1
|
Rajeev A, Mohammed TP, George A, Sankaralingam M. Direct Methane to Methanol Conversion: An Overview of Non-Syn Gas Catalytic Strategies. CHEM REC 2025:e202400186. [PMID: 39817884 DOI: 10.1002/tcr.202400186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/25/2024] [Indexed: 01/18/2025]
Abstract
Direct methane to methanol conversion is a dream reaction in industrial chemistry, which takes inspiration from the biological methanol production catalysed by methane monooxygenase enzymes (MMOs). Over the years, extensive studies have been conducted on this topic by bioengineering the MMOs, and tailoring methods to isolate the MMOs in the active form. Similarly, remarkable achievements have been noted in other methane activation strategies such as the use of heterogeneous catalysts or molecular catalysts. In this review, we outline the methane metabolism performed by methanotrophs and detail the latest advancements in the active site structures and catalytic mechanisms of both types of MMOs. Also, recent progress in the bioinspired approaches using various heterogeneous catalysts, especially first-row transition metal zeolites and the mechanistic insights are discussed. In addition, studies using molecular complexes such as "Periana catalyst" for methane to methanol conversion through methyl ester formation in the presence of strong acids are also detailed. Compared to the progress noted in the metal zeolites-mediated methane activation field, the utilisation of molecular catalysts or MMOs for this application is still in its nascent phase and further research is required to overcome the limitations of these methods effectively.
Collapse
Affiliation(s)
- Anjana Rajeev
- Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala, 673601, India
| | - Thasnim P Mohammed
- Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala, 673601, India
| | - Akhila George
- Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala, 673601, India
| | - Muniyandi Sankaralingam
- Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala, 673601, India
| |
Collapse
|
2
|
Zhao XG, Zhao YX, He SG. Reactivity of Atomic Oxygen Radical Anions in Metal Oxide Clusters. Chempluschem 2024; 89:e202400085. [PMID: 39161047 DOI: 10.1002/cplu.202400085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/21/2024]
Abstract
Atomic oxygen radical anion (O⋅-) represents an important type of reactive centre that exists in both chemical and biological systems. Gas-phase atomic clusters can be studied under isolated and well controlled conditions. Studies of O⋅--containing clusters in the gas-phase provide a unique strategy to interpret the chemistry of O⋅- radicals at a strictly molecular level. This review summarizes the research progresses made since 2013 for the reactivity of O⋅- radicals in the atomically precise metal oxide clusters including negatively charged, nanosized, and neutral heteronuclear metal clusters benefitting from the development of advanced experimental techniques. New electronic and geometric factors to control the reactivity and product selectivity of O⋅- radicals under dark and photo-irradiation conditions have been revealed. The detailed mechanisms of O⋅- generation have been discussed for the reaction systems of nanosized and heteroatom-doped metal oxide clusters. The catalytic reactions mediated by the O⋅- radicals in metal clusters have also been successfully established and the microscopic mechanisms about the dynamic generation and depletion of O⋅- radicals have been clearly understood. The studies of O⋅- containing metal oxide clusters in the gas-phase provided new insights into the chemistry of reactive oxygen species in related condensed-phase systems.
Collapse
Affiliation(s)
- Xi-Guan Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
3
|
Islam M, Catlow CRA, Roldan A. Insights into Catalytic Oxidative Reaction Mechanisms of Pentane on the Ru(0001) Surface. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:19621-19629. [PMID: 39600376 PMCID: PMC11587082 DOI: 10.1021/acs.jpcc.4c05735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024]
Abstract
Developing efficient and selective oxidative transformations of light alkanes into alkenes or oxygenates is vital for advancing to cleaner and more efficient chemical processes. A suitable selective catalyst is required to ease reaction conditions and ensure the formation of desired oxygenated compounds. Here, using periodic density functional theory, we have investigated the suitability of a ruthenium catalyst for the partial oxidation of n-pentane using molecular oxygen. The first step of the process involves the dehydrogenation of primary or secondary carbons in the aliphatic chain, resulting in an adsorbed hydride structure on the metal surface. The intermediate may proceed through different reaction pathways, leading to various products. The successive dehydrogenation, a faster process than the first oxidative dehydrogenation, produces pentene and a water molecule. Alternatively, the direct interaction of the hydroxyl group with the pentyl hydride produces alcohol. The atomistic simulations reveal that Ru is a suitable candidate for catalyzing the conversion of alkanes into alkenes and oxygenates. As a significant outcome, we have observed that catalytic oxidative dehydrogenation is more feasible than direct catalytic dehydrogenation for yielding olefins from alkanes.
Collapse
Affiliation(s)
- Mazharul
M. Islam
- Cardiff Catalysis
Institute, School of Chemistry, University
of Cardiff, Main Building, Park Pl, Cardiff CF10 3AT, U.K.
| | - C. Richard A. Catlow
- Cardiff Catalysis
Institute, School of Chemistry, University
of Cardiff, Main Building, Park Pl, Cardiff CF10 3AT, U.K.
- Department
of Chemistry, University College London, 20 Gordon St., London WC1 HOAJ, U.K.
| | - Alberto Roldan
- Cardiff Catalysis
Institute, School of Chemistry, University
of Cardiff, Main Building, Park Pl, Cardiff CF10 3AT, U.K.
| |
Collapse
|
4
|
Sun M, Chen Y, Fan X, Li D, Song J, Yu K, Zhao Z. Electronic asymmetry of lattice oxygen sites in ZnO promotes the photocatalytic oxidative coupling of methane. Nat Commun 2024; 15:9900. [PMID: 39548121 PMCID: PMC11568292 DOI: 10.1038/s41467-024-54226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Photocatalytic oxidative coupling of methane with oxygen is promising to obtain valuable muti-carbon products, yet suffering low reactivity. Here, we apply cerium modifications on zinc oxide-supported gold catalysts based on the electronic asymmetry design of lattice oxygen to improve the coupling activity. The methane conversion rate exceeds 16000 μmol g-1 h-1 with muti-carbon selectivity of 94.9% and catalytic durability of 3 days, and it can increase to 34000 μmol g-1 h-1 under more thermal assistance, with a turnover frequency of 507 h-1 for ethane and an apparent quantum efficiency of 33.7% at 350 nm. According to systematic characterizations and theoretical analysis, cerium dopants not only can boost the formation of reactive oxygen species but also intervene in the vivacity of lattice oxygen by manipulating metal-oxygen bond strength, thereby leading to favorable methyl desorption to form ethane and quick water release. This work provides insight into the rational design of efficient photocatalysts for aerobic methane-to-ethane conversion.
Collapse
Affiliation(s)
- Mengyao Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Yanjun Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Xiaoqiang Fan
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Dong Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Jiaxin Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Ke Yu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Zhen Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China.
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China.
| |
Collapse
|
5
|
Yamamoto M, Aihara T, Wachi K, Hara M, Kamata K. La 1-xSr xFeO 3-δ Perovskite Oxide Nanoparticles for Low-Temperature Aerobic Oxidation of Isobutane to tert-Butyl Alcohol. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62244-62253. [PMID: 39484694 PMCID: PMC11565478 DOI: 10.1021/acsami.4c15585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024]
Abstract
The development of reusable solid catalysts based on naturally abundant metal elements for the liquid-phase selective oxidation of light alkanes under mild conditions to obtain desired oxygenated products, such as alcohols and carbonyl compounds, remains a challenge. In this study, various perovskite oxide nanoparticles were synthesized by a sol-gel method using aspartic acid, and the effects of A- and B-site metal cations on the liquid-phase oxidation of isobutane to tert-butyl alcohol with molecular oxygen as the sole oxidant were investigated. Iron-based perovskite oxides containing Fe4+ such as BaFeO3-δ, SrFeO3-δ, and La1-xSrxFeO3-δ exhibited catalytic performance superior to those of other Fe3+- and Fe2+-based iron oxides and Mn-, Ni-, and Co-based perovskite oxides. The partial substitution of Sr for La in LaFeO3 significantly enhanced the catalytic performance and durability. In particular, the La0.8Sr0.2FeO3-δ catalyst could be recovered by simple filtration and reused several times without an obvious loss of its high catalytic performance, whereas the recovered BaFeO3-δ and SrFeO3-δ catalysts were almost inactive. La0.8Sr0.2FeO3-δ promoted the selective oxidation of isobutane even under mild conditions (60 °C), and the catalytic activity was comparable to that of homogeneous systems, including halogenated metalloporphyrin complexes. On the basis of mechanistic studies, including the effect of Sr substitution in La1-xSrxFeO3-δ on surface redox reactions, the present oxidation proceeds via a radical-mediated oxidation mechanism, and the surface-mixed Fe3+/Fe4+ valence states of La1-xSrxFeO3-δ nanoparticles likely play an important role in promoting C-H activation of isobutane as well as decomposition of tert-butyl hydroperoxide.
Collapse
Affiliation(s)
- Masanao Yamamoto
- Laboratory
for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials
and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| | - Takeshi Aihara
- Laboratory
for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials
and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| | - Keiju Wachi
- Laboratory
for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials
and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| | - Michikazu Hara
- Laboratory
for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials
and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| | - Keigo Kamata
- Laboratory
for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials
and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| |
Collapse
|
6
|
Li DY, Huang ZY, Kang LX, Wang BX, Fu JH, Wang Y, Xing GY, Zhao Y, Zhang XY, Liu PN. Room-temperature selective cyclodehydrogenation on Au(111) via radical addition of open-shell resonance structures. Nat Commun 2024; 15:9545. [PMID: 39500872 PMCID: PMC11538238 DOI: 10.1038/s41467-024-53927-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
Cyclodehydrogenation is an important ring-formation reaction that can directly produce planar-conjugated carbon-based nanomaterials from nonplanar molecules. However, inherently high C-H bond energy necessitates a high temperature during dehydrogenation, and the ubiquity of C - H bonds in molecules and small differences in their bond energies hinder the selectivity of dehydrogenation. Here, we report a room-temperature cyclodehydrogenation reaction on Au(111) via radical addition of open-shell resonance structures and demonstrate that radical addition significantly decreases cyclodehydrogenation temperature and further improves the chemoselectivity of dehydrogenation. Using scanning tunneling microscopy and non-contact atomic force microscopy, we visualize the cascade reaction process involved in cyclodehydrogenation and determine atomic structures and molecular orbitals of the planar acetylene-linked oxa-nanographene products. The nonplanar intermediates observed during progression annealing, combined with density functional theory calculations, suggest that room-temperature cyclodehydrogenation involves the formation of transient radicals, intramolecular radical addition, and hydrogen elimination; and that the high chemoselectivity of cyclodehydrogenation arises from the reversibility and different thermodynamics of radical addition step.
Collapse
Affiliation(s)
- Deng-Yuan Li
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, P. R. China.
| | - Zheng-Yang Huang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, P. R. China
| | - Li-Xia Kang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, P. R. China
| | - Bing-Xin Wang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, P. R. China
| | - Jian-Hui Fu
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, P. R. China
| | - Ying Wang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, P. R. China
| | - Guang-Yan Xing
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, P. R. China
| | - Yan Zhao
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, P. R. China
| | - Xin-Yu Zhang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, P. R. China
| | - Pei-Nian Liu
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, P. R. China.
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, P. R. China.
| |
Collapse
|
7
|
Beshara GM, Surin I, Agrachev M, Eliasson H, Otroshchenko T, Krumeich F, Erni R, Kondratenko EV, Pérez-Ramírez J. Mechanochemically-derived iron atoms on defective boron nitride for stable propylene production. EES CATALYSIS 2024; 2:1263-1276. [PMID: 39148890 PMCID: PMC11320177 DOI: 10.1039/d4ey00123k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
Single-atom catalysts (SACs), possessing a uniform metal site structure, are a promising class of materials for selective oxidations of hydrocarbons. However, their design for targeted applications requires careful choice of metal-host combinations and suitable synthetic techniques. Here, we report iron atoms stabilised on defective hexagonal boron nitride (h-BN) via mechanochemical activation in a ball mill as an effective catalyst for propylene production via N2O-mediated oxidative propane dehydrogenation (N2O-ODHP), reaching 95% selectivity at 6% propane conversion and maintaining stable performance for 40 h on stream. This solvent-free synthesis allows simultaneous carrier exfoliation and surface defect generation, creating anchoring sites for catalytically-active iron atoms. The incorporation of a small metal quantity (0.5 wt%) predominantly generates a mix of atomically-dispersed Fe2+ and Fe3+ species, as confirmed by combining advanced microscopy and electron paramagnetic resonance, UV-vis and X-ray photoelectron spectroscopy analyses. Single-atom iron favours selective propylene formation, while metal oxide nanoparticles yield large quantities of CO x and cracking by-products. The lack of acidic functionalities on h-BN, hindering coke formation, and firm stabilisation of Fe sites, preventing metal sintering, ensure stable operation. These findings showcase N2O-ODHP as a promising propylene production technology and foster wider adoption of mechanochemical activation as a viable method for SACs synthesis.
Collapse
Affiliation(s)
- Gian Marco Beshara
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - Ivan Surin
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - Mikhail Agrachev
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 2 8093 Zurich Switzerland
| | - Henrik Eliasson
- Electron Microscopy Center, Empa - Swiss Federal Laboratories for Materials Science and Technology (EMPA) Uberlandstrasse 129 8600 Dubendorf Switzerland
| | - Tatiana Otroshchenko
- Advanced Methods for Applied Catalysis, Leibniz-Institut fur Katalyse Albert Einstein-Strasse 29a 18059 Rostock Germany
| | - Frank Krumeich
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - Rolf Erni
- Electron Microscopy Center, Empa - Swiss Federal Laboratories for Materials Science and Technology (EMPA) Uberlandstrasse 129 8600 Dubendorf Switzerland
| | - Evgenii V Kondratenko
- Advanced Methods for Applied Catalysis, Leibniz-Institut fur Katalyse Albert Einstein-Strasse 29a 18059 Rostock Germany
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| |
Collapse
|
8
|
Islam A, Huang E, Tian Y, Ramírez PJ, Prabhakar Reddy K, Lim H, White N, Hunt A, Waluyo I, Liu P, Rodriguez JA. Low-Temperature Activation and Coupling of Methane on MgO Nanostructures Embedded in Cu 2O/Cu(111). ACS NANO 2024; 18:28371-28381. [PMID: 39361339 DOI: 10.1021/acsnano.4c10811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
The efficient conversion of methane into valuable hydrocarbons, such as ethane and ethylene, at relatively low temperatures without deactivation issues is crucial for advancing sustainable energy solutions. Herein, AP-XPS and STM studies show that MgO nanostructures (0.2-0.5 nm wide, 0.4-0.6 Å high) embedded in a Cu2O/Cu(111) substrate activate methane at room temperature, mainly dissociating it into CHx (x = 2 or 3) and H adatoms, with minimal conversion to C adatoms. These MgO nanostructures in contact with Cu2O/Cu(111) enable C-C coupling into ethane and ethylene at 500 K, a significantly lower temperature than that required for bulk MgO catalysts (>700 K), with negligible carbon deposition and no deactivation. DFT calculations corroborate these experimental findings. The CH4,gas → *CH3 + *H reaction is a downhill process on MgO/Cu2O/Cu(111) surfaces. The activation of methane is facilitated by electron transfer from copper to MgO and the existence of Mg and O atoms with a low coordination number in the oxide nanostructures. The formation of O-CH3 and O-H bonds overcomes the energy necessary for the cleavage of a C-H bond in methane. DFT studies reveal that smaller Mg2O2 model clusters provide stronger binding and lower activation barriers for C-H dissociation in CH4, while larger Mg3O3 clusters promote C-C coupling due to weaker *CH3 binding. All of these results emphasize the importance of size when optimizing the catalytic performance of MgO nanostructures in the selective conversion of methane.
Collapse
Affiliation(s)
- Arephin Islam
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Erwei Huang
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Yi Tian
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Pedro J Ramírez
- Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1020-A, Venezuela
- Zoneca-CENEX, R&D Laboratories, Alta Vista, 64770 Monterrey, México
| | - Kasala Prabhakar Reddy
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Hojoon Lim
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Nathaniel White
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Adrian Hunt
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Iradwikanari Waluyo
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ping Liu
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - José A Rodriguez
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
9
|
Kamata K, Aihara T, Wachi K. Synthesis and catalytic application of nanostructured metal oxides and phosphates. Chem Commun (Camb) 2024; 60:11483-11499. [PMID: 39282987 DOI: 10.1039/d4cc03233k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The design and development of new high-performance catalysts is one of the most important and challenging issues to achieve sustainable chemical and energy production. This Feature Article describes the synthesis of nanostructured metal oxides and phosphates mainly based on earth-abundant metals and their thermocatalytic application to selective oxidation and acid-base reactions. A simple and versatile methodology for the control of nanostructures based on crystalline complex oxides and phosphates with diverse structures and compositions is proposed as another approach to catalyst design. Herein, two unique and verstile methods for the synthesis of metal oxide and phosphate nanostructures are introduced; an amino acid-aided method for metal oxides and phosphates and a precursor crystallization method for porous manganese oxides. Nanomaterials based on perovskite oxides, manganese oxides, and metal phosphates can function as effective heterogeneous catalysts for selective aerobic oxidation, biomass conversion, direct methane conversion, one-pot synthesis, acid-base reactions, and water electrolysis. Furthermore, the structure-activity relationship is clarified based on experimental and computational approaches, and the influence of oxygen vacancy formation, concerted activation of molecules, and the redox/acid-base properties of the outermost surface are discussed. The proposed methodology for nanostructure control would be useful not only for the design and understanding of the complexity of metal oxide catalysts, but also for the development of innovative catalysts.
Collapse
Affiliation(s)
- Keigo Kamata
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa, 226-8501, Japan.
| | - Takeshi Aihara
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa, 226-8501, Japan.
| | - Keiju Wachi
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa, 226-8501, Japan.
| |
Collapse
|
10
|
Liu Y, Xue W, Liu X, Wei F, Lin X, Lu XF, Lin W, Hou Y, Zhang G, Wang S. Ultrafine Pt Nanoparticles on Defective Tungsten Oxide for Photocatalytic Ethylene Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402004. [PMID: 38686672 DOI: 10.1002/smll.202402004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/18/2024] [Indexed: 05/02/2024]
Abstract
The selective conversion of ethane (C2H6) to ethylene (C2H4) under mild conditions is highly wanted, yet very challenging. Herein, it is demonstrated that a Pt/WO3-x catalyst, constructed by supporting ultrafine Pt nanoparticles on the surface of oxygen-deficient tungsten oxide (WO3-x) nanoplates, is efficient and reusable for photocatalytic C2H6 dehydrogenation to produce C2H4 with high selectivity. Specifically, under pure light irradiation, the optimized Pt/WO3-x photocatalyst exhibits C2H4 and H2 yield rates of 291.8 and 373.4 µmol g-1 h-1, respectively, coupled with a small formation of CO (85.2 µmol g-1 h-1) and CH4 (19.0 µmol g-1 h-1), corresponding to a high C2H4 selectivity of 84.9%. Experimental and theoretical studies reveal that the vacancy-rich WO3-x catalyst enables broad optical harvesting to generate charge carriers by light for working the redox reactions. Meanwhile, the Pt cocatalyst reinforces adsorption of C2H6, desorption of key reaction species, and separation and migration of light-induced charges to promote the dehydrogenation reaction with high productivity and selectivity. In situ diffuse reflectance infrared Fourier transform spectroscopy and density functional theory calculation expose the key intermediates formed on the Pt/WO3-x catalyst during the reaction, which permits the construction of the possible C2H6 dehydrogenation mechanism.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Weichao Xue
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiaoqing Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Fen Wei
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiahui Lin
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Xue Feng Lu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Wei Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Guigang Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Sibo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
11
|
Zhai G, Cai L, Ma J, Chen Y, Liu Z, Si S, Duan D, Sang S, Li J, Wang X, Liu YA, Qian B, Liu C, Pan Y, Zhang N, Liu D, Long R, Xiong Y. Highly efficient, selective, and stable photocatalytic methane coupling to ethane enabled by lattice oxygen looping. SCIENCE ADVANCES 2024; 10:eado4390. [PMID: 38941471 PMCID: PMC11637002 DOI: 10.1126/sciadv.ado4390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/22/2024] [Indexed: 06/30/2024]
Abstract
Light-driven oxidative coupling of methane (OCM) for multi-carbon (C2+) product evolution is a promising approach toward the sustainable production of value-added chemicals, yet remains challenging due to its low intrinsic activity. Here, we demonstrate the integration of bismuth oxide (BiOx) and gold (Au) on titanium dioxide (TiO2) substrate to achieve a high conversion rate, product selectivity, and catalytic durability toward photocatalytic OCM through rational catalytic site engineering. Mechanistic investigations reveal that the lattice oxygen in BiOx is effectively activated as the localized oxidant to promote methane dissociation, while Au governs the methyl transfer to avoid undesirable overoxidation and promote carbon─carbon coupling. The optimal Au/BiOx-TiO2 hybrid delivers a conversion rate of 20.8 millimoles per gram per hour with C2+ product selectivity high to 97% in the flow reactor. More specifically, the veritable participation of lattice oxygen during OCM is chemically looped by introduced dioxygen via the Mars-van Krevelen mechanism, endowing superior catalyst stability.
Collapse
Affiliation(s)
- Guangyao Zhai
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Nano Science and Technology Institute, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Lejuan Cai
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Jun Ma
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Nano Science and Technology Institute, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Yihong Chen
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Nano Science and Technology Institute, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Zehua Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Nano Science and Technology Institute, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Shenghe Si
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Nano Science and Technology Institute, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Delong Duan
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shuaikang Sang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiawei Li
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xinyu Wang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ying-Ao Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Nano Science and Technology Institute, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Bing Qian
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chengyuan Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yang Pan
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ning Zhang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Nano Science and Technology Institute, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Dong Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Nano Science and Technology Institute, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Ran Long
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yujie Xiong
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Nano Science and Technology Institute, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
- Anhui Engineering Research Center of Carbon Neutrality, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| |
Collapse
|
12
|
Natesakhawat S, Popczun EJ, Baltrus JP, Wang K, Serna P, Liu S, Meyer R, Lekse JW. Investigation of AFeO 3 (A=Ba, Sr) Perovskites for the Oxidative Dehydrogenation of Light Alkanes under Chemical Looping Conditions. Chempluschem 2024; 89:e202300596. [PMID: 38300225 DOI: 10.1002/cplu.202300596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
Oxidative dehydrogenation (ODH) of light alkanes to produce C2-C3 olefins is a promising alternative to conventional steam cracking. Perovskite oxides are emerging as efficient catalysts for this process due to their unique properties such as high oxygen storage capacity (OSC), reversible redox behavior, and tunability. Here, we explore AFeO3 (A=Ba, Sr) bulk perovskites for the ODH of ethane and propane under chemical looping conditions (CL-ODH). The higher OSC and oxygen mobility of SrFeO3 perovskite contributed to its higher activity but lower olefin selectivity than its Ba counterpart. However, SrFeO3 perovskite is superior in terms of cyclic stability over multiple redox cycles. Transformations of the perovskite to reduced phases including brownmillerite A2Fe2O5 were identified by X-ray diffraction (XRD) as a cause of performance degradation, which was fully reversible upon air regeneration. A pre-desorption step was utilized to selectively tune the amount of lattice oxygen as a function of temperature and dwell time to enhance olefin selectivity while suppressing CO2 formation from the deep oxidation of propane. Overall, SrFeO3 exhibits promising potential for the CL-ODH of light alkanes, and optimization through surface and structural modifications may further engineer well-regulated lattice oxygen for maximizing olefin yield.
Collapse
Affiliation(s)
- Sittichai Natesakhawat
- National Energy Technology Laboratory, 626 Cochran Mill Road, 15236, Pittsburgh, PA, USA
- NETL Support Contractor, 626 Cochran Mill Road, 15236, Pittsburgh, PA, USA
| | - Eric J Popczun
- National Energy Technology Laboratory, 626 Cochran Mill Road, 15236, Pittsburgh, PA, USA
- NETL Support Contractor, 626 Cochran Mill Road, 15236, Pittsburgh, PA, USA
| | - John P Baltrus
- National Energy Technology Laboratory, 626 Cochran Mill Road, 15236, Pittsburgh, PA, USA
| | - Kun Wang
- ExxonMobil Technology and Engineering Company, 1545 Route 22 East, 08801, Annandale, NJ, USA
| | - Pedro Serna
- ExxonMobil Technology and Engineering Company, 1545 Route 22 East, 08801, Annandale, NJ, USA
- Present address: Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas), Avenida de los Naranjos s/n, 46022, Valencia, Spain
| | - Sophie Liu
- ExxonMobil Technology and Engineering Company, 1545 Route 22 East, 08801, Annandale, NJ, USA
| | - Randall Meyer
- ExxonMobil Technology and Engineering Company, 1545 Route 22 East, 08801, Annandale, NJ, USA
| | - Jonathan W Lekse
- National Energy Technology Laboratory, 626 Cochran Mill Road, 15236, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Zhao M, Wang X, Xu J, Li Y, Wang X, Chu X, Wang K, Wang Z, Zhang LL, Feng J, Song S, Zhang H. Strengthening the Metal-Acid Interactions by Using CeO 2 as Regulators of Precisely Placing Pt Species in ZSM-5 for Furfural Hydrogenation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313596. [PMID: 38408470 DOI: 10.1002/adma.202313596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/18/2024] [Indexed: 02/28/2024]
Abstract
Understanding the synergism between the metal site and acid site is of great significance in boosting the efficiency of bi-functional catalysts in many heterogeneous reactions, particularly in biomass upgrading. Herein, a "confined auto-redox" strategy is reported to fix CeO2-anchored Pt atoms on the inner wall of a ZSM-5 cage, achieving the target of finely controlling the placements of the two active sites. Compared with the conventional surface-supported counterpart, the encapsulated Pt/CeO2@ZSM-5 catalyst possesses remarkably-improved activity and selectivity, which can convert >99% furfural into cyclopentanone with 97.2% selectivity in 6 h at 160 °C. Besides the excellent catalytic performance, the ordered metal-acid distribution also makes such kind of catalyst an ideal research subject for metal-acid interactions. The following mechanization investigation reveals that the enhancement is strongly related to the unique encapsulation structure, which promotes the migration of the reactants over different active sites, thereby contributing to the tandem reaction.
Collapse
Affiliation(s)
- Meng Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jing Xu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yuou Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaomei Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiang Chu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ke Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zijian Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ling-Ling Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jing Feng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
14
|
Rawal P, Gupta P. Mapping the Catalytic-Space for the Reactivity of Metal-free Boron Nitride with O 2 for H 2O-Mediated Conversion of Methane to HCHO and CO. Chemistry 2024; 30:e202303371. [PMID: 38221895 DOI: 10.1002/chem.202303371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/31/2023] [Accepted: 01/15/2024] [Indexed: 01/16/2024]
Abstract
Transition-metal based catalysts have been widely employed to catalyze partial oxidation of light alkanes. Recently, metal-free hexagonal-boron nitride (h-BN) has emerged as a promising catalyst for the oxidation of CH4 to HCHO and CO; however, the intricate catalytic surface of h-BN at molecular and electronic levels remains inadequately understood. Key questions include how electron-deficient boron atoms in h-BN reduce O2, and whether the partial oxidation of methane over h-BN exhibits similarities to traditional transition-metal catalysts. In our study, we computationally-mapped in-detail the surface catalytic-space of h-BN for methane oxidation. We considered different structures of h-BN and show that these structures contain numerous sites for O2 binding and therefore various routes for methane oxidation are possible. The activation barriers for methane oxidation via various paths varies from ~83 to ~123 kcal mol-1. To comprehend the differences in activation barriers, we employed geometrical, orbital and distortion/interaction analysis (DIA). Orbital analysis reveals that methane activation over h-BN in presence of dioxygen follows a standard hydrogen atom transfer mechanism. It is also shown that water plays an intriguing role in reducing the barrier for HCHO and CO formation by acting as a bridge.
Collapse
Affiliation(s)
- Parveen Rawal
- Computational Catalysis Center, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Puneet Gupta
- Computational Catalysis Center, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| |
Collapse
|
15
|
Li F, Lai Y, Zeng Y, Chen X, Wang T, Yang X, Guo Q. Photocatalytic ethane conversion on rutile TiO 2(110): identifying the role of the ethyl radical. Chem Sci 2023; 15:307-316. [PMID: 38131087 PMCID: PMC10732131 DOI: 10.1039/d3sc05623f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Oxidative dehydrogenation of ethane (C2H6, ODHE) is a promising approach to producing ethene (C2H4) in the chemical industry. However, the ODHE needs to be operated at a high temperature, and realizing the ODHE under mild conditions is still a big challenge. Herein, using photocatalytic ODHE to obtain C2H4 has been achieved successfully on a model rutile(R)-TiO2(110) surface with high selectivity. Initially, the C2H6 reacts with hole trapped OTi- centers to produce ethyl radicals , which can be precisely detected by a sensitive TOF method, and then the majority of the radicals spontaneously dehydrogenate into C2H4 without another photo-generated hole. In addition, parts of the radicals rebound with diversified surface sites to produce C2 products via migration along the surface. The mechanistic model built in this work not only advances our knowledge of the C-H bond activation and low temperature C2H6 conversion, but also provides new opportunities for realizing the ODHE with high C2H4 efficiency under mild conditions.
Collapse
Affiliation(s)
- Fangliang Li
- Shenzhen Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
| | - Yuemiao Lai
- Shenzhen Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
| | - Yi Zeng
- Shenzhen Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
| | - Xiao Chen
- Shenzhen Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
| | - Tao Wang
- Shenzhen Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
| | - Xueming Yang
- Shenzhen Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian Liaoning 116023 PR China
- Hefei National Laboratory Hefei 230088 PR China
| | - Qing Guo
- Shenzhen Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
| |
Collapse
|
16
|
Yang Q, Surin I, Geiger J, Eliasson H, Agrachev M, Kondratenko VA, Zanina A, Krumeich F, Jeschke G, Erni R, Kondratenko EV, López N, Pérez-Ramírez J. Lattice-Stabilized Chromium Atoms on Ceria for N 2O Synthesis. ACS Catal 2023; 13:15977-15990. [PMID: 38125976 PMCID: PMC10728900 DOI: 10.1021/acscatal.3c04463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
The development of selective catalysts for direct conversion of ammonia into nitrous oxide, N2O, will circumvent the conventional five-step manufacturing process and enable its wider utilization in oxidation catalysis. Deviating from commonly accepted catalyst design principles for this reaction, reliant on manganese oxide, we herein report an efficient system comprised of isolated chromium atoms (1 wt %) stabilized in the ceria lattice by coprecipitation. The latter, in contrast to a simple impregnation approach, ensures firm metal anchoring and results in stable and selective N2O production over 100 h on stream up to 79% N2O selectivity at full NH3 conversion. Raman, electron paramagnetic resonance, and in situ UV-vis spectroscopies reveal that chromium incorporation enhances the density of oxygen vacancies and the rate of their generation and healing. Accordingly, temporal analysis of products, kinetic studies, and atomistic simulations show lattice oxygen of ceria to directly participate in the reaction, establishing the cocatalytic role of the carrier. Coupled with the dynamic restructuring of chromium sites to stabilize intermediates of N2O formation, these factors enable catalytic performance on par with or exceeding benchmark systems. These findings demonstrate how nanoscale engineering can elevate a previously overlooked metal into a highly competitive catalyst for selective ammonia oxidation to N2O, paving the way toward industrial implementation.
Collapse
Affiliation(s)
- Qingxin Yang
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Ivan Surin
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Julian Geiger
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Henrik Eliasson
- Electron
Microscopy Center, Empa - Swiss Federal
Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Mikhail Agrachev
- Laboratory
of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Vita A. Kondratenko
- Advanced
Methods for Applied Catalysis, Leibniz-Institut
für Katalyse e. V., Albert Einstein-Str. 29a, 18059 Rostock, Germany
| | - Anna Zanina
- Advanced
Methods for Applied Catalysis, Leibniz-Institut
für Katalyse e. V., Albert Einstein-Str. 29a, 18059 Rostock, Germany
| | - Frank Krumeich
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Gunnar Jeschke
- Laboratory
of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Rolf Erni
- Electron
Microscopy Center, Empa - Swiss Federal
Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Evgenii V. Kondratenko
- Advanced
Methods for Applied Catalysis, Leibniz-Institut
für Katalyse e. V., Albert Einstein-Str. 29a, 18059 Rostock, Germany
| | - Núria López
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Javier Pérez-Ramírez
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| |
Collapse
|
17
|
Zhang D, Wang S, Lu X, Zhang C, Feng K, He L, Zhang H, Sun W, Yang D. Self-evolved BO x anchored on Mg 2B 2O 5 crystallites for high-performance oxidative dehydrogenation of propane. iScience 2023; 26:108135. [PMID: 37876808 PMCID: PMC10590969 DOI: 10.1016/j.isci.2023.108135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/08/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023] Open
Abstract
Oxidative dehydrogenation of propane (ODHP) is a promising process for producing propene. Recently, some boron-based catalysts have exhibited excellent olefin selectivity in ODHP. However, their complex synthetic routes and poor stability under high-temperature reaction conditions have hindered their practical application. Herein, we report a self-evolution method rather than conventional assembly approaches to acquire structures with excellent stability under a high propane conversion, from a single precursor-MgB2. The catalyst feasibly prepared and optimized exhibited a striking performance: 60% propane conversion with a 43.2% olefin yield at 535°C. The BOx corona pinned by the strong interaction with the borate enabled zero loss of the high conversion (around 40%) and olefins selectivity (above 80%) for over 100 h at 520°C. This all-in-one strategy of deriving all the necessary components from just one raw chemical provides a new way to synthesize effective and economic catalysts for potential industrial implementation.
Collapse
Affiliation(s)
- Dake Zhang
- State Key Laboratory of Silicon Materials and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People’s Republic of China
| | - Shenghua Wang
- State Key Laboratory of Silicon Materials and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People’s Republic of China
| | - Xingyu Lu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Instrumentation and Service Center for Molecular Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Chengcheng Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Kai Feng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Le He
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Hui Zhang
- Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, People’s Republic of China
| | - Wei Sun
- State Key Laboratory of Silicon Materials and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People’s Republic of China
| | - Deren Yang
- State Key Laboratory of Silicon Materials and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People’s Republic of China
| |
Collapse
|
18
|
Zhang B, Deng D, Chen J, Li Y, Yuan M, Xiao W, Wang S, Wang X, Zhang P, Shu Y, Shi S, Chen C. Defect Engineering of High-Entropy Oxides for Superior Catalytic Oxidation Performance. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37922463 DOI: 10.1021/acsami.3c15235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
High-entropy oxides (HEOs) are crucial in various fields (power storage/conversion, electronic devices, and catalysis) owing to their adjustable structural characteristics, fabulous stability, and massive components. However, the current strategies for synthesizing HEOs suffer from low surface area and limited active sites. Herein, we present a salt-assisted strategy with remarkable universality for the preparation of HEOs with high surface area [e.g., HP-(FeCrCoNiCu)xOy: 59 m2/g, HP-(ZnMgNiCuCo)xOy: 49 m2/g, and HP-(CrMnFeNiZn)xOy: 11 m2/g], where HP means high porosity. Especially, HP-(FeCrCoNiCu)xOy with rich-oxygen vacancies promotes catalytic efficiency for hydrocarbon and alcohol oxidation owing to its hierarchical texture and massive oxygen vacancies. Furthermore, density functional theory is utilized to well illustrate the relationship of the structure and catalytic efficiency within the catalysts. This work offers realistic pathway for the large-scale application of HEOs in catalytic areas.
Collapse
Affiliation(s)
- Bingzhen Zhang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
- School of Power and Mechanical Engineering, The Institute of Technological Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Dan Deng
- College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Jian Chen
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Ying Li
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Mingwei Yuan
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Weiming Xiao
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Shuhua Wang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Xiaolei Wang
- College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Pengfei Zhang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yuan Shu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Shunli Shi
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Chao Chen
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| |
Collapse
|
19
|
Zhang M, Duan X, Gao Y, Zhang S, Lu X, Luo K, Ye J, Wang X, Niu Q, Zhang P, Dai S. Tuning Oxygen Vacancies in Oxides by Configurational Entropy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45774-45789. [PMID: 37740720 DOI: 10.1021/acsami.3c07268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Tuning surface oxygen vacancies is important for oxide catalysts. Doping elements with different chemical valence states or different atomic radii into host oxides is a common method to create oxygen vacancies. However, the concentration of oxygen vacancies in oxide catalysts is still limited to the amount of foreign dopants that can be tolerated (generally less than 10% atoms). Herein, a principle of engineering the configurational entropy to tune oxygen vacancies was proposed. First, the positive relationship between the configuration entropy and the formation energy of oxygen vacancies (Eov) in 16 model oxides was estimated by a DFT calculation. To verify this, single binary oxides and high-entropy quinary oxides (HEOs) were prepared. Indeed, the concentration of oxygen vacancies in HEOs (Oβ/α = 3.66) was higher compared to those of single or binary oxides (Oβ/α = 0.22-0.75) by O1s XPS, O2-TPD, and EPR. Interestingly, the reduction temperatures of transition metal ions in HEOs were generally lower than that in single-metal oxides by H2-TPR. The lower Eov of HEOs may contribute to this feature, which was confirmed by in situ XPS and in situ XRD. Moreover, with catalytic CO/C3H6 oxidation as a model, the high-entropy (MnCuCo3NiFe)xOy catalyst showed higher catalytic activity than single and binary oxides, which experimentally verified the hypothesis of the DFT calculation. This work may inspire more oxide catalysts with preferred oxygen vacancies.
Collapse
Affiliation(s)
- Mengyuan Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolan Duan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Gao
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Shuangshuang Zhang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xiaoyan Lu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Kongliang Luo
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jian Ye
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xiaopeng Wang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Qiang Niu
- National Enterprise Technology Center, Inner Mongolia Erdos Electric Power and Metallurgy Group Co., Ltd., Ordos 016064, Inner Mongolia, China
| | - Pengfei Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Sheng Dai
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge 37830, Tennessee, United States
| |
Collapse
|
20
|
Zhang Z, Hermans I, Alexandrova AN. Off-Stoichiometric Restructuring and Sliding Dynamics of Hexagonal Boron Nitride Edges in Conditions of Oxidative Dehydrogenation of Propane. J Am Chem Soc 2023; 145:17265-17273. [PMID: 37506379 DOI: 10.1021/jacs.3c04613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Boron-containing materials, such as hexagonal boron nitride (h-BN), recently shown to be active and selective catalysts for the oxidative dehydrogenation of propane (ODHP), have been shown to undergo significant surface oxyfunctionalization and restructuring. Although experimental ex situ studies have probed the change in chemical environment on the surface, the structural evolution of it under varying reaction conditions has not been established. Herein, we perform global optimization structure search with a grand canonical genetic algorithm to explore the chemical space of off-stoichiometric restructuring of the h-BN surface under ambient as well as ODHP-relevant conditions. A grand canonical ensemble representation of the surface is established, and the predicted 11B solid-state NMR spectra are consistent with previous experimental reports. In addition, we investigated the relative sliding of h-BN sheets and how it influences the surface chemistry with ab initio molecular dynamics simulations. The B-O linkages on the edges are found to be significantly strained during the sliding, causing the metastable sliding configurations to have higher reactivity toward the activation of propane and water.
Collapse
Affiliation(s)
- Zisheng Zhang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ive Hermans
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
21
|
Guo XP, Wang XX, Lu HQ, Liu ZM. Mesoporous sol-gel silica supported vanadium oxide as effective catalysts in oxidative dehydrogenation of propane to propylene. RSC Adv 2023; 13:22815-22823. [PMID: 37520084 PMCID: PMC10375064 DOI: 10.1039/d3ra04024k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023] Open
Abstract
Vanadium oxide incorporated mesoporous silica (V-m-SiO2) were designed and synthesized using a surfactant-modified sol-gel method. Detailed characterization shows that monomeric [VO4] sites containing one terminal V[double bond, length as m-dash]O bond and three V-O-support bonds are dominated until atomic ratio of vanadium to silicon approaches to 5%. It is also confirmed that such V-m-SiO2 catalyst contains high proportion of vanadium oxide species interacting strongly with silica. Compared to vanadium oxide supported mesoporous silica (V/m-SiO2) prepared using a traditional impregnation method, present V-m-SiO2 catalyst exhibits more superior ability to catalyze oxidative dehydrogenation of propane to propylene. By correlation with structural data, superior catalytic performance of present V-m-SiO2 catalyst can be reasonably attributed, in part, to its favorable geometric and electronic properties rendered by the unique preparation method.
Collapse
Affiliation(s)
- Xin-Peng Guo
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology Taiyuan 030024 China
| | - Xiao-Xiao Wang
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology Taiyuan 030024 China
| | - Hai-Qiang Lu
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology Taiyuan 030024 China
| | - Zhen-Min Liu
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology Taiyuan 030024 China
| |
Collapse
|
22
|
Yao L, Wu X, Zheng B, Liu J, Geng Z, Zhang Y, Cai M, Shao Z, Jiang M, Zhang Y, Chen Y, Huang K, Feng S. Activating Octahedral Center in Co-Doped NiFe 2 O 4 via Bridging Amorphous MoS x for Electrocatalytic Water Oxidation: A Case for e g Orbital Regulation in Spinel Oxide. SMALL METHODS 2023; 7:e2201550. [PMID: 36929326 DOI: 10.1002/smtd.202201550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/17/2023] [Indexed: 06/09/2023]
Abstract
Moderate eg filling for octahedral metal cations (MOh ) is strongly correlated with the electrocatalytic water oxidation performance in the oxides system. Here, the eg fillings of NiOh and FeOh in NiFe2 O4 -based spinel are controllably regulated by introducing an external radical of catalytically inactive MoSx as an electron acceptor via a novel ultrasonic anchored pyrolysis strategy. The electron occupied in eg orbit of MOh emigrates with the amount of MoS hanging on the apical of octahedral sites, and results in a salutary transition from high to medium eg occupancy state, as confirmed by the X-ray absorption spectroscopy and X-ray photoelectron spectroscopy. In addition, benefiting from the abundant unsaturated S atoms in amorphous MoSx , the MOh at the surface furthest activates and consequently shows a superior water oxidation performance. Density functional theory also reveals that the eg fillings of Ni and Fe decrease to 1.4 and 1.2 after MoSx modification, which can effectively reduce the free energy of the OOH* intermediates in the oxygen evolution reaction process. This work opens an avenue for further releasing the electrocatalytic activity of octahedral sites through bridging external phases with rational electron-capturing/donating capability.
Collapse
Affiliation(s)
- Lu Yao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaofeng Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Beining Zheng
- College of Physics, Jilin University, Changchun, 130012, P. R. China
| | - Jinghai Liu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, P. R. China
| | - Zhibin Geng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Minmin Cai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zhiyu Shao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Mengpei Jiang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yaowen Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yu Chen
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
23
|
Han P, Yan R, Wei Y, Li L, Luo J, Pan Y, Wang B, Lin J, Wan S, Xiong H, Wang Y, Wang S. Mechanistic Insights into Radical-Induced Selective Oxidation of Methane over Nonmetallic Boron Nitride Catalysts. J Am Chem Soc 2023; 145:10564-10575. [PMID: 37130240 DOI: 10.1021/jacs.2c13648] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Boron-based nonmetallic materials (such as B2O3 and BN) emerge as promising catalysts for selective oxidation of light alkanes by O2 to form value-added products, resulting from their unique advantage in suppressing CO2 formation. However, the site requirements and reaction mechanism of these boron-based catalysts are still in vigorous debate, especially for methane (the most stable and abundant alkane). Here, we show that hexagonal BN (h-BN) exhibits high selectivities to formaldehyde and CO in catalyzing aerobic oxidation of methane, similar to Al2O3-supported B2O3 catalysts, while h-BN requires an extra induction period to reach a steady state. According to various structural characterizations, we find that active boron oxide species are gradually formed in situ on the surface of h-BN, which accounts for the observed induction period. Unexpectedly, kinetic studies on the effects of void space, catalyst loading, and methane conversion all indicate that h-BN merely acts as a radical generator to induce gas-phase radical reactions of methane oxidation, in contrast to the predominant surface reactions on B2O3/Al2O3 catalysts. Consequently, a revised kinetic model is developed to accurately describe the gas-phase radical feature of methane oxidation over h-BN. With the aid of in situ synchrotron vacuum ultraviolet photoionization mass spectroscopy, the methyl radical (CH3•) is further verified as the primary reactive species that triggers the gas-phase methane oxidation network. Theoretical calculations elucidate that the moderate H-abstraction ability of predominant CH3• and CH3OO• radicals renders an easier control of the methane oxidation selectivity compared to other oxygen-containing radicals generally proposed for such processes, bringing deeper understanding of the excellent anti-overoxidation ability of boron-based catalysts.
Collapse
Affiliation(s)
- Peijie Han
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ran Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuqing Wei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Leisu Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jinsong Luo
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jingdong Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shaolong Wan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Haifeng Xiong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yong Wang
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Shuai Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
24
|
Gao X, Zhu L, Yang F, Zhang L, Xu W, Zhou X, Huang Y, Song H, Lin L, Wen X, Ma D, Yao S. Subsurface nickel boosts the low-temperature performance of a boron oxide overlayer in propane oxidative dehydrogenation. Nat Commun 2023; 14:1478. [PMID: 36932098 PMCID: PMC10023692 DOI: 10.1038/s41467-023-37261-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 03/09/2023] [Indexed: 03/19/2023] Open
Abstract
Oxidative dehydrogenation of propane is a promising technology for the preparation of propene. Boron-based nonmetal catalysts exhibit remarkable selectivity toward propene and limit the generation of COx byproducts due to unique radical-mediated C-H activation. However, due to the high barrier of O-H bond cleavage in the presence of O2, the radical initialization of the B-based materials requires a high temperature to proceed, which decreases the thermodynamic advantages of the oxidative dehydrogenation reaction. Here, we report that the boron oxide overlayer formed in situ over metallic Ni nanoparticles exhibits extraordinarily low-temperature activity and selectivity for the ODHP reaction. With the assistance of subsurface Ni, the surface specific activity of the BOx overlayer reaches 93 times higher than that of bare boron nitride. A mechanistic study reveals that the strong affinity of the subsurface Ni to the oxygen atoms reduces the barrier of radical initiation and thereby balances the rates of the BO-H cleavage and the regeneration of boron hydroxyl groups, accounting for the excellent low-temperature performance of Ni@BOx/BN catalysts.
Collapse
Affiliation(s)
- Xiaofeng Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China.,Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, Peking University, 100871, Beijing, China
| | - Ling Zhu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Post Office Box 165, 030001, Taiyuan, Shanxi, China
| | - Feng Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Lei Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Wenhao Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Xian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Yongkang Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Houhong Song
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Lili Lin
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, Zhejiang, China
| | - Xiaodong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Post Office Box 165, 030001, Taiyuan, Shanxi, China.
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, Peking University, 100871, Beijing, China.
| | - Siyu Yao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China.
| |
Collapse
|
25
|
Yuan B, Tang SY, Zhou S. Size Effects in Gas-phase C-H Activation. Chemphyschem 2023; 24:e202200769. [PMID: 36420565 DOI: 10.1002/cphc.202200769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
The gas-phase clusters reaction permits addressing fundamental aspects of the challenges related to C-H activation. The size effect plays a key role in the activation processes as it may substantially affect both the reactivity and selectivity. In this paper, we reviewed the size effect related to the hydrocarbon oxidation by early transition metal oxides and main group metal oxides, methane activation mediated by late transition metals. Based on mass-spectrometry experiments in conjunction with quantum chemical calculations, mechanistic discussions were reviewed to present how and why the size greatly regulates the reactivity and product distribution.
Collapse
Affiliation(s)
- Bowei Yuan
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027, Hangzhou, P. R. China.,Institute of Zhejiang University - Quzhou, Zheda Rd. #99, 324000, Quzhou, P.R. China
| | - Shi-Ya Tang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, 266000, P. R. China
| | - Shaodong Zhou
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027, Hangzhou, P. R. China.,Institute of Zhejiang University - Quzhou, Zheda Rd. #99, 324000, Quzhou, P.R. China
| |
Collapse
|
26
|
Unraveling Radical and Oxygenate Routes in the Oxidative Dehydrogenation of Propane over Boron Nitride. J Am Chem Soc 2023; 145:7910-7917. [PMID: 36867720 PMCID: PMC10103127 DOI: 10.1021/jacs.2c12970] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Oxidative dehydrogenation of propane (ODHP) is an emerging technology to meet the global propylene demand with boron nitride (BN) catalysts likely to play a pivotal role. It is widely accepted that gas-phase chemistry plays a fundamental role in the BN-catalyzed ODHP. However, the mechanism remains elusive because short-lived intermediates are difficult to capture. We detect short-lived free radicals (CH3•, C3H5•) and reactive oxygenates, C2-4 ketenes and C2-3 enols, in ODHP over BN by operando synchrotron photoelectron photoion coincidence spectroscopy. In addition to a surface-catalyzed channel, we identify a gas-phase H-acceptor radical- and H-donor oxygenate-driven route, leading to olefin production. In this route, partially oxidized enols propagate into the gas phase, followed by dehydrogenation (and methylation) to form ketenes and finally yield olefins by decarbonylation. Quantum chemical calculations predict the >BO dangling site to be the source of free radicals in the process. More importantly, the easy desorption of oxygenates from the catalyst surface is key to prevent deep oxidation to CO2.
Collapse
|
27
|
de Arriba A, Sánchez G, Sánchez-Tovar R, Concepción P, Fernández-Domene R, Solsona B, López Nieto JM. On the selectivity to ethylene during ethane ODH over M1-based catalysts. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
28
|
Ding J, Teng Z, Su X, Kato K, Liu Y, Xiao T, Liu W, Liu L, Zhang Q, Ren X, Zhang J, Chen Z, Teruhisa O, Yamakata A, Yang H, Huang Y, Liu B, Zhai Y. Asymmetrically coordinated cobalt single atom on carbon nitride for highly selective photocatalytic oxidation of CH4 to CH3OH. Chem 2023. [DOI: 10.1016/j.chempr.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
29
|
Su Z, Li X, Si W, Artiglia L, Peng Y, Chen J, Wang H, Chen D, Li J. Probing the Actual Role and Activity of Oxygen Vacancies in Toluene Catalytic Oxidation: Evidence from In Situ XPS/NEXAFS and DFT + U Calculation. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Ziang Su
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Xiansheng Li
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Wenzhe Si
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Luca Artiglia
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Jianjun Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Houlin Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Deli Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
30
|
Valente JS, Quintana-Solórzano R, Armendáriz-Herrera H, Millet JMM. Decarbonizing Petrochemical Processes: Contribution and Perspectives of the Selective Oxidation of C 1–C 3 Paraffins. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jaime S. Valente
- Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, C.P. 07730, Ciudad de México, Mexico
| | - Roberto Quintana-Solórzano
- Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, C.P. 07730, Ciudad de México, Mexico
| | - Héctor Armendáriz-Herrera
- Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, C.P. 07730, Ciudad de México, Mexico
| | - Jean-Marc M. Millet
- Institut de Recherches sur la Catalyse et l’Environnement de Lyon, IRCELYON, Lyon I, 2 Avenue A. Einstein, F-69626, Villeurbanne, France
| |
Collapse
|
31
|
Chen P, Xie Z, Zhao Z, Liu B, Fan X, Kong L, Xiao X. The effect of VOx species polymerization degree and coordination environments of V-KIT-6 catalysts on the performance for the selective oxidation of methane. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
The Synthesis of Different Series of Cobalt BEA Zeolite Catalysts by Post-Synthesis Methods and Their Characterization. Catalysts 2022. [DOI: 10.3390/catal12121644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Three series of zeolite catalysts Co all-silica and Co Al-containing zeolites beta were prepared for use in the selective oxidative dehydrogenation of propane to propylene. Two series of zeolite catalysts Co all-silica were prepared by a two-step postsynthesis method at pH = 2.5 and pH = 3.0–9.0, respectively, which allows the incorporation of cobalt into SiBEA zeolite in the form of isolated framework pseudo-tetrahedral Co(II) species. The incorporation of Co ions into vacant T-atom sites and their reaction with silanol groups were demonstrated by NMR and FTIR methods. The generation of Lewis acid sites without the formation of Brønsted sites was proved by FTIR using pyridine and CO as probe molecules. The state of cobalt in three series of prepared and calcined zeolite catalysts was characterized by DR UV-vis. This technique allowed to show that for low Co content (<2 wt.%) cobalt is present in the form of framework pseudo-tetrahedral Co(II) species. For higher Co content (>2 wt.%), both framework pseudo-tetrahedral and extra-framework octahedral Co(II) species are present. The Co Al-containing zeolite beta series prepared on non-dealuminated support shows the presence of extra-framework octahedral Co(II) only.
Collapse
|
33
|
Zhou Y, Wei F, Qi H, Chai Y, Cao L, Lin J, Wan Q, Liu X, Xing Y, Lin S, Wang A, Wang X, Zhang T. Peripheral-nitrogen effects on the Ru1 centre for highly efficient propane dehydrogenation. Nat Catal 2022. [DOI: 10.1038/s41929-022-00885-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Kanungo SS, Mishra AK, Mhamane NB, Marelli UK, Kumar D, Gopinath CS. Possible Fine-Tuning of Methane Activation toward C2 Oxygenates by 3d-Transition Metal-Ions Doped Nano-Ceria-Zirconia. Inorg Chem 2022; 61:19577-19587. [DOI: 10.1021/acs.inorgchem.2c03493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Subhashree S. Kanungo
- Catalysis and Inorganic Chemistry Division, CSIR─National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Abhaya Kumar Mishra
- Catalysis and Inorganic Chemistry Division, CSIR─National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
| | - Nitin B. Mhamane
- Catalysis and Inorganic Chemistry Division, CSIR─National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Udaya Kiran Marelli
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
- Organic Chemistry Division, CSIR─National Chemical Laboratory, Pune 411 008, India
| | - Dharmesh Kumar
- Shell Technology Centre, Hardware Park, Bengaluru, Karnataka 562149, India
- Qatar Shell Research and Technology Centre, QSTP, P.O. Box 3747, Doha 3747, Qatar
| | - Chinnakonda S. Gopinath
- Catalysis and Inorganic Chemistry Division, CSIR─National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
35
|
Liu L, Li H, Zhou H, Chu S, Liu L, Feng Z, Qin X, Qi J, Hou J, Wu Q, Li H, Liu X, Chen L, Xiao J, Wang L, Xiao FS. Rivet of cobalt in siliceous zeolite for catalytic ethane dehydrogenation. Chem 2022. [DOI: 10.1016/j.chempr.2022.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Lueckheide MJ, Ertem MZ, Michon MA, Chmielniak P, Robinson JR. Peroxide-Selective Reduction of O 2 at Redox-Inactive Rare-Earth(III) Triflates Generates an Ambiphilic Peroxide. J Am Chem Soc 2022; 144:17295-17306. [PMID: 36083877 DOI: 10.1021/jacs.2c08140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal peroxides are key species involved in a range of critical biological and synthetic processes. Rare-earth (group III and the lanthanides; Sc, Y, La-Lu) peroxides have been implicated as reactive intermediates in catalysis; however, reactivity studies of isolated, structurally characterized rare-earth peroxides have been limited. Herein, we report the peroxide-selective (93-99% O22-) reduction of dioxygen (O2) at redox-inactive rare-earth triflates in methanol using a mild metallocene reductant, decamethylferrocene (Fc*). The first molecular praseodymium peroxide ([PrIII2(O22-)(18C6)2(EG)2][OTf]4; 18C6 = 18-crown-6, EG = ethylene glycol, -OTf = -O3SCF3; 2-Pr) was isolated and characterized by single-crystal X-ray diffraction, Raman spectroscopy, and NMR spectroscopy. 2-Pr displays high thermal stability (120 °C, 50 mTorr), is protonated by mild organic acids [pKa1(MeOH) = 5.09 ± 0.23], and engages in electrophilic (e.g., oxygen atom transfer) and nucleophilic (e.g., phosphate-ester cleavage) reactivity. Our mechanistic studies reveal that the rate of oxygen reduction is dictated by metal-ion accessibility, rather than Lewis acidity, and suggest new opportunities for differentiated reactivity of redox-inactive metal ions by leveraging weak metal-ligand binding events preceding electron transfer.
Collapse
Affiliation(s)
- Matthew J Lueckheide
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Mehmed Z Ertem
- Chemistry Division, Energy & Photon Sciences, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Michael A Michon
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Pawel Chmielniak
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Jerome R Robinson
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
37
|
Gu H, Lan J, Liu Y, Ling C, Wei K, Zhan G, Guo F, Jia F, Ai Z, Zhang L, Liu X. Water Enables Lattice Oxygen Activation of Transition Metal Oxides for Volatile Organic Compound Oxidation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huayu Gu
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jintong Lan
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yi Liu
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Cancan Ling
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Kai Wei
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guangming Zhan
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Furong Guo
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Falong Jia
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhihui Ai
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xiao Liu
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
38
|
Jiang C, Song H, Sun G, Chang X, Zhen S, Wu S, Zhao Z, Gong J. Data‐Driven Interpretable Descriptors for the Structure–Activity Relationship of Surface Lattice Oxygen on Doped Vanadium Oxides. Angew Chem Int Ed Engl 2022; 61:e202206758. [DOI: 10.1002/anie.202206758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Chenggong Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Collaborative Innovation Center of Chemical Science and Engineering Tianjin University Weijin Road 92 Tianjin 300072 China
| | - Hongbo Song
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Collaborative Innovation Center of Chemical Science and Engineering Tianjin University Weijin Road 92 Tianjin 300072 China
| | - Guodong Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Collaborative Innovation Center of Chemical Science and Engineering Tianjin University Weijin Road 92 Tianjin 300072 China
| | - Xin Chang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Collaborative Innovation Center of Chemical Science and Engineering Tianjin University Weijin Road 92 Tianjin 300072 China
| | - Shiyu Zhen
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Collaborative Innovation Center of Chemical Science and Engineering Tianjin University Weijin Road 92 Tianjin 300072 China
| | - Shican Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Collaborative Innovation Center of Chemical Science and Engineering Tianjin University Weijin Road 92 Tianjin 300072 China
| | - Zhi‐Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Collaborative Innovation Center of Chemical Science and Engineering Tianjin University Weijin Road 92 Tianjin 300072 China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Collaborative Innovation Center of Chemical Science and Engineering Tianjin University Weijin Road 92 Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
39
|
Wang C, Han Y, Tian M, Li L, Lin J, Wang X, Zhang T. Main-Group Catalysts with Atomically Dispersed In Sites for Highly Efficient Oxidative Dehydrogenation. J Am Chem Soc 2022; 144:16855-16865. [PMID: 36006855 DOI: 10.1021/jacs.2c04926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transition metal oxides are well-known catalysts for oxidative dehydrogenation thanks to their excellent ability to activate alkanes. However, they suffer from an inferior alkene yield due to the trade-off between the conversion and selectivity induced by more reactive alkenes than alkanes, which obscures the optimization of catalysts. Herein, we attempt to overcome this challenge by activating a selective main-group indium oxide considered to be inactive for oxidative dehydrogenation in conventional wisdom. Atomically dispersed In sites with the local structure of [InOH]2+ anchored by substituting the protons of supercages in HY are enclosed to be active centers that enable the activation of ethane with a metal-normalized turnover number of almost one magnitude higher than those of their supported In2O3 counterparts. Furthermore, the structure of isolated [InOH]2+ sites could be stabilized by in situ formed H2O from the selective oxidation of hydrogen by In2O3 nanoparticles. As a result, the as-designed main-group In catalysts exhibit 80% ethene selectivity at 80% ethane conversion, thus achieving 60% ethene yield due to active isolated [InOH]2+ sites and selective In2O3 nanoparticles, outperforming state-of-the-art transition metal oxide catalysts. This study unlocks new opportunities for the utilization of main-group elements and could pave the way toward a more rational design of catalysts for highly efficient selective oxidation catalysis.
Collapse
Affiliation(s)
- Chaojie Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China.,University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People's Republic of China
| | - Yujia Han
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China.,University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People's Republic of China
| | - Ming Tian
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Lin Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Jian Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Xiaodong Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| |
Collapse
|
40
|
Liu XH, Yu HY, Huang JY, Su JH, Xue C, Zhou XT, He YR, He Q, Xu DJ, Xiong C, Ji HB. Biomimetic catalytic aerobic oxidation of C-sp(3)-H bonds under mild conditions using galactose oxidase model compound Cu IIL. Chem Sci 2022; 13:9560-9568. [PMID: 36091900 PMCID: PMC9400635 DOI: 10.1039/d2sc02606f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022] Open
Abstract
Developing highly efficient catalytic protocols for C-sp(3)-H bond aerobic oxidation under mild conditions is a long-desired goal of chemists. Inspired by nature, a biomimetic approach for the aerobic oxidation of C-sp(3)-H by galactose oxidase model compound CuIIL and NHPI (N-hydroxyphthalimide) was developed. The CuIIL-NHPI system exhibited excellent performance in the oxidation of C-sp(3)-H bonds to ketones, especially for light alkanes. The biomimetic catalytic protocol had a broad substrate scope. Mechanistic studies revealed that the CuI-radical intermediate species generated from the intramolecular redox process of CuIILH2 was critical for O2 activation. Kinetic experiments showed that the activation of NHPI was the rate-determining step. Furthermore, activation of NHPI in the CuIIL-NHPI system was demonstrated by time-resolved EPR results. The persistent PINO (phthalimide-N-oxyl) radical mechanism for the aerobic oxidation of C-sp(3)-H bond was demonstrated.
Collapse
Affiliation(s)
- Xiao-Hui Liu
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Hai-Yang Yu
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Jia-Ying Huang
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Ji-Hu Su
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China Hefei 230026 China
| | - Can Xue
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Xian-Tai Zhou
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Yao-Rong He
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Qian He
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - De-Jing Xu
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Chao Xiong
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Hong-Bing Ji
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
41
|
Xu C, Ge C, Sun D, Fan Y, Wang XB. Boron nitride materials as emerging catalysts for oxidative dehydrogenation of light alkanes. NANOTECHNOLOGY 2022; 33:432003. [PMID: 35760042 DOI: 10.1088/1361-6528/ac7c23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Light olefins (C2-C4) play a crucial role as basic ingredients in chemical industry, and oxidative dehydrogenation (ODH) of light alkanes to olefins has been one of the popular routes since the shale gas revolution. ODH of light alkanes has advantages on energy-and-cost saving as compared with traditional direct dehydrogenation, but it is restricted by its overoxidation which results in the relatively low olefin selectivity. Boron nitride (BN), an interesting nanomaterial with an analogous structure to graphene, springs out and manifests the superior performance as advanced catalysts in ODH, greatly improving the olefin selectivity under high alkane conversion. In this review, we introduce BN nanomaterials in four dimensions together with typical methods of syntheses. Traditional catalysts for ODH are also referred as comparison on several indicators-olefin yields and preparation techniques, including the metal-based catalysts and the non-metal-based catalysts. We also surveyed the BN catalysts for ODH reaction in recent five years, focusing on the different dimensions of BN together with the synthetic routes accounting for the active sites and the catalytic ability. Finally, an outlook of the potential promotion on the design of BN-based catalysts and the possible routes for the exploration of BN-related catalytic mechanisms are proposed.
Collapse
Affiliation(s)
- Chenyang Xu
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University (NJU), Nanjing, 210093, People's Republic of China
| | - Cong Ge
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University (NJU), Nanjing, 210093, People's Republic of China
| | - Dandan Sun
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University (NJU), Nanjing, 210093, People's Republic of China
| | - Yining Fan
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Xue-Bin Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University (NJU), Nanjing, 210093, People's Republic of China
| |
Collapse
|
42
|
Mishra S, Sangma SW, Poddar MK, Bal R, Singh GP, Dey RK. TiO 2 supported cobalt oxide for olefin epoxidation reaction - characterization, catalytic activities and mechanism - using a DFT model. Dalton Trans 2022; 51:10486-10500. [PMID: 35766149 DOI: 10.1039/d2dt01118b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal oxide catalysts are known to trigger C-H bond activation selectively, indicating their suitability for olefin epoxidation. Nano-structured Co3O4 supported on TiO2 was prepared for selective epoxidation of a number of olefins under optimized reaction conditions. An appropriate synthetic procedure yielded a catalytic material (Co-Ti (NP)HT) with desired crystal size and interface conditions. Incorporation of Co into the Ti matrix resulted in an enhancement in the specific surface of Ti-Co nanoparticles (77.93 m2 g-1). XPS measurements evaluated the surface cobalt atom concentration (5.77%) in Ti-Co(NP)HT, indicating more dispersion of cobalt oxide species. Catalytic application of the material, using various olefins (under optimized reaction conditions) shows higher conversion (>85%) in a 6-h time interval. The substrate : oxidant (H2O2) concentration in an optimized molar ratio of 1 : 2 shows high olefin conversion for the formation of olefin oxide. The reactivity of olefins was found to be in the order: cyclohexene > methylstyrene > styrene > chlorostyrene > p-nitrostyrene. A DFT model compared the HOMO-LUMO energies of styrene and its substituted forms. The reusability of Ti-Co (NP)HT tested up to four continuous cycles of batch operations indicates a negligible loss (0.25-0.30%) of catalytic activity.
Collapse
Affiliation(s)
- Subhashree Mishra
- Department of Chemistry, Central University of Jharkhand (CUJ), Ranchi - 835 205, India.
| | - Simon Watre Sangma
- Department of Chemistry, Central University of Jharkhand (CUJ), Ranchi - 835 205, India.
| | - Mukesh Kumar Poddar
- Light and Stock Processing Division, CSIR-Indian Institute of Petroleum (IIP), Dehradun-248005, India.
| | - Rajaram Bal
- Light and Stock Processing Division, CSIR-Indian Institute of Petroleum (IIP), Dehradun-248005, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - G P Singh
- Department of Nanoscience & Technology, Central University of Jharkhand (CUJ), Ranchi - 835 205, India
| | - Ratan Kumar Dey
- Department of Chemistry, Central University of Jharkhand (CUJ), Ranchi - 835 205, India.
| |
Collapse
|
43
|
Jiang W, An X, Xiao J, Yang Z, Liu J, Chen H, Li H, Zhu W, Li H, Dai S. Enhanced Oxygen Activation Achieved by Robust Single Chromium Atom-Derived Catalysts in Aerobic Oxidative Desulfurization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Wei Jiang
- Institute for Energy Research, School of Chemical and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Xin An
- Institute for Energy Research, School of Chemical and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jin Xiao
- Institute for Energy Research, School of Chemical and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jixing Liu
- Institute for Energy Research, School of Chemical and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Hao Chen
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Hongping Li
- Institute for Energy Research, School of Chemical and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Wenshuai Zhu
- Institute for Energy Research, School of Chemical and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Huaming Li
- Institute for Energy Research, School of Chemical and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
44
|
Zheng K, Wu Y, Zhu J, Wu M, Jiao X, Li L, Wang S, Fan M, Hu J, Yan W, Zhu J, Sun Y, Xie Y. Room-Temperature Photooxidation of CH 4 to CH 3OH with Nearly 100% Selectivity over Hetero-ZnO/Fe 2O 3 Porous Nanosheets. J Am Chem Soc 2022; 144:12357-12366. [PMID: 35763790 DOI: 10.1021/jacs.2c03866] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The huge challenge for CH4 photooxidation into CH3OH lies in the activation of the inert C-H bond and the inhibition of CH3OH overoxidation. Herein, we design two-dimensional in-plane Z-scheme heterostructures composed of two different metal oxides, with efforts to polarize the symmetrical CH4 molecules and strengthen the O-H bond in CH3OH. As a prototype, we first fabricate ZnO/Fe2O3 porous nanosheets, where high-resolution transmission electron microscopy and in situ X-ray photoelectron spectroscopy affirm their in-plane Z-scheme heterostructure. In situ Fourier transform infrared spectra and in situ electron paramagnetic resonance spectra demonstrate their higher amount of ·CH3 radicals relative to the pristine ZnO porous nanosheets, in which density functional theory calculations validate that the high local charge accumulation on Fe sites lowers the CH4 adsorption energy from 0.14 to 0.06 eV. Moreover, the charge-accumulated Fe sites strengthen the polarity of the O-H bond in CH3OH through transferring electrons to the O atoms, confirmed by the increased barrier from 0.30 to 2.63 eV for *CH3O formation, which inhibits the homolytic O-H bond cleavage and thus suppresses CH3OH overoxidation. Accordingly, the CH3OH selectivity over ZnO/Fe2O3 porous nanosheets reaches up to nearly 100% with an activity of 178.3 μmol-1 gcat-1, outperforming previously reported photocatalysts without adding any oxidants under room temperature and ambient pressure.
Collapse
Affiliation(s)
- Kai Zheng
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yang Wu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Juncheng Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Mingyu Wu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xingchen Jiao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Li Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Shumin Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Minghui Fan
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Jun Hu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.,National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Wensheng Yan
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.,National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Junfa Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yongfu Sun
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| | - Yi Xie
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| |
Collapse
|
45
|
Jiang C, Song H, Sun G, Chang X, Wu S, Zhen S, Zhao ZJ, Gong J. Data‐driven Interpretable Descriptors for Structure‐Activity Relation of Surface Lattice Oxygen on Doped Vanadium Oxides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Hongbo Song
- Tianjin University Chemical Engineering CHINA
| | - Guodong Sun
- Tianjin University Chemical Engineering CHINA
| | - Xin Chang
- Tianjin University Chemical Engineering CHINA
| | - Shican Wu
- Tianjin University Chemical Engineering CHINA
| | - Shiyu Zhen
- Tianjin University Chemical Engineering CHINA
| | | | - Jinlong Gong
- Tianjin University School of Chemical Engineering and Technology Provost, Tianjin University135 Yaguan Road, Jinnan District 300350 Tianjin CHINA
| |
Collapse
|
46
|
Mishra M, Maharana PK, Karjee P, Punniyamurthy T. Expedient cobalt-catalyzed stereospecific cascade C-N and C-O bond formation of styrene oxides with hydrazones. Chem Commun (Camb) 2022; 58:7090-7093. [PMID: 35661177 DOI: 10.1039/d2cc01926d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cobalt-catalyzed cascade C-N and C-O bond formation of epoxides with hydrazones is described to furnish oxadiazines using air as an oxidant. The catalyst plays a dual role as a Lewis acid followed by a redox catalyst to accomplish the C-H/O-H cyclization. Optically active styrene oxide can be reacted enantiospecifically (>99% ee).
Collapse
Affiliation(s)
- Manmath Mishra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Prabhat Kumar Maharana
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Pallab Karjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | | |
Collapse
|
47
|
Xiao F, Guo D, Zhao F, Zhao Y, Wang S, Ma X. Catalytic oxidative dehydrogenation of ethane using carbon dioxide as a soft oxidant over Co‐HMS catalysts to ethylene. ASIA-PAC J CHEM ENG 2022. [DOI: 10.1002/apj.2804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Fei Xiao
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering Tianjin China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin China
| | - Dan Guo
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering Tianjin China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin China
| | - Feigang Zhao
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering Tianjin China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin China
| | - Yujun Zhao
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering Tianjin China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin China
| | - Shengping Wang
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering Tianjin China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering Tianjin China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin China
| |
Collapse
|
48
|
Yi Z, Lin L, Chang Y, Luo X, Gao J, Mu R, Ning Y, Fu Q, Bao X. Dynamic transformation between bilayer islands and dinuclear clusters of Cr oxide on Au(111) through environment and interface effects. Proc Natl Acad Sci U S A 2022; 119:e2120716119. [PMID: 35605120 PMCID: PMC9295788 DOI: 10.1073/pnas.2120716119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 04/15/2022] [Indexed: 11/18/2022] Open
Abstract
SignificanceFor oxide catalysts, it is important to elucidate and further control their atomic structures. In this work, well-defined CrO2 bilayer islands and Cr2O7 dinuclear clusters have been grown on Au(111) and unambiguously identified by scanning tunneling microscopy and theoretical calculations. Upon cycled redox treatments, the two kinds of oxide nanostructures can be reversibly transformed. It is interesting to note that both Cr oxides do not exist in bulk but need to be stabilized by the metal surface and the specific environment. Our results suggest that both redox atmosphere and interface confinement effects can be used to construct an oxide nanostructure with the specific chemical state and structure.
Collapse
Affiliation(s)
- Zhiyu Yi
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le Lin
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yuan Chang
- Key Laboratory of Material Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Dalian 116024, China
| | - Xuda Luo
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junfeng Gao
- Key Laboratory of Material Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Dalian 116024, China
| | - Rentao Mu
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yanxiao Ning
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
49
|
Smoliło-Utrata M, Tarach KA, Samson K, Gackowski M, Madej E, Korecki J, Mordarski G, Śliwa M, Jarczewski S, Podobiński J, Kuśtrowski P, Datka J, Rutkowska-Zbik D, Góra-Marek K. Modulation of ODH Propane Selectivity by Zeolite Support Desilication: Vanadium Species Anchored to Al-Rich Shell as Crucial Active Sites. Int J Mol Sci 2022; 23:ijms23105584. [PMID: 35628395 PMCID: PMC9142926 DOI: 10.3390/ijms23105584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
The commercially available zeolite HY and its desilicated analogue were subjected to a classical wet impregnation procedure with NH4VO3 to produce catalysts differentiated in acidic and redox properties. Various spectroscopic techniques (in situ probe molecules adsorption and time-resolved propane transformation FT-IR studies, XAS, 51V MAS NMR, and 2D COS UV-vis) were employed to study speciation, local coordination, and reducibility of the vanadium species introduced into the hierarchical faujasite zeolite. The acid-based redox properties of V centres were linked to catalytic activity in the oxidative dehydrogenation of propane. The modification of zeolite via caustic treatment is an effective method of adjusting its basicity—a parameter that plays an important role in the ODH process. The developed mesopore surface ensured the attachment of vanadium species to silanol groups and formation of isolated (SiO)2(HO)V=O and (SiO)3V=O sites or polymeric, highly dispersed forms located in the zeolite micropores. The higher basicity of HYdeSi, due to the presence of the Al-rich shell, aided the activation of the C−H bond leading to a higher selectivity to propene. Its polymerisation and coke formation were inhibited by the lower acid strength of the protonic sites in desilicated zeolite. The Al-rich shell was also beneficial for anchoring V species and thus their reducibility. The operando UV-vis experiments revealed higher reactivity of the bridging oxygens V-O-V over the oxo-group V=O. The (SiO)3V=O species were found to be ineffective in propane oxidation when temperature does not exceed 400 °C.
Collapse
Affiliation(s)
- Małgorzata Smoliło-Utrata
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (M.S.-U.); (K.S.); (M.G.); (E.M.); (J.K.); (G.M.); (M.Ś.); (J.P.); (J.D.)
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland; (K.A.T.); (S.J.); (P.K.)
| | - Karolina A. Tarach
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland; (K.A.T.); (S.J.); (P.K.)
| | - Katarzyna Samson
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (M.S.-U.); (K.S.); (M.G.); (E.M.); (J.K.); (G.M.); (M.Ś.); (J.P.); (J.D.)
| | - Mariusz Gackowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (M.S.-U.); (K.S.); (M.G.); (E.M.); (J.K.); (G.M.); (M.Ś.); (J.P.); (J.D.)
| | - Ewa Madej
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (M.S.-U.); (K.S.); (M.G.); (E.M.); (J.K.); (G.M.); (M.Ś.); (J.P.); (J.D.)
| | - Józef Korecki
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (M.S.-U.); (K.S.); (M.G.); (E.M.); (J.K.); (G.M.); (M.Ś.); (J.P.); (J.D.)
| | - Grzegorz Mordarski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (M.S.-U.); (K.S.); (M.G.); (E.M.); (J.K.); (G.M.); (M.Ś.); (J.P.); (J.D.)
| | - Michał Śliwa
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (M.S.-U.); (K.S.); (M.G.); (E.M.); (J.K.); (G.M.); (M.Ś.); (J.P.); (J.D.)
| | - Sebastian Jarczewski
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland; (K.A.T.); (S.J.); (P.K.)
| | - Jerzy Podobiński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (M.S.-U.); (K.S.); (M.G.); (E.M.); (J.K.); (G.M.); (M.Ś.); (J.P.); (J.D.)
| | - Piotr Kuśtrowski
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland; (K.A.T.); (S.J.); (P.K.)
| | - Jerzy Datka
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (M.S.-U.); (K.S.); (M.G.); (E.M.); (J.K.); (G.M.); (M.Ś.); (J.P.); (J.D.)
| | - Dorota Rutkowska-Zbik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (M.S.-U.); (K.S.); (M.G.); (E.M.); (J.K.); (G.M.); (M.Ś.); (J.P.); (J.D.)
- Correspondence: (D.R.-Z.); (K.G.-M.); Tel.: +48-12-6395-160 (D.R.-Z.)
| | - Kinga Góra-Marek
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland; (K.A.T.); (S.J.); (P.K.)
- Correspondence: (D.R.-Z.); (K.G.-M.); Tel.: +48-12-6395-160 (D.R.-Z.)
| |
Collapse
|
50
|
Ishikawa S, Ikeda T, Koutani M, Yasumura S, Amakawa K, Shimoda K, Jing Y, Toyao T, Sadakane M, Shimizu KI, Ueda W. Oxidation Catalysis over Solid-State Keggin-Type Phosphomolybdic Acid with Oxygen Defects. J Am Chem Soc 2022; 144:7693-7708. [PMID: 35438484 DOI: 10.1021/jacs.2c00125] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Keggin-type phosphomolybdic acid (PMo12O40), treated with pyridine (Py), forms a crystalline material (PyPMo-HT) following heat treatment under an inert gas flow at ∼420 °C. Although this material is known to have attractive catalytic properties for gas-phase oxidation, the origin of this catalytic activity requires clarification. In this study, we investigated the crystal structure of PyPMo-HT. PyPMo-HT comprises a one-dimensional array of Keggin units and pyridinium cations (HPy), with an HPy/Keggin unit ratio of ∼1.0. Two oxygen atoms were removed from the Keggin unit during crystal structure transformation, which resulted in an electron being localized on the Mo atom in close contact with the adjacent Keggin unit. Upon the introduction of molecular oxygen, electron transfer from this Mo atom resulted in the formation of an electrophilic oxygen species that bridged two Keggin units. The electrophilic oxygen species acted as a catalytically active oxygen species, as confirmed by the selective oxidation of propylene. PyPMo-HT showed excellent catalytic activity for the selective oxidation of methacrolein, with the methacrylic acid yield being superior to that obtained with PMo12O40 and comparable to that obtained with an industrial Keggin-type polyoxometalate (POM) catalyst. The oxidation catalysis observed over PyPMo-HT provides a deeper understanding of POM-based industrial catalytic processes.
Collapse
Affiliation(s)
- Satoshi Ishikawa
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Takuji Ikeda
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), 4-2-1 Nigatake, Sendai 983-8551, Japan
| | - Maki Koutani
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Shunsaku Yasumura
- Institute for Catalysis, Hokkaido University, N-21, W-10 Kita-ku, Sapporo 001-0021, Japan
| | - Kazuhiko Amakawa
- Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-0087, Japan
| | - Kosuke Shimoda
- Institute for Catalysis, Hokkaido University, N-21, W-10 Kita-ku, Sapporo 001-0021, Japan
| | - Yuan Jing
- Institute for Catalysis, Hokkaido University, N-21, W-10 Kita-ku, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10 Kita-ku, Sapporo 001-0021, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Kyoto 615-8520, Japan
| | - Masahiro Sadakane
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8527, Japan
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10 Kita-ku, Sapporo 001-0021, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Kyoto 615-8520, Japan
| | - Wataru Ueda
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| |
Collapse
|