huang
- Institute of Advanced Materials, Jiangsu Provincial Engineering Research Center of Low Dimensional Physics and New Energy, School of Science, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China; (T.Z.); (X.H.)
| | - Diao Zhang
- Institute of Advanced Materials, Jiangsu Provincial Engineering Research Center of Low Dimensional Physics and New Energy, School of Science, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China; (T.Z.); (X.H.)
| | - Wei Liu
- Institute of Advanced Materials, Jiangsu Provincial Engineering Research Center of Low Dimensional Physics and New Energy, School of Science, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China; (T.Z.); (X.H.)
| | - Xing’ao Li
- Institute of Advanced Materials, Jiangsu Provincial Engineering Research Center of Low Dimensional Physics and New Energy, School of Science, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China; (T.Z.); (X.H.)
- School of Physics and Electronic Information, Jiangsu Second Normal University, Nanjing 210023, China
| |
Collapse
|
19
|
Sanni O, Ren J, Jen TC. Electrochemical, surface, and theoretical investigations of palm kernel shell extract as an effective inhibitor for carbon-steel corrosion in 1 M HCl solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35159-9. [PMID: 39377910 DOI: 10.1007/s11356-024-35159-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
Herein, we employed palm kernel shell extract (PKSE) as an eco-friendly inhibitor for carbon steel in acidic-induced corrosion. The corrosion inhibition of PKSE on carbon steel in 1 M HCI solution was investigated by electrochemical impedance spectroscopy, weight loss, and potentiodynamic polarization measurements. The surface was characterized by scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy. Moreover, the elastic modulus and hardness tests were conducted. Weight loss measurements revealed that the optimum concentration of inhibitors is 500 ppm with 95.3% inhibition efficiency in 1 M HCl solution. Electrochemical results showed that the inhibitor could exhibit excellent corrosion inhibition performance and displayed mixed-type inhibition. The electrochemical impedance spectroscopy analysis shows that the inhibition performance increases by increasing the concentration of PKSE. The surface studies ensure the PKSE effectiveness in carbon steel surface damage reduction. Also, the adsorption of PKSE molecules on the carbon steel surface occurs according to the Langmuir isotherm model. The primary goal of this investigation was the utilization of palm kernel shell extract as corrosion inhibitor for 1018 low carbon steel in 1 M HCl solution, which highlights its novelty. The present results will be helpful to uncover the versatile importance of palm kernel shell compounds in the corrosion inhibition process.
Collapse
Affiliation(s)
- Omotayo Sanni
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria, 0002, South Africa.
| | - Jianwei Ren
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria, 0002, South Africa
| | - Tien-Chien Jen
- Department of Mechanical Engineering Science, University of Johannesburg, Cnr Kingsway and University Roads, Johannesburg, 2092, South Africa
| |
Collapse
|
20
|
Chang CW, Wu CT, Lo TY, Chen Y, Chang CT, Chen HR, Chang CC, Lee LR, Tseng YH, Chen JT. Alkaline-Responsive, Self-Healable, and Conductive Copolymer Composites with Enhanced Mechanical Properties Tailored for Wearable Tech. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402472. [PMID: 38813745 DOI: 10.1002/smll.202402472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Indexed: 05/31/2024]
Abstract
Despite significant advancements, current self-healing materials often suffer from a compromise between mechanical robustness and functional performance, particularly in terms of conductivity and responsiveness to environmental stimuli. Addressing this issue, the research introduces a self-healable and conductive copolymer, poly(ionic liquid-co-acrylic acid) (PIL-co-PAA), synthesized through free radical polymerization, and further optimized by incorporating thermoplastic polyurethane (TPU). This combination leverages the unique properties of each component, especially ion-dipole interactions and hydrogen bonds, resulting in a material that exhibits exceptional self-healing abilities and demonstrates enhanced mechanical properties and electrical conductivity. Moreover, the PIL-co-PAA/TPU films showcase alkaline-responsive behavior, a feature that broadens their applicability in dynamic environments. Through systematic characterization, including thermogravimetric analysis, tensile testing, and electrical properties measurements, the mechanisms behind the improved performance and functionality of these films are elucidated. The conductivities and ultimate tensile strength (σuts) of the PIL-co-PAA/TPU films regain 80% under 8 h healing process. To extend the applications for wearable devices, the self-healing properties of commercial cotton fabrics coated with the self-healable PIL-co-PAA are also investigated, demonstrating both self-healing and electrical properties. This study advances the understanding of self-healable conductive polymers and opens new avenues for their application in wearable technology.
Collapse
Affiliation(s)
- Chia-Wei Chang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Chia-Ti Wu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Tse-Yu Lo
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Yu Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Chun-Ting Chang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Huan-Ru Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Chun-Chi Chang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Lin-Ruei Lee
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Yu-Hsuan Tseng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Jiun-Tai Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| |
Collapse
|
21
|
Yang J, Jiao J, Liu S, Yin Y, Cheng Y, Wang Y, Zhou M, Zhao W, Tong X, Jing L, Zhang P, Sun X, Zhu Q, Kang X, Han B. Switching Reaction Pathways of CO 2 Electroreduction by Modulating Cations in the Electrochemical Double Layer. Angew Chem Int Ed Engl 2024; 63:e202410145. [PMID: 38979674 DOI: 10.1002/anie.202410145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Tuning the selectivity of CO2 electroreduction reaction (CO2RR) solely by changing electrolyte is a very attractive topic. In this study, we conducted CO2RR in different aqueous electrolytes over bulk metal electrodes. It was discovered that controlled CO2RR could be achieved by modulating cations in the electrochemical double layer. Specifically, ionic liquid cations in the electrolyte significantly inhibits the hydrogen evolution reaction (HER), while yielding high Faraday efficiencies toward CO (FECO) or formate (FEformate) depending on the alkali metal cations. For example, the product could be switched from CO (FECO=97.3 %) to formate (FEformate=93.5 %) by changing the electrolyte from 0.1 M KBr-0.5 M 1-octyl-3-methylimidazolium bromide (OmimBr) to 0.1 M CsBr-0.5 M OmimBr aqueous solutions over pristine Cu foil electrode. In situ spectroscopy and theoretical calculations reveal that the ordered structure generated by the assembly of Omim+ under an applied negative potential alters the hydrogen bonding structure of the interfacial water, thereby inhibiting the HER. The difference in selectivity in the presence of different cations is attributed to the hydrogen bonding effect caused by Omim+, which alters the solvated structure of the alkali metal cations and thus affects the stabilization of intermediates of different pathways.
Collapse
Affiliation(s)
- Jiahao Yang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiapeng Jiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Shiqiang Liu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yaoyu Yin
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingying Cheng
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yiyong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenling Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xing Tong
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lihong Jing
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Pei Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
22
|
Zhang S, Xu W, Chen H, Yang Q, Liu H, Bao S, Tian Z, Slavcheva E, Lu Z. Progress in Anode Stability Improvement for Seawater Electrolysis to Produce Hydrogen. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311322. [PMID: 38299450 DOI: 10.1002/adma.202311322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/07/2024] [Indexed: 02/02/2024]
Abstract
Seawater electrolysis for hydrogen production is a sustainable and economical approach that can mitigate the energy crisis and global warming issues. Although various catalysts/electrodes with excellent activities have been developed for high-efficiency seawater electrolysis, their unsatisfactory durability, especially for anodes, severely impedes their industrial applications. In this review, attention is paid to the factors that affect the stability of anodes and the corresponding strategies for designing catalytic materials to prolong the anode's lifetime. In addition, two important aspects-electrolyte optimization and electrolyzer design-with respect to anode stability improvement are summarized. Furthermore, several methods for rapid stability assessment are proposed for the fast screening of both highly active and stable catalysts/electrodes. Finally, perspectives on future investigations aimed at improving the stability of seawater electrolysis systems are outlined.
Collapse
Affiliation(s)
- Sixie Zhang
- Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenwen Xu
- Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Haocheng Chen
- Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Qihao Yang
- Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hua Liu
- Department of Strategic Development, Zhejiang Qiming Electric Power Group CO.LTD, Zhoushan, 316099, P. R. China
| | - Shanjun Bao
- Department of Strategic Development, Zhejiang Qiming Electric Power Group CO.LTD, Zhoushan, 316099, P. R. China
| | - Ziqi Tian
- Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Evelina Slavcheva
- "Acad. Evgeni Budevski" Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, Akad. G. Bonchev 10, Sofia, 1113, Bulgaria
| | - Zhiyi Lu
- Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
23
|
Mandal S, Pillai VK, Ranjana Ponraj M, K M T, Bhagavathsingh J, Grage SL, Peng X, Kang JW, Liepmann D, Kannan ANM, Thavasi V, Renugopalakrishnan V. van der Waals gap modulation of graphene oxide through mono-Boc ethylenediamine anchoring for superior Li-ion batteries. ENERGY ADVANCES 2024; 3:1977-1991. [PMID: 39131508 PMCID: PMC11308804 DOI: 10.1039/d4ya00217b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/13/2024] [Indexed: 08/13/2024]
Abstract
Li-ion batteries stand out among energy storage systems due to their higher energy and power density, cycle life, and high-rate performance. Development of advanced, high-capacity anodes is essential for enhancing their performance, safety, and durability, and recently, two-dimensional materials have garnered extensive attention in this regard due to distinct properties, particularly their ability to modulate van der Waals gap through intercalation. Covalently intercalated Graphene oxide interlayer galleries with mono-Boc-ethylenediamine (GO-EnBoc) was synthesized via the ring opening of epoxide, forming an amino alcohol moiety. This creates three coordination sites for Li ion exchange on the graphene oxide nanosheets' surface. Consequently, the interlayer d-spacing expands from 8.47 Å to 13.17 Å, as anticipated. When explored as an anode, Li-GO-EnBoc shows a significant enhancement in the stable and reversible capacity of 270 mA h g-1 at a current density of 25 mA g-1 compared to GO (80 mA h g-1), without compromising the mechanical or chemical stability. Through 13C, 7Li and 6Li MAS NMR, XPS, IR, Raman microscopy, and density functional theory (DFT) calculations, we confirm the positioning of Li+ ions at multiple sites of the interlayer gallery, which enhances the electrochemical performance. Our findings suggest that these novel systematically modulated van der Waals gap GO-engineered materials hold promise as efficient anodes for Li-ion batteries.
Collapse
Affiliation(s)
- Sneha Mandal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati Andhra Pradesh 517507 India
| | - Vijayamohanan K Pillai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati Andhra Pradesh 517507 India
| | - Mano Ranjana Ponraj
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences Coimbatore Tamil Nadu 641114 India
| | - Thushara K M
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences Coimbatore Tamil Nadu 641114 India
| | - Jebasingh Bhagavathsingh
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences Coimbatore Tamil Nadu 641114 India
| | - Stephan L Grage
- Karlsruhe Institute of Technology, Institute of Biological Interfaces IBG-2 P.O. Box 3640 76021 Karlsruhe Germany
| | - Xihong Peng
- College of Integrative Sciences and Arts, Arizona State University Mesa AZ 85212 USA
| | - Jeon Woong Kang
- Laser Biomedical Research Centre, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | - Dorian Liepmann
- Department of Bioengineering, University of California 80 Hearst Memorial Mining Bldg. Berkeley CA 94720 USA
| | | | - Velmurugan Thavasi
- Center for Quantum Research and Technology, The University of Oklahoma 440 W. Brooks Street Normon OK 73019 USA
| | - Venkatesan Renugopalakrishnan
- Department of Chemistry, Boston Children's Hospital, Harvard Medical School, MGB Center for COVID Innovation, Northeastern University Boston MA 02115 USA
| |
Collapse
|
24
|
Wang X, Zhang N, Guo S, Shang H, Luo X, Sun Z, Wei Z, Lei Y, Zhang L, Wang D, Zhao Y, Zhang F, Zhang L, Xiang X, Chen W, Zhang B. p-d Orbital Hybridization Induced by Asymmetrical FeSn Dual Atom Sites Promotes the Oxygen Reduction Reaction. J Am Chem Soc 2024; 146:21357-21366. [PMID: 39051140 DOI: 10.1021/jacs.4c03576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
With more flexible active sites and intermetal interaction, dual-atom catalysts (DACs) have emerged as a new frontier in various electrocatalytic reactions. Constructing a typical p-d orbital hybridization between p-block and d-block metal atoms may bring new avenues for manipulating the electronic properties and thus boosting the electrocatalytic activities. Herein, we report a distinctive heteronuclear dual-metal atom catalyst with asymmetrical FeSn dual atom sites embedded on a two-dimensional C2N nanosheet (FeSn-C2N), which displays excellent oxygen reduction reaction (ORR) performance with a half-wave potential of 0.914 V in an alkaline electrolyte. Theoretical calculations further unveil the powerful p-d orbital hybridization between p-block stannum and d-block ferrum in FeSn dual atom sites, which triggers electron delocalization and lowers the energy barrier of *OH protonation, consequently enhancing the ORR activity. In addition, the FeSn-C2N-based Zn-air battery provides a high maximum power density (265.5 mW cm-2) and a high specific capacity (754.6 mA h g-1). Consequently, this work validates the immense potential of p-d orbital hybridization along dual-metal atom catalysts and provides new perception into the logical design of heteronuclear DACs.
Collapse
Affiliation(s)
- Xiaochen Wang
- School of Chemical Engineering, Zhengzhou Key Laboratory of Advanced Separation Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Ning Zhang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Shuohai Guo
- Center for Combustion Energy, School of Vehicle and Mobility, State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing 100084, P. R. China
| | - Huishan Shang
- School of Chemical Engineering, Zhengzhou Key Laboratory of Advanced Separation Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xuan Luo
- Center for Combustion Energy, School of Vehicle and Mobility, State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing 100084, P. R. China
| | - Zhiyi Sun
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zihao Wei
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yuanting Lei
- School of Chemical Engineering, Zhengzhou Key Laboratory of Advanced Separation Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lili Zhang
- School of Chemical Engineering, Zhengzhou Key Laboratory of Advanced Separation Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Dan Wang
- School of Chemical Engineering, Zhengzhou Key Laboratory of Advanced Separation Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yafei Zhao
- School of Chemical Engineering, Zhengzhou Key Laboratory of Advanced Separation Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Fang Zhang
- Analysis and Testing Center, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Liang Zhang
- Center for Combustion Energy, School of Vehicle and Mobility, State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing 100084, P. R. China
| | - Xu Xiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bing Zhang
- School of Chemical Engineering, Zhengzhou Key Laboratory of Advanced Separation Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
25
|
Wang K, Margolis S, Cho JM, Wang S, Arianpour B, Jabalera A, Yin J, Hong W, Zhang Y, Zhao P, Zhu E, Reddy S, Hsiai TK. Non-Invasive Detection of Early-Stage Fatty Liver Disease via an On-Skin Impedance Sensor and Attention-Based Deep Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400596. [PMID: 38887178 PMCID: PMC11336938 DOI: 10.1002/advs.202400596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/17/2024] [Indexed: 06/20/2024]
Abstract
Early-stage nonalcoholic fatty liver disease (NAFLD) is a silent condition, with most cases going undiagnosed, potentially progressing to liver cirrhosis and cancer. A non-invasive and cost-effective detection method for early-stage NAFLD detection is a public health priority but challenging. In this study, an adhesive, soft on-skin sensor with low electrode-skin contact impedance for early-stage NAFLD detection is fabricated. A method is developed to synthesize platinum nanoparticles and reduced graphene quantum dots onto the on-skin sensor to reduce electrode-skin contact impedance by increasing double-layer capacitance, thereby enhancing detection accuracy. Furthermore, an attention-based deep learning algorithm is introduced to differentiate impedance signals associated with early-stage NAFLD in high-fat-diet-fed low-density lipoprotein receptor knockout (Ldlr-/-) mice compared to healthy controls. The integration of an adhesive, soft on-skin sensor with low electrode-skin contact impedance and the attention-based deep learning algorithm significantly enhances the detection accuracy for early-stage NAFLD, achieving a rate above 97.5% with an area under the receiver operating characteristic curve (AUC) of 1.0. The findings present a non-invasive approach for early-stage NAFLD detection and display a strategy for improved early detection through on-skin electronics and deep learning.
Collapse
Affiliation(s)
- Kaidong Wang
- Department of MedicineDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied SciencesUniversity of California Los AngelesLos AngelesCA90095USA
- Department of MedicineGreater Los Angeles Veterans Affairs (VA) Healthcare SystemLos AngelesCA90073USA
| | - Samuel Margolis
- Department of MedicineDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
| | - Jae Min Cho
- Department of MedicineDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
| | - Shaolei Wang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied SciencesUniversity of California Los AngelesLos AngelesCA90095USA
| | - Brian Arianpour
- Department of Bioengineering, Henry Samueli School of Engineering and Applied SciencesUniversity of California Los AngelesLos AngelesCA90095USA
| | - Alejandro Jabalera
- Department of Bioengineering, Henry Samueli School of Engineering and Applied SciencesUniversity of California Los AngelesLos AngelesCA90095USA
| | - Junyi Yin
- Department of Bioengineering, Henry Samueli School of Engineering and Applied SciencesUniversity of California Los AngelesLos AngelesCA90095USA
| | - Wen Hong
- Department of Materials Science and EngineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Yaran Zhang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied SciencesUniversity of California Los AngelesLos AngelesCA90095USA
| | - Peng Zhao
- Department of MedicineDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
| | - Enbo Zhu
- Department of MedicineDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
- Department of Materials Science and EngineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Srinivasa Reddy
- Department of Molecular and Medical PharmacologyUniversity of California Los AngelesLos AngelesCA90095USA
| | - Tzung K. Hsiai
- Department of MedicineDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied SciencesUniversity of California Los AngelesLos AngelesCA90095USA
- Department of MedicineGreater Los Angeles Veterans Affairs (VA) Healthcare SystemLos AngelesCA90073USA
| |
Collapse
|
26
|
Qiao J, You Y, Kong L, Feng W, Zhang H, Huang H, Li C, He W, Sun Z. Precisely Constructing Orbital-Coupled Fe─Co Dual-atom Sites for High-Energy-Efficiency Zn-Air/Iodide Hybrid Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405533. [PMID: 38814659 DOI: 10.1002/adma.202405533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Rechargeable Zn-air batteries (ZABs) are promising for energy storage and conversion. However, the high charging voltage and low energy efficiency hinder their commercialization. Herein, these challenges are addressed by employing precisely constructed multifunctional Fe-Co diatomic site catalysts (FeCo-DACs) and integrating iodide/iodate redox into ZABs to create Zinc-air/iodide hybrid batteries (ZAIHBs) with highly efficient multifunctional catalyst. The strong coupling between the 3d orbitals of Fe and Co weakens the excessively strong binding strength between active sites and intermediates, enhancing the catalytic activities for oxygen reduction/evolution reaction and iodide/iodate redox. Consequently, FeCo-DACs exhibit outstanding bifunctional oxygen catalytic activity with a small potential gap (ΔE = 0.66 V) and outstanding stability. Moreover, an outstanding catalytic performance toward iodide/iodate redox is obtained. Therefore, FeCo-DAC-based ZAIHBs exhibit high energy efficiency of up to 75% at 10 mA cm-2 and excellent cycling stability (72% after 500 h). This research offers critical insights into the rational design of DACs and paves the way for high-energy efficiency energy storage devices.
Collapse
Affiliation(s)
- Jingyuan Qiao
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yurong You
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Lingqiao Kong
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Weihang Feng
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Heshuang Zhang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Haibin Huang
- Jiangxi HAC GENERAL SEMITECH CO., LTD, Science and Technology Innovation Park, Gongqingcheng High-tech Zone, Jiujiang, Jiangxi, 332020, P. R. China
| | - Caifang Li
- Jiangxi HAC GENERAL SEMITECH CO., LTD, Science and Technology Innovation Park, Gongqingcheng High-tech Zone, Jiujiang, Jiangxi, 332020, P. R. China
| | - Wei He
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - ZhengMing Sun
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
27
|
Long H, Wang J, Zhao S, Zou B, Yan L, Huang Q, Zhao Y. Enable the Domino-Like Structural Recovering in Bismuth Anode to Achieve Fast and Durable Na/K Storages. Angew Chem Int Ed Engl 2024; 63:e202406513. [PMID: 38679573 DOI: 10.1002/anie.202406513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/01/2024]
Abstract
Alloying-type anodes show capacity and density advantages for sodium/potassium-ion batteries (SIBs/PIBs), but they encounter serious structural degradation upon cycling, which cannot be resolved through conventional nanostructuring techniques. Herein, we present an in-depth study to reveal the intrinsic reason for the pulverization of bismuth (Bi) materials upon (de)alloying, and report a novel particle-in-bulk architecture with Bi nanospheres inlaid in the bulk carbon (BiNC) to achieve durable Na/K storage. We simulate the volume-expansion-resistant mechanism of Bi during the (de)alloying reaction, and unveil that the irreversible phase transition upon (de)alloying underlies the fundamental origin for the structural degradation of Bi anode, while a proper compressive stress (~10 %) raised by the bulk carbon can trigger a "domino-like" Bi crystal recovering. Consequently, the as obtained BiNC exhibits a record high volumetric capacity (823.1 mAh cm-3 for SIBs, 848.1 mAh cm-3 for PIBs) and initial coulombic efficiency (95.3 % for SIBs, 96.4 % for PIBs), and unprecedented cycling stability (15000 cycles for SIBs with only 0.0015 % degradation per cycle), outperforming the state-of-the-art literature. This work provides new insights on the undesirable structural evolution, and proposes basic guidelines for design of the anti-degradation structure for alloy-type electrode materials.
Collapse
Affiliation(s)
- Hongli Long
- College of Science & Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| | - Jing Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao, 066004, China
| | - Shengyu Zhao
- College of Science & Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| | - Bobo Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Liuming Yan
- College of Science & Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| | - Qiuan Huang
- College of Science & Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| | - Yufeng Zhao
- College of Science & Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
28
|
Jiang X, Liu D, Jiang G, Xie Y. Simultaneous Determination of Chemical Oxygen Demand, Total Nitrogen, Ammonia, and Phosphate in Surface Water Based on a Multielectrode System. ACS OMEGA 2024; 9:29252-29262. [PMID: 39005773 PMCID: PMC11238226 DOI: 10.1021/acsomega.4c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 07/16/2024]
Abstract
A technique for monitoring chemical oxygen demand (COD), total nitrogen (TN), ammonia (N-NH4), and phosphate (P-PO4) in surface water with a targeted signal multielectrode system (Cu, Ir, Rh, Co(OH)2, and Zr(OH)4 electrodes) is proposed for the first time. Each water quality index is specifically detected by at least two electrodes with distinct selectivity sensing mechanisms. Cyclic voltammetry and electrochemical impedance measurements are employed for multidimensional signal acquisition, complemented by normalization and Least Absolute Shrinkage and Selection Operator (LASSO) for principal feature extraction and dimension reduction. Multiple linear regression (MLR), partial least-squares (PLS), and eXtreme Gradient Boosting (XGBoost) were employed to evaluate the established prediction model. The precisions of the multielectrode system are ±10%/±5 ppm of COD, ±10%/±0.2 ppm of TN, ±5%/±0.1 ppm of N-NH4, and ±5%/±0.01 ppm of P-PO4. The analysis time of the multielectrode system is reduced from hours to minutes compared with traditional analysis, without any sample pretreatment, facilitating continuous online monitoring in the field. The developed multielectrode system offers a feasible strategy for online in situ monitoring of surface water quality.
Collapse
Affiliation(s)
- Xinyue Jiang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
| | - Defu Liu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
| | - Guodong Jiang
- School of Material and Chemical Engineering, Hubei University of Technology, 28, Nanli Road, Hong-shan District, Wuhan 430068, China
| | - Yuqun Xie
- School of Bioengineering and Food Science, Hubei University of Technology, 28, Nanli Road, Hong-shan District, Wuhan 430068, China
| |
Collapse
|
29
|
Gupta R, Malik A, Kumari K, Singh SK, Vivier V, Mondal PC. Metal-free platforms for molecular thin films as high-performance supercapacitors. Chem Sci 2024; 15:8775-8785. [PMID: 38873075 PMCID: PMC11168099 DOI: 10.1039/d4sc00611a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/19/2024] [Indexed: 06/15/2024] Open
Abstract
Controlling chemical functionalization and achieving stable electrode-molecule interfaces for high-performance electrochemical energy storage applications remain challenging tasks. Herein, we present a simple, controllable, scalable, and versatile electrochemical modification approach of graphite rods (GRs) extracted from low-cost Eveready cells that were covalently modified with anthracene oligomers. The anthracene oligomers with a total layer thickness of ∼24 nm on the GR electrode yield a remarkable specific capacitance of ∼670 F g-1 with good galvanostatic charge-discharge cycling stability (10 000) recorded in 1 M H2SO4 electrolyte. Such a boost in capacitance is attributed mainly to two contributions: (i) an electrical double-layer at the anthracene oligomer/GR/electrolyte interfaces, and (ii) the proton-coupled electron transfer (PCET) reaction, which ensures a substantial faradaic contribution to the total capacitance. Due to the higher conductivity of the anthracene films, it possesses more azo groups (-N[double bond, length as m-dash]N-) during the electrochemical growth of the oligomer films compared to pyrene and naphthalene oligomers, which is key to PCET reactions. AC-based electrical studies unravel the in-depth charge interfacial electrical behavior of anthracene-grafted electrodes. Asymmetrical solid-state supercapacitor devices were made using anthracene-modified biomass-derived porous carbon, which showed improved performance with a specific capacitance of ∼155 F g-1 at 2 A g-1 with an energy density of 5.8 W h kg-1 at a high-power density of 2010 W kg-1 and powered LED lighting for a longer period. The present work provides a promising metal-free approach in developing organic thin-film hybrid capacitors.
Collapse
Affiliation(s)
- Ritu Gupta
- Department of Chemistry, Indian Institute of Technology Kanpur Uttar Pradesh 208016 India
| | - Ankur Malik
- Department of Chemistry, Indian Institute of Technology Kanpur Uttar Pradesh 208016 India
| | - Kusum Kumari
- Department of Chemistry, Indian Institute of Technology Hyderabad Telangana 502285 India
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Hyderabad Telangana 502285 India
| | - Vincent Vivier
- CNRS, Laboratoire de Réactivité de Surface, Sorbonne Université 4 place Jussieu Paris 75005 Cedex 05 France
| | - Prakash Chandra Mondal
- Department of Chemistry, Indian Institute of Technology Kanpur Uttar Pradesh 208016 India
| |
Collapse
|
30
|
O'Sullivan KP, Philip BJ, Baker JL, Rolston JD, Orazem ME, Otto KJ, Butson CR. In vivo and in vitro electrochemical impedance spectroscopy of acute and chronic intracranial electrodes. DATA 2024; 9:78. [PMID: 39916729 PMCID: PMC11801193 DOI: 10.3390/data9060078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025] Open
Abstract
Invasive intracranial electrodes are used in both clinical and research applications for recording and stimulation of brain tissue, providing essential data in acute and chronic contexts. The impedance characteristics of the electrode-tissue interface (ETI) evolve over time and can change dramatically relative to pre-implantation baseline. Understanding how ETI properties contribute to the recording and stimulation characteristics of an electrode can provide valuable insights for users who often don't have access to complex impedance characterizations of their devices. In contrast to the typical method of characterizing electrical impedance at a single frequency, we demonstrate a method for using electrochemical impedance spectroscopy (EIS) to investigate complex characteristics of the ETI of several commonly used acute and chronic electrodes. We also describe precise modeling strategies for verifying the accuracy of our instrumentation and understanding device-solution interactions, both in vivo and in vitro. Included with this publication is a dataset containing both in vitro and in vivo device characterizations, as well as some example modeling and error structure analysis results. These data can be used for more detailed interpretation of neural recordings performed on common electrode types, providing a more complete picture of their properties than is often available to users. Dataset Data discussed here can be found on the Dryad repository at the following link: https://doi.org/10.5061/dryad.8931zcrvw. The dataset is published under a CC0 license.
Collapse
Affiliation(s)
- Kyle P O'Sullivan
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr, Salt Lake City, UT 84112
| | - Brian J Philip
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr, Salt Lake City, UT 84112
| | - Jonathan L Baker
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 E 61st St, New York, NY 10065
| | | | - Mark E Orazem
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, 1030 Center Drive P.O. Box 116005 Gainesville, FL 32611-6005
| | - Kevin J Otto
- Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, 1275 Center Drive, NEB 363, PO Box 116131, Gainesville, FL 32611
| | - Christopher R Butson
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr, Salt Lake City, UT 84112
- Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, 1275 Center Drive, NEB 363, PO Box 116131, Gainesville, FL 32611
- Norman Fixel Institute for Neurological Diseases, University of Florida, 3009 Williston Road Gainesville, FL 32608
| |
Collapse
|
31
|
Chen Z, Li L, Chu Y, Zhao F, Zhu Y, Tong S, Zheng H. Bio-Inspired Superhydrophilic Self-Assembled Coronavirus-Like Pt-WC/CNT for Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309675. [PMID: 38263847 DOI: 10.1002/smll.202309675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/10/2024] [Indexed: 01/25/2024]
Abstract
This study presents a novel approach to enhance the catalytic activity of composite materials by promoting active surface exposure and improving hydrogen transfer performance. Through a self-assembly route involving tailored gas-solid and galvanic replacement reactions, Pt-WC/CNT catalysts with superhydrophilicity and coronavirus-like structure are synthesized. These unique structural features contribute to a remarkable enhancement in the electrocatalytic performance of the hydrogen evolution reaction (HER). Notably, the Pt-WC/CNT catalyst exhibits an outstanding intrinsic activity and efficient bubble transfer properties, leading to a high turnover frequency of 34.97 H2·s-1 at an overpotential of 100 mV. This value is 4.8 times higher than that achieved by commercial Pt/C catalysts (7.30 H2·s-1), establishing Pt-WC/CNT as one of the most active catalysts reported to date. Moreover, the combination of gas-solid and galvanic replacement reactions in the synthesis process offers a scalable route for the production of Pt-loading controllable composite catalysts, thus challenging the dominance of commercial Pt/C catalysts.
Collapse
Affiliation(s)
- Zhaoyang Chen
- Cooperation Base of Energy Materials and Application, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Lingtong Li
- Cooperation Base of Energy Materials and Application, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Youqun Chu
- Cooperation Base of Energy Materials and Application, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Fengming Zhao
- Cooperation Base of Energy Materials and Application, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Yinghong Zhu
- Cooperation Base of Energy Materials and Application, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Shaoping Tong
- Cooperation Base of Energy Materials and Application, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Huajun Zheng
- Cooperation Base of Energy Materials and Application, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
32
|
Ranjan P, Abubakar Sadique M, Yadav S, Khan R, Kumar Srivastava A. Electrochemical Nanobiosensor of Ionic Liquid Functionalized MoO 3-rGO for Sensitive Detection of Carcinoembryonic Antigen. Chempluschem 2024; 89:e202300625. [PMID: 38321835 DOI: 10.1002/cplu.202300625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
Early diagnosis of cancer can be achieved by detecting associated biomarkers before the appearance of symptoms. Herein, we have developed an electrochemical immunosensor of ionic liquid tailored to molybdenum trioxide-reduced graphene oxide (MoO3-rGO-IL) nanocomposite to detect carcinoembryonic antigen (CEA), a cancer biomarker. The MoO3-rGO-IL nanocomposite has been synthesized in situ via the hydrothermal method. The functionalization of 1-butyl-3-methylimidazolium tetrafluoroborate IL with MoO3-rGO synergistically improves the electrochemical and surface properties of the nanocomposite. The characterization studies revealed that the MoO3-rGO-IL nanocomposite is a highly appropriate material for the construction of immunosensors. The material exhibits exceptional electrical conductivity, surface properties, stability, and a large electrochemical effective surface area (13.77×10-2 cm2) making it ideal for fabricating immunosensors. The quantitative outcome showed that the developed immunosensor (BSA/anti-CEA/MoO3-rGO-IL/GCE) possesses excellent sensitivity, broad linearity from 25 fg mL-1 to 100 ng mL-1, and a low detection limit of 1.19 fg mL-1. Moreover, the remarkable selectivity, repeatability, and efficiency of detecting CEA in serum specimens demonstrated the feasibility of the immunosensor. Thus, the projected electrochemical immunosensor can potentially be utilized for the quantification of CEA in clinical specimens.
Collapse
Affiliation(s)
- Pushpesh Ranjan
- CSIR -, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, 462026, Bhopal, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Mohd Abubakar Sadique
- CSIR -, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, 462026, Bhopal, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Shalu Yadav
- CSIR -, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, 462026, Bhopal, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Raju Khan
- CSIR -, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, 462026, Bhopal, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Avanish Kumar Srivastava
- CSIR -, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, 462026, Bhopal, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| |
Collapse
|
33
|
Chen J, Zhang H, Yu F, Chen Y. Evaluation of Polymetallic Phosphide Cathodes for Sodium-Air Batteries by Distribution of Relaxation Time. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26226-26233. [PMID: 38723247 DOI: 10.1021/acsami.4c03678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Sodium-oxygen batteries are emerging as a new energy storage system because of their high energy density and low cost. However, the cycling performance of the battery is not satisfying due to its insulating discharge product. Here, we synthesized metallic phosphides with gradient concentration (g-CoNiFe-P) and their uniform counterpart (CoNiFe-P) as cathode catalysts in a Na-O2 battery. Notably, the distribution of relaxation time (DRT) was utilized to identify the rate-determining step in a Na-O2 battery, evaluate the catalytic performance of the catalysts, and monitor the change of every single electrochemical process along the whole cycling process to study the degradation mechanism. The g-CoNiFe-P catalyst presented better initial capacity and cycling performances. The evolution of the kinetic processes resulting in battery degradation has been investigated by DRT analysis, which assists with characterizations. Our work demonstrates the application of DRT in battery diagnosis to evaluate the catalytic performance of catalysts and monitor the changes in different kinetic processes of new energy systems.
Collapse
Affiliation(s)
- Juan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Hongyu Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Fengjiao Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Yuhui Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| |
Collapse
|
34
|
Bisquert J, Roldán JB, Miranda E. Hysteresis in memristors produces conduction inductance and conduction capacitance effects. Phys Chem Chem Phys 2024; 26:13804-13813. [PMID: 38655741 PMCID: PMC11078199 DOI: 10.1039/d4cp00586d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Memristors are devices in which the conductance state can be alternately switched between a high and a low value by means of a voltage scan. In general, systems involving a chemical inductor mechanism as solar cells, asymmetric nanopores in electrochemical cells, transistors, and solid state memristive devices, exhibit a current increase and decrease over time that generates hysteresis. By performing small signal ac impedance spectroscopy, we show that memristors, or any other system with hysteresis relying on the conductance modulation effect, display intrinsic dynamic inductor-like and capacitance-like behaviours in specific input voltage ranges. Both the conduction inductance and the conduction capacitance originate in the same delayed conduction process linked to the memristor dynamics and not in electromagnetic or polarization effects. A simple memristor model reproduces the main features of the transition from capacitive to inductive impedance spectroscopy spectra, which causes a nonzero crossing of current-voltage curves.
Collapse
Affiliation(s)
- Juan Bisquert
- Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló, Spain.
| | - Juan B Roldán
- Departamento de Electrónica y Tecnología de Computadores, Universidad de Granada, Facultad de Ciencias, Avd. Fuentenueva s/n, 18071 Granada, Spain
| | - Enrique Miranda
- Dept. Enginyeria Electrònica, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
35
|
Tang X, Zhao S, Xie H, Zhang Y. Utilization and value-adding of waste: Fabrication of porous material from chitosan for phosphate capture and energy storage. Int J Biol Macromol 2024; 268:131944. [PMID: 38692531 DOI: 10.1016/j.ijbiomac.2024.131944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/28/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Efficient removal and recycling of phosphorus from complex water matrices using environmentally friendly and sustainable materials is essential yet challenging. To this end, a novel bio-based adsorbent (DX-FcA-CS) was developed by coupling oxidized dextran-crosslinked chitosan with ferrocene carboxylic acid (FcA). Detailed characterization revealed that the incorporation of FcA reduced the total pore area of DX-FcA-CS to 7.21 m2·g-1, one-third of ferrocene-free DX-CS (21.71 m2·g-1), while enhancing thermal stability and PO43- adsorption performance. Adsorption kinetics and isotherm studies demonstrated that the interaction between DX-FcA-CS and PO43- followed a pseudo-second-order kinetic model and Langmuir model, indicating chemical and monolayered adsorption mechanisms, respectively. Moreover, DX-FcA-CS exhibited excellent anti-interference properties against concentrated co-existing inorganic ions and humic acid, along with high recyclability. The maximum adsorption capacity reached 1285.35 mg·g-1 (∼428.45 mg P g-1), three times that of DX-CS and surpassing many other adsorbents. PO43--loaded DX-FcA-CS could be further carbonized into electrode material due to its rich content of phosphorus and nitrogen, transforming waste into a valuable resource. These outstanding characteristics position DX-FcA-CS as a promising alternative for phosphate capture and recycling. Overall, this study presents a viable approach to designing environmentally friendly, recyclable, and cost-effective biomaterial for wastewater phosphate removal and value-added applications.
Collapse
Affiliation(s)
- Xutao Tang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, PR China
| | - Shanjuan Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, PR China
| | - Huan Xie
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, PR China
| | - Yongmin Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, PR China.
| |
Collapse
|
36
|
Pireddu G, Fairchild CJ, Niblett SP, Cox SJ, Rotenberg B. Impedance of nanocapacitors from molecular simulations to understand the dynamics of confined electrolytes. Proc Natl Acad Sci U S A 2024; 121:e2318157121. [PMID: 38662549 PMCID: PMC11067016 DOI: 10.1073/pnas.2318157121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Nanoelectrochemical devices have become a promising candidate technology across various applications, including sensing and energy storage, and provide new platforms for studying fundamental properties of electrode/electrolyte interfaces. In this work, we employ constant-potential molecular dynamics simulations to investigate the impedance of gold-aqueous electrolyte nanocapacitors, exploiting a recently introduced fluctuation-dissipation relation. In particular, we relate the frequency-dependent impedance of these nanocapacitors to the complex conductivity of the bulk electrolyte in different regimes, and use this connection to design simple but accurate equivalent circuit models. We show that the electrode/electrolyte interfacial contribution is essentially capacitive and that the electrolyte response is bulk-like even when the interelectrode distance is only a few nanometers, provided that the latter is sufficiently large compared to the Debye screening length. We extensively compare our simulation results with spectroscopy experiments and predictions from analytical theories. In contrast to experiments, direct access in simulations to the ionic and solvent contributions to the polarization allows us to highlight their significant and persistent anticorrelation and to investigate the microscopic origin of the timescales observed in the impedance spectrum. This work opens avenues for the molecular interpretation of impedance measurements, and offers valuable contributions for future developments of accurate coarse-grained representations of confined electrolytes.
Collapse
Affiliation(s)
- Giovanni Pireddu
- Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS, Sorbonne Université, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), CNRS, Sorbonne Université, ParisF-75005, France
| | - Connie J. Fairchild
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Samuel P. Niblett
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Stephen J. Cox
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Benjamin Rotenberg
- Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS, Sorbonne Université, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), CNRS, Sorbonne Université, ParisF-75005, France
- Réseau sur le Stockage Electrochimique de l’Energie, Fédération de Recherche CNRS 3459, Amiens Cedex80039, France
| |
Collapse
|
37
|
Li Q, Qu K. Electrochemical Impedimetric Platform Based on Con A@MIL-101 for Glycoprotein Detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7974-7981. [PMID: 38564230 DOI: 10.1021/acs.langmuir.3c03889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
An electrochemical impedimetric biosensing platform with lectin as a molecular recognition element has been established for the sensitive detection of glycoproteins, a class of important biomarkers in clinical diagnosis. One of the representative metal-organic framework materials, MIL-101(Cr)-NH2, was utilized as the supporting matrix, and its amino groups served as the anchors to immobilize the lectins of concanavalin A (Con A), constituting Con A@MIL-101(Cr)-NH2 for the determination of invertase (INV) as a model glycoprotein. The Con A concentration, immobilization time, and incubation time with INV were optimized. Under the optimal conditions, the degree of impedance increase was linearly proportional to the logarithm of INV concentration between 1.0 × 10-16 and 1.0 × 10-11 M, affording a limit of detection as low as 3.98 × 10-18 M. Good specificity, stability, reproducibility, and repeatability were demonstrated for the fabricated biosensing platform. Moreover, real mouse serum samples were spiked with different concentrations of INV. Excellent recoveries were obtained, which demonstrated the biosensing platform's capability of analyzing glycoproteins within a complex matrix.
Collapse
Affiliation(s)
- Qianlan Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, P. R. China
| | - Ke Qu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, P. R. China
| |
Collapse
|
38
|
Yee H, Lee JI, Park DM, Jung K, Lee S, Kim NH, Kim J, Kim HJ, Kang MS. Extending the Operational Lifetime of Electrochemiluminescence Devices by Installing a Floating Bipolar Electrode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307190. [PMID: 38009522 DOI: 10.1002/smll.202307190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/25/2023] [Indexed: 11/29/2023]
Abstract
Electrochemiluminescence (ECL) holds significant promise for the development of cost-effective light-emitting devices because of its simple structure. However, conventional ECL devices (ECLDs) have a major limitation of short operational lifetimes, rendering them impractical for real-world applications. Typically, the luminescence of these devices lasts no longer than a few minutes during operation. In the current study, a novel architecture is provided for ECLDs that addresses this luminescence lifespan issue. The device architecture features an ECL active layer between two coplanar driving electrodes and a third floating bipolar electrode. The inclusion of the floating bipolar electrode enables modulating the electrical-field distribution within the active layer when a bias is applied between the driving electrodes. This, in turn, enables the use of opaque yet electrochemically stable noble metals as the driving electrodes while allowing ECL light to escape through the transparent floating bipolar electrode. A significant extension on operational lifetime is achieved, defined as the time required for the initial luminance (>100 cd m-2) to decrease by 50%, surpassing 1 h. This starkly contrasts the short lifetime (<1 min) attained by ECLDs in a conventional sandwich-type architecture with two transparent electrodes. These results provide simple strategies for developing durable ECL-based light-emitting devices.
Collapse
Affiliation(s)
- Hyeono Yee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Jong Ik Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Dong Mok Park
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Keonhee Jung
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Seunghan Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Nam Hun Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Jungwook Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Hyeong Jun Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Moon Sung Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
- Institute of Emergent Materials, Ricci Institute of Basic Science, Sogang University, Seoul, 04107, Republic of Korea
| |
Collapse
|
39
|
Qin W, Dong Y, Jiang H, Loh WH, Imbrogno J, Swenson TM, Garcia-Rodriguez O, Lefebvre O. A new approach of simultaneous adsorption and regeneration of activated carbon to address the bottlenecks of pharmaceutical wastewater treatment. WATER RESEARCH 2024; 252:121180. [PMID: 38301523 DOI: 10.1016/j.watres.2024.121180] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
This study proposes a sustainable approach for hard-to-treat wastewater using sintered activated carbon (SAC) both as an adsorption filter and as an electrode, allowing its simultaneous electrochemical regeneration. SAC improves the activated carbon (AC) particle contact and thus the conductivity, while maintaining optimal liquid flow. The process removed 87 % of total organic carbon (TOC) from real high-load (initial TOC of 1625 mg/L) pharmaceutical wastewater (PWW), generated during the manufacturing of azithromycin, in 5 h, without external input of chemicals other than catalytic amounts of Fe(II). Kinetic modelling indicated that adsorption was the dominant process, while concomitant electrochemical degradation of complex organics first converted them to short-chain acids, followed by their full mineralization. In-situ electrochemical regeneration of SAC, taking place at the same time as the treatment, is a key feature of our process, enhancing its performance and ensuring its stable operation over time, while eliminating cleaning downtimes altogether. The energy consumption of this innovative process was remarkably low at 8.0×10-3 kWh gTOC-1. This study highlights the potential of SAC for treating hard-to-treat effluents by concurrent adsorption and mineralization of organics.
Collapse
Affiliation(s)
- Weichen Qin
- Department of Civil and Environmental Engineering, Centre for Water Research, National University of Singapore, Engineering Drive 2, 117576, Singapore; Hwa Chong Institution (College), 661 Bukit Timah Road, 269734, Singapore
| | - Yuling Dong
- Department of Civil and Environmental Engineering, Centre for Water Research, National University of Singapore, Engineering Drive 2, 117576, Singapore; Hwa Chong Institution (College), 661 Bukit Timah Road, 269734, Singapore
| | - Huan Jiang
- Department of Civil and Environmental Engineering, Centre for Water Research, National University of Singapore, Engineering Drive 2, 117576, Singapore
| | - Wei Hao Loh
- Department of Civil and Environmental Engineering, Centre for Water Research, National University of Singapore, Engineering Drive 2, 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, #02-03, T-Lab Building 5A Engineering Drive 1, 117411, Singapore
| | - Joseph Imbrogno
- Chemical Research & Development, Pfizer Inc., 280 Shennecossett Rd, Groton, CT 06340, United States
| | - Tim M Swenson
- Chemical Research & Development, Pfizer Inc., 280 Shennecossett Rd, Groton, CT 06340, United States
| | - Orlando Garcia-Rodriguez
- Department of Civil and Environmental Engineering, Centre for Water Research, National University of Singapore, Engineering Drive 2, 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, #02-03, T-Lab Building 5A Engineering Drive 1, 117411, Singapore.
| | - Olivier Lefebvre
- Department of Civil and Environmental Engineering, Centre for Water Research, National University of Singapore, Engineering Drive 2, 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, #02-03, T-Lab Building 5A Engineering Drive 1, 117411, Singapore.
| |
Collapse
|
40
|
Benitto JJ, Vijaya JJ, Saravanakumar B, Al-Lohedan H, Bellucci S. Microwave engineered NiZrO 3@GNP as efficient electrode material for energy storage applications. RSC Adv 2024; 14:8178-8187. [PMID: 38469189 PMCID: PMC10925960 DOI: 10.1039/d4ra00621f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/02/2024] [Indexed: 03/13/2024] Open
Abstract
Supercapacitors (SCs) have emerged as attractive energy storage devices due to their rapid charge/discharge rates, long cycle life, and high-power density. However, the development of innovative electrode materials to achieve high-performance remains crucial to meet future requirements in supercapacitor technology. In this work, we have explored the potential of a microwave-engineered NiZrO3@GNP composite as a promising electrode material for SCs. A microwave assisted hydrothermal approach was adopted for the fabrication of the NiZrO3@GNP nanocomposite. Structural and morphological investigations showed its structural richness and its chemical compositions. When applied as a SC electrode, this innovative combination exhibits battery-like behaviour with higher specific capacity (577.63 C g-1) with good cyclic stability, and good performance. We have assembled an asymmetric-type two-electrode SC device and analysed its electrochemical features. This NiZrO3@GNP device exhibits the specific capacity of 47 C g-1 with capacitance retention of 70% after 2000 charge-discharge cycles. Further research on optimizing the synthesis process and exploring different device configurations could pave the way for even higher-performance supercapacitors in the future.
Collapse
Affiliation(s)
- J John Benitto
- Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College Chennai-600034 Tamil Nadu India
| | - J Judith Vijaya
- Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College Chennai-600034 Tamil Nadu India
| | - B Saravanakumar
- Department of Physics, Dr. Mahalingam College of Engineering and Technology Pollachi Tamil Nadu-642 003 India
| | - Hamad Al-Lohedan
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | | |
Collapse
|
41
|
Feng J, Liu T, Li H, Hu YS, Mao H, Suo L. Ultralight Electrolyte with Protective Encapsulation Solvation Structure Enables Hybrid Sulfur-Based Primary Batteries Exceeding 660 Wh/kg. J Am Chem Soc 2024; 146:3755-3763. [PMID: 38308639 DOI: 10.1021/jacs.3c10260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
An electrochemical couple of lithium and sulfur possesses the highest theoretical energy density (>2600 Wh/kg) at the material level. However, disappointingly, it is out of place in primary batteries due to its low accessible energy density at the cell level (≤500 Wh/kg) and poor storage performance. Herein, a low-density methyl tert-butyl ether was tailored for an ultralight electrolyte (0.837 g/mL) with a protective encapsulation solvation structure which reduced electrolyte weight (23.1%), increased the utilization of capacity (38.1%), and simultaneously forfended self-discharge. Furthermore, active fluorinated graphite partially replaced inactive carbon to construct a hybrid sulfur-based cathode to bring the potential energy density into full play. Our demonstrated pouch cell achieved an incredible energy density of 661 Wh/kg with a negligible self-discharge rate based on the above innovations. Our work is anticipated to provide a new direction to realize the practicality of lithium-sulfur primary batteries.
Collapse
Affiliation(s)
- Jingnan Feng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huajun Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Sheng Hu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huican Mao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China
- Department of Energy Storage Science and Engineering, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liumin Suo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
42
|
Saulnier J, Jose C, Lagarde F. Electrochemical techniques for label-free and early detection of growing microbial cells and biofilms. Bioelectrochemistry 2024; 155:108587. [PMID: 37839250 DOI: 10.1016/j.bioelechem.2023.108587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Over the past decades, the misuse or abuse of antimicrobial agents to prevent and/or control infections has led to increased resistance of microbes to treatments, and antimicrobial resistance is now a subject of major global concern. In some cases, microbes possess the capacity to attach to biotic or abiotic surfaces, and to produce a protective polymeric matrix, forming biofilms of higher resistance and virulence compared to planktonic forms. To avoid further excessive and inappropriate use of antimicrobials, and to propose new effective treatments, it is very important to detect planktonic microbes and microbial biofilms in their early growth stage and at the point of need. In this review, we provide an overview of currently available electrochemical techniques, in particular impedimetric and voltamperometric methods, highlighting recent advances in the field and illustrating with examples in antibiotic susceptibility testing and microbial biofilm monitoring.
Collapse
Affiliation(s)
- Joelle Saulnier
- Universite Claude Bernard Lyon 1, Institute of Analytical Sciences, CNRS, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Catherine Jose
- Universite Claude Bernard Lyon 1, Institute of Analytical Sciences, CNRS, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Florence Lagarde
- Universite Claude Bernard Lyon 1, Institute of Analytical Sciences, CNRS, 5 rue de la Doua, 69100 Villeurbanne, France.
| |
Collapse
|
43
|
Liu W, Wang N, Wu Y, Zhang Q, Chen X, Li Y, Xu R. High-Rate Nonaqueous Mg-CO 2 Batteries Enabled by Mo 2 C-Nanodot-Embedded Carbon Nanofibers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306576. [PMID: 37803924 DOI: 10.1002/smll.202306576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/17/2023] [Indexed: 10/08/2023]
Abstract
The widespread acceptance of nonaqueous rechargeable metal-gas batteries, known for their remarkably high theoretical energy density, faces obstacles such as poor reversibility and low energy efficiency under high charge-discharge current densities. To tackle these challenges, a novel catalytic cathode architecture for Mg-CO2 batteries, fabricated using a one-pot electrospinning method followed by heat treatment, is presented. The resulting structure features well-dispersed molybdenum carbide nanodots embedded within interconnected carbon nanofibers, forming a 3D macroporous conducting network. This cathode design enhances the volumetric efficiency, enabling effective discharge product deposition, while also improving electrical properties and boosting catalytic activity. This enhancement results in high discharge capacities and excellent rate capabilities, while simultaneously minimizing voltage hysteresis and maximizing energy efficiency. The battery exhibits a stable cycle life of over 250 h at a current density of 200 mA g-1 with a low initial charge-discharge voltage gap of 0.72 V. Even at incredibly high current densities, reaching 1600 mA g-1 , the battery maintains exceptional performance. These findings highlight the crucial role of cathode architecture design in enhancing the performance of Mg-CO2 batteries and hold promise for improving other metal-gas batteries that involve deposition-decomposition reactions.
Collapse
Affiliation(s)
- Wenbo Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ning Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yongjun Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qianyi Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaoyan Chen
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yanmei Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rui Xu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
44
|
Goswami N, Naithani S, Goswami T, Kumar P, Kumar S. A quinoline derived Schiff base as highly selective 'turn-on' probe for fluorogenic recognition of Al 3+ ion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123971. [PMID: 38306922 DOI: 10.1016/j.saa.2024.123971] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/04/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
A quinoline-derived Schiff base QnSb has been synthesized for fluorescent and colorimetric recognition of Al3+ ions in a semi-aqueous medium. The compound QnSb has been characterized by elemental analysis, FT-IR, 1H/13C NMR, UV-Vis and fluorescence spectral techniques. The crystal structure of the QnSb was confirmed by single crystal X-ray diffraction (SC-XRD) analysis. Notably, almost non-fluorescent QnSb served as a 'turn on' responsive probe for Al3+ by inducing a remarkable fluorescence enhancement at 422 nm when excited at 310 nm. The probe QnSb exhibited high selectivity for Al3+ in CH3CN/H2O (4:1, v/v) solution over several competing metal ions (e.g., Mg2+, Pb2+, Zn2+, Cd2+, Co2+, Cu2+, Ca2+, Ni2+, Fe3+/2+, Cr3+, Mn2+, Sn2+, and Hg2+). The limit of detection (LoD) was computed as low as 15.8 nM which is significantly lower than the permissible limit set by WHO for Al3+ ions in drinking water. A 1:1 binding stoichiometry of complex QnSb-Al3+ was established with the help of Job's plot, ESI-MS, NMR and DFT analyses. Based on its remarkable sensing ability, the probe QnSb was utilized to establish molecular logic gates, and the fluorescence detection of Al3+ could clearly be demonstrated on the filter paper test strips.
Collapse
Affiliation(s)
- Nidhi Goswami
- Department of Chemistry, Applied Science Cluster, University of Petroleum and Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Sudhanshu Naithani
- Department of Chemistry, Applied Science Cluster, University of Petroleum and Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Tapas Goswami
- Department of Chemistry, Applied Science Cluster, University of Petroleum and Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Pankaj Kumar
- Department of Chemistry, Applied Science Cluster, University of Petroleum and Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Sushil Kumar
- Department of Chemistry, Applied Science Cluster, University of Petroleum and Energy Studies (UPES), Dehradun 248007, Uttarakhand, India.
| |
Collapse
|
45
|
Sitkov N, Ryabko A, Moshnikov V, Aleshin A, Kaplun D, Zimina T. Hybrid Impedimetric Biosensors for Express Protein Markers Detection. MICROMACHINES 2024; 15:181. [PMID: 38398911 PMCID: PMC10890403 DOI: 10.3390/mi15020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Impedimetric biosensors represent a powerful and promising tool for studying and monitoring biological processes associated with proteins and can contribute to the development of new approaches in the diagnosis and treatment of diseases. The basic principles, analytical methods, and applications of hybrid impedimetric biosensors for express protein detection in biological fluids are described. The advantages of this type of biosensors, such as simplicity and speed of operation, sensitivity and selectivity of analysis, cost-effectiveness, and an ability to be integrated into hybrid microfluidic systems, are demonstrated. Current challenges and development prospects in this area are analyzed. They include (a) the selection of materials for electrodes and formation of nanostructures on their surface; (b) the development of efficient methods for biorecognition elements' deposition on the electrodes' surface, providing the specificity and sensitivity of biosensing; (c) the reducing of nonspecific binding and interference, which could affect specificity; (d) adapting biosensors to real samples and conditions of operation; (e) expanding the range of detected proteins; and, finally, (f) the development of biosensor integration into large microanalytical system technologies. This review could be useful for researchers working in the field of impedimetric biosensors for protein detection, as well as for those interested in the application of this type of biosensor in biomedical diagnostics.
Collapse
Affiliation(s)
- Nikita Sitkov
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia; (V.M.); (T.Z.)
- Engineering Centre for Microtechnology and Diagnostics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
| | - Andrey Ryabko
- Laboratory of Nonequilibrium Processes in Semiconductors, Ioffe Institute, 26 Politekhnicheskaya, 194021 Saint Petersburg, Russia;
| | - Vyacheslav Moshnikov
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia; (V.M.); (T.Z.)
| | - Andrey Aleshin
- Laboratory of Nonequilibrium Processes in Semiconductors, Ioffe Institute, 26 Politekhnicheskaya, 194021 Saint Petersburg, Russia;
| | - Dmitry Kaplun
- Artificial Intelligence Research Institute, China University of Mining and Technology, 1 Daxue Road, Xuzhou 221116, China;
- Department of Automation and Control Processes, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
| | - Tatiana Zimina
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia; (V.M.); (T.Z.)
- Engineering Centre for Microtechnology and Diagnostics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
| |
Collapse
|
46
|
Özge Alaş Çolak M, Güngör A, Akturk MB, Erdem E, Genç R. Unlocking the full potential of citric acid-synthesized carbon dots as a supercapacitor electrode material via surface functionalization. NANOSCALE 2024; 16:719-733. [PMID: 38086662 DOI: 10.1039/d3nr04893d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
This research paper investigates the effect of functionalizing the surfaces of citric acid-synthesized carbon dots (CDs) with hyperbranched bis(methylol)propionic acid (bis-MPA) polyester hydroxyl polymers (HBPs) on their performance as electrode materials in a supercapacitor. Two types of HBPs with 16 and 64 peripheral hydroxyl groups were used to functionalize the CDs' oxygen-enriched surface. Here, CDs were used as electrode materials for the first time in symmetric supercapacitors without a composite material, and how surface modification affects the capacitance performance of CDs was investigated. Our results showed that the functionalization of green-emitting CDs with HBP resulted in the successful passivation of surface defects, which improved their stability and prevented further oxidation. The CDs with HBP passivation exhibited excellent electrochemical performance, with a high specific capacitance of 32.08 F g-1 at 0.1 A g-1 and good rate capability, indicating a faster ion transport rate at high current densities. Experimental EPR spectra of functionalized and non-functionalized CDs reveal distinct changes in g-factor values and line widths, confirming the impact of dangling bonds and spin-orbit interactions. The observed broader linewidth indicates a wider range of electron spin resonances due to energy-level splitting induced by spin-orbit coupling. The excellent electrochemical performance of CDs with HBP passivation can be attributed to the presence of oxygen-containing surface functional groups such as hydroxyl and carboxyl groups on their surfaces, which enhance the conductivity and charge transfer reactions. These results suggest that functionalization with polar HBPs is a promising strategy to enhance the electrochemical performance of CDs in supercapacitor applications.
Collapse
Affiliation(s)
- Melis Özge Alaş Çolak
- Sabanci University, Nanotechnology Research and Application Centre, TR-34956, Istanbul, Turkey.
| | - Ahmet Güngör
- Faculty of Engineering and Natural Sciences, Sabanci University, TR-34956, Istanbul, Turkey.
| | - Merve Buldu Akturk
- Faculty of Engineering and Natural Sciences, Sabanci University, TR-34956, Istanbul, Turkey.
| | - Emre Erdem
- Faculty of Engineering and Natural Sciences, Sabanci University, TR-34956, Istanbul, Turkey.
- Sabanci University Integrated Manufacturing Technologies Research and Application Center and Composite Technologies Center of Excellence, Teknopark Istanbul, Pendik, 34906, Istanbul, Turkey
- Sabanci University Center of Excellence for Functional Surfaces and Interfaces for Nano-Diagnostics (EFSUN), Orhanli, 34956 Tuzla, Istanbul, Turkey
| | - Rükan Genç
- Sabanci University, Nanotechnology Research and Application Centre, TR-34956, Istanbul, Turkey.
- Department of Chemical Engineering, Engineering Faculty, Mersin University, TR-33343, Mersin, Turkey
| |
Collapse
|
47
|
Liu Y, Yang Z, Zou Y, Wang S, He J. Interfacial Micro-Environment of Electrocatalysis and Its Applications for Organic Electro-Oxidation Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306488. [PMID: 37712127 DOI: 10.1002/smll.202306488] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/02/2023] [Indexed: 09/16/2023]
Abstract
Conventional designing principal of electrocatalyst is focused on the electronic structure tuning, on which effectively promotes the electrocatalysis. However, as a typical kind of electrode-electrolyte interface reaction, the electrocatalysis performance is also closely dependent on the electrocatalyst interfacial micro-environment (IME), including pH, reactant concentration, electric field, surface geometry structure, hydrophilicity/hydrophobicity, etc. Recently, organic electro-oxidation reaction (OEOR), which simultaneously reduces the anodic polarization potential and produces value-added chemicals, has emerged as a competitive alternative to oxygen evolution reaction, and the role IME played in OEOR is receiving great interest. Thus, this article provides a timely review on IME and its applications toward OEOR. In this review, the IME for conventional gas-involving reactions, as a contrast, is first presented, and then the recent progresses of IME toward diverse typical OEOR are summarized; especially, some representative works are thoroughly discussed. Additionally, cutting-edge analytical methods and characterization techniques are introduced to comprehensively understand the role IME played in OEOR. In the last section, perspectives and challenges of IME regulation for OEOR are shared.
Collapse
Affiliation(s)
- Yi Liu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Yuqin Zou
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Junying He
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| |
Collapse
|
48
|
Xu W, Wang Z, Liu P, Tang X, Zhang S, Chen H, Yang Q, Chen X, Tian Z, Dai S, Chen L, Lu Z. Ag Nanoparticle-Induced Surface Chloride Immobilization Strategy Enables Stable Seawater Electrolysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306062. [PMID: 37907201 DOI: 10.1002/adma.202306062] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/18/2023] [Indexed: 11/02/2023]
Abstract
Although hydrogen gas (H2 ) storage might enable offshore renewable energy to be stored at scale, the commercialization of technology for H2 generation by seawater electrolysis depends upon the development of methods that avoid the severe corrosion of anodes by chloride (Cl- ) ions. Here, it is revealed that the stability of an anode used for seawater splitting can be increased by more than an order of magnitude by loading Ag nanoparticles on the catalyst surface. In experiments, an optimized NiFe-layered double hydroxide (LDH)@Ag electrode displays stable operation at 400 mA cm-2 in alkaline saline electrolyte and seawater for over 5000 and 2500 h, respectively. The impressive long-term durability is more than 20 times that of an unmodified NiFe-LDH anode. Meticulous characterization and simulation reveals that in the presence of an applied electric field, free Cl- ions react with oxidized Ag nanoparticles to form stable AgCl species, giving rise to the formation of a Cl- -free layer near the anode surface. Because of its simplicity and effectiveness, it is anticipated that the proposed strategy to immobilize chloride ions on the surface of an anode has the potential to become a crucial technology to control corrosion during large-scale electrolysis of seawater to produce hydrogen.
Collapse
Affiliation(s)
- Wenwen Xu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
| | - Zhongfeng Wang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pingying Liu
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, Jiangxi, 333403, P. R. China
| | - Xuan Tang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Sixie Zhang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haocheng Chen
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qihao Yang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
| | - Xu Chen
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
| | - Ziqi Tian
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Liang Chen
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiyi Lu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
49
|
Wang J, Gong Z, Zhang Y, Song Y, Chen X, Lu Z, Jiang L, Zhu C, Gao K, Wang K, Wang J, Yu L, Khayour S, Xie H, Li Z, Lu G. Selectively Adsorbed p-Aminothiophenol Molecules Improve the Electrocatalytic and Photo-Electrocatalytic Hydrogen Evolution on Au/TiO 2. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54550-54558. [PMID: 37968852 DOI: 10.1021/acsami.3c13974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Electrocatalytic hydrogen evolution reaction (HER) is receiving increasing attention as an effective process to produce clean energy. The commonly used precious metal catalysts can be hybridized with semiconductors to form heterostructures for the improvement of catalytic efficiency and reduction of cost. It will be promising to further improve the efficiency of heterostructure-based nanocatalysts in electrocatalytic and photocatalytic HER using a simple and effective method. Herein, we improve the efficiency of Au/TiO2 in electrocatalytic and photo-electrocatalytic HER by selectively adsorbing p-aminothiophenol (PATP) molecules. The PATP molecules are adsorbed on the gold surface by using a simple solution-based method and favor the charge separation at the Au-TiO2 interface. We also compare the PATP molecules with other thiophenol molecules in the enhancement of electrocatalytic HER. The PATP-induced enhancement in electrocatalysis is then further investigated by density functional theory (DFT) calculations, and this enhancement is attributed to a reduction in Gibbs energy of adsorbed hydrogen after surface adsorption of PATP molecules. This work provides a simple, cost-effective, and highly efficient approach to improve the electrocatalytic and photo-electrocatalytic efficiency of Au/TiO2, and this approach could be easily extended to other heterostructure-based nanocatalysts for performance enhancement and may be used in many other catalytic reactions.
Collapse
Affiliation(s)
- Jin Wang
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Zhongyan Gong
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yulong Zhang
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yaxin Song
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Xinya Chen
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Zhihao Lu
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Lu Jiang
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Chengcheng Zhu
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Kun Gao
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Kaili Wang
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Junjie Wang
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Liuyingzi Yu
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Soukaina Khayour
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Y2, second Floor, Building 2, Xixi Legu Creative Pioneering Park, 712 Wen'er West Road, Xihu District, Hangzhou 310003, P. R. China
| | - Zhuoyao Li
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Gang Lu
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
50
|
Hoang Ngoc Minh T, Kim J, Pireddu G, Chubak I, Nair S, Rotenberg B. Electrical noise in electrolytes: a theoretical perspective. Faraday Discuss 2023; 246:198-224. [PMID: 37409620 DOI: 10.1039/d3fd00026e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Seemingly unrelated experiments such as electrolyte transport through nanotubes, nano-scale electrochemistry, NMR relaxometry and surface force balance measurements, all probe electrical fluctuations: of the electric current, the charge and polarization, the field gradient (for quadrupolar nuclei) and the coupled mass/charge densities. The fluctuations of such various observables arise from the same underlying microscopic dynamics of the ions and solvent molecules. In principle, the relevant length and time scales of these dynamics are encoded in the dynamic structure factors. However, modelling the latter for frequencies and wavevectors spanning many orders of magnitude remains a great challenge to interpret the experiments in terms of physical processes such as solvation dynamics, diffusion, electrostatic and hydrodynamic interactions between ions, interactions with solid surfaces, etc. Here, we highlight the central role of the charge-charge dynamic structure factor in the fluctuations of electrical observables in electrolytes and offer a unifying perspective over a variety of complementary experiments. We further analyze this quantity in the special case of an aqueous NaCl electrolyte, using simulations with explicit ions and an explicit or implicit solvent. We discuss the ability of the standard Poisson-Nernst-Planck theory to capture the simulation results, and how the predictions can be improved. We finally discuss the contributions of ions and water to the total charge fluctuations. This work illustrates an ongoing effort towards a comprehensive understanding of electrical fluctuations in bulk and confined electrolytes, in order to enable experimentalists to decipher the microscopic properties encoded in the measured electrical noise.
Collapse
Affiliation(s)
- Thê Hoang Ngoc Minh
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
| | - Jeongmin Kim
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
| | - Giovanni Pireddu
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
| | - Iurii Chubak
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
| | - Swetha Nair
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
| | - Benjamin Rotenberg
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
| |
Collapse
|