1
|
Spence GC, Pate DS, Villot C, Fouzie RM, Graves LS, Lao KU, Özgür Ü, Arachchige IU. Solid-state synthesis of Si 1-xGe x nanoalloys with composition-tunable energy gaps and visible to near infrared optical properties. NANOSCALE 2024. [PMID: 39688672 DOI: 10.1039/d4nr03472d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Si1-xGex alloy nanocrystals (NCs) are a class of benign semiconductors that show size and composition-tunable energy gaps and promising optical properties because of the lattice disorder. The random distribution of elements within the alloys can lead to efficient light-matter interactions, making them attractive for Si-compatible optoelectronic devices, transistors, charge storage, and memory applications. However, the fabrication of discrete, quantum-confined alloys has proved a challenging task. Herein, we report solid-state co-disproportionation of a hydrogen silsesquioxane (HSQ)/GeI2 composite precursor to produce homogeneous Si1-xGex NCs with control over the diameter (5.9 ± 0.7-7.8 ± 1.1 nm) and composition (x = 0-14.4%) with strong size confinement effects and visible to near IR absorption and emission properties. As-synthesized alloys show an expanded diamond cubic Si structure, a systematic red-shift of Si-Si Raman peak, and emergence of Si-Ge/Ge-Ge peaks with increasing Ge, consistent with the admixture of isovalent elements. Surface analysis of alloys reveals Si0/Ge0 core and Sin+/Gen+ surface species and efficient surface functionalization with alkyl ligands via thermal hydrosilylation and/or hydrogermylation. Alloy NCs exhibit absorption onsets (2.26-1.92 eV), indirect (1.53-1.80 eV) and direct (2.88-2.47 eV) energy gaps, and photoluminescence (PL) maxima (1.40-1.27 eV) that can be tuned by manipulating the diameter and/or composition. The experimental PL energies are consistent with those predicted by density functional theory (DFT), suggesting that the PL originates from NC core electronic transitions. The facile low-temperature solid-state synthesis and control over physical properties realized in this study will allow discrete Si1-xGex NCs to emerge as low to nontoxic, earth-abundant, and Si-compatible nanostructures for a broad range of electronic and photonic technologies.
Collapse
Affiliation(s)
- Griffin C Spence
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA.
| | - David S Pate
- Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, Virginia 23284-9052, USA
| | - Corentin Villot
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA.
| | - Roshana M Fouzie
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA.
| | - Lisa S Graves
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA.
| | - Ka Un Lao
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA.
| | - Ümit Özgür
- Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, Virginia 23284-9052, USA
| | - Indika U Arachchige
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA.
| |
Collapse
|
2
|
Luo Y, Cao X, Wang S, Wu Q, Cao F, Wang L, Zheng X, Yang X. Suppression of Interfacial Oxidation in Core/Shell InP Quantum Dots through Solvent Assisted Core-Etching Strategy for Efficient Green Light-Emitting Diodes. NANO LETTERS 2024. [PMID: 39680931 DOI: 10.1021/acs.nanolett.4c05832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Indium phosphide (InP) quantum dots (QDs) are promising alternative heavy-metal CdSe QDs for light-emitting diode (LED) application. However, their highly reactive core surface is prone to oxidation, which reduces the photoluminescence quantum yield (PL QY) and impedes subsequent shell growth. Traditional etching methods using HF aqueous solution are problematic as water can induce reoxidation during or after etching. Herein, we present HF pyridine solution as a more effective etching reagent to enhance luminous properties of InP QDs. Pyridine molecules replace the bulky carboxyl ligand, reducing steric hindrance and allowing HF easier access to the core for removing surface oxides. This ligand exchange promotes rapid shell growth, minimizing core exposure to the reaction environment and thereby reoxidation risk. Consequently, the as-prepared core/shell QDs exhibit a high PL QY of ∼90%, and the corresponding LEDs achieve an external quantum efficiency of 15.4% along with a long operational lifetime of 6819 h, outperforming the control devices.
Collapse
Affiliation(s)
- Yaning Luo
- Key Laboratory of Advanced Display and System Applications Education of Ministry, Shanghai University, 149 Yanchang Road, Shanghai 200072, China
| | - Xu Cao
- Key Laboratory of Advanced Display and System Applications Education of Ministry, Shanghai University, 149 Yanchang Road, Shanghai 200072, China
| | - Sheng Wang
- Key Laboratory of Advanced Display and System Applications Education of Ministry, Shanghai University, 149 Yanchang Road, Shanghai 200072, China
| | - Qianqian Wu
- Key Laboratory of Advanced Display and System Applications Education of Ministry, Shanghai University, 149 Yanchang Road, Shanghai 200072, China
| | - Fan Cao
- Key Laboratory of Advanced Display and System Applications Education of Ministry, Shanghai University, 149 Yanchang Road, Shanghai 200072, China
| | - Lin Wang
- Key Laboratory of Advanced Display and System Applications Education of Ministry, Shanghai University, 149 Yanchang Road, Shanghai 200072, China
| | - Xue Zheng
- Center for Photonic Information and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications Education of Ministry, Shanghai University, 149 Yanchang Road, Shanghai 200072, China
| |
Collapse
|
3
|
Naylor-Adamson L, Price TW, Booth Z, Leonard SVL, Gallo J, Tung LD, Harvell-Smith S, Thi Kim Thanh N, Aslam Z, Allsup D, Hondow N, Chamberlain T, Schneider JE, Naseem K, Bouillard JSG, Stasiuk GJ, Calaminus SDJ. PEGylation of indium phosphide quantum dots prevents quantum dot mediated platelet activation. J Mater Chem B 2024. [PMID: 39635869 PMCID: PMC11619005 DOI: 10.1039/d4tb01334d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024]
Abstract
Quantum dots (QDs) are semiconducting inorganic nanocrystals, that have garnered interest in biological and medical spheres due, to their potential benefits in biomedical imaging and drug-delivery systems. Indium phosphide QDs shelled with zinc sulphide (InP/ZnS) are viewed as more biocompatible than previous heavy metal based QDs. However, little is known about how InP/ZnS QDs affect a key blood cell, the platelet. Understanding how platelets interact with QDs is critical as unwanted activation can lead to pathological thrombus formation. Herein, we demonstrate PEGylation of InP/ZnS QDs coated with lipoic acid (QD-LA) or coated with penicillamine (QD-Pen) surface ligands induced markedly less platelet aggregation, platelet-QD interactions, integrin activation, alpha granule secretion and restored platelet spreading in washed platelets in comparison to their non-PEGylated counterparts. Furthermore, in whole blood, PEGylation of QDs reduced the number of QDs in the thrombus, thereby helping to minimise the chance of dysfunctional thrombus formation. Overall, we show that QD PEGylation is important to help prevent QD mediated platelet activation. In combination with the most biocompatible coating, PEGylation markedly reduced platelet activation, widening the concentrations at which QDs were viable for development as potential drug delivery or imaging agents.
Collapse
Affiliation(s)
- Leigh Naylor-Adamson
- Biomedical Institute for Multimorbidity, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK.
| | - Thomas W Price
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK.
| | - Zoe Booth
- Biomedical Institute for Multimorbidity, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK.
| | - Sophie V L Leonard
- Biomedical Institute for Multimorbidity, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK.
| | - Juan Gallo
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga 4715-330, Portugal
| | - Le Duc Tung
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London, W1S 4BS, UK
- Biophysics Group, Department of Physics & Astronomy University College London, Gower Street, London, WC1E 6BT, UK
| | - Stanley Harvell-Smith
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London, W1S 4BS, UK
- Biophysics Group, Department of Physics & Astronomy University College London, Gower Street, London, WC1E 6BT, UK
| | - Nguyen Thi Kim Thanh
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London, W1S 4BS, UK
- Biophysics Group, Department of Physics & Astronomy University College London, Gower Street, London, WC1E 6BT, UK
| | - Zabeada Aslam
- Leeds Electron Microscopy and Spectroscopy Centre, LEMAS, The Bragg Centre for Materials Research, Faculty of Engineering and Physical Sciences, University of Leeds, LS2 9JT, UK
| | - David Allsup
- Biomedical Institute for Multimorbidity, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK.
| | - Nicole Hondow
- Leeds Electron Microscopy and Spectroscopy Centre, LEMAS, The Bragg Centre for Materials Research, Faculty of Engineering and Physical Sciences, University of Leeds, LS2 9JT, UK
| | - Thomas Chamberlain
- Institute of Process Research and Development, School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Khalid Naseem
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Jean-Sebastien G Bouillard
- Department of Physics and Mathematics, Nano3 Research grouping - Nanophotonics group, G. W. Gray Centre for Advanced Materials, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Graeme J Stasiuk
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK.
| | - Simon D J Calaminus
- Biomedical Institute for Multimorbidity, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK.
| |
Collapse
|
4
|
Fujiki H, Hamanaka Y, Chen S, Kuzuya T. Luminescence Mechanisms of Quaternary Zn-Ag-In-S Nanocrystals: ZnS:Ag, In or AgInS 2:Zn? Chemphyschem 2024:e202400316. [PMID: 39609100 DOI: 10.1002/cphc.202400316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 11/30/2024]
Abstract
Highly emissive Zn-Ag-In-S nanocrystals have attracted attention as derivatives of I-III-VI2-type nanocrystals without the use of toxic elements. The wide tunability of their luminescence wavelengths is attributed to the controllable bandgap of the solid solution between ZnS and AgInS2. However, enhancement of the photoluminescence quantum yield (PL-QY) depending on the chemical composition has not been elucidated. Here, the luminescence mechanisms of Zn-Ag-In-S nanocrystals were studied from the perspective of ZnS doped with Ag and In, although previous research has proposed a hypothesis that Zn is a radiative recombination centre in the AgInS2 host. The Zn-Ag-In-S nanocrystals were synthesized by systematically varying the Zn, Ag, and In contents. The nanocrystals exhibit a structure in which a part of the Zn in the cubic ZnS is substituted with Ag and In. Luminescence was ascribed to a donor-acceptor pair (DAP) recombination between electrons trapped in In donors and holes trapped in Ag acceptors. The composition-dependent enhancement of PL-QYs was attributed to an increase in donor and acceptor concentrations. The DAP characteristics were maintained over a wide range of Ag and In contents because of the localized character of the band edge states dominated by Ag and In orbitals, as suggested formerly by simulation.
Collapse
Affiliation(s)
- Hikari Fujiki
- Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan
| | - Yasushi Hamanaka
- Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan
| | - Shijia Chen
- Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan
| | - Toshihiro Kuzuya
- College of Design and Manufacturing Technology, Muroran Institute of Technology, Mizumoto-cho, Muroran, 050-8585, Japan
| |
Collapse
|
5
|
Chen HS, Chen CY, Wu YC. High-Performance Giant InP Quantum Dots with Stress-Released Morphological ZnSe-ZnSeS-ZnS Shell. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2407026. [PMID: 39584411 DOI: 10.1002/adma.202407026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Indium phosphide (InP) quantum dots (QDs) are increasingly considered potent alternatives to traditional cadmium-based QDs. Notwithstanding, the material stability of InP, especially when juxtaposed with its cadmium-based counterparts, poses significant challenges in its application. Generally, a thick ZnS shell is applied to InP cores to thwart photo-oxidation and diminish nonradiative recombination. Yet, the pronounced lattice mismatch between the InP core and the ZnS shell can introduce lattice defects, consequently attenuating the luminescence efficiency. This makes the cultivation of a flawless thick shell a paramount challenge. In the present research, a synthetic methodology is elucidated to fabricate highly efficient InP QDs with dimensions exceeding 20 nm, achieved by alleviating the lattice mismatch strain during the shell growth. By regulating the shell composition and morphology, InP/ZnSe/ZnSeS/ZnS QDs with shield-like morphology are prepared and demonstrate a photoluminescence quantum yield (PLQY) of ≈90%, exhibiting significantly enhanced photostability and thermal stability. This discovery is expected to greatly advance the preparation of highly efficient InP-based or other QDs, expanding their potential in various applications such as environmentally friendly displays and energy-saving lighting.
Collapse
Affiliation(s)
- Hsueh-Shih Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- College of Semiconductor Research, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Chemical Engineering & Materials Science, College of Engineering, Yuan Ze University, Taoyuan, 32003, Taiwan
| | - Cheng-Yang Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - You-Cneng Wu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
6
|
Feng D, Zhang G, Li Y. Semiconductor Quantum Dots: Synthesis, Properties and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1825. [PMID: 39591066 PMCID: PMC11597419 DOI: 10.3390/nano14221825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024]
Abstract
Semiconductor nanoparticles of sizes smaller than exciton Bohr diameters undergo quantum confinement and are called quantum dots (QDs), which exhibit size-dependent physicochemical properties [...].
Collapse
Affiliation(s)
- Donghai Feng
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Guofeng Zhang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Yang Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
7
|
Duda M, Joshi P, Borodziuk A, Sobczak K, Sikora-Dobrowolska B, Maćkowski S, Dennis AM, Kłopotowski Ł. Multimodal Temperature Readout Boosts the Performance of CuInS 2/ZnS Quantum Dot Nanothermometers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60008-60017. [PMID: 39437320 PMCID: PMC11551904 DOI: 10.1021/acsami.4c14541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Fluorescent nanothermometers are positioned to revolutionize research into cell functions and provide strategies for early diagnostics. Fluorescent nanostructures hold particular promise to fulfill this potential if nontoxic, stable varieties allowing for precise temperature measurement with high thermal sensitivities can be fabricated. In this work, we investigate the performance of micelle-encapsulated CuInS2/ZnS core/shell colloidal quantum dots (QDs) as fluorescent nanothermometers. We demonstrate four temperature readout modes, which are based on variations in the photoluminescence intensity, energy, and lifetime and on a specific ratio of excitation efficiencies. We further leverage this multimodal readout to construct a fifth, multiparametric thermometer calibration based on the multiple linear regression (MLR) model. We show that the MLR approach boosts the thermometer sensitivity by up to 7-fold while reducing the readout error by about a factor of 3. As a result, our QDs offer the highest sensitivities among semiconducting QDs emitting in the first biological window. The obtained results indicate that CuInS2/ZnS QDs are excellent candidates for intracellular in vivo thermometry and provide guidelines for further optimization of their performance.
Collapse
Affiliation(s)
- Magdalena Duda
- Institute
of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
| | - Pushkar Joshi
- Institute
of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
| | - Anna Borodziuk
- Institute
of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
| | - Kamil Sobczak
- University
of Warsaw Biological and Chemical Research Centre, 02-089 Warsaw, Poland
| | | | - Sebastian Maćkowski
- Institute
of Physics, Faculty of Physics, Nicolaus
Copernicus University, Astronomy and Informatics, 87-100 Toruń, Poland
| | - Allison M. Dennis
- Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | | |
Collapse
|
8
|
Saha A, Yadav R, Rivaux C, Aldakov D, Reiss P. Water-Soluble Alumina-Coated Indium Phosphide Core-Shell Quantum Dots with Efficient Deep-Red Emission Beyond 700 nm. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404426. [PMID: 39058212 DOI: 10.1002/smll.202404426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Solution-processed colloidal III-V semiconductor-based quantum dots (QDs) represent promising and environmentally-friendly alternatives to Cd-based QDs in the realms of optoelectronics and biological applications. While InP-based core-shell QDs have demonstrated efficient light-emitting diode (LED) performance in the visible region, achieving deep-red emission (above 700 nm) with a narrow linewidth has proven challenging. Herein, the study presents a novel strategy for synthesizing InP/ZnSe/ZnS core-shell-shell QDs tailored for emission in the first biological transparency window. The resulting QDs exhibit an emission wavelength up to 725 nm with a narrow peak full width at half maximum (FWHM) down to 107 meV (45 nm). To enhance the biocompatibility and chemical stability of the QDs, their surface is further capped with a layer of amorphous alumina resulting in an InP/ZnSe/ZnS/Al2O3 heterostructure. This surface passivation not only ensures environmental- and photostability but also enhances the photoluminescence quantum yield (PLQY). The alumina capping enables the aqueous phase transfer via surface ligand exchange using mercaptopropionic acid (MPA) while maintaining the initial quantum yield. The resulting QDs demonstrate a significant potential for advancing next-generation optoelectronic technologies and bio-applications.
Collapse
Affiliation(s)
- Avijit Saha
- University Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, STEP, Grenoble, 38000, France
| | - Ranjana Yadav
- University Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, STEP, Grenoble, 38000, France
| | - Céline Rivaux
- University Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, STEP, Grenoble, 38000, France
| | - Dmitry Aldakov
- University Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, STEP, Grenoble, 38000, France
| | - Peter Reiss
- University Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, STEP, Grenoble, 38000, France
| |
Collapse
|
9
|
Ćwilich A, Larowska-Zarych D, Kowalik P, Polok K, Bujak P, Duda M, Kazimierczuk T, Gadomski W, Pron A, Kłopotowski Ł. Carrier Dynamics and Recombination Pathways in Ag-In-Zn-S Quantum Dots. J Phys Chem Lett 2024; 15:10479-10487. [PMID: 39392672 PMCID: PMC11514015 DOI: 10.1021/acs.jpclett.4c02126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/15/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Strong tolerance to off-stoichiometry of group I-III-VI semiconductors in their nanocrystal form allows fabrication of multinary, alloyed structures of desired properties. In particular, alloyed Cu-In-Zn-S and Ag-In-Zn-S quantum dots (QDs) have recently emerged as efficient fluorophors, in which tailoring the composition allows tuning the optical properties, and achieving photoluminescence (PL) quantum yields approaching unity. However, poor understanding of the carrier recombination mechanism in these materials limits their further development. In this work, by studying transient absorption and temperature dependent PL on bare QDs and QDs conjugated with electron scavenger molecules, we obtain a detailed picture of carrier dynamics. Our results challenge the prevailing assumption that the PL is due to a donor-acceptor-pair transition. We show that the PL occurs as a result of a recombination of a delocalized electron with a localized hole.
Collapse
Affiliation(s)
- Adam Ćwilich
- Institute
of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
| | | | - Patrycja Kowalik
- Faculty
of Chemistry, University of Warsaw, 02-089 Warsaw, Poland
- Faculty
of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Kamil Polok
- Faculty
of Chemistry, University of Warsaw, 02-089 Warsaw, Poland
| | - Piotr Bujak
- Faculty
of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Magdalena Duda
- Institute
of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
| | | | | | - Adam Pron
- Faculty
of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | | |
Collapse
|
10
|
Lin M, Vargas B, Yedra L, van Gog H, van Huis MA, Mendes RG, Llorca J, Estruch-Blasco M, Pernia Leal M, Pajuelo E, Estradé S, Peiró F, Rodríguez L, Figuerola A. Unraveling the Formation of Ternary AgCuSe Crystalline Nanophases and Their Potential as Antibacterial Agents. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:10154-10166. [PMID: 39464291 PMCID: PMC11500304 DOI: 10.1021/acs.chemmater.4c01604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024]
Abstract
AgCuSe nanoparticles could contribute to the growth of strongly light-absorbing thin films and solids with fast ion mobility, among other potential properties. Nevertheless, few methods have been developed so far for the synthesis of AgCuSe nanoparticles, and those reported deliver nanostructures with relatively large sizes and broad size and shape distributions. In this work, a colloidal cation exchange method is established for the easy synthesis of AgCuSe NPs with ca. 8 nm diameters and narrow size dispersion. Notably, in this lower size range the conucleation and growth of two stoichiometric ternary compounds are generally observed, namely the well-known eucairite AgCuSe compound and the novel fischesserite-like Ag3CuSe2 phase, the latter being less thermodynamically stable as predicted computationally and assessed experimentally. An optimal range of Cu/Ag precursor molar ratio has been identified to ensure the growth of ternary nanoparticles and, more specifically, that of the metastable Ag3CuSe2 nanophase isolated for the first occasion. The attained size range for the material paves the way for utilizing AgCuSe nanoparticles in new ways within the field of biomedicine: the results obtained here confirm the antibacterial activity of the new Ag x Cu y Se z nanoparticles against Gram-positive bacteria, with significantly low values of the minimal inhibitory concentration.
Collapse
Affiliation(s)
- Mengxi Lin
- Department
of Inorganic and Organic Chemistry, Inorganic Chemistry Section, Universitat de Barcelona, Carrer de Martí i Franquès, 1-11, 08028 Barcelona, Spain
- Institute
of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Carrer de Martí i Franquès, 1-11, 08028 Barcelona, Spain
| | - Beatriz Vargas
- Institute
of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Carrer de Martí i Franquès, 1-11, 08028 Barcelona, Spain
- Laboratory
of Electron Nanoscopies (LENS-MIND), Department of Electronics and
Biomedical Engineering, Universitat de Barcelona, C/Martí i Franquès
1, 08028 Barcelona, Spain
| | - Lluís Yedra
- Institute
of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Carrer de Martí i Franquès, 1-11, 08028 Barcelona, Spain
- Laboratory
of Electron Nanoscopies (LENS-MIND), Department of Electronics and
Biomedical Engineering, Universitat de Barcelona, C/Martí i Franquès
1, 08028 Barcelona, Spain
| | - Heleen van Gog
- Nanostructured
Materials and Interfaces, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The
Netherlands
| | - Marijn A. van Huis
- Soft
Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Rafael G. Mendes
- Soft
Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Jordi Llorca
- Institute
of Energy Technologies, Department of Chemical Engineering and Center
for Research in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Manel Estruch-Blasco
- Departamento
de Química Orgánica y Farmacéutica, Facultad
de Farmacia, Universidad de Sevilla, c/Profesor García González,
2, 41012 Sevilla, Spain
| | - Manuel Pernia Leal
- Departamento
de Química Orgánica y Farmacéutica, Facultad
de Farmacia, Universidad de Sevilla, c/Profesor García González,
2, 41012 Sevilla, Spain
| | - Eloísa Pajuelo
- Departamento
de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Sònia Estradé
- Institute
of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Carrer de Martí i Franquès, 1-11, 08028 Barcelona, Spain
- Laboratory
of Electron Nanoscopies (LENS-MIND), Department of Electronics and
Biomedical Engineering, Universitat de Barcelona, C/Martí i Franquès
1, 08028 Barcelona, Spain
| | - Francesca Peiró
- Institute
of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Carrer de Martí i Franquès, 1-11, 08028 Barcelona, Spain
- Laboratory
of Electron Nanoscopies (LENS-MIND), Department of Electronics and
Biomedical Engineering, Universitat de Barcelona, C/Martí i Franquès
1, 08028 Barcelona, Spain
| | - Laura Rodríguez
- Department
of Inorganic and Organic Chemistry, Inorganic Chemistry Section, Universitat de Barcelona, Carrer de Martí i Franquès, 1-11, 08028 Barcelona, Spain
- Institute
of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Carrer de Martí i Franquès, 1-11, 08028 Barcelona, Spain
| | - Albert Figuerola
- Department
of Inorganic and Organic Chemistry, Inorganic Chemistry Section, Universitat de Barcelona, Carrer de Martí i Franquès, 1-11, 08028 Barcelona, Spain
- Institute
of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Carrer de Martí i Franquès, 1-11, 08028 Barcelona, Spain
| |
Collapse
|
11
|
Wu L, Li Y, Liu GQ, Yu SH. Polytypic metal chalcogenide nanocrystals. Chem Soc Rev 2024; 53:9832-9873. [PMID: 39212091 DOI: 10.1039/d3cs01095c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
By engineering chemically identical but structurally distinct materials into intricate and sophisticated polytypic nanostructures, which often surpass their pure phase objects and even produce novel physical and chemical properties, exciting applications in the fields of photovoltaics, electronics and photocatalysis can be achieved. In recent decades, various methods have been developed for synthesizing a library of polytypic nanocrystals encompassing IV, III-V and II-VI polytypic semiconductors. The exceptional performances of polytypic metal chalcogenide nanocrystals have been observed, making them highly promising candidates for applications in photonics and electronics. However, achieving high-precision control over the morphology, composition, crystal structure, size, homojunctions, and periodicity of polytypic metal chalcogenide nanostructures remains a significant synthetic challenge. This review article offers a comprehensive overview of recent progress in the synthesis and control of polytypic metal chalcogenide nanocrystals using colloidal synthetic strategies. Starting from a concise introduction on the crystal structures of metal chalcogenides, the subsequent discussion delves into the colloidal synthesis of polytypic metal chalcogenide nanocrystals, followed by an in-depth exploration of the key factors governing polytypic structure construction. Subsequently, we provide comprehensive insights into the physical properties of polytypic metal chalcogenide nanocrystals, which exhibit strong correlations with their applications. Thereafter, we emphasize the significance of polytypic nanostructures in various applications, such as photovoltaics, photocatalysis, transistors, thermoelectrics, stress sensors, and the electrocatalytic hydrogen evolution. Finally, we present a summary of the recent advancements in this research field and provide insightful perspectives on the forthcoming challenges, opportunities, and future research directions.
Collapse
Affiliation(s)
- Liang Wu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Yi Li
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Guo-Qiang Liu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Shu-Hong Yu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
- Department of Chemistry, Institute of Innovative Materials, Department of Materials Science and Engineering, Southern University of Science and Technology of China, Shenzhen 518055, China.
| |
Collapse
|
12
|
Cao Q, Feng J, Chang KT, Liang W, Lu H. Emerging Opportunities of Colloidal Quantum Dots for Photocatalytic Organic Transformations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2409096. [PMID: 39340294 DOI: 10.1002/adma.202409096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/12/2024] [Indexed: 09/30/2024]
Abstract
Colloidal quantum dots (QDs) have emerged as a versatile photocatalyst for a wide range of photocatalytic transformations owing to its high absorption coefficient, large surface-to-volume ratio, high stability, and efficient charge and energy transfer dynamics. The past decades have witnessed a rapid development of QDs for artificial photocatalysis. In this review, the unique characteristics of QDs are focused on, including quantum size effect, compositional and structural diversity, tunable surface chemistry, and photophysics, that can be utilized for photocatalytic transformations. The recent advancements in photocatalytic organic transformations enabled by QDs photocatalysts are summarized. The unique opportunities of QDs are highlighted to tackle organic reactions that are previously unattainable with small molecule photocatalysts. Lastly, an outlook is provided for future directions in this field.
Collapse
Affiliation(s)
- Qinxuan Cao
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Jianning Feng
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Kin Ting Chang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Wenfei Liang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Haipeng Lu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
13
|
Mawaddah FAN, Bisri SZ. Advancing Silver Bismuth Sulfide Quantum Dots for Practical Solar Cell Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1328. [PMID: 39195366 DOI: 10.3390/nano14161328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024]
Abstract
Colloidal quantum dots (CQDs) show unique properties that distinguish them from their bulk form, the so-called quantum confinement effects. This feature manifests in tunable size-dependent band gaps and discrete energy levels, resulting in distinct optical and electronic properties. The investigation direction of colloidal quantum dots (CQDs) materials has started switching from high-performing materials based on Pb and Cd, which raise concerns regarding their toxicity, to more environmentally friendly compounds, such as AgBiS2. After the first breakthrough in solar cell application in 2016, the development of AgBiS2 QDs has been relatively slow, and many of the fundamental physical and chemical properties of this material are still unknown. Investigating the growth of AgBiS2 QDs is essential to understanding the fundamental properties that can improve this material's performance. This review comprehensively summarizes the synthesis strategies, ligand choice, and solar cell fabrication of AgBiS2 QDs. The development of PbS QDs is also highlighted as the foundation for improving the quality and performance of AgBiS2 QD. Furthermore, we prospectively discuss the future direction of AgBiS2 QD and its use for solar cell applications.
Collapse
Affiliation(s)
- Fidya Azahro Nur Mawaddah
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi 184-8588, Tokyo, Japan
| | - Satria Zulkarnaen Bisri
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi 184-8588, Tokyo, Japan
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako 351-0198, Saitama, Japan
| |
Collapse
|
14
|
Rashmi, Sharma SK, Chaudhary V, Pala RGS, Sivakumar S. Rapid nucleation and optimal surface-ligand interaction stabilize wurtzite MnSe. Phys Chem Chem Phys 2024; 26:20837-20851. [PMID: 39044559 DOI: 10.1039/d4cp02294g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Non-native structures (NNS) differ in discrete translational symmetry from the bulk ground state native structure (NS). To explore the extent of deconvolution of various factors relevant to the stabilization of the wurtzite/NNS of MnSe via a heat-up method, we performed experiments using various ligands (oleic acid, oleylamine, octadecylamine, stearic acid, and octadecene), solvents (tetraethylene glycol and octadecene), and precursor salts (manganese chloride and manganese acetate). Experiments suggest that oleic acid in the presence of tetraethylene glycol and oleylamine in the presence of octadecene stabilize wurtzite/NNS. Further, density functional theory (DFT) computations explore the interaction between the functional groups in ligands and the most exposed surfaces of wurtzite/NNS and rocksalt/NS polymorphs. Computations suggest that the interactions between relevant surface facets with carboxylic acid and the double bond functional groups suppress the phase transformation from NNS to NS. In addition, the ionizability of the precursor salt also determines the rate of formation of the metal-ligand complex and the rate of nucleation. Consequently, the formation rate of the Mn-ligand complex is expected to be greater in the case of chloride salt than acetate salt because the chloride salt has higher ionizability in ethylene glycol. From the above, we conclude that the kinetics of the wurtzite/NNS to rocksalt/NS phase transformation depends mainly on two factors: (1) nucleation/growth kinetics which is controlled by the ionizability of the precursor salt, solvent, and stability of the metal-ligand complex, and (2) the activation energy barrier of the NNS to NS conversion which is controlled by surface energy minimization with the ligand.
Collapse
Affiliation(s)
- Rashmi
- Materials Science Programme, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India.
| | - Shilendra Kumar Sharma
- Materials Science Programme, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India.
| | - Vivek Chaudhary
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
| | - Raj Ganesh S Pala
- Materials Science Programme, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India.
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
| | - Sri Sivakumar
- Materials Science Programme, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India.
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
- Centre for Environmental Science and Engineering, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
- Centre for Nanosciences, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
- Gangwal School and Mehta Family Center for Engineering in Medicine, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
| |
Collapse
|
15
|
Jin L, Selopal GS, Tong X, Perepichka DF, Wang ZM, Rosei F. Heavy-Metal-Free Colloidal Quantum Dots: Progress and Opportunities in Solar Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402912. [PMID: 38923167 DOI: 10.1002/adma.202402912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Colloidal quantum dots (QDs) hold great promise as building blocks in solar technologies owing to their remarkable photostability and adjustable properties through the rationale involving size, atomic composition of core and shell, shapes, and surface states. However, most high-performing QDs in solar conversion contain hazardous metal elements, including Cd and Pb, posing significant environmental risks. Here, a comprehensive review of heavy-metal-free colloidal QDs for solar technologies, including photovoltaic (PV) devices, solar-to-chemical fuel conversion, and luminescent solar concentrators (LSCs), is presented. Emerging synthetic strategies to optimize the optical properties by tuning the energy band structure and manipulating charge dynamics within the QDs and at the QDs/charge acceptors interfaces, are analyzed. A comparative analysis of different synthetic methods is provided, structure-property relationships in these materials are discussed, and they are correlated with the performance of solar devices. This work is concluded with an outlook on challenges and opportunities for future work, including machine learning-based design, sustainable synthesis, and new surface/interface engineering.
Collapse
Affiliation(s)
- Lei Jin
- Centre for Energy, Materials and Telecommunications, National Institute of Scientific Research, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X1P7, Canada
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Gurpreet Singh Selopal
- Department of Engineering, Faculty of Agriculture, Dalhousie University, 39 Cox Rd, Banting Building, Truro, NS, B2N 5E3, Canada
| | - Xin Tong
- Shimmer Center, Tianfu Jiangxi Laboratory, Chengdu, 641419, P. R. China
| | - Dmytro F Perepichka
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Zhiming M Wang
- Shimmer Center, Tianfu Jiangxi Laboratory, Chengdu, 641419, P. R. China
| | - Federico Rosei
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgeri 1, Trieste, 34127, Italy
| |
Collapse
|
16
|
Hou D, Lv P, Niu W, Guan Z, Wang L, Zhao J, Li X, Ye H, Tang A. Controllable Synthesis of Cadmium-Free Blue-Emitting Cu-Ga-Zn-S-Based Nanocrystals for Solution-Processed Quantum-Dot Light-Emitting Diodes. J Phys Chem Lett 2024; 15:7516-7523. [PMID: 39023013 DOI: 10.1021/acs.jpclett.4c01527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The utility of semiconductor nanocrystals (NCs) in light-emitting diodes (LED) has shown great potential in the field of display, whereas the challenge remains in developing efficient and stable cadmium-free blue-emitting LED devices due to the poor photophysical properties of blue-emitting NCs. Herein, we develop a controllable synthesis of Cu-Ga-Zn-S (CGZS) semiconductor NCs that show blue light emission with a relative photoluminescence quantum yield exceeding 90%. Furthermore, we have successfully fabricated a solution-processed quantum-dot LED (QLED) using CGZS NCs, achieving a notable maximum external quantum efficiency (EQE) of 1.00% at a luminance of 100 cd/m2. Our work lays a foundational framework for advancing cadmium-free blue-emitting QLEDs and facilitates the development of quantum dot electroluminescent panchromatic displays.
Collapse
Affiliation(s)
- Danxing Hou
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Peiwen Lv
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Wentao Niu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Zhongyuan Guan
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Lijin Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Jinxing Zhao
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Xu Li
- Hebei Key Laboratory of Optic-electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Haihang Ye
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Aiwei Tang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
17
|
Khatoon N, Subedi B, Chrisey DB. Synthesis of Silicon and Germanium Oxide Nanostructures via Photonic Curing; a Facile Approach to Scale Up Fabrication. ChemistryOpen 2024; 13:e202300260. [PMID: 38308174 PMCID: PMC11230936 DOI: 10.1002/open.202300260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/24/2024] [Indexed: 02/04/2024] Open
Abstract
Silicon and Germanium oxide (SiOx and GeOx) nanostructures are promising materials for energy storage applications due to their potentially high energy density, large lithiation capacity (~10X carbon), low toxicity, low cost, and high thermal stability. This work reports a unique approach to achieving controlled synthesis of SiOx and GeOx nanostructures via photonic curing. Unlike conventional methods like rapid thermal annealing, quenching during pulsed photonic curing occurs rapidly (sub-millisecond), allowing the trapping of metastable states to form unique phases and nanostructures. We explored the possible underlying mechanism of photonic curing by incorporating laws of photophysics, photochemistry, and simulated temperature profile of thin film. The results show that photonic curing of spray coated 0.1 M molarity Si and Ge Acetyl Acetate precursor solution, at total fluence 80 J cm-2 can yield GeOx and SiOx nanostructures. The as-synthesized nanostructures are ester functionalized due to photoinitiated chemical reactions in thin film during photonic curing. Results also showed that nanoparticle size changes from ~48 nm to ~11 nm if overall fluence is increased by increasing the number of pulses. These results are an important contribution towards large-scale synthesis of the Ge and Si oxide nanostructured materials which is necessary for next-generation energy storage devices.
Collapse
Affiliation(s)
- Najma Khatoon
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118
| | - Binod Subedi
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118
| | - Douglas B Chrisey
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118
| |
Collapse
|
18
|
Aguilar GT, Mijares MM, Solís-Pomar F, Gutiérrez-Lazos CD, Pérez-Tijerina EG, Cruz AF. One-Pot Synthesis of CdTe/ZnS Quantum Dots and their Physico-Chemical Characterization. J Fluoresc 2024; 34:1801-1810. [PMID: 37624469 DOI: 10.1007/s10895-023-03406-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
A known property of quantum dots (QDs) is their characteristic luminescence, which would make it possible to detect different types of cancers after being functionalized with some type of biological molecule. For this reason, in the present investigation a methodological analysis of the physicochemical characteristics of the CdTe/ZnS core/shell QDs was carried out, using techniques such as Optical Absorbance Spectroscopy (UV-Vis), Molecular Fluorescence, Fourier Transform Infrared Spectroscopy (FT-IR), Dynamic Light Scattering (DLS), X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and Zeta Potential that allowed to verify the photoluminescent effectiveness of these semiconductor nanocrystals as an alternative to conventional techniques currently used for the detection of specific cancers smaller than 1 cm. The study consisted of theoretically determining the bandgap energy, the size of the nanocrystals and the molar absorptivity from the wavelength value for the maximum intensity of the excitonic peak. It was also possible to verify the maximum intensity for each sample and thus evaluate its photoluminescent response, as well as it was possible to determine the charge distribution, the hydrodynamic size and the surface composition of each quantum dot. The results obtained correspond to what has been reported in the literature, which makes them good candidates for the detection of cancer in precancerous stages.
Collapse
Affiliation(s)
- Gabriela Travieso Aguilar
- Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, Zapata y G. Vedado, 10400, La Habana, Cuba
| | - Maykel Márquez Mijares
- Instituto Superior de Tecnologías y Ciencias Aplicadas (InSTEC), Universidad de La Habana, Zapata y G. Vedado, 10400, La Habana, Cuba
| | - Francisco Solís-Pomar
- CICFIM Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, 66455, San Nicolás de los Garza, Nuevo León, Mexico.
| | - C D Gutiérrez-Lazos
- CICFIM Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, 66455, San Nicolás de los Garza, Nuevo León, Mexico
| | - Eduardo G Pérez-Tijerina
- CICFIM Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, 66455, San Nicolás de los Garza, Nuevo León, Mexico
| | - Abel Fundora Cruz
- Instituto Superior de Tecnologías y Ciencias Aplicadas (InSTEC), Universidad de La Habana, Zapata y G. Vedado, 10400, La Habana, Cuba
| |
Collapse
|
19
|
Tran A, Valleix R, Réveret F, Frezet L, Cisnetti F, Boyer D. Encapsulation of InP/ZnS Quantum Dots into MOF-5 Matrices for Solid-State Luminescence: Ship in the Bottle and Bottle around the Ship Methodologies. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3155. [PMID: 38998238 PMCID: PMC11242582 DOI: 10.3390/ma17133155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
The utilization of InP-based quantum dots (QDs) as alternative luminescent nanoparticles to cadmium-based QDs is actively pursued. However, leveraging their luminescence for solid-state applications presents challenges due to the sensitivity of InP QDs to oxidation and aggregation-caused quenching. Hence, an appealing strategy is to protect and disperse InP QDs within hybrid materials. Metal-organic frameworks (MOFs) offer a promising solution as readily available crystalline porous materials. Among these, MOF-5 (composed of {Zn4O}6+ nodes and terephthalate struts) can be synthesized under mild conditions (at room temperature and basic pH), making it compatible with InP QDs. In the present work, luminescent InP/ZnS QDs are successfully incorporated within MOF-5 by two distinct methods. In the bottle around the ship (BAS) approach, the MOF was synthesized around the QDs. Alternatively, in the ship in the bottle (SIB) strategy, the QDs were embedded via capillarity into a specially engineered, more porous variant of MOF-5. Comparative analysis of the BAS and SIB approaches, evaluating factors such as operational simplicity, photoluminescence properties, and the resistance of the final materials to leaching were carried out. This comparative study provides insights into the efficacy of these strategies for the integration of InP/ZnS QDs within MOF-5 for potential solid-state applications in materials chemistry.
Collapse
Affiliation(s)
- Alexis Tran
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France
| | - Rodolphe Valleix
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France
| | - François Réveret
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France
| | - Lawrence Frezet
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France
| | - Federico Cisnetti
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France
| | - Damien Boyer
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France
| |
Collapse
|
20
|
Lee JE, Lee CJ, Lee SJ, Jeong UH, Park JG. Potassium Iodide Doping for Vacancy Substitution and Dangling Bond Repair in InP Core-Shell Quantum Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1055. [PMID: 38921931 PMCID: PMC11206699 DOI: 10.3390/nano14121055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
This work highlights the novel approach of incorporating potassium iodide (KI) doping during the synthesis of In0.53P0.47 core quantum dots (QDs) to significantly reduce the concentration of vacancies (i.e., In vacancies; VIn-) within the bulk of the core QD and inhibit the formation of InPOx at the core QD-Zn0.6Se0.4 shell interfaces. The photoluminescence quantum yield (PLQY) of ~97% and full width at half maximum (FWHM) of ~40 nm were achieved for In0.53P0.47/Zn0.6Se0.4/Zn0.6Se0.1S0.3/Zn0.5S0.5 core/multi-shell QDs emitting red light, which is essential for a quantum-dot organic light-emitting diode (QD-OLED) without red, green, and blue crosstalk. KI doping eliminated VIn- in the core QD bulk by forming K+-VIn- substitutes and effectively inhibited the formation of InPO4(H2O)2 at the core QD-Zn0.6Se0.4 shell interface through the passivation of phosphorus (P)-dangling bonds by P-I bonds. The elimination of vacancies in the core QD bulk was evidenced by the decreased relative intensity of non-radiative unpaired electrons, measured by electron spin resonance (ESR). Additionally, the inhibition of InPO4(H2O)2 formation at the core QD and shell interface was confirmed by the absence of the {210} X-ray diffraction (XRD) peak intensity for the core/multi-shell QDs. By finely tuning the doping concentration, the optimal level was achieved, ensuring maximum K-VIn- substitution, minimal K+ and I- interstitials, and maximum P-dangling bond passivation. This resulted in the smallest core QD diameter distribution and maximized optical properties. Consequently, the maximum PLQY (~97%) and minimum FWHM (~40 nm) were observed at 3% KI doping. Furthermore, the color gamut of a QD-OLED display using R-, G-, and B-QD functional color filters (i.e., ~131.1%@NTSC and ~98.2@Rec.2020) provided a nearly perfect color representation, where red-light-emitting KI-doped QDs were applied.
Collapse
Affiliation(s)
- Ji-Eun Lee
- Department of Information Display Engineering, Hanyang University, Seoul 04763, Republic of Korea;
| | - Chang-Jin Lee
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea; (C.-J.L.); (S.-J.L.); (U.-H.J.)
| | - Seung-Jae Lee
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea; (C.-J.L.); (S.-J.L.); (U.-H.J.)
- Samsung Electronics, 130 Samsung-ro, Suwon 16678, Republic of Korea
| | - Ui-Hyun Jeong
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea; (C.-J.L.); (S.-J.L.); (U.-H.J.)
| | - Jea-Gun Park
- Department of Information Display Engineering, Hanyang University, Seoul 04763, Republic of Korea;
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea; (C.-J.L.); (S.-J.L.); (U.-H.J.)
| |
Collapse
|
21
|
Yoo D, Choi MJ. Asymmetric Metal-Carboxylate Complexes for Synthesis of InGaP Alloyed Quantum Dots with Blue Emission. ACS NANO 2024; 18:16051-16058. [PMID: 38840340 DOI: 10.1021/acsnano.4c05643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Indium phosphide (InP) quantum dots (QDs) have attracted significant interest as next-generation light-emitting materials. However, the synthesis of blue-emitting InP-based QDs has lagged behind that of established green- and red-emitting InP QDs. Herein, we present a strategy to synthesize blue-emitting QDs by forming an InGaP alloy composition. The introduction of asymmetric In-carboxylate and Ga-carboxylate complexes resulted in a balanced synthetic reactivity between In-P and Ga-P, leading to the formation of InGaP alloyed QDs. The resultant In1-xGaxP alloyed QDs exhibited a broad range of photoluminescence (PL) tunability, spanning from 535 nm (InP) to 465 nm (In0.62Ga0.38P), depending on the In/Ga ratio used in the synthesis. In contrast, synthesis with symmetric In-carboxylate and Ga-carboxylate complexes produced a core/shell structure of InP/GaP QDs, which did not exhibit a blue shift of the PL peak with Ga addition. By employing a core/shell structure of In0.62Ga0.38P/ZnS QDs, we achieved a PL quantum yield of 42% at 475 nm. This work highlights the material-processing strategy essential for forming alloyed structures in III-V ternary systems.
Collapse
Affiliation(s)
- Doheon Yoo
- Department of Chemical and Biochemical Engineering, Dongguk University, Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea
| | - Min-Jae Choi
- Department of Chemical and Biochemical Engineering, Dongguk University, Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea
| |
Collapse
|
22
|
Roshan H, Zhu D, Piccinotti D, Dai J, De Franco M, Barelli M, Prato M, De Trizio L, Manna L, Di Stasio F. Near Infrared Light-Emitting Diodes Based on Colloidal InAs/ZnSe Core/Thick-Shell Quantum Dots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400734. [PMID: 38622892 PMCID: PMC11187924 DOI: 10.1002/advs.202400734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/10/2024] [Indexed: 04/17/2024]
Abstract
Heavy-metal-free III-V colloidal quantum dots (QDs) exhibit promising attributes for application in optoelectronics. Among them, InAs QDs are demonstrating excellent optical performance with respect to absorption and emission in the near-infrared spectral domain. Recently, InAs QDs attained a substantial improvement in photoluminescence quantum yield, achieving 70% at a wavelength of 900 nm through the strategic overgrowth of a thick ZnSe shell atop the InAs core. In the present study, light-emitting diodes (LEDs) based on this type of InAs/ZnSe QDs are fabricated, reaching an external quantum efficiency (EQE) of 13.3%, a turn-on voltage of 1.5V, and a maximum radiance of 12 Wsr-1m-2. Importantly, the LEDs exhibit an extensive emission dynamic range, characterized by a nearly linear correlation between emission intensity and current density, which can be attributed to the efficient passivation provided by the thick ZnSe shell. The obtained results are comparable to state-of-the-art PbS QD LEDs. Furthermore, it should be stressed not only that the fabricated LEDs are fully RoHS-compliant but also that the emitting InAs QDs are prepared via a synthetic route based on a non-pyrophoric, cheap, and commercially available as precursor, namely tris(dimethylamino)-arsine.
Collapse
Affiliation(s)
- Hossein Roshan
- Photonic NanomaterialsIstituto Italiano di TecnologiaVia Morego 30Genova16163Italy
| | - Dongxu Zhu
- NanochemistryIstituto Italiano di TecnologiaVia Morego 30Genova16163Italy
| | - Davide Piccinotti
- Photonic NanomaterialsIstituto Italiano di TecnologiaVia Morego 30Genova16163Italy
| | - Jinfei Dai
- NanochemistryIstituto Italiano di TecnologiaVia Morego 30Genova16163Italy
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic TechniqueSchool of Electronic Science and EngineeringXi'an Jiaotong UniversityXi'an710049China
| | - Manuela De Franco
- Photonic NanomaterialsIstituto Italiano di TecnologiaVia Morego 30Genova16163Italy
- Dipartimento di Chimica e Chimica IndustrialeUniversità degli Studi di GenovaVia Dodecaneso 31Genova16146Italy
| | - Matteo Barelli
- Photonic NanomaterialsIstituto Italiano di TecnologiaVia Morego 30Genova16163Italy
| | - Mirko Prato
- Materials Characterization FacilityIstituto Italiano di TecnologiaVia Morego 30Genova16163Italy
| | - Luca De Trizio
- Chemistry FacilityIstituto Italiano di TecnologiaVia Morego 30Genova16163Italy
| | - Liberato Manna
- NanochemistryIstituto Italiano di TecnologiaVia Morego 30Genova16163Italy
| | - Francesco Di Stasio
- Photonic NanomaterialsIstituto Italiano di TecnologiaVia Morego 30Genova16163Italy
| |
Collapse
|
23
|
Lian K, Zhang X, Zhao Y, Deng Z, Zhang F, Wang Z, Zhang H, Han J, Fan C, Sun C. High-Efficiency Blue-Emitting Mn-Ligand passivated CsPbBr 3 nanoplatelets. J Colloid Interface Sci 2024; 663:157-166. [PMID: 38401437 DOI: 10.1016/j.jcis.2024.02.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Perovskite nanoplatelets (NPLs), as a promising material to achieve pure blue emission, have attracted significant attention in high gamut displays. However, the high surface-to-volume ratio and the loosely connected ligands of NPLs make them susceptible to degradation from light, air and heat. As a result, NPLs often exhibit low photoluminescence (PL) intensity and instability. Here, an Mn-ligand passivation strategy is proposed, in which Mn-doped DMAPbBr3 is used as a precursor. During the perovskite transformation, Mn2+ ions migrate from the lattice of DMAPbBr3 to the surface of CsPbBr3 NPLs, which have strong binding forces with ligands. The final products Mn-CsPbBr3 (M-CPB) NPLs are then acquired by the ligand-induced ripening growth process, which not only exhibit pure blue emission with narrow full width at half maximum (FWHM), but also possess near-unity PL quantum yields (QYs). Besides, M-CPB NPLs show excellent stability due to the strong Mn-ligand passivation layer. Based on the new growth mechanism discovery, the reaction time can be shortened to several minutes by heating. The innovative growth model proposed in this work will provide a paradigm for designing and optimizing future synthesis schemes.
Collapse
Affiliation(s)
- Kai Lian
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China; Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
| | - Xiaoyu Zhang
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, PR China.
| | - Yiwei Zhao
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China; Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
| | - Zhihui Deng
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China; Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
| | - Fuhao Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China; Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
| | - Zhengtong Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China; Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
| | - Hu Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China; Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
| | - Jiachen Han
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China; Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
| | - Chao Fan
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China; Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
| | - Chun Sun
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China; Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
| |
Collapse
|
24
|
Scholtz L, Eckert JG, Graf RT, Kunst A, Wegner KD, Bigall NC, Resch-Genger U. Correlating semiconductor nanoparticle architecture and applicability for the controlled encoding of luminescent polymer microparticles. Sci Rep 2024; 14:11904. [PMID: 38789603 PMCID: PMC11126414 DOI: 10.1038/s41598-024-62591-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024] Open
Abstract
Luminophore stained micro- and nanobeads made from organic polymers like polystyrene (PS) are broadly used in the life and material sciences as luminescent reporters, for bead-based assays, sensor arrays, printable barcodes, security inks, and the calibration of fluorescence microscopes and flow cytometers. Initially mostly prepared with organic dyes, meanwhile luminescent core/shell nanoparticles (NPs) like spherical semiconductor quantum dots (QDs) are increasingly employed for bead encoding. This is related to their narrower emission spectra, tuneability of emission color, broad wavelength excitability, and better photostability. However, correlations between particle architecture, morphology, and photoluminescence (PL) of the luminescent nanocrystals used for encoding and the optical properties of the NP-stained beads have been rarely explored. This encouraged us to perform a screening study on the incorporation of different types of luminescent core/shell semiconductor nanocrystals into polymer microparticles (PMPs) by a radical-induced polymerization reaction. Nanocrystals explored include CdSe/CdS QDs of varying CdS shell thickness, a CdSe/ZnS core/shell QD, CdSe/CdS quantum rods (QRs), and CdSe/CdS nanoplatelets (NPLs). Thereby, we focused on the applicability of these NPs for the polymerization synthesis approach used and quantified the preservation of the initial NP luminescence. The spectroscopic characterization of the resulting PMPs revealed the successful staining of the PMPs with luminescent CdSe/CdS QDs and CdSe/CdS NPLs. In contrast, usage of CdSe/CdS QRs and CdSe QDs with a ZnS shell did not yield luminescent PMPs. The results of this study provide new insights into structure-property relationships between NP stained PMPs and the initial luminescent NPs applied for staining and underline the importance of such studies for the performance optimization of NP-stained beads.
Collapse
Affiliation(s)
- Lena Scholtz
- Federal Institute for Materials Research and Testing (BAM), Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489, Berlin, Germany
- Institute for Chemistry and Biochemistry, Free University Berlin, Takustraße 3, 14195, Berlin, Germany
| | - J Gerrit Eckert
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstraße 3A, 30167, Hannover, Germany
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines), 30167, Hannover, Germany
| | - Rebecca T Graf
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstraße 3A, 30167, Hannover, Germany
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines), 30167, Hannover, Germany
- Laboratory of Nano- and Quantum Engineering, Leibniz University Hannover, Schneiderberg 39, 30167, Hanover, Germany
| | - Alexandra Kunst
- Federal Institute for Materials Research and Testing (BAM), Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489, Berlin, Germany
- Institute for Chemistry and Biochemistry, Free University Berlin, Takustraße 3, 14195, Berlin, Germany
| | - K David Wegner
- Federal Institute for Materials Research and Testing (BAM), Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Nadja C Bigall
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstraße 3A, 30167, Hannover, Germany
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines), 30167, Hannover, Germany
- Laboratory of Nano- and Quantum Engineering, Leibniz University Hannover, Schneiderberg 39, 30167, Hanover, Germany
- Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Ute Resch-Genger
- Federal Institute for Materials Research and Testing (BAM), Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489, Berlin, Germany.
| |
Collapse
|
25
|
Guo Z, Zhang J, Wang J, Liu X, Guo P, Sun T, Li L, Gao H, Xiong L, Huang J. Organic Synaptic Transistors with Environmentally Friendly Core/Shell Quantum Dots for Wavelength-Selective Memory and Neuromorphic Functions. NANO LETTERS 2024; 24:6139-6147. [PMID: 38722705 DOI: 10.1021/acs.nanolett.4c01606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Organic transistors based on organic semiconductors together with quantum dots (QDs) are attracting more and more interest because both materials have excellent optoelectronic properties and solution processability. Electronics based on nontoxic QDs are highly desired considering the potential health risks but are limited by elevated surface defects, inadequate stability, and diminished luminescent efficiency. Herein, organic synaptic transistors based on environmentally friendly ZnSe/ZnS core/shell QDs with passivating surface defects are developed, exhibiting optically programmable and electrically erasable characteristics. The synaptic transistors feature linear multibit storage capability and wavelength-selective memory function with a retention time above 6000 s. Various neuromorphic applications, including memory enhancement, optical communication, and memory consolidation behaviors, are simulated. Utilizing an established neuromorphic model, accuracies of 92% and 91% are achieved in pattern recognition and complicated electrocardiogram signal processing, respectively. This research highlights the potential of environmentally friendly QDs in neuromorphic applications and health monitoring.
Collapse
Affiliation(s)
- Ziyi Guo
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Junyao Zhang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Jun Wang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Xu Liu
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Pu Guo
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Tongrui Sun
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Li Li
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Huaiyu Gao
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Lize Xiong
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital Affiliated to Tongji University, Tongji University, Shanghai 200434, P. R. China
| | - Jia Huang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital Affiliated to Tongji University, Tongji University, Shanghai 200434, P. R. China
| |
Collapse
|
26
|
Sun S, Lu M, Lu P, Li X, Zhang F, Wu Z, Wang T, Yan F, Li T, Feng T, Zhang Y, Bai X. Modulation of Nucleation and Growth Kinetics of Perovskite Nanocrystals Enables Efficient and Spectrally Stable Pure-Red Light-Emitting Diodes. NANO LETTERS 2024; 24:5631-5638. [PMID: 38669049 DOI: 10.1021/acs.nanolett.4c01099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Perovskite light-emitting diodes (PeLEDs) based on CsPb(Br/I)3 nanocrystals (NCs) usually suffer from severe spectral instability under operating voltage due to the poor-quality PeNCs. Herein, zeolite was utilized to prepare high-quality CsPb(Br/I)3 NCs via promoting the homogeneous nucleation and growth and suppressing the Ostwald ripening of PeNCs. In addition, the decomposed zeolite interacted strongly with PeNCs through Pb-O bonds and hydrogen bonds, which inhibited the formation of defects and suppressed halide ion migration, leading to an improved photoluminescence quantum yield (PLQY) and enhanced stability of PeNCs. Moreover, the strong binding affinity of decomposed zeolite to PeNCs contributed to the formation of homogeneous perovskite films with high PLQY. As a result, pure-red PeLEDs with Commission International de I'Eclairage (CIE) coordinates of (0.705, 0.291) were fabricated, approaching the Rec. 2020 red primary color. The devices achieved a peak external quantum efficiency of 23.0% and outstanding spectral stability.
Collapse
Affiliation(s)
- Siqi Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Min Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Po Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Xin Li
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Fujun Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Zhennan Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Tianshuang Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Fengping Yan
- Key Laboratory of All Optical Network and Advanced Telecommunication Network, Ministry of Education, Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Ting Li
- Key Laboratory of All Optical Network and Advanced Telecommunication Network, Ministry of Education, Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Ting Feng
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Yu Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
27
|
Han J, Choi S, Hong J, Gang D, Lee S, Shin K, Ko J, Kim JU, Hwang NS, An YH, Gu M, Kim SH. Superoxide Dismutase-Mimetic Polyphenol-Based Carbon Dots for Multimodal Bioimaging and Treatment of Atopic Dermatitis. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38686704 DOI: 10.1021/acsami.4c02634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Polyphenols have been investigated for their potential to mitigate inflammation in the context of atopic dermatitis (AD). In this study, epigallocatechin-3-gallate (EGCG)-based carbon dots (EGCG@CDs) were developed to enhance transdermal penetration, reduce inflammation, recapitulate superoxide dismutase (SOD) activity, and provide antimicrobial effects for AD treatment. The water-soluble EGCG@CDs in a few nanometers size exhibit a negative zeta potential, making them suitable for effective transdermal penetration. The fluorescence properties, including an upconversion effect, make EGCG@CDs suitable imaging probes for both in vitro and in vivo applications. By mimicking the SOD enzyme, EGCG@CDs scavenge reactive oxygen species (ROS) and actively produce hydrogen peroxide through a highly catalytic capability toward the oxygen reduction reaction, resulting in the inhibition of bacterial growth. The enhanced antioxidant properties, high charge mobility, and various functional groups of EGCG@CDs prove effective in reducing intracellular ROS in an in vitro AD model. In the mouse AD model, EGCG@CDs incorporated into a hydrogel actively penetrated the epidermal layer, leading to ROS scavenging, reduced mast cell activation, and histological recovery of skin barriers. This research represents the versatile potential of EGCG@CDs in addressing AD and advancing tissue engineering.
Collapse
Affiliation(s)
- Jeongmin Han
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan 49315, Republic of Korea
| | - Sumi Choi
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan 49315, Republic of Korea
| | - Jinwoo Hong
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan 49315, Republic of Korea
| | - Dayeong Gang
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan 49315, Republic of Korea
| | - Seunghoon Lee
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan 49315, Republic of Korea
- Department of Chemistry, Dong-A University, Busan 49315, Republic of Korea
| | - Kwangsoo Shin
- Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Junghyeon Ko
- School of Chemical and Biological Engineering, The Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong-Uk Kim
- School of Chemical and Biological Engineering, The Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, The Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Bio-MAX/N-Bio, Institute of Bioengineering, Institute of Engineering Research, Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Hyeon An
- School of Chemical and Biological Engineering, The Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Bio-MAX/N-Bio, Institute of Bioengineering, Institute of Engineering Research, Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Minsu Gu
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan 49315, Republic of Korea
| | - Su-Hwan Kim
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan 49315, Republic of Korea
| |
Collapse
|
28
|
Elishav O, Blumer O, Vanderlick TK, Hirshberg B. The effect of ligands on the size distribution of copper nanoclusters: Insights from molecular dynamics simulations. J Chem Phys 2024; 160:164301. [PMID: 38647299 DOI: 10.1063/5.0202432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/07/2024] [Indexed: 04/25/2024] Open
Abstract
Controlling the size distribution in the nucleation of copper particles is crucial for achieving nanocrystals with desired physical and chemical properties. However, their synthesis involves a complex system of solvents, ligands, and copper precursors with intertwining effects on the size of the nanoclusters. We combine molecular dynamics simulations and density functional theory calculations to provide insights into the nucleation mechanism in the presence of a triphenyl phosphite ligand. We identify the crucial role of the strength of the metal-phosphine interaction in inhibiting the cluster's growth. We demonstrate computationally several practical routes to fine-tune the interaction strength by modifying the side groups of the additive. Our work provides molecular insights into the complex nucleation process of protected copper nanocrystals, which can assist in controlling their size distribution and, eventually, their morphology.
Collapse
Affiliation(s)
- Oren Elishav
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, USA
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ofir Blumer
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - T Kyle Vanderlick
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, USA
| | - Barak Hirshberg
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
- The Ratner Center for Single Molecule Science, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
29
|
Uematsu T, Izumi R, Sugano S, Sugano R, Hirano T, Motomura G, Torimoto T, Kuwabata S. Spectrally narrow band-edge photoluminescence from AgInS 2-based core/shell quantum dots for electroluminescence applications. Faraday Discuss 2024; 250:281-297. [PMID: 37966107 DOI: 10.1039/d3fd00142c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
This study presents a facile synthesis of cadmium-free ternary and quaternary quantum dots (QDs) and their application to light-emitting diode (LED) devices. AgInS2 ternary QDs, developed as a substitute for cadmium chalcogenide QDs, exhibited spectrally broad photoluminescence due to intrinsic defect levels. Our group has successfully achieved narrow band-edge PL by a coating with gallium sulfide shell. Subsequently, an intrinsic difficulty in the synthesis of multinary compound QDs, which often results in unnecessary byproducts, was surmounted by a new approach involving the nucleation of silver sulfide followed by material conversion to the intended composition (silver indium gallium sulfide). By fine-tuning this reaction and bringing the starting material closer to stoichiometric compositional ratios, atom economy was further improved. These QDs have been tested in LED applications, but the standard device encountered a significant defective emission that would have been eliminated by the gallium sulfide shells. This problem is addressed by introducing gallium oxide as a new electron transport layer.
Collapse
Affiliation(s)
- Taro Uematsu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryunosuke Izumi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Shoki Sugano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Riku Sugano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Tatsuya Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Genichi Motomura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
- Science & Technology Research Laboratories, Japan Broadcasting Corporation (NHK), Tokyo 157-8510, Japan
| | - Tsukasa Torimoto
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Susumu Kuwabata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
30
|
Gil HM, Booth Z, Price TW, Lee J, Naylor-Adamson L, Avery M, Muravitskaya A, Hondow N, Allsup D, Schneider JE, Naseem K, Adawi AM, Bouillard JSG, Chamberlain TW, Calaminus SDJ, Stasiuk GJ. Impact of Surface Ligand on the Biocompatibility of InP/ZnS Quantum Dots with Platelets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304881. [PMID: 37946631 DOI: 10.1002/smll.202304881] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/24/2023] [Indexed: 11/12/2023]
Abstract
InP/ZnS quantum dots (QDs) have received a large focus in recent years as a safer alternative to heavy metal-based QDs. Given their intrinsic fluorescent imaging capabilities, these QDs can be potentially relevant for in vivo platelet imaging. The InP/ZnS QDs are synthesized and their biocompatibility investigated through the use of different phase transfer agents. Analysis of platelet function indicates that platelet-QD interaction can occur at all concentrations and for all QD permutations tested. However, as the QD concentration increases, platelet aggregation is induced by QDs alone independent of natural platelet agonists. This study helps to define a range of concentrations and coatings (thioglycolic acid and penicillamine) that are biocompatible with platelet function. With this information, the platelet-QD interaction can be identified using multiple methods. Fluorescent lifetime imaging microscopy (FLIM) and confocal studies have shown QDs localize on the surface of the platelet toward the center while showing evidence of energy transfer within the QD population. It is believed that these findings are an important stepping point for the development of fluorescent probes for platelet imaging.
Collapse
Affiliation(s)
- Hélio M Gil
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK
| | - Zoe Booth
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK
| | - Thomas W Price
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Jessica Lee
- Centre for Biomedicine, University of Hull, Hull , HU6 7RX, UK
| | - Leigh Naylor-Adamson
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK
| | - Michelle Avery
- Centre for Biomedicine, University of Hull, Hull , HU6 7RX, UK
| | - Alina Muravitskaya
- Department of Physics and Mathematics, University of Hull, Hull , HU6 7RX, UK
| | - Nicole Hondow
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - David Allsup
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK
| | | | - Khalid Naseem
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Ali M Adawi
- Department of Physics and Mathematics, University of Hull, Hull , HU6 7RX, UK
| | | | - Thomas W Chamberlain
- Institute of Process Research and Development School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Simon D J Calaminus
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK
| | - Graeme J Stasiuk
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
| |
Collapse
|
31
|
Färkkilä SMA, Mortimer M, Jaaniso R, Kahru A, Kiisk V, Kikas A, Kozlova J, Kurvet I, Mäeorg U, Otsus M, Kasemets K. Comparison of Toxicity and Cellular Uptake of CdSe/ZnS and Carbon Quantum Dots for Molecular Tracking Using Saccharomyces cerevisiae as a Fungal Model. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:10. [PMID: 38202465 PMCID: PMC10781119 DOI: 10.3390/nano14010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Plant resource sharing mediated by mycorrhizal fungi has been a subject of recent debate, largely owing to the limitations of previously used isotopic tracking methods. Although CdSe/ZnS quantum dots (QDs) have been successfully used for in situ tracking of essential nutrients in plant-fungal systems, the Cd-containing QDs, due to the intrinsic toxic nature of Cd, are not a viable system for larger-scale in situ studies. We synthesized amino acid-based carbon quantum dots (CQDs; average hydrodynamic size 6 ± 3 nm, zeta potential -19 ± 12 mV) and compared their toxicity and uptake with commercial CdSe/ZnS QDs that we conjugated with the amino acid cysteine (Cys) (average hydrodynamic size 308 ± 150 nm, zeta potential -65 ± 4 mV) using yeast Saccharomyces cerevisiae as a proxy for mycorrhizal fungi. We showed that the CQDs readily entered yeast cells and were non-toxic up to 100 mg/L. While the Cys-conjugated CdSe/ZnS QDs were also not toxic to yeast cells up to 100 mg/L, they were not taken up into the cells but remained on the cell surfaces. These findings suggest that CQDs may be a suitable tool for molecular tracking in fungi (incl. mychorrhizal fungi) due to their ability to enter fungal cells.
Collapse
Affiliation(s)
- Sanni M. A. Färkkilä
- Institute of Ecology and Earth Sciences, University of Tartu, Juhan Liivi 2, 50409 Tartu, Estonia
| | - Monika Mortimer
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (M.M.); (A.K.); (I.K.); (M.O.)
| | - Raivo Jaaniso
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia; (R.J.); (V.K.); (A.K.); (J.K.)
| | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (M.M.); (A.K.); (I.K.); (M.O.)
| | - Valter Kiisk
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia; (R.J.); (V.K.); (A.K.); (J.K.)
| | - Arvo Kikas
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia; (R.J.); (V.K.); (A.K.); (J.K.)
| | - Jekaterina Kozlova
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia; (R.J.); (V.K.); (A.K.); (J.K.)
| | - Imbi Kurvet
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (M.M.); (A.K.); (I.K.); (M.O.)
| | - Uno Mäeorg
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia;
| | - Maarja Otsus
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (M.M.); (A.K.); (I.K.); (M.O.)
| | - Kaja Kasemets
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (M.M.); (A.K.); (I.K.); (M.O.)
| |
Collapse
|
32
|
Miao R, Bissoli M, Basagni A, Marotta E, Corni S, Amendola V. Data-Driven Predetermination of Cu Oxidation State in Copper Nanoparticles: Application to the Synthesis by Laser Ablation in Liquid. J Am Chem Soc 2023; 145:25737-25752. [PMID: 37907392 PMCID: PMC10690790 DOI: 10.1021/jacs.3c09158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
Copper-based nanocrystals are reference nanomaterials for integration into emerging green technologies, with laser ablation in liquid (LAL) being a remarkable technique for their synthesis. However, the achievement of a specific type of nanocrystal, among the whole library of nanomaterials available using LAL, has been until now an empirical endeavor based on changing synthesis parameters and characterizing the products. Here, we started from the bibliographic analysis of LAL synthesis of Cu-based nanocrystals to identify the relevant physical and chemical features for the predetermination of copper oxidation state. First, single features and their combinations were screened by linear regression analysis, also using a genetic algorithm, to find the best correlation with experimental output and identify the equation giving the best prediction of the LAL results. Then, machine learning (ML) models were exploited to unravel cross-correlations between features that are hidden in the linear regression analysis. Although the LAL-generated Cu nanocrystals may be present in a range of oxidation states, from metallic copper to cuprous oxide (Cu2O) and cupric oxide (CuO), in addition to the formation of other materials such as Cu2S and CuCN, ML was able to guide the experiments toward the maximization of the compounds in the greatest demand for integration in sustainable processes. This approach is of general applicability to other nanomaterials and can help understand the origin of the chemical pathways of nanocrystals generated by LAL, providing a rational guideline for the conscious predetermination of laser-synthesis parameters toward the desired compounds.
Collapse
Affiliation(s)
- Runpeng Miao
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Michael Bissoli
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Andrea Basagni
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Ester Marotta
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Vincenzo Amendola
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
33
|
Chen B, Zheng W, Chun F, Xu X, Zhao Q, Wang F. Synthesis and hybridization of CuInS 2 nanocrystals for emerging applications. Chem Soc Rev 2023; 52:8374-8409. [PMID: 37947021 DOI: 10.1039/d3cs00611e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Copper indium sulfide (CuInS2) is a ternary A(I)B(III)X(VI)2-type semiconductor featuring a direct bandgap with a high absorption coefficient. In attempts to explore their practical applications, nanoscale CuInS2 has been synthesized with crystal sizes down to the quantum confinement regime. The merits of CuInS2 nanocrystals (NCs) include wide emission tunability, a large Stokes shift, long decay time, and eco-friendliness, making them promising candidates in photoelectronics and photovoltaics. Over the past two decades, advances in wet-chemistry synthesis have achieved rational control over cation-anion reactivity during the preparation of colloidal CuInS2 NCs and post-synthesis cation exchange. The precise nano-synthesis coupled with a series of hybridization strategies has given birth to a library of CuInS2 NCs with highly customizable photophysical properties. This review article focuses on the recent development of CuInS2 NCs enabled by advanced synthetic and hybridization techniques. We show that the state-of-the-art CuInS2 NCs play significant roles in optoelectronic and biomedical applications.
Collapse
Affiliation(s)
- Bing Chen
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China.
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
| | - Weilin Zheng
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Fengjun Chun
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Xiuwen Xu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China.
| | - Qiang Zhao
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China.
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
34
|
Segura Lecina O, Newton MA, Green PB, Albertini PP, Leemans J, Marshall KP, Stoian D, Loiudice A, Buonsanti R. Surface Chemistry Dictates the Enhancement of Luminescence and Stability of InP QDs upon c-ALD ZnO Hybrid Shell Growth. JACS AU 2023; 3:3066-3075. [PMID: 38034959 PMCID: PMC10685429 DOI: 10.1021/jacsau.3c00457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023]
Abstract
Indium phosphide quantum dots (InP QDs) are a promising example of Restriction of Hazardous Substances directive (RoHS)-compliant light-emitting materials. However, they suffer from low quantum yield and instability upon processing under ambient conditions. Colloidal atomic layer deposition (c-ALD) has been recently proposed as a methodology to grow hybrid materials including QDs and organic/inorganic oxide shells, which possess new functions compared to those of the as-synthesized QDs. Here, we demonstrate that ZnO shells can be grown on InP QDs obtained via two synthetic routes, which are the classical sylilphosphine-based route and the more recently developed aminophosphine-based one. We find that the ZnO shell increases the photoluminescence emission only in the case of aminophosphine-based InP QDs. We rationalize this result with the different chemistry involved in the nucleation step of the shell and the resulting surface defect passivation. Furthermore, we demonstrate that the ZnO shell prevents degradation of the InP QD suspension under ambient conditions by avoiding moisture-induced displacement of the ligands from their surface. Overall, this study proposes c-ALD as a methodology for the synthesis of alternative InP-based core@shell QDs and provides insight into the surface chemistry that results in both enhanced photoluminescence and stability required for application in optoelectronic devices and bioimaging.
Collapse
Affiliation(s)
- Ona Segura Lecina
- Laboratory
of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences
and Engineering (ISIC), École Polytechnique
Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Mark A. Newton
- Laboratory
of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences
and Engineering (ISIC), École Polytechnique
Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Philippe B. Green
- Laboratory
of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences
and Engineering (ISIC), École Polytechnique
Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Petru P. Albertini
- Laboratory
of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences
and Engineering (ISIC), École Polytechnique
Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Jari Leemans
- Laboratory
of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences
and Engineering (ISIC), École Polytechnique
Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Kenneth P. Marshall
- The
Swiss-Norwegian Beamlines, European Synchrotron
Radiation Facility (ESRF), 38000 Grenoble, France
| | - Dragos Stoian
- The
Swiss-Norwegian Beamlines, European Synchrotron
Radiation Facility (ESRF), 38000 Grenoble, France
| | - Anna Loiudice
- Laboratory
of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences
and Engineering (ISIC), École Polytechnique
Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Raffaella Buonsanti
- Laboratory
of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences
and Engineering (ISIC), École Polytechnique
Fédérale de Lausanne, CH-1950 Sion, Switzerland
| |
Collapse
|
35
|
Saha A, Yadav R, Aldakov D, Reiss P. Gallium Sulfide Quantum Dots with Zinc Sulfide and Alumina Shells Showing Efficient Deep Blue Emission. Angew Chem Int Ed Engl 2023; 62:e202311317. [PMID: 37735098 DOI: 10.1002/anie.202311317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 09/23/2023]
Abstract
Solution-processed quantum dot (QD) based blue emitters are of paramount importance in the field of optoelectronics. Despite large research efforts, examples of efficient deep blue/near UV-emitting QDs remain rare due to lack of luminescent wide band gap materials and high defect densities in the existing ones. Here, we introduce a novel type of QDs based on heavy metal free gallium sulfide (Ga2 S3 ) and their core/shell heterostructures Ga2 S3 /ZnS as well as Ga2 S3 /ZnS/Al2 O3 . The photoluminescence (PL) properties of core Ga2 S3 QDs exhibit various decay pathways due to intrinsic defects, resulting in a broad overall PL spectrum. We show that the overgrowth of the Ga2 S3 core QDs with a ZnS shell results in the suppression of the intrinsic defect-mediated states leading to efficient deep-blue emission at 400 nm. Passivation of the core/shell structure with amorphous alumina yields a further enhancement of the PL quantum yield approaching 50 % and leads to an excellent optical and colloidal stability. Finally, we develop a strategy for the aqueous phase transfer of the obtained QDs retaining 80 % of the initial fluorescence intensity.
Collapse
Affiliation(s)
- Avijit Saha
- IRIG-SyMMES, Univ. Grenoble Alpes, INP, CEA, CNRS, 38000, Grenoble, France
| | - Ranjana Yadav
- IRIG-SyMMES, Univ. Grenoble Alpes, INP, CEA, CNRS, 38000, Grenoble, France
| | - Dmitry Aldakov
- IRIG-SyMMES, Univ. Grenoble Alpes, INP, CEA, CNRS, 38000, Grenoble, France
| | - Peter Reiss
- IRIG-SyMMES, Univ. Grenoble Alpes, INP, CEA, CNRS, 38000, Grenoble, France
| |
Collapse
|
36
|
Hamanaka Y, Okuyama S, Yokoi R, Kuzuya T, Takeda K, Sekine C. Photoexcited Carrier Transfer in CuInS 2 Nanocrystal Assembly by Suppressing Resonant-Energy Transfer. Chemphyschem 2023; 24:e202300029. [PMID: 37547980 DOI: 10.1002/cphc.202300029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/18/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023]
Abstract
High-density assemblies or superlattice structures composed of colloidal semiconductor nanocrystals have attracted attention as key materials for next-generation photoelectric conversion devices such as quantum-dot solar cells. In these nanocrystal solids, unique transport and optical phenomena occur due to quantum coupling of localized energy states, charge-carrier hopping, and electromagnetic interactions among closely arranged nanocrystals. In particular, the photoexcited carrier dynamics in nanocrystal solids is important because it significantly affects various device parameters. In this study, we report the photoexcited carrier dynamics in a solid film of CuInS2 nanocrystals, which is one of the potential nontoxic substitutes with Cd- and Pb-free compositions. Meanwhile, these subjects have been extensively studied in nanocrystal solids formed by CdSe and PbS systems. A carrier-hopping mechanism was confirmed using temperature-dependent photoluminescence spectroscopy, which yielded a typical value of the photoexcited carrier-transfer rate of (2.2±0.6)×107 s-1 by suppressing the influence of the excitation-energy transfer.
Collapse
Affiliation(s)
- Yasushi Hamanaka
- Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan
| | - Satoshi Okuyama
- Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan
| | - Rin Yokoi
- Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan
| | - Toshihiro Kuzuya
- College of Design and Manufacturing Technology, Muroran Institute of Technology, Mizumoto-cho, Muroran, 050-8585, Japan
| | - Keiki Takeda
- College of Design and Manufacturing Technology, Muroran Institute of Technology, Mizumoto-cho, Muroran, 050-8585, Japan
| | - Chihiro Sekine
- College of Design and Manufacturing Technology, Muroran Institute of Technology, Mizumoto-cho, Muroran, 050-8585, Japan
| |
Collapse
|
37
|
Sung YM, Kim TG, Yun DJ, Chae BG, Park H, Lee HS, Kim JH, Jun S, Sul S. Effect of trifluoroacetic acid on InP/ZnSe/ZnS quantum dots: mimicking the surface trap and their effects on the photophysical properties. RSC Adv 2023; 13:28160-28164. [PMID: 37753393 PMCID: PMC10518562 DOI: 10.1039/d3ra05441a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
Understanding the precise effects of defects on the photophysical properties of quantum dots (QDs) is essential to their development with near-unity luminescence. Because of the complicated nature of defects in QDs, the origins and detailed roles of the defects still remain rarely understood. In this regard, we used detailed chemical analysis to investigate the effect of surface defects on the optical properties of InP/ZnSe/ZnS QDs by introducing shell defects through controlled trifluoroacetic acid (TFA) etching. TFA treatment on the InP/ZnSe/ZnS QDs partially removed the ZnS shell as well as ligands and reduced the quantum yield by generating energetically deep surface traps. The surface defects of QDs by TFA cause charged trap sites inducing an Auger recombination process with a rate of ca. 200 ps. Based on these results, we proposed possible trap-assisted non-radiative decay pathways between the band-edge state and surface deep traps in InP/ZnSe/ZnS QDs.
Collapse
Affiliation(s)
- Young Mo Sung
- Analytical Engineering Group, Samsung Advanced Institute of Technology 130, Samsung-ro, Yeongtong-gu Suwon-si Gyeonggi-do 16678 South Korea
| | - Tae-Gon Kim
- Organic Materials Lab, Samsung Advanced Institute of Technology 130, Samsung-ro, Yeongtong-gu Suwon-si Gyeonggi-do 16678 South Korea
| | - Dong-Jin Yun
- Analytical Engineering Group, Samsung Advanced Institute of Technology 130, Samsung-ro, Yeongtong-gu Suwon-si Gyeonggi-do 16678 South Korea
| | - Byeong Gyu Chae
- Analytical Engineering Group, Samsung Advanced Institute of Technology 130, Samsung-ro, Yeongtong-gu Suwon-si Gyeonggi-do 16678 South Korea
| | - Hyokeun Park
- Analytical Engineering Group, Samsung Advanced Institute of Technology 130, Samsung-ro, Yeongtong-gu Suwon-si Gyeonggi-do 16678 South Korea
| | - Hyo Sug Lee
- Analytical Engineering Group, Samsung Advanced Institute of Technology 130, Samsung-ro, Yeongtong-gu Suwon-si Gyeonggi-do 16678 South Korea
| | - Jung-Hwa Kim
- Analytical Engineering Group, Samsung Advanced Institute of Technology 130, Samsung-ro, Yeongtong-gu Suwon-si Gyeonggi-do 16678 South Korea
| | - Shinae Jun
- Organic Materials Lab, Samsung Advanced Institute of Technology 130, Samsung-ro, Yeongtong-gu Suwon-si Gyeonggi-do 16678 South Korea
| | - Soohwan Sul
- Analytical Engineering Group, Samsung Advanced Institute of Technology 130, Samsung-ro, Yeongtong-gu Suwon-si Gyeonggi-do 16678 South Korea
| |
Collapse
|
38
|
Wei X, Zhang Q, Cui Z, Yang D, Mei S, Zhang W, Xie H, Yu K, Guo R, Wei W. Mapping the Identity of Transition Metal Doping and Surface Passivation in Indium Phosphide with Theoretical Calculation. Inorg Chem 2023; 62:15258-15266. [PMID: 37671490 DOI: 10.1021/acs.inorgchem.3c02455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Understanding the electronic structure of doped InP quantum dots (QDs) is essential to optimize the material for specific optoelectronic applications. However, current synthesis approaches are often tedious and unfavorable for rational tunning. Herein, a combination of experimental and computational studies was conducted to address the doping mechanism and surface passivation of InP QDs. The successful dopant introduction requires low Cu doping concentration and heavy Mn doping, while the Ag doping amount is relatively moderate. This may correspond to the theoretical doping formation energy presented as Cu (-2.52 eV) < Ag (-1.76 eV) < Mn (-0.38 eV). As for surface passivation, inorganic ions and shell-like ZnS are unraveled through simulational investigation. Chloride ion promotes oriented growth toward tetrahedron morphology while nitrate-passivated InP QDs exhibit blurry transmission electron microscope (TEM) morphology. Correspondingly, the binding energy of chloride ion with (111) facet is -2.13 eV significantly lower than those of (110) and (100) facets. Further, the additional Zn 3d bands are more involved in the formation of conduction band, which optimized the Mn-doped InP with a 0.32 eV bandgap. These experimental and model results provide more microscopic details of doped InP, which can motivate theoretically exact control of guest ion stoichiometry with optimized characteristics for electrical devices.
Collapse
Affiliation(s)
- Xian Wei
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qi Zhang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Zhongjie Cui
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Dan Yang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Shiliang Mei
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Wanlu Zhang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Y2, 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Hangzhou 310003, China
| | - Kehan Yu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Ruiqian Guo
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
- Zhongshan-Fudan Joint Innovation Center, Zhongshan 528437, China
- Yiwu Research Institute of Fudan University, Yiwu 322000, China
| | - Wei Wei
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
39
|
Ebrahim F, Al-Hartomy O, Wageh S. Cadmium-Based Quantum Dots Alloyed Structures: Synthesis, Properties, and Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5877. [PMID: 37687569 PMCID: PMC10488842 DOI: 10.3390/ma16175877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 09/10/2023]
Abstract
Cadmium-based alloyed quantum dots are one of the most popular metal chalcogenides in both the industrial and research fields owing to their extraordinary optical and electronic properties that can be manipulated by varying the compositional ratio in addition to size control. This report aims to cover the main information concerning the synthesis techniques, properties, and applications of Cd-based alloyed quantum dots. It provides a comprehensive overview of the most common synthesis methods for these QDs, which include hot injection, co-precipitation, successive ionic layer adsorption and reaction, hydrothermal, and microwave-assisted synthesis methods. This detailed literature highlights the optical and structural properties of both ternary and quaternary quantum dots. Also, this review provides the high-potential applications of various alloyed quantum dots.
Collapse
Affiliation(s)
- Fadia Ebrahim
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.E.); (O.A.-H.)
- Department of Physics, College of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- K. A. CARE Energy Research and Innovation Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Omar Al-Hartomy
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.E.); (O.A.-H.)
| | - S. Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.E.); (O.A.-H.)
- K. A. CARE Energy Research and Innovation Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, Menouf 32952, Egypt
| |
Collapse
|
40
|
Scholtz L, Tavernaro I, Eckert JG, Lutowski M, Geißler D, Hertwig A, Hidde G, Bigall NC, Resch-Genger U. Influence of nanoparticle encapsulation and encoding on the surface chemistry of polymer carrier beads. Sci Rep 2023; 13:11957. [PMID: 37488159 PMCID: PMC10366211 DOI: 10.1038/s41598-023-38518-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
Surface-functionalized polymer beads encoded with molecular luminophores and nanocrystalline emitters such as semiconductor nanocrystals, often referred to as quantum dots (QDs), or magnetic nanoparticles are broadly used in the life sciences as reporters and carrier beads. Many of these applications require a profound knowledge of the chemical nature and total number of their surface functional groups (FGs), that control bead charge, colloidal stability, hydrophobicity, and the interaction with the environment and biological systems. For bioanalytical applications, also the number of groups accessible for the subsequent functionalization with, e.g., biomolecules or targeting ligands is relevant. In this study, we explore the influence of QD encoding on the amount of carboxylic acid (COOH) surface FGs of 2 µm polystyrene microparticles (PSMPs). This is done for frequently employed oleic acid and oleylamine stabilized, luminescent core/shell CdSe QDs and two commonly used encoding procedures. This included QD addition during bead formation by a thermally induced polymerization reaction and a post synthetic swelling procedure. The accessible number of COOH groups on the surface of QD-encoded and pristine beads was quantified by two colorimetric assays, utilizing differently sized reporters and electrostatic and covalent interactions. The results were compared to the total number of FGs obtained by a conductometric titration and Fourier transform infrared spectroscopy (FTIR). In addition, a comparison of the impact of QD and dye encoding on the bead surface chemistry was performed. Our results demonstrate the influence of QD encoding and the QD-encoding strategy on the number of surface FG that is ascribed to an interaction of the QDs with the carboxylic acid groups on the bead surface. These findings are of considerable relevance for applications of nanoparticle-encoded beads and safe-by-design concepts for nanomaterials.
Collapse
Affiliation(s)
- Lena Scholtz
- Division 1.2 Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
- Institute for Chemistry and Biochemistry, Free University Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Isabella Tavernaro
- Division 1.2 Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - J Gerrit Eckert
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstraße 3A, 30167, Hannover, Germany
| | - Marc Lutowski
- Division 1.2 Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Daniel Geißler
- Division 1.2 Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
- PolyAn GmbH, Schkopauer Ring 6, 12681, Berlin, Germany
| | - Andreas Hertwig
- Division 6.1 Surface Analysis and Interfacial Chemistry, Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205, Berlin, Germany
| | - Gundula Hidde
- Division 6.1 Surface Analysis and Interfacial Chemistry, Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205, Berlin, Germany
| | - Nadja C Bigall
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstraße 3A, 30167, Hannover, Germany
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines), 30167, Hannover, Germany
| | - Ute Resch-Genger
- Division 1.2 Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489, Berlin, Germany.
| |
Collapse
|
41
|
Mouat JM, Widness JK, Enny DG, Meidenbauer MT, Awan F, Krauss TD, Weix DJ. CdS Quantum Dots for Metallaphotoredox-Enabled Cross-Electrophile Coupling of Aryl Halides with Alkyl Halides. ACS Catal 2023; 13:9018-9024. [PMID: 38283073 PMCID: PMC10812861 DOI: 10.1021/acscatal.3c01984] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Semiconductor quantum dots (QDs) offer many advantages as photocatalysts for synthetic photoredox catalysis, but no reports have explored the use of QDs with nickel catalysts for C-C bond formation. We show here that 5.7 nm CdS QDs are robust photocatalysts for photoredox-promoted cross-electrophile coupling (40 000 TON). These conditions can be utilized on small scale (96-well plate) or adapted to flow. NMR studies show that triethanolamine (TEOA) capped QDs are the active catalyst and that TEOA can displace native phosphonate and carboxylate ligands, demonstrating the importance of QD surface chemistry.
Collapse
Affiliation(s)
- Julianna M. Mouat
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706 USA
| | - Jonas K. Widness
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706 USA
| | - Daniel G. Enny
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706 USA
| | | | - Farwa Awan
- Department of Chemistry, University of Rochester, Rochester, NY 14627 USA
| | - Todd D. Krauss
- Department of Chemistry, University of Rochester, Rochester, NY 14627 USA
- Institute of Optics, University of Rochester, Rochester, NY 14627 USA
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706 USA
| |
Collapse
|
42
|
Hassen Y, Gedda G, Assen AH, Kabtamu DM, Girma WM. Dodonaea angustifolia Extract-Assisted Green Synthesis of the Cu 2O/Al 2O 3 Nanocomposite for Adsorption of Cd(II) from Water. ACS OMEGA 2023; 8:17209-17219. [PMID: 37214697 PMCID: PMC10193548 DOI: 10.1021/acsomega.3c01609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023]
Abstract
The enhanced worldwide concern for the protection and safety of the environment has made the scientific community focus their devotion on novel and highly effective approaches to heavy metals such as cadmium (Cd) pollutant removal. In this research, Dodonaea angustifolia plant extract-mediated Al2O3 and Cu2O nanoparticle (NP) syntheses were accomplished using the coprecipitation method, and the Cu2O/Al2O3 nanocomposite was prepared by simple mixing of Cu2O and Al2O3 NPs for the removal of Cd(II) ions from aqueous solution. Therefore, an efficient green, economical, facile, and eco-friendly synthesis method was employed, which improved the aggregation of individual metal oxide NPs. The chemical and physical properties of the nanocomposite were examined by different characterization techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and Brunauer-Emmett-Teller (BET) surface area analysis. Furthermore, the performances of the nanoadsorbents for the adsorptive eradication of Cd2+ ions from water were investigated. The influence of pH, contact time, initial Cd quantity, and nanocomposite amount on adsorption effectiveness was carefully studied. The adsorption rates of the Cu2O/Al2O3 nanocomposite were rapid, and adsorption equilibrium was attained within 60 min for 97.36% removal of Cd(II) from water. The adsorption isotherm data were best fitted by the pseudo-second-order kinetic and Langmuir isotherm models with the highest adsorption ability of 4.48 mg/g. Therefore, the synthesized Cu2O/Al2O3 nanocomposite could be a potential candidate for a highly efficient adsorbent for heavy metal ion removal from aqueous solutions.
Collapse
Affiliation(s)
- Yeshi
Endris Hassen
- Department
of Chemistry, College of Natural Science, Wollo University, P.O. Box 1145, Dessie 1000, Ethiopia
| | - Gangaraju Gedda
- Department
of Chemistry, School of Engineering, Presidency
University, Bangalore 560064, Karnataka, India
| | - Ayalew H. Assen
- Department
of Chemistry, College of Natural Science, Wollo University, P.O. Box 1145, Dessie 1000, Ethiopia
| | - Daniel Manaye Kabtamu
- Department
of Chemistry, Debre Berhan University, P.O. Box 445, Debre Berhan 7260, Ethiopia
- Department
of Materials Science and Engineering, National
Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Wubshet Mekonnen Girma
- Department
of Chemistry, College of Natural Science, Wollo University, P.O. Box 1145, Dessie 1000, Ethiopia
| |
Collapse
|
43
|
Sobhanan J, Rival JV, Anas A, Sidharth Shibu E, Takano Y, Biju V. Luminescent Quantum Dots: Synthesis, Optical Properties, Bioimaging and Toxicity. Adv Drug Deliv Rev 2023; 197:114830. [PMID: 37086917 DOI: 10.1016/j.addr.2023.114830] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/26/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023]
Abstract
Luminescent nanomaterials such as semiconductor nanocrystals (NCs) and quantum dots (QDs) attract much attention to optical detectors, LEDs, photovoltaics, displays, biosensing, and bioimaging. These materials include metal chalcogenide QDs and metal halide perovskite NCs. Since the introduction of cadmium chalcogenide QDs to biolabeling and bioimaging, various metal nanoparticles (NPs), atomically precise metal nanoclusters, carbon QDs, graphene QDs, silicon QDs, and other chalcogenide QDs have been infiltrating the nano-bio interface as imaging and therapeutic agents. Nanobioconjugates prepared from luminescent QDs form a new class of imaging probes for cellular and in vivo imaging with single-molecule, super-resolution, and 3D resolutions. Surface modified and bioconjugated core-only and core-shell QDs of metal chalcogenides (MX; M = Cd/Pb/Hg/Ag, and X = S/Se/Te,), binary metal chalcogenides (MInX2; M = Cu/Ag, and X = S/Se/Te), indium compounds (InAs and InP), metal NPs (Ag, Au, and Pt), pure or mixed precision nanoclusters (Ag, Au, Pt), carbon nanomaterials (graphene QDs, graphene nanosheets, carbon NPs, and nanodiamond), silica NPs, silicon QDs, etc. have become prevalent in biosensing, bioimaging, and phototherapy. While heavy metal-based QDs are limited to in vitro bioanalysis or clinical testing due to their potential metal ion-induced toxicity, carbon (nanodiamond and graphene) and silicon QDs, gold and silica nanoparticles, and metal nanoclusters continue their in vivo voyage towards clinical imaging and therapeutic applications. This review summarizes the synthesis, chemical modifications, optical properties, and bioimaging applications of semiconductor QDs with particular references to metal chalcogenide QDs and bimetallic chalcogenide QDs. Also, this review highlights the toxicity and pharmacokinetics of QD bioconjugates.
Collapse
Affiliation(s)
- Jeladhara Sobhanan
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido 060-0810, Japan; Center for Adapting Flaws into Features, Department of Chemistry, Rice University, 6100 Main St., Houston, TX 77005, USA
| | - Jose V Rival
- Smart Materials Lab, Department of Nanoscience and Technology, University of Calicut, Kerala, India
| | - Abdulaziz Anas
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kerala 682 018, India.
| | | | - Yuta Takano
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido 060-0810, Japan; Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | - Vasudevanpillai Biju
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido 060-0810, Japan; Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan.
| |
Collapse
|
44
|
Niu C, Yao Z, Jiang S. Synthesis and application of quantum dots in detection of environmental contaminants in food: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163565. [PMID: 37080319 DOI: 10.1016/j.scitotenv.2023.163565] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Environmental pollutants can accumulate in the human body through the food chain, which may seriously impact human health. Therefore, it is of vital importance to develop quick, simple, accurate and sensitive (respond quickly) technologies to evaluate the concentration of environmental pollutants in food. Quantum dots (QDs)-based fluorescence detection methods have great potential to overcome the shortcomings of traditional detection methods, such as long detection time, cumbersome detection procedures, and low sensitivity. This paper reviews the types and synthesis methods of QDs with a focus on green synthesis and the research progress on rapid detection of environmental pollutants (e.g., heavy metals, pesticides, and antibiotics) in food. Metal-based QDs, carbon-based QDs, and "top-down" and "bottom-up" synthesis methods are discussed in detail. In addition, research progress of QDs in detecting different environmental pollutants in food is discussed, especially, the practical application of these methods is analyzed. Finally, current challenges and future research directions of QDs-based detection technologies are critically discussed. Hydrothermal synthesis of carbon-based QDs with low toxicity from natural materials has a promising future. Research is needed on green synthesis of QDs, direct detection without pre-processing, and simultaneous detection of multiple contaminants. Finally, how to keep the mobile sensor stable, sensitive and easy to store is a hot topic in the future.
Collapse
Affiliation(s)
- Chenyue Niu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
45
|
Fan XB, Shin DW, Lee S, Ye J, Yu S, Morgan DJ, Arbab A, Yang J, Jo JW, Kim Y, Jung SM, Davies PR, Rao A, Hou B, Kim JM. InP/ZnS quantum dot photoluminescence modulation via in situ H 2S interface engineering. NANOSCALE HORIZONS 2023; 8:522-529. [PMID: 36790218 DOI: 10.1039/d2nh00436d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
InP quantum dots (QDs) are attracting significant interest as a potentially less toxic alternative to Cd-based QDs in many research areas. Although InP-based core/shell QDs with excellent photoluminescence properties have been reported so far, sophisticated interface treatment to eliminate defects is often necessary. Herein, using aminophosphine as a seeding source of phosphorus, we find that H2S can be efficiently generated from the reaction between a thiol and an alkylamine at high temperatures. Apart from general comprehension that H2S acts as a S precursor, it is revealed that with core etching by H2S, the interface between InP and ZnS can be reconstructed with S2- incorporation. Such a transition layer can reduce inherent defects at the interface, resulting in significant photoluminescence (PL) enhancement. Meanwhile, the size of the InP core could be further controlled by H2S etching, which offers a feasible process to obtain wide band gap InP-based QDs with blue emission.
Collapse
Affiliation(s)
- Xiang-Bing Fan
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK.
| | - Dong-Wook Shin
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK.
| | - Sanghyo Lee
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK.
| | - Junzhi Ye
- The Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Shan Yu
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - David J Morgan
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
| | - Adrees Arbab
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK.
| | - Jiajie Yang
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK.
| | - Jeong-Wan Jo
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK.
| | - Yoonwoo Kim
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK.
| | - Sung-Min Jung
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK.
| | - Philip R Davies
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
| | - Akshay Rao
- The Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Bo Hou
- School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA, UK
| | - Jong Min Kim
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK.
| |
Collapse
|
46
|
Liu A, Bi C, Li J, Zhang M, Cheng C, Binks D, Tian J. High Color-Purity and Efficient Pure-Blue Perovskite Light-Emitting Diodes Based on Strongly Confined Monodispersed Quantum Dots. NANO LETTERS 2023; 23:2405-2411. [PMID: 36881120 DOI: 10.1021/acs.nanolett.3c00548] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Here, we develop an in situ photoluminescence (PL) system to monitor the nucleation and growth of perovskite nanocrystals and control the monomer supply rate to achieve strongly confined and monodispersed quantum dots (QDs) with average size of 3.4 nm. Pure-blue (460 nm wavelength) CsPbBr3 QDs with near unity PL quantum yield and narrow size distribution (small size dispersion of 9.6%) were thus produced. Light-emitting diodes (LEDs) based on these QDs were prepared by using an all-solution processing route, which showed narrow electroluminescence with full width at half-maximum of 20 nm and a high color purity of 97.3%. The device also had a high external quantum efficiency of 10.1%, maximum luminance of 11 610 cd m-2, and continuous operation lifetime of 21 h at the initial luminance of 102 cd m-2, corresponding to the state-of-art for pure-blue perovskite LEDs.
Collapse
Affiliation(s)
- Aqiang Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, Guangdong, P. R. China
| | - Chenghao Bi
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Jing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Mengqi Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Chunyan Cheng
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - David Binks
- Department of Physics and Astronomy and Photon Science Institute, University of Manchester, Manchester M13 9PL, U.K
| | - Jianjun Tian
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, Guangdong, P. R. China
| |
Collapse
|
47
|
Weatherspoon H, Peters B. Broken bond models, magic-sized clusters, and nucleation theory in nanoparticle synthesis. J Chem Phys 2023; 158:114306. [PMID: 36948834 DOI: 10.1063/5.0132601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Magic clusters are metastable faceted nanoparticles that are thought to be important and, sometimes, observable intermediates in the nucleation of certain faceted crystallites. This work develops a broken bond model for spheres with a face-centered-cubic packing that form tetrahedral magic clusters. With just one bond strength parameter, statistical thermodynamics yield a chemical potential driving force, an interfacial free energy, and free energy vs magic cluster size. These properties exactly correspond to those from a previous model by Mule et al. [J. Am. Chem. Soc. 143, 2037 (2021)]. Interestingly, a Tolman length emerges (for both models) when the interfacial area, density, and volume are treated consistently. To describe the kinetic barriers between magic cluster sizes, Mule et al. invoked an energy parameter to penalize the two-dimensional nucleation and growth of new layers in each facet of the tetrahedra. According to the broken bond model, barriers between magic clusters are insignificant without the additional edge energy penalty. We estimate the overall nucleation rate without predicting the rates of formation for intermediate magic clusters by using the Becker-Döring equations. Our results provide a blueprint for constructing free energy models and rate theories for nucleation via magic clusters starting from only atomic-scale interactions and geometric considerations.
Collapse
Affiliation(s)
- Howard Weatherspoon
- Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Baron Peters
- Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
48
|
Yang H, Chen X, Chu Y, Sun C, Lu H, Yuan M, Zhang Y, Long G, Zhang L, Li X. A universal hydrochloric acid-assistant powder-to-powder strategy for quick and mass preparation of lead-free perovskite microcrystals. LIGHT, SCIENCE & APPLICATIONS 2023; 12:75. [PMID: 36935450 PMCID: PMC10025261 DOI: 10.1038/s41377-023-01117-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Lead-free halide perovskite materials possess low toxicity, broadband luminescence and robust stability compared with conventional lead-based perovskites, thus holding great promise for eyes-friendly white light LEDs. However, the traditionally used preparation methods with a long period and limited product yield have curtailed the commercialization of these materials. Here we introduce a universal hydrochloric acid-assistant powder-to-powder strategy which can accomplish the goals of thermal-, pressure-free, eco-friendliness, short time, low cost and high product yield, simultaneously. The obtained Cs2Na0.9Ag0.1In0.95Bi0.05Cl6 microcrystals exhibit bright self-trapped excitons emission with quantum yield of (98.3 ± 3.8)%, which could retain (90.5 ± 1.3)% and (96.8 ± 0.8)% after continuous heating or ultraviolet-irradiation for 1000 h, respectively. The phosphor converted-LED exhibited near-unity conversion efficiency from ultraviolet chip to self-trapped excitons emission at ~200 mA. Various ions doping (such as Cs2Na0.9Ag0.1InCl6:Ln3+) and other derived lead-free perovskite materials (such as Cs2ZrCl6 and Cs4MnBi2Cl12) with high luminous performance are all realized by our proposed strategy, which has shown excellent availability towards commercialization.
Collapse
Affiliation(s)
- Huanxin Yang
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin, 300350, China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin, 300350, China
| | - Xiangxiang Chen
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, Shandong, China
| | - Yiyue Chu
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, Tianjin University, Tianjin, 300354, China
| | - Changjiu Sun
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Haolin Lu
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Mingjian Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yuhai Zhang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, Shandong, China
| | - Guankui Long
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Libing Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, Tianjin University, Tianjin, 300354, China
| | - Xiyan Li
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, China.
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin, 300350, China.
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
49
|
Yadav R, Kwon Y, Rivaux C, Saint-Pierre C, Ling WL, Reiss P. Narrow Near-Infrared Emission from InP QDs Synthesized with Indium(I) Halides and Aminophosphine. J Am Chem Soc 2023; 145:5970-5981. [PMID: 36866828 DOI: 10.1021/jacs.2c13834] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Nonpyrophoric aminophosphines reacted with indium(III) halides in the presence of zinc chloride have emerged as promising phosphorus precursors in the synthesis of colloidal indium phosphide (InP) quantum dots (QDs). Nonetheless, due to the required P/In ratio of 4:1, it remains challenging to prepare large-sized (>5 nm), near-infrared absorbing/emitting InP QDs using this synthetic scheme. Furthermore, the addition of zinc chloride leads to structural disorder and the formation of shallow trap states inducing spectral broadening. To overcome these limitations, we introduce a synthetic approach relying on the use of indium(I) halide, which acts as both the indium source and reducing agent for aminophosphine. The developed zinc-free, single-injection method gives access to tetrahedral InP QDs with an edge length > 10 nm and narrow size distribution. The first excitonic peak is tunable from 450 to 700 nm by changing the indium halide (InI, InBr, InCl). Kinetic studies using phosphorus NMR reveal the coexistence of two reaction pathways, the reduction of transaminated aminophosphine by In(I) and via redox disproportionation. Etching the surface of the obtained InP QDs at room temperature with in situ-generated hydrofluoric acid (HF) leads to strong photoluminescence (PL) emission with a quantum yield approaching 80%. Alternatively, surface passivation of the InP core QDs was achieved by low-temperature (140 °C) ZnS shelling using the monomolecular precursor zinc diethyldithiocarbamate. The obtained InP/ZnS core/shell QDs that emit in a range of 507-728 nm exhibit a small Stokes shift (110-120 meV) and a narrow PL line width (112 meV at 728 nm).
Collapse
Affiliation(s)
- Ranjana Yadav
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
| | - Yongju Kwon
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
| | - Céline Rivaux
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
| | | | - Wai Li Ling
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Peter Reiss
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France
| |
Collapse
|
50
|
Qu J, Liu C, Zubair M, Zeng Z, Liu B, Yang X, Luo Z, Yi X, Chen Y, Chen S, Pan A. A universal growth method for high-quality phase-engineered germanium chalcogenide nanosheets. NANOSCALE 2023; 15:4438-4447. [PMID: 36752096 DOI: 10.1039/d2nr05657g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Low-dimensional group IV-VI metal chalcogenide-based semiconductors hold great promise for opto-electronic device applications owing to their diverse crystalline phases and intriguing properties related to thermoelectric and ferroelectric effects. Herein, we demonstrate a universal chemical vapor deposition (CVD) growth method to synthesize stable germanium chalcogenide-based (GeS, GeS2, GeSe, GeSe2) nanosheets, which increases the library of the p-type semiconductor. The phase transition between different crystalline polytypes can be deterministically controlled by hydrogen concentration in the reaction chamber. Structural characterization and synthesis experiments identify the behavior, where the higher hydrogen concentration promotes the transiton from germanium dichalcogenides to germanium monochalcogenides. The angle-polarized and temperature-dependent Raman spectra demonstrate the strong interlayer coupling and lattice orientation. Based on the optimized growth scheme and systematic comparison of electrical properties, GeSe nanosheet photodetectors were demonstrated, which exhibit superior device performance on SiO2/Si and HfO2/Si substrate with a high photoresponsivity up to 104 A W-1, fast response time less than 15 ms, and high mobility of 3.2 cm2 V-1 s-1, which is comparable to the mechanically exfoliated crystals. Our results manifest the hydrogen-mediated deposition strategy as a facile control knob to engineer crystalline phases of germanium chalcogenides for high performance optoelectronic devices.
Collapse
Affiliation(s)
- Junyu Qu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P.R. China.
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha, 410082, China
| | - Chenxi Liu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P.R. China.
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha, 410082, China
| | - Muhammad Zubair
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P.R. China.
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha, 410082, China
| | - Zhouxiaosong Zeng
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha, 410082, China
| | - Bo Liu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P.R. China.
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha, 410082, China
| | - Xin Yang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P.R. China.
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha, 410082, China
| | - Ziyu Luo
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P.R. China.
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha, 410082, China
| | - Xiao Yi
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P.R. China.
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha, 410082, China
| | - Ying Chen
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P.R. China.
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha, 410082, China
| | - Shula Chen
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P.R. China.
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha, 410082, China
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P.R. China.
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha, 410082, China
| |
Collapse
|