1
|
Nachimuthu S, Xie GC, Jiang JC. Unraveling the catalytic performance of RuO 2(1 1 0) for highly-selective ethylene production from methane at low temperature: Insights from first-principles and microkinetic simulations. J Colloid Interface Sci 2025; 678:992-1003. [PMID: 39270399 DOI: 10.1016/j.jcis.2024.09.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Despite significant progress in low-temperature methane (CH4) activation, commercial viability, specifically obtaining high yields of C1/C2 products, remains a challenge. High desorption energy (>2 eV) and overoxidation of the target products are key limitations in CH4 utilization. Herein, we employ first-principles density functional theory (DFT) and microkinetics simulations to investigate the CH4 activation and the feasibility of its conversion to ethylene (C2H4) on the RuO2 (1 1 0) surface. The CH activation and CH4 dehydrogenation processes are thoroughly investigated, with a particular focus on the diffusion of surface intermediates. The results show that the RuO2 (1 1 0) surface exhibits high reactivity in CH4 activation (Ea = 0.60 eV), with CH3 and CH2 are the predominant species, and CH2 being the most mobile intermediate on the surface. Consequently, self-coupling of CH2* species via CC coupling occurs more readily, yielding C2H4, a potential raw material for the chemical industry. More importantly, we demonstrate that the produced C2H4 can easily desorb under mild conditions due to its low desorption energy of 0.97 eV. Microkinetic simulations based on the DFT energetics indicate that CH4 activation can occur at temperatures below 200 K, and C2H4 can be desorbed at room temperature. Further, the selectivity analysis predicts that C2H4 is the major product at low temperatures (300-450 K) with 100 % selectivity, then competes with formaldehyde at intermediate temperatures in the CH4 conversion over RuO2 (1 1 0) surface. The present findings suggest that the RuO2 (1 1 0) surface is a potential catalyst for facilitating ethylene production under mild conditions.
Collapse
Affiliation(s)
- Santhanamoorthi Nachimuthu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Guan-Cheng Xie
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Jyh-Chiang Jiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| |
Collapse
|
2
|
Feng C, Zuo S, Hu M, Ren Y, Xia L, Luo J, Zou C, Wang S, Zhu Y, Rueping M, Han Y, Zhang H. Optimizing the reaction pathway of methane photo-oxidation over single copper sites. Nat Commun 2024; 15:9088. [PMID: 39433749 PMCID: PMC11494074 DOI: 10.1038/s41467-024-53483-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
Direct photocatalytic conversion of methane to value-added C1 oxygenate with O2 is of great interest but presents a significant challenge in achieving highly selective product formation. Herein, a general strategy for the construction of copper single-atom catalysts with a well-defined coordination microenvironment is developed on the basis of metal-organic framework for selective photo-oxidation of CH4 to HCHO. We propose the directional activation of O2 on the mono-copper site breaks the original equilibrium and tilts the balance of radical formation almost completely toward •OOH. The synchronously generated •OOH and •CH3 radicals rapidly combine to form HCHO while inhibiting competing reactions, thus resulting in ultra-highly selective HCHO production (nearly 100%) with a time yield of 2.75 mmol gcat-1 h-1. This work highlights the potential of rationally designing reaction sites to manipulate reaction pathways and achieve selective CH4 photo-oxidation, and could guide the further design of high-performance single-atom catalysts to meet future demand.
Collapse
Affiliation(s)
- Chengyang Feng
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Shouwei Zuo
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Miao Hu
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yuanfu Ren
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Liwei Xia
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Jun Luo
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Chen Zou
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sibo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Yihan Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yu Han
- Electron Microscopy Center, South China University of Technology, Guangzhou, China
| | - Huabin Zhang
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
3
|
Huang Y, Xu D, Deng S, Lin M. A hybrid electro-thermochemical device for methane production from the air. Nat Commun 2024; 15:8935. [PMID: 39414815 PMCID: PMC11484791 DOI: 10.1038/s41467-024-53336-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024] Open
Abstract
Coupling direct air capture (DAC) with methane (CH4) production is a potential strategy for fuel production from the air. Here, we report a hybrid electro-thermochemical device for direct CH4 production from air. The proposed device features the cogeneration of carbon dioxide (CO2) and hydrogen (H2) in a single compartment via a bipolar membrane electrodialysis module, avoiding a separate water electrolyzer, followed by a thermochemical methanation reaction to produce CH4. H2-induced disturbances lead to efficient CO2 extraction without pumping requirement. The energy consumption and techno-economic analysis predict an energy reduction of 37.8% for DAC and a cost reduction of 36.6% compared with the decoupled route, respectively. Accordingly, CH4 cost is reduced by 12.6%. Our proof-of-concept experiments show that the energy consumption for CO2 release and H2 production is 704.0 kJ mol-1 and 967.4 kJ mol-1, respectively with subsequent methanation achieving a 97.3% conversion of CO2 and a CH4 production energy of 5206.4 kJ mol-1 showing a promising pathway for fuel processing from the air.
Collapse
Affiliation(s)
- Yaowei Huang
- Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, Department of Mechanical and Energy Engineering, SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, China
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
- National Industry-Education Platform for Energy Storage, Tianjin University, Tianjin, 300350, China
| | - Da Xu
- Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, Department of Mechanical and Energy Engineering, SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shuai Deng
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China.
- National Industry-Education Platform for Energy Storage, Tianjin University, Tianjin, 300350, China.
| | - Meng Lin
- Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, Department of Mechanical and Energy Engineering, SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Komen P, Suthirakun S, Plucksacholatarn A, Kuboon S, Faungnawakij K, Junkaew A. Theoretical screening of single-atom catalysts (SACs) on Mo 2TiC 2O 2 MXene for methane activation. J Colloid Interface Sci 2024; 679:1026-1035. [PMID: 39418890 DOI: 10.1016/j.jcis.2024.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Producing value-added chemicals and fuels from methane (CH4) under mild conditions efficiently utilizes this cheap and abundant feedstock, promoting economic growth, energy security, and environmental sustainability. However, the first CH bond activation is a significant challenge and requires high energy. Efficient catalysts have been sought for utilizing CH4 at low temperatures including emerging single-atom catalysts (SACs). In this work, we screened fourteen transition metals (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Pt) doped at a single oxygen vacancy in Mo2TiC2O2 (TMSA-Mo2TiC2O2 SACs) for methane activation using density functional theory (DFT) calculations. Our results reveal that methane adsorption is thermodynamically stable on all simulated TMSA-Mo2TiC2O2 SACs, with the adsorption energies (Eads) ranging from -0.92 to -0.40 eV. For the CH activation process, Ru-SAC exhibits the lowest activation barrier (Ea) of 0.22 eV. In summary, Ru-, Rh-, Co-, V-, Cr-, Ti-, and Pt-SACs demonstrate promising catalytic properties for methane activation, with Ea values below 1.0 eV and an exothermic nature. Our findings pave the way for the design and development of novel single-atom catalysts in MXene materials, applicable not only for methane activation but also for other alkane dehydrogenation processes.
Collapse
Affiliation(s)
- Paratee Komen
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Suwit Suthirakun
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; Research Network NANOTEC - SUT on Advanced Nanomaterials and Characterization, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | - Aunyamanee Plucksacholatarn
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Sanchai Kuboon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Kajornsak Faungnawakij
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Anchalee Junkaew
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; Research Network NANOTEC - SUT on Advanced Nanomaterials and Characterization, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
5
|
Zheng S, Zhang Z, He S, Yang H, Atia H, Abdel-Mageed AM, Wohlrab S, Baráth E, Tin S, Heeres HJ, Deuss PJ, de Vries JG. Benzenoid Aromatics from Renewable Resources. Chem Rev 2024; 124:10701-10876. [PMID: 39288258 PMCID: PMC11467972 DOI: 10.1021/acs.chemrev.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
In this Review, all known chemical methods for the conversion of renewable resources into benzenoid aromatics are summarized. The raw materials that were taken into consideration are CO2; lignocellulose and its constituents cellulose, hemicellulose, and lignin; carbohydrates, mostly glucose, fructose, and xylose; chitin; fats and oils; terpenes; and materials that are easily obtained via fermentation, such as biogas, bioethanol, acetone, and many more. There are roughly two directions. One much used method is catalytic fast pyrolysis carried out at high temperatures (between 300 and 700 °C depending on the raw material), which leads to the formation of biochar; gases, such as CO, CO2, H2, and CH4; and an oil which is a mixture of hydrocarbons, mostly aromatics. The carbon selectivities of this method can be reasonably high when defined small molecules such as methanol or hexane are used but are rather low when highly oxygenated compounds such as lignocellulose are used. The other direction is largely based on the multistep conversion of platform chemicals obtained from lignocellulose, cellulose, or sugars and a limited number of fats and terpenes. Much research has focused on furan compounds such as furfural, 5-hydroxymethylfurfural, and 5-chloromethylfurfural. The conversion of lignocellulose to xylene via 5-chloromethylfurfural and dimethylfuran has led to the construction of two large-scale plants, one of which has been operational since 2023.
Collapse
Affiliation(s)
- Shasha Zheng
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Zhenlei Zhang
- State
Key Laboratory of Heavy Oil Processing, College of Chemical Engineering
and Environment, China University of Petroleum
(Beijing), 102249 Beijing, China
| | - Songbo He
- Joint International
Research Laboratory of Circular Carbon, Nanjing Tech University, Nanjing 211816, PR China
| | - Huaizhou Yang
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hanan Atia
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Ali M. Abdel-Mageed
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sebastian Wohlrab
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Eszter Baráth
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sergey Tin
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Hero J. Heeres
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Peter J. Deuss
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Johannes G. de Vries
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
6
|
Liu Y, Yu C, Lu H, Liu L, Tang J. Silver and g-C 3N 4 co-modified biochar (Ag-CN@BC) for enhancing photocatalytic/PDS degradation of BPA: Role of carrier and photoelectric mechanism. ENVIRONMENTAL RESEARCH 2024; 262:119972. [PMID: 39260721 DOI: 10.1016/j.envres.2024.119972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/06/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Photocatalytic property of nano Ag is weak and its enhancement is important to enlarge its application. Herein, a novel strategy of constructing silver g-C3N4 biochar composite (Ag-CN@BC) as photocatalyst is developed and its photocatalytic degradation of bisphenol A (BPA) coupled with peroxydisulfate (PDS) oxidation process is characterized. Characterization result showed that silver was evenly embedded into the g-C3N4 structure of the nitrogen atoms format, impeding agglomeration of Ag by distributing stably on biochar. In optimum condition, BPA of 10 mg/L could be degraded completely at pH of 9.0 with a 0.5 g/L photocatalyst, 2 mM PDS in Ag-CN@BC-2 (Ag/melamine molar ratio of 0.5)/PDS system (99.2%, k = 4.601 h-1). Ag-CN@BC shows superior mineralization ratio in degrading BPA to CO₂ and H₂O via active radical way, including holes (h⁺), superoxide radicals (•O2⁻), sulfate radicals (SO4•⁻), and hydroxyl radicals (•OH). Proper amount of silver can be dispersed effectively by gC3N4, which is responsible for improving the visible-light absorbing capability and accelerate charge transfer during activation of PDS for BPA degradation, while biochar as carrier in the composite is supposed to enhance the photoelectric degradation of BPA by reducing the band gap and increasing the photocurrent of Ag-CN@BC catalyst. Ag-CN@BC exhibits excellent catalyst stability and photocatalytic activity for treatment of toxic organic contaminants in the environment.
Collapse
Affiliation(s)
- Yaxuan Liu
- MOE Key Laboratory of Pollution Process and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, 300350, China
| | - Chen Yu
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, Guangdong, China
| | - Huixia Lu
- MOE Key Laboratory of Pollution Process and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, 300350, China
| | - Linan Liu
- MOE Key Laboratory of Pollution Process and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Process and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, 300350, China.
| |
Collapse
|
7
|
Longo V, De Pasquale L, Tavella F, Barawi M, Gomez-Mendoza M, de la Peña O'Shea V, Ampelli C, Perathoner S, Centi G, Genovese C. High photocatalytic yield in the non-oxidative coupling of methane using a Pd-TiO 2 nanomembrane gas flow-through reactor. EES CATALYSIS 2024; 2:1164-1175. [PMID: 39246680 PMCID: PMC11375953 DOI: 10.1039/d4ey00112e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/02/2024] [Indexed: 09/10/2024]
Abstract
The photocatalytic non-oxidative coupling of methane (NOCM) is a highly challenging and sustainable reaction to produce H2 and C2+ hydrocarbons under ambient conditions using sunlight. However, there is a lack of knowledge, particularly on how to achieve high photocatalytic yield in continuous-flow reactors. To address this, we have developed a novel flow-through photocatalytic reactor for NOCM as an alternative to the conventionally used batch reactors. Me/TiO2 photocatalysts, where Me = Au, Ag and Pd, are developed, but only those based on Pd are active. Interestingly, the preparation method significantly impacts performance, going from inactive samples (prepared by wet impregnation) to highly active samples (prepared by strong electrostatic adsorption - SEA). These photocatalysts are deposited on a nanomembrane, and the loading effect, which determines productivity, selectivity, and stability, is also analysed. Transient absorption spectroscopy (TAS) analysis reveals the involvement of holes and photoelectrons after charge separation on Pd/TiO2 (SEA) and their interaction with methane in ethane formation, reaching a production rate of about 1000 μmol g-1 h-1 and a selectivity of almost 95% after 5 hours of reaction. Stability tests involving 24 h of continuous irradiation are performed, showing changes in productivity and selectivity to ethane, ethylene and CO2. The effect of a mild oxidative treatment (80 °C) to extend the catalyst's lifetime is also reported.
Collapse
Affiliation(s)
- Victor Longo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences and CASPE (INSTM), University of Messina, Viale F. Stagno D'Alcontres 31 98166 Messina Italy
| | - Luana De Pasquale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences and CASPE (INSTM), University of Messina, Viale F. Stagno D'Alcontres 31 98166 Messina Italy
| | - Francesco Tavella
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences and CASPE (INSTM), University of Messina, Viale F. Stagno D'Alcontres 31 98166 Messina Italy
| | - Mariam Barawi
- Photoactivated Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra, 3 Móstoles 28935 Madrid Spain
| | - Miguel Gomez-Mendoza
- Photoactivated Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra, 3 Móstoles 28935 Madrid Spain
| | - Víctor de la Peña O'Shea
- Photoactivated Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra, 3 Móstoles 28935 Madrid Spain
| | - Claudio Ampelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences and CASPE (INSTM), University of Messina, Viale F. Stagno D'Alcontres 31 98166 Messina Italy
| | - Siglinda Perathoner
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences and CASPE (INSTM), University of Messina, Viale F. Stagno D'Alcontres 31 98166 Messina Italy
| | - Gabriele Centi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences and CASPE (INSTM), University of Messina, Viale F. Stagno D'Alcontres 31 98166 Messina Italy
| | - Chiara Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences and CASPE (INSTM), University of Messina, Viale F. Stagno D'Alcontres 31 98166 Messina Italy
| |
Collapse
|
8
|
Yu K, Ward TR. C-H functionalization reactions catalyzed by artificial metalloenzymes. J Inorg Biochem 2024; 258:112621. [PMID: 38852295 DOI: 10.1016/j.jinorgbio.2024.112621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/11/2024]
Abstract
CH functionalization, a promising frontier in modern organic chemistry, facilitates the direct conversion of inert CH bonds into many valuable functional groups. Despite its merits, traditional homogeneous catalysis, often faces challenges in efficiency, selectivity, and sustainability towards this transformation. In this context, artificial metalloenzymes (ArMs), resulting from the incorporation of a catalytically-competent metal cofactor within an evolvable protein scaffold, bridges the gap between the efficiency of enzymatic transformations and the versatility of transition metal catalysis. Accordingly, ArMs have emerged as attractive tools for various challenging catalytic transformations. Additionally, the coming of age of directed evolution has unlocked unprecedented avenues for optimizing enzymatic catalysis. Taking advantage of their genetically-encoded protein scaffold, ArMs have been evolved to catalyze various CH functionalization reactions. This review delves into the recent developments of ArM-catalyzed CH functionalization reactions, highlighting the benefits of engineering the second coordination sphere around a metal cofactor within a host protein.
Collapse
Affiliation(s)
- Kun Yu
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel CH-4058, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel CH-4058, Switzerland.
| |
Collapse
|
9
|
Wang C, Xu Y, Xiong L, Li X, Chen E, Miao TJ, Zhang T, Lan Y, Tang J. Selective oxidation of methane to C 2+ products over Au-CeO 2 by photon-phonon co-driven catalysis. Nat Commun 2024; 15:7535. [PMID: 39214973 PMCID: PMC11364766 DOI: 10.1038/s41467-024-51690-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Direct methane conversion to high-value chemicals under mild conditions is attractive yet challenging due to the inertness of methane and the high reactivity of valuable products. This work presents an efficient and selective strategy to achieve direct methane conversion through the oxidative coupling of methane over a visible-responsive Au-loaded CeO2 by photon-phonon co-driven catalysis. A record-high ethane yield of 755 μmol h-1 (15,100 μmol g-1 h-1) and selectivity of 93% are achieved under optimised reaction conditions, corresponding to an apparent quantum efficiency of 12% at 365 nm. Moreover, the high activity of the photocatalyst can be maintained for at least 120 h without noticeable decay. The pre-treatment of the catalyst at relatively high temperatures introduces oxygen vacancies, which improves oxygen adsorption and activation. Furthermore, Au, serving as a hole acceptor, facilitates charge separation, inhibits overoxidation and promotes the C-C coupling reaction. All these enhance photon efficiency and product yield.
Collapse
Affiliation(s)
- Chao Wang
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Youxun Xu
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Lunqiao Xiong
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
- Industrial Catalysis Center, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiyi Li
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Enqi Chen
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Tina Jingyan Miao
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Tianyu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, P. R. China.
| | - Yang Lan
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Junwang Tang
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK.
- Industrial Catalysis Center, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
10
|
Zhang P, Li J, Huang H, Sui X, Zeng H, Lu H, Wang Y, Jia Y, Steele JA, Ao Y, Roeffaers MBJ, Dai S, Zhang Z, Wang L, Fu X, Long J. Platinum Single-Atom Nests Boost Solar-Driven Photocatalytic Non-Oxidative Coupling of Methane to Ethane. J Am Chem Soc 2024; 146:24150-24157. [PMID: 39141782 DOI: 10.1021/jacs.4c08901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
This work introduces a new strategy of a single-atom nest catalyst, whereby several single atoms are positioned closely, aiming to achieve the dual benefits of high atom-utilization efficiency while avoiding the steric hindrance in the coupling reaction. As a proof of concept, Pt single-atom nests, where the adjacent Pt single atoms are approximately 4 Å apart, are precisely engineered on the TiO2 photocatalyst for photocatalytic non-oxidative coupling of methane. The Pt single-atom nest photocatalyst demonstrates remarkable activity, achieving a C2H6 yield and turnover frequency of 251.6 μmol gcat-1 h-1 and 20 h-1, respectively, representing a 3.2-fold improvement compared to the Pt single-atom photocatalyst. Density functional theory calculations reveal that the Pt single-atom nest can significantly decrease the energy barrier for the activation of both CH4 molecules in the coupling process.
Collapse
Affiliation(s)
- Pu Zhang
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Junwei Li
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Haowei Huang
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Xiaoyu Sui
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Haihua Zeng
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Haijiao Lu
- Nanomaterials Centre, School of Chemical Engineering, and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Ying Wang
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Yanyan Jia
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Julian A Steele
- Australian Institute for Bioengineering and Nanotechnology and School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yanhui Ao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Maarten B J Roeffaers
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zizhong Zhang
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Lianzhou Wang
- Nanomaterials Centre, School of Chemical Engineering, and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Xianzhi Fu
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jinlin Long
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
11
|
Ishizuka T, Kojima T. Oxidative and Reductive Manipulation of C1 Resources by Bio-Inspired Molecular Catalysts to Produce Value-Added Chemicals. Acc Chem Res 2024; 57:2437-2447. [PMID: 39116211 DOI: 10.1021/acs.accounts.4c00390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
ConspectusTo tackle the energy and environmental concerns the world faces, much attention is given to catalytic reactions converting methane (CH4) and carbon dioxide (CO2) as abundant C1 resources into value-added chemicals with high efficiency and selectivity. In the oxidative conversion of CH4 to methanol, it is necessary to solve the requirement of strong oxidants due to the large bond-dissociation energy (BDE) of the C-H bonds in methane and achieve suppression of overoxidation due to the smaller BDE of the C-H bond in methanol as the product. On the other hand, to efficiently perform CO2 reduction, proton-coupled electron transfer (PCET) processes are required since the reduction potential of CO2 becomes positive by using proton-coupled processes; however, under the acidic conditions required for PCET, hydrogen evolution by the reduction of protons becomes competitive with CO2 reduction. Thus, it is indispensable to develop efficient catalysts for selective CO2 reduction. Recently, we have developed efficient catalytic reactions toward the alleviation of the concerns mentioned above. Concerning CH4 oxidation, inspired by metalloenzymes that oxidize hydrophobic organic substrates, a hydrophobic second coordination sphere (SCS) was introduced to an FeII complex bearing a pentadentate N-heterocyclic carbene ligand, and the FeII complex was used as a catalyst for CH4 oxidation in aqueous media. Consequently, CH4 was efficiently and selectively oxidized to methanol with 83% selectivity and a turnover number of 500. In contrast, when methanol was used as a substrate for catalytic oxidation by the FeII complex, oxidation products were obtained in a negligible yield, which was comparable to that of the control experiment without the catalyst. Therefore, the hydrophobic SCS of the FeII complex can capture only hydrophobic substrates such as CH4 and release hydrophilic products such as methanol to the aqueous medium for suppressing overoxidation ("catch-and-release" mechanism). On the other hand, for photocatalytic CO2 reduction, we have developed NiII complexes with N2S2-chelating ligands as catalysts, which have been inspired by carbon monoxide dehydrogenase, and have also introduced a binding site of Lewis-acidic metal ions to the SCS of the Ni complex. When Mg2+ was applied as a moderate Lewis acid, a Mg2+-bound Ni catalyst allowed us to achieve remarkable enhancement of the photocatalytic CO2 reduction to afford CO as the product with over 99% selectivity and a quantum yield of 11.4%. Divalent metal ions besides Mg2+ also showed similar positive impacts on photocatalytic CO2 reduction, whereas monovalent metal ions exhibited almost no effects and trivalent metal ions exclusively promoted hydrogen evolution. In this Account, we highlight our recent progress in the catalytic manipulations of CH4 and CO2 as C1 resources.
Collapse
Affiliation(s)
- Tomoya Ishizuka
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Takahiko Kojima
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
12
|
Wang YF, Qi MY, Conte M, Tang ZR, Xu YJ. Bimetallic Single Atom/Nanoparticle Ensemble for Efficient Photochemical Cascade Synthesis of Ethylene from Methane. Angew Chem Int Ed Engl 2024; 63:e202407791. [PMID: 38860734 DOI: 10.1002/anie.202407791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/12/2024]
Abstract
Light-driven photoredox catalysis presents a promising approach for the activation and conversion of methane (CH4) into high value-added chemicals under ambient conditions. However, the high C-H bond dissociation energy of CH4 and the absence of well-defined C-H activation sites on catalysts significantly limit the highly efficient conversion of CH4 toward multicarbon (C2+) hydrocarbons, particularly ethylene (C2H4). Herein, we demonstrate a bimetallic design of Ag nanoparticles (NPs) and Pd single atoms (SAs) on ZnO for the cascade conversion of CH4 into C2H4 with the highest production rate compared with previous works. Mechanistic studies reveal that the synergistic effect of Ag NPs and Pd SAs, upon effecting key bond-breaking and -forming events, lowers the overall energy barrier of the activation process of both CH4 and the resulting C2H6, constituting a truly synergistic catalytic system to facilitate the C2H4 generation. This work offers a novel perspective on the advancement of photocatalytic directional CH4 conversion toward high value-added C2+ hydrocarbons through the subtle design of bimetallic cascade catalyst strategy.
Collapse
Affiliation(s)
- Yin-Feng Wang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
| | - Ming-Yu Qi
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Marco Conte
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK
| | - Zi-Rong Tang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
| | - Yi-Jun Xu
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
13
|
da Silva MR, Gil J, Torres JA, S. T. Silva GT, Filho JB, Victória HF, Krambrock K, Teixeira IF, Ribeiro C. Investigating the Metal-TiO 2 Influence for Highly Selective Photocatalytic Oxidation of Methane to Methanol. ACS APPLIED MATERIALS & INTERFACES 2024; 16:41973-41985. [PMID: 39042060 PMCID: PMC11331436 DOI: 10.1021/acsami.4c02862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
Methane conversion to valuable chemicals is a highly challenging and desirable reaction. Photocatalysis is a clean pathway to drive this chemical reaction, avoiding the high temperature and pressure of the syngas process. Titanium dioxide, being the most used photocatalyst, presents challenges in controlling the oxidation process, which is believed to depend on the metal sites on its surface that function as heterojunctions. Herein, we supported different metals on TiO2 and evaluated their activity in methane photooxidation reactions. We showed that Ni-TiO2 is the best photocatalyst for selective methane conversion, producing impressively high amounts of methanol (1.600 μmol·g-1) using H2O2 as an oxidant, with minimal CO2 evolution. This performance is attributed to the high efficiency of nickel species to produce hydroxyl radicals and enhance H2O2 utilization as well as to induce carrier traps (Ti3+ and SETOVs sites) on TiO2, which are crucial for C-H activation. This study sheds light on the role of catalyst structure in the proper control of CH4 photoconversion.
Collapse
Affiliation(s)
- Marcos
Augusto R. da Silva
- Nanotechnology
National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, São
Carlos 13561-206, Brazil
- Department
of Chemistry, Federal University of São
Carlos (UFSCar), 13565-905 São Carlos, São Paulo, Brazil
| | - Jéssica
C. Gil
- Nanotechnology
National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, São
Carlos 13561-206, Brazil
- Department
of Chemistry, Federal University of São
Carlos (UFSCar), 13565-905 São Carlos, São Paulo, Brazil
| | - Juliana A. Torres
- Nanotechnology
National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, São
Carlos 13561-206, Brazil
| | - Gelson T. S. T. Silva
- Nanotechnology
National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, São
Carlos 13561-206, Brazil
| | - José Balena
Gabriel Filho
- Department
of Chemistry, Federal University of Minas
Gerais (UFMG), 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | | | - Klaus Krambrock
- Department
of Physics, Federal University of Minas
Gerais (UFMG), 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Ivo F. Teixeira
- Nanotechnology
National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, São
Carlos 13561-206, Brazil
| | - Caue Ribeiro
- Nanotechnology
National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, São
Carlos 13561-206, Brazil
- Department
of Chemistry, Federal University of São
Carlos (UFSCar), 13565-905 São Carlos, São Paulo, Brazil
| |
Collapse
|
14
|
Nie S, Wu L, Zhang Q, Huang Y, Liu Q, Wang X. High-entropy-perovskite subnanowires for photoelectrocatalytic coupling of methane to acetic acid. Nat Commun 2024; 15:6669. [PMID: 39107324 PMCID: PMC11303686 DOI: 10.1038/s41467-024-50977-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
The incorporation of multiple immiscible metals in high-entropy oxides can create the unconventional coordination environment of catalytic active sites, while the high formation temperature of high-entropy oxides results in bulk materials with low specific surface areas. Here we develop the high-entropy LaMnO3-type perovskite-polyoxometalate subnanowire heterostructures with periodically aligned high-entropy LaMnO3 oxides and polyoxometalate under a significantly reduced temperature of 100 oC, which is much lower than the temperature required by state-of-the-art calcination methods for synthesizing high-entropy oxides. The high-entropy LaMnO3-polyoxometalate subnanowires exhibit excellent catalytic activity for the photoelectrochemical coupling of methane into acetic acid under mild conditions (1 bar, 25 oC), with a high productivity (up to 4.45 mmol g‒1cat h‒1) and selectivity ( > 99%). Due to the electron delocalization at the subnanometer scale, the contiguous active sites of high-entropy LaMnO3 and polyoxometalate in the heterostructure can efficiently activate C - H bonds and stabilize the resulted *COOH intermediates, which benefits the in situ coupling of *CH3 and *COOH into acetic acid.
Collapse
Affiliation(s)
- Siyang Nie
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yunwei Huang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qingda Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
15
|
Hu YZ, Wei GP, Zhao YX, Liu QY, He SG. Experimental Reactivity of (MoO 3) NO - ( N = 1-21) Cluster Anions with C 1-C 4 Alkanes: A Simple Model to Predict the Reactivity with Methane. J Phys Chem A 2024; 128:5253-5259. [PMID: 38937133 DOI: 10.1021/acs.jpca.4c01163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Metal oxide clusters with atomic oxygen radical anions are important model systems to study the mechanisms of activating and transforming very stable alkane molecules under ambient conditions. It is extremely challenging to characterize the activation and conversion of methane, the most stable alkane molecule, by metal oxide cluster anions due to the low reactivity of the anionic species. In this study, using a ship-lock type reactor that could be run at relatively high pressure conditions to provide a high number of collisions in ion-molecule reactions, the rate constants of the reactions between (MoO3)NO- (N = 1-21) cluster anions and the light alkanes (C1-C4) were measured under thermal collision conditions. The relationships among the reaction rates of different alkanes were obtained to establish a model to predict the low rate constants with methane from the high rate constants with C2-C4 alkanes. The model was tested by using available experimental results in literature. This study provides a new method to estimate the relatively low reactivity of atomic oxygen radical anions with methane on metal oxide clusters.
Collapse
Affiliation(s)
- Yu-Zhe Hu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Gong-Ping Wei
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
16
|
Zhou H, Chen F, Liu D, Qin X, Jing Y, Zhong C, Shi R, Liu Y, Zhang J, Zhu Y, Wang J. Boosting Reactive Oxygen Species Formation Over Pd and VO δ Co-Modified TiO 2 for Methane Oxidation into Valuable Oxygenates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311355. [PMID: 38363051 DOI: 10.1002/smll.202311355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Direct photocatalytic methane oxidation into value-added products provides a promising strategy for methane utilization. However, the inefficient generation of reactive oxygen species (ROS) partly limits the activation of CH4. Herein, it is reported that Pd and VOδ co-modified TiO2 enables direct and selective methane oxidation into liquid oxygenates in the presence of O2 and H2. Due to the extra ROS production from the in situ formed H2O2, a highly improved yield rate of 5014 µmol g-1 h-1 for liquid oxygenates with a selectivity of 89.3% is achieved over the optimized Pd0.5V0.2-TiO2 catalyst at ambient temperature, which is much better than those (2682 µmol g-1 h-1, 77.8%) without H2. Detailed investigations also demonstrate the synergistic effect between Pd and VOδ species for enhancing the charge carrier separation and transfer, as well as improving the catalytic activity for O2 reduction and H2O2 production.
Collapse
Affiliation(s)
- Huanyu Zhou
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Fan Chen
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Dandan Liu
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Xin Qin
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Yangchi Jing
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Chenyu Zhong
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Rui Shi
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Yana Liu
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Jiguang Zhang
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Yunfeng Zhu
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Jun Wang
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
17
|
Li H, Sun Z, Lei C, Kang W, Ma L, Shen Q, Jia H, Xue J, Zhu Y. Forked Vein Structure W/WO 3- x with Dual Active Sites in W and Oxygen Vacancies to Enhance Methylene Self-Coupling for Efficient Conversion of Methane to Ethylene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311041. [PMID: 38342590 DOI: 10.1002/smll.202311041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Indexed: 02/13/2024]
Abstract
The directional conversion of methane to ethylene is challenging due to the dissociation of the C─H bond and the self-coupling of methyl intermediates. Herein, a novel W/WO3- x catalyst with the fork vein structure consisting of an alternating arrangement of WO3- x and W is developed. Impressively, the catalyst achieves an unprecedented C2H4 yield of 1822.73 µmol g-1 h-1, with a selectivity of 82.49%. The enhanced catalytic activity is ascribed to the multifunctional synergistic effect induced by oxygen vacancies and W sites in W/WO3- x. Oxygen vacancies provide abundant coordination of unsaturation sites, which promotes the adsorption and activation of CH4, thus reducing the dissociation energy barrier of the C─H bond. The CH2 coupling barrier on the metal W surface is significantly lower compared to WO3, so CH2 can migrate to the W site for coupling. Importantly, the W/WO3- x with high periodicity provides multiple ordered local microelectric fields, and CH2 intermediates with dipole moments undergo orientation polarization and displacement polarization driven by the electric field, thus enabling CH2 migration. This work opens a new avenue for the structural design and modulation of photocatalysts, and provides new perspectives on the migration of methylene between multiple active sites.
Collapse
Affiliation(s)
- Huimin Li
- Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, 030024, P. R. China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Zhe Sun
- Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, 030024, P. R. China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Chengkun Lei
- Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, 030024, P. R. China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Wenxiang Kang
- Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, 030024, P. R. China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Lin Ma
- Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, 030024, P. R. China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Qianqian Shen
- Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, 030024, P. R. China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Husheng Jia
- Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, 030024, P. R. China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Jinbo Xue
- Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, 030024, P. R. China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
18
|
Sun X, Liu G, Shen T, Hu Y, Song Z, Wu Z, Li Q, Zheng L, Chen W, Song YF. Directional Activation of Oxygen by the Au-Loaded ZnAl-LDH with Defect Structure for Highly Efficient Photocatalytic Oxidative Coupling of Methane. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310857. [PMID: 38349039 DOI: 10.1002/smll.202310857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/07/2024] [Indexed: 07/13/2024]
Abstract
Photocatalytic oxidative coupling of CH4 (OCM) is a promising CH4 conversion process that can achieve efficient methane conversion with the assistance of O2. It remains to be highly challenging to improve the photocatalytic OCM activity from catalyst design and to deepen the understanding of the reactant activation in the OCM process. In this work, the Au-loaded ZnAl-layered double hydroxides (LDHs) with and without oxygen vacancy are constructed (denoted as Au/ZnAl and Au/ZnAl-v), respectively. When applied for photocatalytic OCM, the Au/ZnAl-v shows a CH4 conversion rate of 8.5 mmol g-1 h-1 with 92% selectivity of C2H6 at 40 °C, outperforming most reported photocatalytic OCM systems at low temperature reported in the literature. Furthermore, the catalytic performance of Au/ZnAl-v can be stable for 100 h. In contrast, the An/ZnAl exhibits a CH4 conversion rate of 0.8 mmol g-1 h-1 with 46% selectivity of C2H6. Detailed characterizations and DFT calculation studies reveal that the introduced Ov sites on Au/ZnAl-v are able to activate O2, and the resulting superoxide radical O2·- greatly promotes the activation of CH4. The coupling of CH3· groups with the assistance of Au cocatalyst leads to the formation of C2H6 with high photocatalytic activity.
Collapse
Affiliation(s)
- Xiaoliang Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Guihao Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tianyang Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yihang Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ziheng Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhaohui Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qian Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang Province, 324000, P. R. China
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang Province, 324000, P. R. China
| |
Collapse
|
19
|
Zhai G, Cai L, Ma J, Chen Y, Liu Z, Si S, Duan D, Sang S, Li J, Wang X, Liu YA, Qian B, Liu C, Pan Y, Zhang N, Liu D, Long R, Xiong Y. Highly efficient, selective, and stable photocatalytic methane coupling to ethane enabled by lattice oxygen looping. SCIENCE ADVANCES 2024; 10:eado4390. [PMID: 38941471 DOI: 10.1126/sciadv.ado4390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/22/2024] [Indexed: 06/30/2024]
Abstract
Light-driven oxidative coupling of methane (OCM) for multi-carbon (C2+) product evolution is a promising approach toward the sustainable production of value-added chemicals, yet remains challenging due to its low intrinsic activity. Here, we demonstrate the integration of bismuth oxide (BiOx) and gold (Au) on titanium dioxide (TiO2) substrate to achieve a high conversion rate, product selectivity, and catalytic durability toward photocatalytic OCM through rational catalytic site engineering. Mechanistic investigations reveal that the lattice oxygen in BiOx is effectively activated as the localized oxidant to promote methane dissociation, while Au governs the methyl transfer to avoid undesirable overoxidation and promote carbon─carbon coupling. The optimal Au/BiOx-TiO2 hybrid delivers a conversion rate of 20.8 millimoles per gram per hour with C2+ product selectivity high to 97% in the flow reactor. More specifically, the veritable participation of lattice oxygen during OCM is chemically looped by introduced dioxygen via the Mars-van Krevelen mechanism, endowing superior catalyst stability.
Collapse
Affiliation(s)
- Guangyao Zhai
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Nano Science and Technology Institute, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Lejuan Cai
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Jun Ma
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Nano Science and Technology Institute, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Yihong Chen
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Nano Science and Technology Institute, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Zehua Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Nano Science and Technology Institute, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Shenghe Si
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Nano Science and Technology Institute, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Delong Duan
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shuaikang Sang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiawei Li
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xinyu Wang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ying-Ao Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Nano Science and Technology Institute, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Bing Qian
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chengyuan Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yang Pan
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ning Zhang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Nano Science and Technology Institute, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Dong Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Nano Science and Technology Institute, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Ran Long
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yujie Xiong
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Nano Science and Technology Institute, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
- Anhui Engineering Research Center of Carbon Neutrality, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| |
Collapse
|
20
|
Zhang H, Sun P, Fei X, Wu X, Huang Z, Zhong W, Gong Q, Zheng Y, Zhang Q, Xie S, Fu G, Wang Y. Unusual facet and co-catalyst effects in TiO 2-based photocatalytic coupling of methane. Nat Commun 2024; 15:4453. [PMID: 38789454 PMCID: PMC11126583 DOI: 10.1038/s41467-024-48866-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Photocatalytic coupling of methane to ethane and ethylene (C2 compounds) offers a promising approach to utilizing the abundant methane resource. However, the state-of-the-art photocatalysts usually suffer from very limited C2 formation rates. Here, we report our discovery that the anatase TiO2 nanocrystals mainly exposing {101} facets, which are generally considered less active in photocatalysis, demonstrate surprisingly better performances than those exposing the high-energy {001} facet. The palladium co-catalyst plays a pivotal role and the Pd2+ site on co-catalyst accounts for the selective C2 formation. We unveil that the anatase {101} facet favors the formation of hydroxyl radicals in aqueous phase near the surface, where they activate methane molecules into methyl radicals, and the Pd2+ site participates in facilitating the adsorption and coupling of methyl radicals. This work provides a strategy to design efficient nanocatalysts for selective photocatalytic methane coupling by reaction-space separation to optimize heterogeneous-homogeneous reactions at solid-liquid interfaces.
Collapse
Affiliation(s)
- Huizhen Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Pengfei Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Xiaozhen Fei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Xuejiao Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Zongyi Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Wanfu Zhong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Qiaobin Gong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Yanping Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Qinghong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Shunji Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China.
| | - Gang Fu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China.
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China.
| |
Collapse
|
21
|
Zhang R, Shi J, Fu L, Liu YG, Jia Y, Han Z, Yuan K, Jiang HY. Direct Photocatalytic Methane Oxidation to Formaldehyde by N Doping Co-Decorated Mixed Crystal TiO 2. ACS NANO 2024; 18:12994-13005. [PMID: 38721844 DOI: 10.1021/acsnano.4c01318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In this paper, N-doped TiO2 mixed crystals are prepared via direct calcination of TiN for highly selective oxidation of CH4 to HCHO at room temperature. The structures of the prepared TiO2 samples are characterized to be N-doped TiO2 of anatase and rutile mixed crystals. The crystal structures of TiO2 samples are determined by XRD spectra and Raman spectra, while N doping is demonstrated by TEM mapping, ONH inorganic element analysis, and high-resolution XPS results. Significantly, the production rate of HCHO is as high as 23.5 mmol·g-1·h-1 with a selectivity over 90%. Mechanism studies reveal that H2O is the main oxygen source and acts through the formation of ·OH. DFT calculations indicate that the construction of a mixed crystal structure and N-doping modification mainly act by increasing the adsorption capacity of H2O. An efficient photocatalyst was prepared by us to convert CH4 to HCHO with high yield and selectivity, greatly promoting the development of the photocatalytic CH4 conversion study.
Collapse
Affiliation(s)
- Ruixue Zhang
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education and the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Jiale Shi
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education and the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Lei Fu
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education and the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Ya-Ge Liu
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education and the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Yibing Jia
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education and the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Zhenyu Han
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education and the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Kun Yuan
- College of Chemical Engineering and Technology, Tianshui Normal University, Tianshui 741001, P. R. China
| | - Hai-Ying Jiang
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education and the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China
| |
Collapse
|
22
|
Lin S, Chen Y, Li H, Wang W, Wang Y, Wu M. Application of metal-organic frameworks and their derivates for thermal-catalytic C1 molecules conversion. iScience 2024; 27:109656. [PMID: 38650984 PMCID: PMC11033205 DOI: 10.1016/j.isci.2024.109656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
One-carbon (C1) catalysis refers to the conversion of compounds with a single carbon atom, especially carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4), into clean fuels and valuable chemicals via catalytic strategy is crucial for sustainable and green development. Among various catalytic strategies, thermal-driven process seems to be one of the most promising pathways for C1 catalysis due to the high efficiency and practical application prospect. Notably, the rational design of thermal-driven C1 catalysts plays a vital role in boosting the targeted products synthesis of C1 catalysis, which relies heavily on the choice of ideal active site support, catalyst fabrication precursor, and catalytic reaction field. As a novel crystalline porous material, metal-organic frameworks (MOFs) has made significant progress in the design and synthesis of various functional nanomaterials. However, the application of MOFs in C1 catalysis faces numerous challenges, such as thermal stability, mechanical strength, yield of MOFs, and so on. To overcome these limitations and harness the advantages of MOFs in thermal-driven C1 catalysis, researchers have developed various catalyst/carrier preparation strategies. In this review, we provide a concise overview of the recent advancements in the conversion of CO, CO2, and CH4 into clean fuels and valuable chemicals via thermal-catalytic strategy using MOFs-based catalysts. Furthermore, we discuss the main challenges and opportunities associated with MOFs-based catalysts for thermal-driven C1 catalysis in the future.
Collapse
Affiliation(s)
- Shiyuan Lin
- College of New Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Yongjie Chen
- College of New Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Huayong Li
- College of New Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Wenhang Wang
- College of New Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Yang Wang
- College of New Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Mingbo Wu
- College of New Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
23
|
Guo M, Wu X, Wu H, Sun X. Ligand effect on Ru-centered species toward methane activation. Phys Chem Chem Phys 2024; 26:14329-14335. [PMID: 38695750 DOI: 10.1039/d4cp01420k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Ligands have been known to profoundly affect the chemical transformations of methane, yet significant challenges remain in shedding light on the underlying mechanisms. Here, we demonstrate that the conversion of methane can be regulated by Ru centered cations with a series of ligands (C, CH, CNH, CHCNH). Gas-phase experiments complemented by theoretical dynamic analysis were performed to explore the essences and principles governing the ligand effect. In contrast to the inert Ru+, [RuC]+, and [RuCNH]+ toward CH4, the dehydrogenation dominates the reaction of ligand-regulated systems [RuCH]+/CH4 and [RuCHCNH]+/CH4. In active cases, CH acts as active sites, and regulates the activation of CH4 assisted by the "seemingly inert" CNH ligand.
Collapse
Affiliation(s)
- Mengdi Guo
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China.
- Shandong Energy Institute, Qingdao 266101, P. R. China
| | - Xiaonan Wu
- East China Normal University, Shanghai 200241, P. R. China.
| | - Hechen Wu
- Fudan University, Shanghai 200240, P. R. China
| | - Xiaoyan Sun
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China.
- Shandong Energy Institute, Qingdao 266101, P. R. China
| |
Collapse
|
24
|
Wang H, Cui G, Lu H, Li Z, Wang L, Meng H, Li J, Yan H, Yang Y, Wei M. Facilitating the dry reforming of methane with interfacial synergistic catalysis in an Ir@CeO 2-x catalyst. Nat Commun 2024; 15:3765. [PMID: 38704402 PMCID: PMC11069590 DOI: 10.1038/s41467-024-48122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/19/2024] [Indexed: 05/06/2024] Open
Abstract
The dry reforming of methane provides an attractive route to convert greenhouse gases (CH4 and CO2) into valuable syngas, so as to resolve the carbon cycle and environmental issues. However, the development of high-performance catalysts remains a huge challenge. Herein, we report a 0.6% Ir/CeO2-x catalyst with a metal-support interface structure which exhibits high CH4 (~72%) and CO2 (~82%) conversion and a CH4 reaction rate of ~973 μmolCH4 gcat-1 s-1 which is stable over 100 h at 700 °C. The performance of the catalyst is close to the state-of-the-art in this area of research. A combination of in situ spectroscopic characterization and theoretical calculations highlight the importance of the interfacial structure as an intrinsic active center to facilitate the CH4 dissociation (the rate-determining step) and the CH2* oxidation to CH2O* without coke formation, which accounts for the long-term stability. The catalyst in this work has a potential application prospect in the field of high-value utilization of carbon resources.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Guoqing Cui
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), 102249, Beijing, P. R. China.
| | - Hao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Zeyang Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Lei Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, 324000, Quzhou, P. R. China
| | - Hao Meng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, 324000, Quzhou, P. R. China
| | - Jiong Li
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201204, Shanghai, P. R. China
| | - Hong Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Yusen Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China.
- Quzhou Institute for Innovation in Resource Chemical Engineering, 324000, Quzhou, P. R. China.
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China.
- Quzhou Institute for Innovation in Resource Chemical Engineering, 324000, Quzhou, P. R. China.
| |
Collapse
|
25
|
Li ZY, Liu QY, He SG. Spectroscopic Characterization of Thermal Methane Activation by Lewis-Acid-Base Pair in a Gas-Phase Metal Nitride Anion Ta 2N 3. Chemphyschem 2024; 25:e202400116. [PMID: 38380870 DOI: 10.1002/cphc.202400116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024]
Abstract
Activation and transformation of methane is one of the "holy grails" in catalysis. Understanding the nature of active sites and mechanistic details via spectroscopic characterization of the reactive sites and key intermediates is of great challenge but crucial for the development of novel strategies for methane transformation. Herein, by employing photoelectron velocity-map imaging (PEVMI) spectroscopy in conjunction with quantum chemistry calculations, the Lewis acid-base pair (LABP) of [Taδ+-Nδ-] unit in Ta2N3 - acting as an active center to accomplish the heterolytic cleavage of C-H bond in CH4 has been confirmed by direct characterization of the reactant ion Ta2N3 - and the CH4-adduct intermediate Ta2N3CH4 -. Two active vibrational modes for the reactant (Ta2N3 -) and four active vibrational modes for the intermediate (Ta2N3CH4 -) were observed from the vibrationally resolved PEVMI spectra, which unequivocally determined the structure of Ta2N3 - and Ta2N3CH4 -. Upon heating, the LABP intermediate (Ta2N3CH4 -) containing the NH and Ta-CH3 unit can undergo the processes of C-N coupling and dehydrogenation to form the product with an adsorbed HCN molecule.
Collapse
Affiliation(s)
- Zi-Yu Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institution of Chemistry, Chinese Academy of Sciences, Beijing 1, 00190, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS, Research/Education Center of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institution of Chemistry, Chinese Academy of Sciences, Beijing 1, 00190, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS, Research/Education Center of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institution of Chemistry, Chinese Academy of Sciences, Beijing 1, 00190, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS, Research/Education Center of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences Beijing, 100049, (P. R. China)
| |
Collapse
|
26
|
Amano F, Suzuki S, Tsushiro K, Ito J, Naito T, Kubota H. Photoelectrochemical Conversion of Methane to Ethane and Hydrogen under Visible Light Using Functionalized Tungsten Trioxide Photoanodes with Proton Exchange Membrane. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38698546 DOI: 10.1021/acsami.4c02713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Developing methane utilization technologies is desired to convert abundant and renewable carbon resources, such as natural gas and biogas, into value-added chemical products. This study provides insights into emerging photoelectrochemical (PEC) technology for the photocatalytic transformation of methane to C2H6 and H2 using visible light at room temperature. The PEC conversion of methane to oxygenates has been investigated in aqueous electrolytes. Herein, we demonstrate the gas-phase PEC methane conversion using a proton exchange membrane (PEM) as a solid polymer electrolyte and a gas-diffusion photoanode for methane oxidation. Tungsten trioxide (WO3), a semiconductor photocatalyst responsive to visible light, is utilized as the photoanode material. Ultraviolet light (∼365 nm) excitation predominantly results in CO2 production with lower C2H6 selectivity in humidified methane. In contrast, visible light (∼453 nm) effectively promotes C2H6 production over the WO3 photoanode, attributed to preferential hydroxyl radical (•OH) formation compared to UV irradiation. Photogenerated holes formed near the valence band maximum of WO3 contribute to •OH formation through a single-electron water oxidation. The photogenerated •OH activates gaseous methane molecules to methyl radicals, subsequently coupled into C2H6 at the gas-electrolyte-semiconductor boundary. H2 is concurrently formed on the cathode electrocatalyst. Improving the selectivity for the dehydrogenative coupling of methane is pivotal for enhancing the energy efficiency in the PEM-PEC system.
Collapse
Affiliation(s)
- Fumiaki Amano
- Department of Applied Chemistry for Environment, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Souta Suzuki
- Department of Applied Chemistry for Environment, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Keisuke Tsushiro
- Department of Applied Chemistry for Environment, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Junji Ito
- Advanced Materials and Processing Laboratory, Research Division, Nissan Motor Co., Ltd., 1 Natsushima-cho, Yokosuka, Kanagawa 237-8523, Japan
| | - Tetsuro Naito
- Advanced Materials and Processing Laboratory, Research Division, Nissan Motor Co., Ltd., 1 Natsushima-cho, Yokosuka, Kanagawa 237-8523, Japan
| | - Hiroshi Kubota
- Advanced Materials and Processing Laboratory, Research Division, Nissan Motor Co., Ltd., 1 Natsushima-cho, Yokosuka, Kanagawa 237-8523, Japan
| |
Collapse
|
27
|
Wen H, Liu Y, Liu S, Peng Z, Wu X, Yuan H, Jiang J, Li B. Heterogeneous Catalysis in Production and Utilization of Formic Acid for Renewable Energy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305405. [PMID: 38072804 DOI: 10.1002/smll.202305405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/18/2023] [Indexed: 05/03/2024]
Abstract
As the cleanest energy source, hydrogen has been followed with interest by researchers around the world. However, due to the internal low density of hydrogen, it cannot be stored and used efficiently which limits the hydrogen application on a huge scale. Chemical hydrogen storage is considered as a useful method for efficient handling and storage. Due to its excellent safety, formic acid stands out. It is worth noting that the matter and energy conversion is established based on formic acid, which is not referred to in the previous documentation. In this review, the latest development of research on heterogeneous catalysis via production and application of formic acid for energy application is reported. The matter and energy conversion based on formic acid are both discussed systematically. More importantly, with formic acid as the node, biomass energy shows potential to be in a dominant position in the energy conversion process. In addition, the catalytic mechanism is also mentioned. This review can provide the current state in this field and the new inspirations for developing superior catalytic systems.
Collapse
Affiliation(s)
- Hao Wen
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Yanyan Liu
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
- College of Science, Henan Agricultural University, 63 Agriculture Road, Zhengzhou, 450002, P. R. China
| | - Shuling Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Zhikun Peng
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Xianli Wu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Huiyu Yuan
- School of Materials Science and Engineering, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| | - Baojun Li
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| |
Collapse
|
28
|
Postma RS, Lefferts L. Effect of Hydrogen Addition on Coke Formation and Product Distribution in Catalytic Coupling of Methane. Ind Eng Chem Res 2024; 63:6995-7002. [PMID: 38681869 PMCID: PMC11046431 DOI: 10.1021/acs.iecr.4c00381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 05/01/2024]
Abstract
The effect of hydrogen addition on catalytic nonoxidative coupling of methane at 1000 °C was investigated. Experiments were performed at varying ratios between the catalyst and the postcatalytic volume to discern the effect of hydrogen on the catalytic reaction as well as on the gas-phase reaction. Adding 10% H2 decreases the methane conversion by a factor of 2, almost independent of the ratio between the catalyst and the postcatalytic residence time. The effect on the conversion is mostly determined by gas-phase chemistry. Hydrogen addition has no influence on the C2 hydrocarbon yield, whereas aromatic selectivity is significantly reduced. Changes in selectivity are attributed to changes in methane conversion. Quantitative determination of the amount of coke deposited on the catalyst reveals a decrease by 1 order of magnitude when dosing up to 10% H2, while carbon deposits-downstream of the catalyst bed are suppressed to a much lower extent. These results suggest a process in which the produced hydrogen is partly recycled, maximizing the carbon selectivity to C2 hydrocarbons while minimizing both aromatics and, most crucially, formation of coke on the catalyst as well as further deposits-downstream.
Collapse
Affiliation(s)
| | - Leon Lefferts
- Catalytic Processes and Materials
Group, Faculty of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, Enschede 7500 AE, The Netherlands
| |
Collapse
|
29
|
Lai Y, Wang R, Zeng Y, Li F, Chen X, Wang T, Fan H, Guo Q. Low-Temperature Oxidation of Methane on Rutile TiO 2(110): Identifying the Role of Surface Oxygen Species. JACS AU 2024; 4:1396-1404. [PMID: 38665644 PMCID: PMC11040672 DOI: 10.1021/jacsau.3c00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/28/2024]
Abstract
Understanding the microkinetic mechanism underlying photocatalytic oxidative methane (CH4) conversion is of significant importance for the successful design of efficient catalysts. Herein, CH4 photooxidation has been systematically investigated on oxidized rutile(R)-TiO2(110) at 60 K. Under 355 nm irradiation, the C-H bond activation of CH4 is accomplished by the hole-trapped dangling OTi- center rather than the hole-trapped Ob- center via the Eley-Rideal reaction pathway, producing movable CH3• radicals. Subsequently, movable CH3• radicals encounter an O/OH species to form CH3O/CH3OH species, which could further dissociate into CH2O under irradiation. However, the majority of the CH3• radical intermediate is ejected into a vacuum, which may induce radical-mediated reactions under ambient conditions. The result not only advances our knowledge about inert C-H bond activation but also provides a deep insight into the mechanism of photocatalytic CH4 conversion, which will be helpful for the successful design of efficient catalysts.
Collapse
Affiliation(s)
- Yuemiao Lai
- Shenzhen
Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, PR China
| | - Ruimin Wang
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
- School
of Pharmacy, North China University of Science
and Technology, Tangshan, Hebei 063210, PR China
| | - Yi Zeng
- Shenzhen
Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, PR China
| | - Fangliang Li
- Shenzhen
Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, PR China
| | - Xiao Chen
- Shenzhen
Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, PR China
- Institute
of Advanced Science Facilities, Shenzhen, Guangdong 518107, PR China
| | - Tao Wang
- Shenzhen
Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, PR China
| | - Hongjun Fan
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
| | - Qing Guo
- Shenzhen
Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, PR China
| |
Collapse
|
30
|
Yamada Y, Miwa Y, Toyoda Y, Uno Y, Phung QM, Tanaka K. Effect of porphyrin ligands on the catalytic CH 4 oxidation activity of monocationic μ-nitrido-bridged iron porphyrinoid dimers by using H 2O 2 as an oxidant. Dalton Trans 2024; 53:6556-6567. [PMID: 38525694 DOI: 10.1039/d3dt04313d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The μ-nitrido-bridged iron phthalocyanine homodimer is a potent molecule-based CH4 oxidation catalyst that can effectively oxidize chemically stable CH4 under mild reaction conditions in an acidic aqueous solution including an oxidant such as H2O2. The reactive intermediate is a high-valent iron-oxo species generated upon reaction with H2O2. However, a detailed comparison of the CH4 oxidation activity of the μ-nitrido-bridged iron phthalocyanine dimer with those of μ-nitrido-bridged iron porphyrinoid dimers containing one or two porphyrin ring(s) has not been yet reported, although porphyrins are the most important class of porphyrinoids. Herein, we compare the catalytic CH4 and CH3CH3 oxidation activities of a monocationic μ-nitrido-bridged iron porphyrin homodimer and a monocationic μ-nitrido-bridged heterodimer of an iron porphyrin and an iron phthalocyanine with those of a monocationic μ-nitrido-bridged iron phthalocyanine homodimer in an acidic aqueous solution containing H2O2 as an oxidant. It was demonstrated that the CH4 oxidation activities of monocationic μ-nitrido-bridged iron porphyrinoid dimers containing porphyrin ring(s) were much lower than that of a monocationic μ-nitrido-bridged iron phthalocyanine homodimer. These findings suggested that the difference in the electronic structure of the porphyrinoid rings of monocationic μ-nitrido-bridged iron porphyrinoid dimers strongly affected their catalytic light alkane oxidation activities.
Collapse
Affiliation(s)
- Yasuyuki Yamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yusuke Miwa
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Yuka Toyoda
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yoshiki Uno
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Quan Manh Phung
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
- Institute of Transformaytive Bio-Molecules (ITBM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kentaro Tanaka
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| |
Collapse
|
31
|
Xu W, Liu HX, Hu Y, Wang Z, Huang ZQ, Huang C, Lin J, Chang CR, Wang A, Wang X, Zhang T. Metal-Oxo Electronic Tuning via In Situ CO Decoration for Promoting Methane Conversion to Oxygenates over Single-Atom Catalysts. Angew Chem Int Ed Engl 2024; 63:e202315343. [PMID: 38425130 DOI: 10.1002/anie.202315343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/25/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
Direct methane conversion (DMC) to oxygenates at low temperature is of great value but remains challenging due to the high energy barrier for C-H bond activation. Here, we report that in situ decoration of Pd1-ZSM-5 single atom catalyst (SAC) by CO molecules significantly promoted the DMC reaction, giving the highest turnover frequency of 207 h-1 ever reported at room temperature and ~100 % oxygenates selectivity with H2O2 as oxidant. Combined characterizations and DFT calculations illustrate that the C-atom of CO prefers to coordinate with Pd1, which donates electrons to the Pd1-O active center (L-Pd1-O, L=CO) generated by H2O2 oxidation. The correspondingly improved electron density over Pd-O pair renders a favorable heterolytic dissociation of C-H bond with low energy barrier of 0.48 eV. Applying CO decoration strategy to M1-ZSM-5 (M=Pd, Rh, Ru, Fe) enables improvement of oxygenates productivity by 3.2-11.3 times, highlighting the generalizability of this method in tuning metal-oxo electronic structure of SACs for efficient DMC process.
Collapse
Affiliation(s)
- Weibin Xu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han-Xuan Liu
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi An Shi, Xi'an, 710049, China
| | - Yue Hu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng-Qing Huang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi An Shi, Xi'an, 710049, China
| | - Chuande Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jian Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chun-Ran Chang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi An Shi, Xi'an, 710049, China
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiaodong Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
32
|
Xiao P, Wang Y, Lu Y, Nakamura K, Ozawa N, Kubo M, Gies H, Yokoi T. Direct Oxidation of Methane to Methanol over Transition-Metal-Free Ferrierite Zeolite Catalysts. J Am Chem Soc 2024; 146:10014-10022. [PMID: 38557129 PMCID: PMC11009945 DOI: 10.1021/jacs.4c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Direct oxidation of methane to methanol was reported to be highly dependent on the transition- or noble-metal-loading catalysts in the past decades. Here, we show that the transition-metal-free aluminosilicate ferrierite (FER) zeolite effectively catalyzed methane and N2O to methanol for the first time. The distorted tetracoordinated Al in the framework and pentacoordinated Al on the extra framework formed during calcination, activation, and reaction processes were confirmed as the potential active centers. The possible reaction pathway similar to the Fe-containing zeolites was advocated based on the reaction results using different oxidants, N2O adsorption FTIR spectra, and 27Al MAS NMR spectra. The stable and efficient methanol production capacity of FER zeolite was ascribed to the two-dimensional straight channels and its distinctive Al distribution of FER zeolite (CP914C) from Zeolyst. The transition-metal-free FER zeolite performed better than the record in the literature and our recent results using transition-metal-containing catalysts in terms of selectivity and formation rate of methanol and stability. This work has great significance and prospects for utilizing CH4 and N2O as resources and will open new avenues for methane oxidation.
Collapse
Affiliation(s)
- Peipei Xiao
- Nanospace
Catalysis Unit, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Yong Wang
- Nanospace
Catalysis Unit, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Yao Lu
- Nanospace
Catalysis Unit, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Kengo Nakamura
- Nanospace
Catalysis Unit, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Nobuki Ozawa
- New
Industry Creation Hatchery Center, Tohoku
University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Institute
for Materials Research, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai 980-8577, Japan
| | - Momoji Kubo
- New
Industry Creation Hatchery Center, Tohoku
University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Institute
for Materials Research, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai 980-8577, Japan
| | - Hermann Gies
- Nanospace
Catalysis Unit, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- Institute
of Geology, Mineralogy und Geophysics, Ruhr-University
Bochum, Bochum 44780, Germany
| | - Toshiyuki Yokoi
- Nanospace
Catalysis Unit, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- iPEACE223
Inc., Konwa Building,
1-12-22 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
33
|
Wu K, Zanina A, Kondratenko VA, Xu L, Li J, Chen J, Lund H, Bartling S, Li Y, Jiang G, Kondratenko EV. Fundamentals of Unanticipated Efficiency of Gd 2O 3-based Catalysts in Oxidative Coupling of Methane. Angew Chem Int Ed Engl 2024; 63:e202319192. [PMID: 38271543 DOI: 10.1002/anie.202319192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/24/2024] [Indexed: 01/27/2024]
Abstract
Improving the selectivity in the oxidative coupling of methane to ethane/ethylene poses a significant challenge for commercialization. The required improvements are hampered by the uncertainties associated with the reaction mechanism due to its complexity. Herein, we report about 90 % selectivity to the target products at 11 % methane conversion over Gd2O3-based catalysts at 700 °C using N2O as the oxidant. Sophisticated kinetic studies have suggested the nature of adsorbed oxygen species and their binding strength as key parameters for undesired methane oxidation to carbon oxides. These descriptors can be controlled by a metal oxide promoter for Gd2O3.
Collapse
Affiliation(s)
- Kai Wu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
- Department of Advanced methods for applied catalysis, Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Anna Zanina
- Department of Advanced methods for applied catalysis, Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Vita A Kondratenko
- Department of Advanced methods for applied catalysis, Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Lin Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
- Department of Advanced methods for applied catalysis, Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Jianshu Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
| | - Juan Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
| | - Henrik Lund
- Department of Advanced methods for applied catalysis, Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Stephan Bartling
- Department of Advanced methods for applied catalysis, Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Yuming Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
| | - Guiyuan Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
| | - Evgenii V Kondratenko
- Department of Advanced methods for applied catalysis, Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| |
Collapse
|
34
|
He C, Gong Y, Li S, Wu J, Lu Z, Li Q, Wang L, Wu S, Zhang J. Single-Atom Alloys Materials for CO 2 and CH 4 Catalytic Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311628. [PMID: 38181452 DOI: 10.1002/adma.202311628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/27/2023] [Indexed: 01/07/2024]
Abstract
The catalytic conversion of greenhouse gases CH4 and CO2 constitutes an effective approach for alleviating the greenhouse effect and generating valuable chemical products. However, the intricate molecular characteristics characterized by high symmetry and bond energies, coupled with the complexity of associated reactions, pose challenges for conventional catalysts to attain high activity, product selectivity, and enduring stability. Single-atom alloys (SAAs) materials, distinguished by their tunable composition and unique electronic structures, confer versatile physicochemical properties and modulable functionalities. In recent years, SAAs materials demonstrate pronounced advantages and expansive prospects in catalytic conversion of CH4 and CO2. This review begins by introducing the challenges entailed in catalytic conversion of CH4 and CO2 and the advantages offered by SAAs. Subsequently, the intricacies of synthesis strategies employed for SAAs are presented and characterization techniques and methodologies are introduced. The subsequent section furnishes a meticulous and inclusive overview of research endeavors concerning SAAs in CO2 catalytic conversion, CH4 conversion, and synergy CH4 and CO2 conversion. The particular emphasis is directed toward scrutinizing the intricate mechanisms underlying the influence of SAAs on reaction activity and product selectivity. Finally, insights are presented on the development and future challenges of SAAs in CH4 and CO2 conversion reactions.
Collapse
Affiliation(s)
- Chengxuan He
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Yalin Gong
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Songting Li
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Jiaxin Wu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Zhaojun Lu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Qixin Li
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Lingzhi Wang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Shiqun Wu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
- Shanghai Engineering Research Center for Multimedia Environmental Catalysis and Resource Utilization, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
35
|
Xiao P, Wang Y, Wang L, Toyoda H, Nakamura K, Bekhti S, Lu Y, Huang J, Gies H, Yokoi T. Understanding the effect of spatially separated Cu and acid sites in zeolite catalysts on oxidation of methane. Nat Commun 2024; 15:2718. [PMID: 38548724 PMCID: PMC10978981 DOI: 10.1038/s41467-024-46924-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/12/2024] [Indexed: 04/01/2024] Open
Abstract
Unraveling the effect of spatially separated bifunctional sites on catalytic reactions is significant yet challenging. In this report, we investigate the role of spatial separation on the oxidation of methane in a series of Cu-exchanged aluminosilicate zeolites. Regulation of the bifunctional sites is done either through studying a physical mixture of Cu-exchanged zeolites and acidic zeolites or by systematically varying the Cu and acid density within a family of zeolite materials. We show that separated Cu and acid sites are beneficial for the formation of hydrocarbons while high-density Cu sites, which are closer together, facilitate the production of CO2. By contrast, a balance of the spatial separation of Cu and acid sites shows more favorable formation of methanol. This work will further guide approaches to methane oxidation to methanol and open an avenue for promoting hydrocarbon synthesis using methanol as an intermediate.
Collapse
Affiliation(s)
- Peipei Xiao
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Yong Wang
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Lizhuo Wang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Hiroto Toyoda
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Kengo Nakamura
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Samya Bekhti
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Yao Lu
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Jun Huang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Hermann Gies
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
- Institute of Geology, Mineralogy und Geophysics, Ruhr-University Bochum, Bochum, 44780, Germany
| | - Toshiyuki Yokoi
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan.
- iPEACE223 Inc. Konwa Building, 1-12-22 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
36
|
Wang Y, Zhao W, Chen X, Ji Y, Zhu X, Chen X, Mei D, Shi H, Lercher JA. Methane-H 2S Reforming Catalyzed by Carbon and Metal Sulfide Stabilized Sulfur Dimers. J Am Chem Soc 2024; 146:8630-8640. [PMID: 38488522 PMCID: PMC10979457 DOI: 10.1021/jacs.4c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
H2S reforming of methane (HRM) provides a potential strategy to directly utilize sour natural gas for the production of COx-free H2 and sulfur chemicals. Several carbon allotropes were found to be active and selective for HRM, while the additional presence of transition metals led to further rate enhancements and outstanding stability (e.g., Ru supported on carbon black). Most metals are transformed to sulfides, but the carbon supports prevent sintering under the harsh reaction conditions. Supported by theoretical calculations, kinetic and isotopic investigations with representative catalysts showed that H2S decomposition and the recombination of surface H atoms are quasi-equilibrated, while the first C-H bond scission is the kinetically relevant step. Theory and experiments jointly establish that dynamically formed surface sulfur dimers are responsible for methane activation and catalytic turnovers on sulfide and carbon surfaces that are otherwise inert without reaction-derived active sites.
Collapse
Affiliation(s)
- Yong Wang
- Department
of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wenru Zhao
- School
of Materials Science and Engineering, Tiangong
University, Tianjin 300387, P. R. China
| | - Xiaofeng Chen
- Department
of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Yinjie Ji
- Department
of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
- Institute
for Integrated Catalysis, Pacific Northwest
National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Xilei Zhu
- Department
of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Xiaomai Chen
- Department
of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Donghai Mei
- School
of Materials Science and Engineering, Tiangong
University, Tianjin 300387, P. R. China
| | - Hui Shi
- School
of Chemistry and Chemical Engineering, Yangzhou
University, Yangzhou 225002, P. R. China
| | - Johannes A. Lercher
- Department
of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
- Institute
for Integrated Catalysis, Pacific Northwest
National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
37
|
Rawal P, Gupta P. Mapping the Catalytic-Space for the Reactivity of Metal-free Boron Nitride with O 2 for H 2O-Mediated Conversion of Methane to HCHO and CO. Chemistry 2024; 30:e202303371. [PMID: 38221895 DOI: 10.1002/chem.202303371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/31/2023] [Accepted: 01/15/2024] [Indexed: 01/16/2024]
Abstract
Transition-metal based catalysts have been widely employed to catalyze partial oxidation of light alkanes. Recently, metal-free hexagonal-boron nitride (h-BN) has emerged as a promising catalyst for the oxidation of CH4 to HCHO and CO; however, the intricate catalytic surface of h-BN at molecular and electronic levels remains inadequately understood. Key questions include how electron-deficient boron atoms in h-BN reduce O2, and whether the partial oxidation of methane over h-BN exhibits similarities to traditional transition-metal catalysts. In our study, we computationally-mapped in-detail the surface catalytic-space of h-BN for methane oxidation. We considered different structures of h-BN and show that these structures contain numerous sites for O2 binding and therefore various routes for methane oxidation are possible. The activation barriers for methane oxidation via various paths varies from ~83 to ~123 kcal mol-1. To comprehend the differences in activation barriers, we employed geometrical, orbital and distortion/interaction analysis (DIA). Orbital analysis reveals that methane activation over h-BN in presence of dioxygen follows a standard hydrogen atom transfer mechanism. It is also shown that water plays an intriguing role in reducing the barrier for HCHO and CO formation by acting as a bridge.
Collapse
Affiliation(s)
- Parveen Rawal
- Computational Catalysis Center, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Puneet Gupta
- Computational Catalysis Center, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| |
Collapse
|
38
|
Song Y, Yang X, Liu H, Liang S, Cai Y, Yang W, Zhu K, Yu L, Cui X, Deng D. High-Pressure Electro-Fenton Driving CH 4 Conversion by O 2 at Room Temperature. J Am Chem Soc 2024; 146:5834-5842. [PMID: 38277793 DOI: 10.1021/jacs.3c10825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Electrochemical conversion of CH4 to easily transportable and value-added liquid fuels is highly attractive for energy-efficient CH4 utilization, but it is challenging due to the low reactivity and solubility of CH4 in the electrolyte. Herein, we report a high-pressure electro-Fenton (HPEF) strategy to establish a hetero-homogeneous process for the electrocatalytic conversion of CH4 by O2 at room temperature. In combination with elevation of reactant pressure to accelerate reaction kinetics, it delivers an unprecedented HCOOH productivity of 11.5 mmol h-1 gFe-1 with 220 times enhancement compared to that under ambient pressure. Remarkably, an HCOOH Faradic efficiency of 81.4% can be achieved with an ultralow cathodic overpotential of 0.38 V. The elevated pressure not only promotes the electrocatalytic reduction of O2 to H2O2 but also increases the reaction collision probability between CH4 and •OH, which is in situ generated from the Fe2+-facilitated decomposition of H2O2.
Collapse
Affiliation(s)
- Yao Song
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Yang
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Huan Liu
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Suxia Liang
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yafeng Cai
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Wenqiang Yang
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Kaixin Zhu
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Liang Yu
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoju Cui
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Dehui Deng
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
39
|
Cao Y, Huang Z, Han C, Zhou Y. Product Peroxidation Inhibition in Methane Photooxidation into Methanol. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306891. [PMID: 38234232 DOI: 10.1002/advs.202306891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/30/2023] [Indexed: 01/19/2024]
Abstract
Methane photooxidation into methanol offers a practical approach for the generation of high-value chemicals and the efficient storage of solar energy. However, the propensity for C─H bonds in the desired products to cleave more easily than those in methane molecules results in a continuous dehydrogenation process, inevitably leading to methanol peroxidation. Consequently, inhibiting methanol peroxidation is perceived as one of the most formidable challenges in the field of direct conversion of methane to methanol. This review offers a thorough overview of the typical mechanisms involved radical mechanism and active site mechanism and the regulatory methods employed to inhibit product peroxidation in methane photooxidation. Additionally, several perspectives on the future research direction of this crucial field are proposed.
Collapse
Affiliation(s)
- Yuehan Cao
- National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Zeai Huang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Chunqiu Han
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Ying Zhou
- National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| |
Collapse
|
40
|
Sun CM, Wei GP, Yang Y, Zhao YX. Thermal Reactions of NiAl 3O 6+ and Al 4O 6+ with Methane: Reactivity Enhancement by Doping. J Phys Chem A 2024; 128:1218-1225. [PMID: 38340065 DOI: 10.1021/acs.jpca.3c07166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Investigation of the reactivity of heteronuclear metal oxide clusters is an important way to uncover the molecular-level mechanisms of the doping effect. Herein, we performed a comparative study on the reactions of CH4 with NiAl3O6+ and Al4O6+ cluster cations at room temperature to understand the role of Ni during the activation and transformation of methane. Mass spectrometric experiments identify that both NiAl3O6+ and Al4O6+ could bring about hydrogen atom abstraction reaction to generate CH3• radical; however, only NiAl3O6+ has the potential to stabilize [CH3] moiety and then transform [CH3] to CH2O. Density functional theory calculations demonstrate that the terminal oxygen radicals (Ot-•) bound to Al act as the reactive sites for the two clusters to activate the first C-H bond. Although the Ni atom cannot directly participate in methane activation, it can manipulate the electronic environment of the surrounding bridging oxygen atoms (Ob) and enable such Ob to function as an electron reservoir to help Ot-• oxidize CH4 to [H-O-CH3]. The facile reduction of Ni3+ to Ni+ also facilitates the subsequent step of activating the second C-H bond by the bridging "lattice oxygen" (Ob2-), finally enabling the oxidation of methane into formaldehyde. The important role of the dopant Ni played in improving the product selectivity of CH2O for methane conversion discovered in this study allows us to have a possible molecule-level understanding of the excellent performance of the catalysts doping with nickel.
Collapse
Affiliation(s)
- Chu-Man Sun
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Gong-Ping Wei
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yuan Yang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
41
|
Wang Z, Yan CX, Liu R, Li X, Dai J, Li X, Shi D. Photo-induced versatile aliphatic C-H functionalization via electron donor-acceptor complex. Sci Bull (Beijing) 2024; 69:345-353. [PMID: 38044193 DOI: 10.1016/j.scib.2023.11.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/24/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
The ability to selectively introduce diverse functionality onto hydrocarbons is of substantial value in the synthesis of both small molecules and pharmaceuticals. In this endeavour, as a photocatalyst- and metal-free process, the electron donor-acceptor (EDA) strategy has not been well explored. Here we report an approach to aliphatic carbon-hydrogen bond diversification through an EDA complex constituted by HCl and SIV=O groups. As an efficient hydrogen atom transfer (HAT) reagent, chlorine radical can be produced via a proton-coupled electron transfer process in this system. Based on this unusual path, a photo-promoted versatile aliphatic C-H functionalization is developed without photo- and metal-catalysts, including thiolation, arylation, alkynylation, and allylation. This conversion has concise and ambient reaction conditions, good functional group tolerance, and substrate diversity, and provides an alternative solution for the high value-added utilization of bulk light alkanes.
Collapse
Affiliation(s)
- Zemin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Chao-Xian Yan
- School of Chemistry & Chemical Engineering, Ankang University, Ankang 725000, China
| | - Ruihua Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaowei Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jiajia Dai
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
42
|
Wang P, Shi R, Zhao J, Zhang T. Photodriven Methane Conversion on Transition Metal Oxide Catalyst: Recent Progress and Prospects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305471. [PMID: 37882341 PMCID: PMC10885660 DOI: 10.1002/advs.202305471] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/24/2023] [Indexed: 10/27/2023]
Abstract
Methane as the main component in natural gas is a promising chemical raw material for synthesizing value-added chemicals, but its harsh chemical conversion process often causes severe energy and environment concerns. Photocatalysis provides an attractive path to active and convert methane into various products under mild conditions with clean and sustainable solar energy, although many challenges remain at present. In this review, recent advances in photocatalytic methane conversion are systematically summarized. As the basis of methane conversion, the activation of methane is first elucidated from the structural basis and activation path of methane molecules. The study is committed to categorizing and elucidating the research progress and the laws of the intricate methane conversion reactions according to the target products, including photocatalytic methane partial oxidation, reforming, coupling, combustion, and functionalization. Advanced photocatalytic reactor designs are also designed to enrich the options and reliability of photocatalytic methane conversion performance evaluation. The challenges and prospects of photocatalytic methane conversion are also discussed, which in turn offers guidelines for methane-conversion-related photocatalyst exploration, reaction mechanism investigation, and advanced photoreactor design.
Collapse
Affiliation(s)
- Pu Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Run Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiaqi Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
43
|
Chen Y, Zhao Y, Liu D, Wang G, Jiang W, Liu S, Zhang W, Li Y, Ma Z, Shao T, Liu H, Li X, Tang Z, Gao C, Xiong Y. Continuous Flow System for Highly Efficient and Durable Photocatalytic Oxidative Coupling of Methane. J Am Chem Soc 2024; 146:2465-2473. [PMID: 38232304 DOI: 10.1021/jacs.3c10069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Photocatalytic oxidative coupling of methane (OCM) into value-added industrial chemicals offers an appealing green technique for achieving sustainable development, whereas it encounters double bottlenecks in relatively low methane conversion rate and severe overoxidation. Herein, we engineer a continuous gas flow system to achieve efficient photocatalytic OCM while suppressing overoxidation by synergizing the moderate active oxygen species, surface plasmon-mediated polarization, and multipoint gas intake flow reactor. Particularly, a remarkable CH4 conversion rate of 218.2 μmol h-1 with an excellent selectivity of ∼90% toward C2+ hydrocarbons and a remarkable stability over 240 h is achieved over a designed Au/TiO2 photocatalyst in our continuous gas flow system with a homemade three-dimensional (3D) printed flow reactor. This work provides an informative concept to engineer a high-performance flow system for photocatalytic OCM by synergizing the design of the reactor and photocatalyst to synchronously regulate the mass transfer, activation of reactants, and inhibition of overoxidation.
Collapse
Affiliation(s)
- Yihong Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, and Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Yuan Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, and Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei 230026, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Dong Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, and Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Gang Wang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenbin Jiang
- Institute of Materials Research and Engineering, A*STAR, Singapore 138634, Singapore
| | - Shengkun Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, and Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei 230026, China
| | - Wenqing Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, and Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei 230026, China
| | - Yaping Li
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, and Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei 230026, China
| | - Zili Ma
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, and Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei 230026, China
| | - Tianyi Shao
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, and Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei 230026, China
| | - Hengjie Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, and Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei 230026, China
| | - Xiyu Li
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, and Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei 230026, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Zhiyong Tang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Chao Gao
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, and Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei 230026, China
| | - Yujie Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, and Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| |
Collapse
|
44
|
Ran H, Zhang S, Ni W, Jing Y. Precise activation of C-C bonds for recycling and upcycling of plastics. Chem Sci 2024; 15:795-831. [PMID: 38239692 PMCID: PMC10793209 DOI: 10.1039/d3sc05701a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/07/2023] [Indexed: 01/22/2024] Open
Abstract
The rapid accumulation of plastic waste has led to a severe environmental crisis and a noticeable imbalance between manufacturing and recycling. Fortunately, chemical upgradation of plastic waste holds substantial promise for addressing these challenges posed by white pollution. During plastic upcycling and recycling, the key challenge is to activate and cleave the inert C-C bonds in plastic waste. Therefore, this perspective delves deeper into the upcycling and recycling of polyolefins from the angle of C-C activation-cleavage. We illustrate the importance of C-C bond activation in polyolefin depolymerization and integrate molecular-level catalysis, active site modulation, reaction networks and mechanisms to achieve precise activation-cleavage of C-C bonds. Notably, we draw potential inspiration from the accumulated wisdom of related fields, such as C-C bond activation in lignin chemistry, alkane dehydrogenation chemistry, C-Cl bond activation in CVOC removal, and C-H bond activation, to influence the landscape of plastic degradation through cross-disciplinary perspectives. Consequently, this perspective offers better insights into existing catalytic technologies and unveils new prospects for future advancements in recycling and upcycling of plastic.
Collapse
Affiliation(s)
- Hongshun Ran
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University Nanjing 210023 China
- Institute for the Environment and Health, Nanjing University Suzhou Campus Suzhou 215163 China
| | - Shuo Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University Nanjing 210023 China
- Institute for the Environment and Health, Nanjing University Suzhou Campus Suzhou 215163 China
| | - Wenyi Ni
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University Nanjing 210023 China
- Institute for the Environment and Health, Nanjing University Suzhou Campus Suzhou 215163 China
| | - Yaxuan Jing
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University Nanjing 210023 China
- Institute for the Environment and Health, Nanjing University Suzhou Campus Suzhou 215163 China
| |
Collapse
|
45
|
Xu Y, Wu D, Zhang Q, Rao P, Deng P, Tang M, Li J, Hua Y, Wang C, Zhong S, Jia C, Liu Z, Shen Y, Gu L, Tian X, Liu Q. Regulating Au coverage for the direct oxidation of methane to methanol. Nat Commun 2024; 15:564. [PMID: 38233390 PMCID: PMC10794185 DOI: 10.1038/s41467-024-44839-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024] Open
Abstract
The direct oxidation of methane to methanol under mild conditions is challenging owing to its inadequate activity and low selectivity. A key objective is improving the selective oxidation of the first carbon-hydrogen bond of methane, while inhibiting the oxidation of the remaining carbon-hydrogen bonds to ensure high yield and selectivity of methanol. Here we design ultrathin PdxAuy nanosheets and revealed a volcano-type relationship between the binding strength of hydroxyl radical on the catalyst surface and catalytic performance using experimental and density functional theory results. Our investigations indicate a trade-off relationship between the reaction-triggering and reaction-conversion steps in the reaction process. The optimized Pd3Au1 nanosheets exhibits a methanol production rate of 147.8 millimoles per gram of Pd per hour, with a selectivity of 98% at 70 °C, representing one of the most efficient catalysts for the direct oxidation of methane to methanol.
Collapse
Affiliation(s)
- Yueshan Xu
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Daoxiong Wu
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Peng Rao
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Peilin Deng
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China.
| | - Mangen Tang
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Jing Li
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Yingjie Hua
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Chongtai Wang
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Shengkui Zhong
- College of Marine Science & Technology, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Chunman Jia
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Zhongxin Liu
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Yijun Shen
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
| | - Xinlong Tian
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China.
| | - Quanbing Liu
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
46
|
Chen D, Zhang Y, Meng S. Molecular Orbital Insights into Plasmon-Induced Methane Photolysis. NANO LETTERS 2023; 23:11638-11644. [PMID: 37917131 DOI: 10.1021/acs.nanolett.3c03467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
As a promising way to reduce the temperature for conventional thermolysis, plasmon-induced photocatalysis has been utilized for the dehydrogenation of methane. Here we probe the microscopic dynamic mechanism for plasmon-induced methane dissociation over a tetrahedral Ag20 nanoparticle with molecular orbital insights using time-dependent density functional theory. We ingeniously built the relationship between the chemical bonds and molecular orbitals via Hellmann-Feynman forces. The time- and energy-resolved photocarrier analysis shows that the indirect hot hole transfer from the Ag nanoparticle to methane dominates the photoreaction at low laser intensity, due to the strong hybridization of the Ag nanoparticle and CH4 orbitals, while indirect and direct charge transfer coexist to facilitate methane dissociation in intense laser fields. Our findings can be used to design novel methane photocatalysts and highlight the broad prospects of the molecular orbital approach for adsorbate-substrate systems.
Collapse
Affiliation(s)
- Daqiang Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yimin Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, P. R. China
| |
Collapse
|
47
|
Zhang Y, Lu J, Zhang Y, Sun S, Xiong W, Chen L, Fu B, Geng J, Niu G, Li S, Yang Y, Sun L, Cai J. On-surface synthesis of Au-C4 and Au-O4 alternately arranged organometallic coordination networks via selective aromatic C-H bond activation. J Chem Phys 2023; 159:184701. [PMID: 37937937 DOI: 10.1063/5.0176065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023] Open
Abstract
Selective activation of the C-H bond of aromatic hydrocarbons is significant in synthetic chemistry. However, achieving oriented C-H activation remains challenging due to the poor selectivity of aromatic C-H bonds. Herein, we successfully constructed alternately arranged Au-C4 and Au-O4 organometallic coordination networks through selective aromatic C-H bond activation on Au(111) substrate. The stepwise reaction process of the 5, 12-dibromopyrene 3,4,9, 10-tetracarboxylic dianhydride precursor is monitored by high-resolution scanning tunneling microscopy. Our results show that the gold atoms in C-Au-C organometallic chains play a crucial role in promoting the selective ortho C-H bonds activation and forming Au-C4 coordination structure, which is further demonstrated by a comparative experiment of PTCDA precursor on Au(111). Furthermore, our experiment of 2Br-PTCDA precursor on Cu(111) substrate confirms that copper atoms in C-Cu-C organometallic chains can also assist the formation of Cu-C4 coordination structure. Our results reveal the vital effect of organometallic coordination on selective C-H bond activation of reactants, which holds promising implications for controllable on-surface synthesis.
Collapse
Affiliation(s)
- Yong Zhang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Jianchen Lu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Yi Zhang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Shijie Sun
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Wei Xiong
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Linghui Chen
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Boyu Fu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Jianqun Geng
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Gefei Niu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Shicheng Li
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Yuhang Yang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Li Sun
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Jinming Cai
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| |
Collapse
|
48
|
Jawad A. The effects of Fe, Mg, and Pt-doping on the improvement of Ni stabilized on Al 2O 3-CeO 3 catalysts for methane dry reforming. RSC Adv 2023; 13:33129-33145. [PMID: 37954415 PMCID: PMC10634349 DOI: 10.1039/d3ra04809h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
Herein, the promotional effects of Mg, Fe, and Pt on Ni-based catalysts supported on Al2O3-CeO2 (Ni/Al2O3-CeO2) were investigated in the dry reforming of methane (DRM) reaction. The interaction of a suitable amount of MgO and FeO with Ce2O3 stabilized in the catalysts was demonstrated by the temperature-programmed desorption of CO2 (CO2-TPD). Ce2O3 has a high basicity for adsorbing CO2, generating a monoclinic Ce2O2CO3 species in the DRM reaction. Surface oxygen ions were also produced by adding MgO and FeO, as demonstrated by the temperature-programmed reduction of H2 (H2-TPR). Monoclinic Ce2O2CO3 and surface oxygen may both be used to oxidize and remove the carbon that was deposited, maintaining the high activity and stability of the metal Ni and Pt catalysts. The high dispersion and synergistic interactions between the platinum and oxide phases, which are associated with the decrease in reduction temperature and the rise in the number of basic sites, are responsible for the increased activity of Pt with M-Ni/Al2O3-CeO2 catalysts. The co-doped Ni/Al2O3-CeO2 catalysts with Mg and Fe significantly enhanced the activity (more than 80% methane and 84% CO2 conversion), the selectivity toward syngas (∼90%), and maintained the H2/CO ratio at about 0.97 at 700 °C.
Collapse
Affiliation(s)
- Abbas Jawad
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology 1101 N. State Street Rolla Missouri 65409 USA
- Midland Refineries Company MRC, AL Daura Refinery Company, Services Energy Board Baghdad Iraq
| |
Collapse
|
49
|
Kishore MA, Lee S, Yoo JS. Fundamental Limitation in Electrochemical Methane Oxidation to Alcohol: A Review and Theoretical Perspective on Overcoming It. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301912. [PMID: 37740423 PMCID: PMC10625077 DOI: 10.1002/advs.202301912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/27/2023] [Indexed: 09/24/2023]
Abstract
The direct conversion of gaseous methane to energy-dense liquid derivatives such as methanol and ethanol is of profound importance for the more efficient utilization of natural gas. However, the thermo-catalytic partial oxidation of this simple alkane has been a significant challenge due to the high C-H bond energy. Exploiting electrocatalysis for methane activation via active oxygen species generated on the catalyst surface through electrochemical water oxidation is generally considered as economically viable and environmentally benign compared to energy-intensive thermo-catalysis. Despite recent progress in electrochemical methane oxidation to alcohol, the competing oxygen evolution reaction (OER) still impedes achieving high faradaic efficiency and product selectivity. In this review, an overview of current progress in electrochemical methane oxidation, focusing on mechanistic insights on methane activation, catalyst design principles based on descriptors, and the effect of reaction conditions on catalytic performance are provided. Mechanistic requirements for high methanol selectivity, and limitations of using water as the oxidant are discussed, and present the perspective on how to overcome these limitations by employing carbonate ions as the oxidant.
Collapse
Affiliation(s)
- M.R. Ashwin Kishore
- Department of Chemical EngineeringUniversity of SeoulSeoul02504Republic of Korea
| | - Sungwoo Lee
- Department of Chemical EngineeringUniversity of SeoulSeoul02504Republic of Korea
| | - Jong Suk Yoo
- Department of Chemical EngineeringUniversity of SeoulSeoul02504Republic of Korea
| |
Collapse
|
50
|
Li D, Wu Z, Li Y, Fan X, Hasan SMN, Arafin S, Rahman MA, Li J, Wang Z, Yu T, Kong X, Zhu L, Sadaf SM, Zhou B. A semiconducting hybrid of RhO x/GaN@InGaN for simultaneous activation of methane and water toward syngas by photocatalysis. PNAS NEXUS 2023; 2:pgad347. [PMID: 38024421 PMCID: PMC10662453 DOI: 10.1093/pnasnexus/pgad347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Prior to the eventual arrival of carbon neutrality, solar-driven syngas production from methane steam reforming presents a promising approach to produce transportation fuels and chemicals. Simultaneous activation of the two reactants, i.e. methane and water, with notable geometric and polar discrepancy is at the crux of this important subject yet greatly challenging. This work explores an exceptional semiconducting hybrid of RhOx/GaN@InGaN nanowires for overcoming this critical challenge to achieve efficient syngas generation from methane steam reforming by photocatalysis. By coordinating density functional theoretical calculations and microscopic characterizations, with in situ spectroscopic measurements, it is found that the multifunctional RhOx/GaN interface is effective for simultaneously activating both CH4 and H2O by stretching the C-H and O-H bonds because of its unique Lewis acid/base attribute. With the aid of energetic charge carriers, the stretched C-H and O-H bonds of reactants are favorably cleaved, resulting in the key intermediates, i.e. *CH3, *OH, and *H, to sit on Rh sites, Rh sites, and N sites, respectively. Syngas is subsequently produced via energetically favored pathway without additional energy inputs except for light. As a result, a benchmarking syngas formation rate of 8.1 mol·gcat-1·h-1 is achieved with varied H2/CO ratios from 2.4 to 0.8 under concentrated light illumination of 6.3 W·cm-2, enabling the achievement of a superior turnover number of 10,493 mol syngas per mol Rh species over 300 min of long-term operation. This work presents a promising strategy for green syngas production from methane steam reforming by utilizing unlimited solar energy.
Collapse
Affiliation(s)
- Dongke Li
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- School of Physics, Liaoning University, No. 66 Chongshan Middle Road, Huanggu District, Shenyang City 110036, Liaoning Province, China
| | - Zewen Wu
- College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Avenue, Nanshan District, Shenzhen 518061, China
| | - Yixin Li
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaoxing Fan
- School of Physics, Liaoning University, No. 66 Chongshan Middle Road, Huanggu District, Shenyang City 110036, Liaoning Province, China
| | - S M Najib Hasan
- Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Shamsul Arafin
- Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Md Afjalur Rahman
- Centre Energie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique (INRS)-Université du Québec, 1650 Boulevard Lionel-Boulet, Varennes, Quebec J3X1S2, Canada
| | - Jinglin Li
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhouzhou Wang
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Tianqi Yu
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xianghua Kong
- College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Avenue, Nanshan District, Shenzhen 518061, China
| | - Lei Zhu
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Sharif Md Sadaf
- Centre Energie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique (INRS)-Université du Québec, 1650 Boulevard Lionel-Boulet, Varennes, Quebec J3X1S2, Canada
| | - Baowen Zhou
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|