1
|
Uppuluru A, Annamalai P, Padala K. Recent advances in 4CzIPN-mediated functionalizations with acyl precursors: single and dual photocatalytic systems. Chem Commun (Camb) 2025. [PMID: 39911039 DOI: 10.1039/d4cc06594h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
4CzIPN (1,2,3,5-tetrakis(carbazole-9-yl)-4,6-dicyanobenzene) has emerged as a key metal-free photocatalyst for sustainable organic synthesis. Due to its unique design enabling high photoluminescence quantum yield, thermally activated delayed fluorescence (TADF) and long excited state lifetime, 4CzIPN facilitates diverse reactions, such as C-C and C-X bond formation reactions, under mild reaction conditions. This review highlights its application in decarboxylation, acylation and cyclisation reactions involving α-keto acids, carboxylic acids and aldehydes in a single catalytic system, as well as the combination of a dual catalytic system with transition metals to enhance selectivity and scope. 4CzIPN contributes to the advancement of sustainable chemistry by enabling green, efficient and scalable reactions and this review covers studies published between 2020 and 2024.
Collapse
Affiliation(s)
- Ajay Uppuluru
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Pratheepkumar Annamalai
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Kishor Padala
- Department of Chemistry, Central Tribal University of Andhra Pradesh, Vizianagaram, Andhra Pradesh, 535003, India.
| |
Collapse
|
2
|
Das S. Visible-light-induced decarboxylative cyclization. Org Biomol Chem 2025; 23:1016-1066. [PMID: 39688151 DOI: 10.1039/d4ob01744g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The application of visible light as an energy source provides a new avenue in organic transformation due to its mildness, efficiency and selectivity. In fact, recent years have witnessed remarkable advances in photoinduced decarboxylative coupling reactions involving carboxylic acids and their derivatives. Under appropriate photoredox conditions they undergo single electron transfer (SET), resulting in reactive radicals which can assemble with suitable reaction partners. Many types of carboxylic acid derivatives, such as amino acids, N-hydroxy phthalimide (NHPI) esters, α-keto acids, aliphatic/aromatic carboxylic acids, and [bis(difluoroacetoxy)iodo]benzene, can couple with a wide variety of substrates to build structurally complex molecules. The present review summarizes the last five years of progress (2020-2024) in the decarboxylative cyclization of carboxylic acids for constructing carbo-/heterocycles under visible-light irradiation. Annulation could be attained via organophotocatalysis (4CzIPN, g-C3N4, Eosin Y, methylene blue, etc.), metallaphotocatalysis or photocatalyst-free approaches. With an emphasis on the mechanistic rationales and scope of the reactions, this review focuses on recent trends in this emerging area.
Collapse
Affiliation(s)
- Suven Das
- Department of Chemistry, Rishi Bankim Chandra College for Women, Naihati, 24-Parganas (N), Pin-743165, India.
| |
Collapse
|
3
|
Gan M, Wu X, Ji X, Huang H. Bromide-promoted cascade annulation of isocyanobiaryls with aldehydes through photoredox catalysis. Org Biomol Chem 2025. [PMID: 39873415 DOI: 10.1039/d4ob02085e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Herein, we report a cascade annulation of readily available isocyanobiaryls with simple aldehydes via photoredox catalysis, providing a straightforward approach towards valuable 6-hydroxyalkylated phenanthridines. Mechanistic studies indicated the generation of a key acyl radical from aldehydes by hydrogen atom abstraction with a bromine radical. This protocol exhibits exceptional chemoselectivity, excellent tolerance of various functional groups and mild reaction conditions. Its synthetic utility was demonstrated by a gram-scale reaction and various facile manipulations of the free hydroxyl group to furnish diverse phenanthridine derivatives.
Collapse
Affiliation(s)
- Mengran Gan
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Xiaoting Wu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Xiaochen Ji
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
4
|
Wang S, Wang L, Cui J, Zhang L, Zhang Q, Ke C, Huang S. Recent progress in C-S bond formation via electron donor-acceptor photoactivation. Org Biomol Chem 2025. [PMID: 39831472 DOI: 10.1039/d4ob01951b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Recent advancements in C-S bond formation via electron donor-acceptor (EDA) complex photoactivation have been remarkable. EDA complexes, which are composed of electron donors and acceptors, facilitate C-S bond construction under mild conditions through single-electron transfer events upon visible light irradiation. This review highlights the utilization of various sulfur-containing substrates, including diacetoxybenzenesulfonyl (DABSO), sulfonic acids, sodium sulfinates, sulfonyl chlorides, and thiophenols, in EDA-promoted sulfonylation and thiolation reactions, covering the works published since 2017 to date. These reactions offer novel, environmentally friendly pathways for the synthesis of sulfur-containing compounds.
Collapse
Affiliation(s)
- Sichang Wang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Liting Wang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Jin Cui
- Low Permeability Oil and Gas Field Exploration and Development of the National Engineering Laboratory, Xi'an Changqing Chemical Group Co. Ltd of Changqing Oilfield Company, Xi'An, Shaanxi, 710021, China
| | - Liying Zhang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Qunzheng Zhang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Congyu Ke
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Hu J, Pradhan S, Waiba S, Das S. Photocatalytic regioselective C-H bond functionalizations in arenes. Chem Sci 2025; 16:1041-1070. [PMID: 39691465 PMCID: PMC11647916 DOI: 10.1039/d4sc07491b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024] Open
Abstract
The direct functionalization of C-H bonds has revolutionized the field of synthetic organic chemistry by enabling efficient and atom-economical modification of arenes by avoiding prefunctionalization. However, the inherent challenges of inertness and regioselectivity in different C-H bonds, particularly for distal positions, necessitate innovative approaches. In this aspect, photoredox catalysis by utilizing both transition metal and organic photocatalysts has emerged as a powerful tool for addressing these challenges under mild reaction conditions. This review provides a comprehensive overview of recent progress in regioselective C-H functionalization in arenes via photocatalysis. Emphasizing the strategies for achieving ortho-, meta-, and para-selectivity, we explore the mechanistic insights, catalyst designs, and the novel methodologies that have expanded the scope of C-H bond functionalization. This discussion aims to offer valuable perspectives for advancing the field and developing more efficient and sustainable synthetic methodologies.
Collapse
Affiliation(s)
- Jun Hu
- Department of Chemistry, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Suman Pradhan
- Department of Chemistry, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Satyadeep Waiba
- Department of Chemistry, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Shoubhik Das
- Department of Chemistry, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| |
Collapse
|
6
|
Riomet M, Jubault P, Poisson T. E→ Z contra-Thermodynamic isomerization of alkenes with SEGPHOS. Chem Commun (Camb) 2025; 61:1152-1155. [PMID: 39691949 DOI: 10.1039/d4cc04889j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Herein we disclose a photosensitized E→Z contra-thermodynamic isomerization of vinyl sulfones, employing SEGPHOS as a promoter. The reaction was performed successfully on 23 vinyl sulfones and was extended to three other olefins. Different mechanistic experiments were performed as well as photophysical studies.
Collapse
Affiliation(s)
- Margaux Riomet
- INSA Rouen Normandie, Univ. Rouen Normandie, CNRS, Normandie Univ., COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France.
| | - Philippe Jubault
- INSA Rouen Normandie, Univ. Rouen Normandie, CNRS, Normandie Univ., COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France.
| | - Thomas Poisson
- INSA Rouen Normandie, Univ. Rouen Normandie, CNRS, Normandie Univ., COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France.
| |
Collapse
|
7
|
Matsukuma K, Tayu M, Ogino T, Ohrui S, Noji M, Hayashi S, Saito N. Photoredox/Sulfide Dual Catalysis for Modular Synthesis of Multi-substituted Furan Rings via Catalytic Indirect Reductive Quenching. Chem Asian J 2025:e202401442. [PMID: 39762156 DOI: 10.1002/asia.202401442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/06/2025] [Indexed: 01/18/2025]
Abstract
The catalytic indirect reductive quenching method is facilitated by a combination of Ir(III) photoredox and sulfide dual-catalysis system. This study demonstrated a method for synthesizing multi-substituted furans by using a photoredox/sulfide dual-catalysis system. This method enables the synthesis of various furan derivatives, including spirofurans and phthalans. The utility of this system was demonstrated through gram-scale synthesis of the pharmaceutical molecule talopram. Mechanistic studies and density functional theory calculations suggested the formation of sulfonium species via sulfide radical cations, followed by intramolecular cyclization to produce the desired furan derivatives.
Collapse
Affiliation(s)
- Kakeru Matsukuma
- Department Laboratory of Organic and Medicinal Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Masanori Tayu
- Department Laboratory of Organic and Medicinal Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Takumi Ogino
- Department Laboratory of Organic and Medicinal Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Sayaka Ohrui
- Department Laboratory of Organic and Medicinal Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Masahiro Noji
- Department Laboratory of Physical Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Satoshi Hayashi
- Department Laboratory of Physical Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Nozomi Saito
- Department Laboratory of Organic and Medicinal Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan
| |
Collapse
|
8
|
Xu S, Ping Y, Su Y, Guo H, Luo A, Kong W. A modular approach to catalytic stereoselective synthesis of chiral 1,2-diols and 1,3-diols. Nat Commun 2025; 16:364. [PMID: 39754022 PMCID: PMC11699147 DOI: 10.1038/s41467-024-55744-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025] Open
Abstract
Optically pure 1,2-diols and 1,3-diols are the most privileged structural motifs, widely present in natural products, pharmaceuticals and chiral auxiliaries or ligands. However, their synthesis relies on the use of toxic or expensive metal catalysts or suffer from low regioselectivity. Catalytic asymmetric synthesis of optically pure 1,n-diols from bulk chemicals in a highly stereoselective and atom-economical manner remains a formidable challenge. Here, we disclose a versatile and modular method for the synthesis of enantioenriched 1,2-diols and 1,3-diols from the high-production-volume chemicals ethane-1,2-diol (MEG) and 1,3-propanediol (PDO), respectively. The key to success is to temporarily mask the diol group as an acetonide, which imparts selectivity to the key step of C(sp3)-H functionalization. Additionally, 1,n-diols containing two stereogenic centers are also prepared through diastereoselective C(sp3)-H functionalization. The late-stage functionalization of biological active compounds and the expedient synthesis of chiral ligands and pharmaceutically relevant molecules further highlight the synthetic potential of this protocol.
Collapse
Affiliation(s)
- Sheng Xu
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan, China
| | - Yuanyuan Ping
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan, China
| | - Yinyan Su
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan, China
| | - Haoyun Guo
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan, China
| | - Aowei Luo
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan, China
| | - Wangqing Kong
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan, China.
- Wuhan Institute of Photochemistry and Technology, Wuhan, China.
| |
Collapse
|
9
|
Ding L, Wang M, Liu Y, Lu H, Zhao Y, Shi Z. Stereoselective Vinylic C-H Addition via Metallaphotoredox Migration. Angew Chem Int Ed Engl 2025; 64:e202413557. [PMID: 39322622 DOI: 10.1002/anie.202413557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
Geometrically defined allylic alcohols with SE, SZ, RE and RZ stereoisomers serve as valuable intermediates in synthetic chemistry, attributed to the stereoselective transformations enabled by the alkenyl and hydroxyl functionalities. When an ideal scenario presents itself with four distinct stereoisomers as potential products, the simultaneous control vicinal stereochemistry in a single step would offer a direct pathway to any desired stereoisomer. Here, we unveil a metallaphotoredox migration strategy to access stereodefined allylic alcohols through vinylic C-H activation with aldehydes. This method harnesses a chiral nickel catalyst in concert with a photocatalyst to enable a 1,4-Ni migration by using readily accessible 2-vinyl iodoarenes as starting materials. The efficacy of this methodology is highlighted by the precise construction of all stereoisomers of allylic alcohols bearing analogous substituents and the efficient synthesis of key intermediates en route to Myristinin family. Experimental and computational studies have shed light on pivotal aspects including the synergy of metal catalysis and photocatalysis, the driving forces behind the migration, and the determination of absolute configuration in the C-H addition process.
Collapse
Affiliation(s)
- Linlin Ding
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yiming Liu
- Department of Chemistry, University of California, Davis, California, Davis, 95616, United States
| | - Hongjian Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing
- China and School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, China
| |
Collapse
|
10
|
Ma WL, Liu JY, Niu KK, Cui J, Zhang RZ, Dong RZ, Liu H, Xing LB. Photooxidation of Toluene Derivatives under HAT and ROS Synergy. Chemistry 2024; 30:e202402776. [PMID: 39402953 DOI: 10.1002/chem.202402776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/15/2024] [Indexed: 11/13/2024]
Abstract
The valorization of toluene offers a dual solution by addressing its environmental impact while also facilitating the synthesis of a diverse array of valuable fine chemicals and pharmaceutical intermediates, thus ensuring both ecological sustainability and economic viability. We report herein a synergistic approach that harmonizes hydrogen atom transfer (HAT) process with the generation of reactive oxygen species (ROS) under mild condition and low catalyst loading, which enables the efficient synthesis of a broad spectrum of esteemed benzoic acid derivatives and aryl ketones through the photocatalytic oxidation of toluene derivatives. Mechanistic elucidation reveals that the HAT reagent anthraquinone has both the capabilities to abstract hydrogen atoms and the ability to generate singlet oxygen (1O2) during energy transfer with triplet oxygen (3O2), and the combination of these two potencies significantly improves the catalytic efficiency of the reaction. This study not only introduces the amalgamation of HAT with ROS generation but also delineates a systematic approach for the selection of HAT reagents with energy transfer proficiency for ROS generation in catalytic oxidation reactions.
Collapse
Affiliation(s)
- Wen-Li Ma
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Jian-Yue Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Kai-Kai Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Jing Cui
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Rong-Zhen Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Rui-Zhi Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| |
Collapse
|
11
|
Shaheeda S, Sharma S, Mandal N, Shyamal P, Datta A, Paul A, Bisai A. Regioselective Electrochemical Construction of C sp2-C sp2 Linkage at C5-C5' Position of 2-Oxindoles via an Intermolecular Anodic Dehydrogenative Coupling. Chemistry 2024; 30:e202403420. [PMID: 39308393 DOI: 10.1002/chem.202403420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 11/13/2024]
Abstract
Applying electricity as a reagent in synthetic organic chemistry has attracted particular attention from synthetic chemists worldwide as an environmentally benign and cost-effective technique. Herein, we report the construction of the Csp2-Csp2 linkage at the C5-C5' position of 2-oxindole utilizing electricity as the traceless oxidant in an anodic dehydrogenative homo-coupling process. A variety of 3,3-disubstituted-2-oxindoles were subjected to dimerization, achieving yields of up to 70 % through controlled potential electrolysis at an applied potential of 1.5 V versus Ag/Ag+ nonaqueous reference electrode. This electro-synthetic approach facilitates the specific assembly of C5-C5' (para-para coupled) dimer of 3,3-disubstituted-2-oxindole without the necessity of any external oxidants or additives and DFT (Density Functional Theory) calculations provided confirmation of this pronounced regioselectivity. Furthermore, validation through control experiments and voltammetric analyses substantiated the manifestation of radical-radical coupling (or biradical pathway) for the dimerization process.
Collapse
Affiliation(s)
- Saina Shaheeda
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Sulekha Sharma
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Nilangshu Mandal
- School of Chemical Sciences, Indian Assocation for the cultivation of Sciences Kolkata, Jadhavpur, West Bengal, 700032, India
| | - Pranay Shyamal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 462066, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Assocation for the cultivation of Sciences Kolkata, Jadhavpur, West Bengal, 700032, India
| | - Amit Paul
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri, Bhopal, Madhya Pradesh, 462066, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 462066, India
| |
Collapse
|
12
|
Yang ZX, Xu XC, He BW, Meng YX, Zhao YL. Dual Photoredox/Copper-Catalyzed Three-Component Alkylcyanation of Alkenes and 1,4-Alkylcyanation of 1,3-Enynes Employing Sulfoxonium Ylides as the Carbon Radical Precursors. Org Lett 2024; 26:10576-10582. [PMID: 39625707 DOI: 10.1021/acs.orglett.4c03998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
A novel dual photoredox/copper-catalyzed three-component alkylcyanation of alkenes and 1,4-alkylcyanation of 1,3-enynes have been developed. In this radical cyanoalkylation reaction, the photoredox induced alkyl radical from sulfoxonium ylides adds to the carbon-carbon double bonds of styrenes or 1,3-enynes, and the generated benzylic or allenyl radicals couple with a Cu(II) cyanide complex to achieve selective cyanation. The reaction exhibits high chemo- and regioselectivity and a wide substrate scope, providing an efficient method for the synthesis of alkyl nitriles and allenyl nitriles in a single step.
Collapse
Affiliation(s)
- Zi-Xuan Yang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xue-Cen Xu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Bo-Wen He
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yu-Xuan Meng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
13
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
14
|
He J, Zhou X, Wan Z, Cao H, Liu X. New Frontiers in phosphorothioate formation: harnessing inorganic phosphorus sources. Chem Commun (Camb) 2024; 60:14691-14702. [PMID: 39588692 DOI: 10.1039/d4cc05854b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Organic phosphorothioates are a class of organic compounds containing the C-S-P structural motif, known for their unique physical and chemical properties. These compounds hold significant value in various fields, including agriculture, pharmaceuticals, and materials science, particularly playing a crucial role in agrochemicals and nucleotide modification. Traditionally, phosphorothioates have been synthesized primarily through the formation of P-S bonds or direct phosphorothioation reactions from organic phosphorus sources such as P(O)H and P(O)SH. In recent years, new strategies utilizing inorganic phosphorus sources, such as P4S10 and white phosphorus (P4), have emerged as a dynamic area of research. This review highlights the latest advancements in the synthesis of phosphorothioates and phosphoropolythioates from inorganic phosphorus sources, focusing on their applicability, mechanisms, current limitations, and potential future directions.
Collapse
Affiliation(s)
- Jiawei He
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Xuesi Zhou
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Zixuan Wan
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Xiang Liu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| |
Collapse
|
15
|
Gong M, Li Q, Qin H, Fu H, Li G, Li Y, Wu Y. Visible-light-induced hydroalkylation of alkenes with aromatic β-ketoesters. Chem Commun (Camb) 2024; 60:14664-14667. [PMID: 39575681 DOI: 10.1039/d4cc05985a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
A mild and environmentally friendly photocatalytic method for C-C bond formation between 1,3-dicarbonyls and styrene derivatives has been developed in a green solvent - ethanol. A series of α-functionalized β-diketones were obtained in moderate to good yields. Based on the results of control experimental and theoretical calculations, the photocatalytic transformation might be accomplished by generating reactive radicals via a single electron transfer process. Moreover, the matching of reduced-state photocatalyst with the radical intermediate is considered to be critical for this conversion.
Collapse
Affiliation(s)
- Ming Gong
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, China.
| | - Qingrui Li
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, China.
| | - Honghong Qin
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, China.
| | - Haixin Fu
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, China.
| | - Guoping Li
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, China.
| | - Yabo Li
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, China.
| | - Yangjie Wu
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
16
|
Zhang LY, Wang NX, Lucan D, Nastasi J, Xing Y. Recent Advances of C-S Coupling Reaction of (Hetero)Arenes by C-H Functionalization. CHEM REC 2024; 24:e202400177. [PMID: 39558752 DOI: 10.1002/tcr.202400177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/18/2024] [Indexed: 11/20/2024]
Abstract
Organic sulfur compounds encompass a vast and diverse variety of species that possess unique biological activity due to the presence of sulfur atoms or sulfur-containing functional groups. These compounds are widely present in natural products, pharmaceuticals, agricultural chemicals, and functional materials. In recent years, numerous sulfur-containing compounds such as thiols, thioethers, disulfides, thiourea, dimethyl sulfoxide, sulfonates and their derivatives, as well as sulfur-containing inorganic compounds, have been utilized as coupling agents to synthesize (hetero)aryl sulfides via C-H Functionalization. These novel transformations provide effective methods for constructing C-S bond of (hetero)arenes, while also expanding the scope of (hetero)aryl sulfides with the potential biological activity. Therefore, the synthesis of aryl sulfides through C-H bond functionalization has attracted widespread attention. This review mainly focuses on the construction of (hetero)aryl sulfides via C-H bond functionalization since 2015. We hope this review offers a useful conceptual overview and inspires further advancements in the efficient construction of C-S bonds.
Collapse
Affiliation(s)
- Lei-Yang Zhang
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Nai-Xing Wang
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
- Technical Sciences Academy of Romania ASTR, Dacia Avenue no.26, Bucharest, Romania
| | - Dumitra Lucan
- Technical Sciences Academy of Romania ASTR, Dacia Avenue no.26, Bucharest, Romania
| | - Julia Nastasi
- Department of Chemistry, Hofstra University, Hempstead, NY 11549, United States
| | - Yalan Xing
- Department of Chemistry, Hofstra University, Hempstead, NY 11549, United States
| |
Collapse
|
17
|
Xu X, Zhang Y, Zhang X. Recent Advances in C-C Bond Formation via Visible Light-Mediated Desulfonylation and Its Application in the Modification of Biologically Active Compounds. Molecules 2024; 29:5553. [PMID: 39683713 DOI: 10.3390/molecules29235553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024] Open
Abstract
Developing efficient and novel methodologies to construct a C-C bond is highly important in both synthetic chemistry and pharmaceutical sciences. In recent years, the visible light-mediated desulfonylative transformation of sulfonyl compounds has emerged as a powerful tool for the synthesis of diverse C-C bond. To emphasize their practical utility, many methodologies have been successfully applied in the modification of a variety of biologically active compounds which possess unprotected amide or hydroxy groups. In this review, we would like to summarize recent advances in C-C bond formation via the visible light-mediated desulfonylation of sulfonyl chlorides, sulfinates, sulfonamides, sulfones, and sulfonylhydrazones. The reaction design, mechanism research, and the application of these protocols in the modification of biologically active compounds are presented. The challenges and future developments in this area are also discussed.
Collapse
Affiliation(s)
- Xiaohong Xu
- Chaozhou Institute for Drug Control, Chaozhou 521000, China
- College of Pharmacy, Graduate School, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yufan Zhang
- Chaozhou Institute for Drug Control, Chaozhou 521000, China
| | - Xueyuan Zhang
- Chaozhou Institute for Drug Control, Chaozhou 521000, China
| |
Collapse
|
18
|
McManus BD, Hung LC, Taylor OR, Nguyen PQ, Cedeño AL, Arriola K, Bradley RD, Saucedo PJ, Hannan RJ, Luna YA, Farias P, Bahamonde A. Mechanistic Interrogation of Photochemical Nickel-Catalyzed Tetrahydrofuran Arylation Leveraging Enantioinduction Data. J Am Chem Soc 2024; 146:32135-32146. [PMID: 39528417 DOI: 10.1021/jacs.4c13485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This manuscript details the development of an asymmetric variant for the Ni-photoredox α-arylation of tetrahydrofuran (THF), which was originally reported in a racemic fashion by Doyle and Molander. Leveraging the enantioselectivity data that we obtained, a complex mechanistic scenario different from those originally proposed is uncovered. Specifically, an unexpected dependence of the product enantiomeric ratio was observed on both the halide identity (aryl chloride vs bromide substrates) and the Ni source. Stoichiometric experiments and time course analyses of the evolution of product enantioselectivity with time revealed a different initial behavior for reactions carried out with Ni(II) and Ni(0) precatalysts that later converge into a common mechanism. For studying the predominant pathway, this paper describes a rare example of the syntheses of chiral bisoxazoline Ni(II) aryl halide complexes, which proved essential for probing enantioselectivity via stochiometric experiments. These experiments identify the Ni(II) aryl halide complex as the primary species involved in the key THF radical trapping event. A multivariate linear regression model is presented that further validates the dominant mechanism and delineates structure-selectivity relationships between ligand properties and enantioselectivity. EPR analysis of Ni(0)/aryl halide mixtures highlights the fast access to a variety of Ni complexes in 0, +1, and +2 oxidation states that are proposed to be responsible for the initial divergence in mechanism observed when using Ni(0) precatalysts. More broadly, beyond advancing the mechanistic understanding of this THF arylation protocol, this work underscores the potential of leveraging enantioselectivity data to unravel intricate mechanistic manifolds within Ni-photoredox catalysis.
Collapse
Affiliation(s)
- Brennan D McManus
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| | - Lang Cheng Hung
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| | - Olivia R Taylor
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| | - Paul Q Nguyen
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| | - Alfredo L Cedeño
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| | - Kyle Arriola
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| | - Robert D Bradley
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| | - Paul J Saucedo
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| | - Robert J Hannan
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| | - Yvette A Luna
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| | - Phillip Farias
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| | - Ana Bahamonde
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| |
Collapse
|
19
|
Bao MZ, Pan XY, Wu WR, Xiao L, Liu J, Liu XG, Zhang SS, Zhao L. Metal-catalyzed divergent synthesis from ylides with 3-arylbenzo[ d][1,2,3]triazin-4(3 H)-ones. Chem Commun (Camb) 2024; 60:12928-12931. [PMID: 39421938 DOI: 10.1039/d4cc04309j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The present work reveals a new metal-catalyzed synthetic reaction involving 1,2,3-benzotriazinones with carbonyl sulfoxonium ylide and iodonium ylide, resulting in divergent products. Within this catalytic system, 3-phenylbenzo[d][1,2,3]triazin-4(3H)-one derivatives undergo C-H alkylation processes facilitated by a Cp*Rh(III) catalyst when combined with a carbonyl sulfoxonium ylide. On the other hand, when iodonium ylide substrates are used, they undergo an alkenylation reaction facilitated by a Cp*Ir(III) catalyst. In addition, hydrazone products are produced by synthesizing iodonium ylide substrates with the use of a copper catalyst. These transformations demonstrate mild reaction conditions, a wide range of substrates, and excellent compatibility with various functional groups. The strategy and tactics utilized have been effectively implemented on a significant scale.
Collapse
Affiliation(s)
- Mei-Zhu Bao
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Xiao-Ying Pan
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China.
| | - Wen-Rong Wu
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Lin Xiao
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Jidan Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, P. R. China
| | - Xu-Ge Liu
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| | - Shang-Shi Zhang
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Limin Zhao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China.
| |
Collapse
|
20
|
Dai JL, Wang T, Hao Y, Zhang Y, Yan S, Li G, Wang JY. Photoredox-Catalyzed Alkynylation of C(sp 3)-H Bonds Adjacent to a Nitrogen Atom of Tertiary Amines with Alkynyl Bromides. J Org Chem 2024; 89:15901-15913. [PMID: 39395008 DOI: 10.1021/acs.joc.4c02065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
A novel and robust alkynylation of C(sp3)-H bonds adjacent to a nitrogen atom of tertiary amines with alkynyl bromides as radical alkynylating reagents has been realized under visible-light irradiation. A range variety of tertiary amines including N-arylamines and N-alkylamine have been coupled with both aromatic and aliphatic alkynyl bromides to furnish 51 examples of propargylamines in moderate to excellent yields (31-80% yields). The possible mechanism was a radical addition-elimination process based on preliminary mechanistic studies.
Collapse
Affiliation(s)
- Jin-Long Dai
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Tao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Yan Hao
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Yue Zhang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Shenghu Yan
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Guigen Li
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Jia-Yin Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| |
Collapse
|
21
|
Barik D, Chakraborty N, Sahoo AK, Dhara HN, Patel BK. Electron-donor-acceptor (EDA) complex-driven regioselective vicinal and oxidative geminal functionalization of alkynes. Chem Commun (Camb) 2024; 60:12577-12580. [PMID: 39387279 DOI: 10.1039/d4cc04610b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
A visible-light-initiated electron-donor-acceptor (EDA) complex-driven regioselective vicinal and oxidative geminal thiosulfonylation of alkynes is presented. Organic thiosulfonates act as an acceptor, producing either sulfonyl (RSO2˙) or thiyl (RS˙) radicals under base and solvent switchable conditions. Simultaneous installation of three different functionalities, viz carbonyl, sulfonyl, and thiyl, takes place under one condition, while another condition leads to vicinal thiolation and sulfonylation.
Collapse
Affiliation(s)
- Dinabandhu Barik
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Nikita Chakraborty
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Ashish K Sahoo
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Hirendra Nath Dhara
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| |
Collapse
|
22
|
Cheng YY, Xu J, Lin Z, Li Y, Ackermann L. Photoelectrocatalytic [4+2] Annulation for S-Heterocycle Assembly Enabled by Proton-Coupled Electron Transfer (PCET). Chemistry 2024; 30:e202402333. [PMID: 39096120 DOI: 10.1002/chem.202402333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/04/2024]
Abstract
Cross-dehydrogenative couplings (CDC) present an efficient strategy for the assembly of biorelevant heterocycles, but are thus far largely limited to toxic transition metals and rather harsh reaction conditions. In sharp contrast, we, herein report on a mild photoelectrocatalyzed CDC-[4+2] annulation enabling the synthesis of functionalized isothiochromenes enabled by a proton-coupled electron transfer (PCET) strategy. The transformative photoelectrocatalysis obviated toxic transition-metal, high reaction temperatures, and stoichiometric chemical redox reagents. This approach was characterized by exceedingly mild conditions, ample substrate scope, and a commercially available catalyst. Gram-scale reactions and a telescoped synthesis route reflected the unique potential in the green synthesis of important S-heterocycles.
Collapse
Affiliation(s)
- Yuan-Yuan Cheng
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen, 37077, Germany
| | - Jiawei Xu
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen, 37077, Germany
| | - Zhipeng Lin
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen, 37077, Germany
| | - Yanjun Li
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen, 37077, Germany
| | - Lutz Ackermann
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen, 37077, Germany
| |
Collapse
|
23
|
Trienes S, Golling S, Gieuw MH, Di Matteo M, Ackermann L. Visible light-induced ruthenium(ii)-catalyzed hydroarylation of unactivated olefins. Chem Sci 2024:d4sc06005a. [PMID: 39479157 PMCID: PMC11514381 DOI: 10.1039/d4sc06005a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
Hydroarylation reactions have emerged as a valuable tool for the direct functionalization of C-H bonds with ideal atom economy. However, common catalytic variants for these transformations largely require harsh reaction conditions, which often translate into reduced selectivites. In contrast, we herein report on a photo-induced hydroarylation of unactivated olefins at room temperature employing a readily available ruthenium(ii) catalyst. Our findings include high position- and regio-selectivity and remarkable tolerance of a wide range of functional groups, which further enabled the late-stage diversification.
Collapse
Affiliation(s)
- Sven Trienes
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
- DZHK (German Centre for Cardiovascular Research) Potsdamer Straße 58 10875 Berlin Germany
| | - Stéphane Golling
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
| | - Matthew H Gieuw
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
| | - Marco Di Matteo
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
- DZHK (German Centre for Cardiovascular Research) Potsdamer Straße 58 10875 Berlin Germany
| |
Collapse
|
24
|
Stevenson BG, Gironda C, Talbott E, Prascsak A, Burnett NL, Kompanijec V, Nakhamiyayev R, Fredin LA, Swierk JR. Photoredox Product Selectivity Controlled by Persistent Radical Stability. J Org Chem 2024; 89:13818-13825. [PMID: 37252849 DOI: 10.1021/acs.joc.3c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The use of photoredox catalysis for the synthesis of small organic molecules relies on harnessing and converting the energy in visible light to drive reactions. Specifically, photon energy is used to generate radical ion species that can be harnessed through subsequent reaction steps to form a desired product. Cyanoarenes are widely used as arylating agents in photoredox catalysis because of their stability as persistent radical anions. However, there are marked, unexplained variations in product yields when using different cyanoarenes. In this study, the quantum yield and product yield of an α-aminoarylation photoredox reaction between five cyanoarene coupling partners and N-phenylpyrrolidine were characterized. Significant discrepancies in cyanoarene consumption and product yield suggested a chemically irreversible, unproductive pathway in the reaction. Analysis of the side products in the reaction demonstrated the formation of species consistent with radical anion fragmentation. Electrochemical and computational methods were used to study the fragmentation of the different cyanoarenes and revealed a correlation between product yield and cyanoarene radical anion stability. Kinetic modeling of the reaction demonstrates that cross-coupling selectivity between N-phenylpyrrolidine and the cyanoarene is controlled by the same phenomenon present in the persistent radical effect.
Collapse
Affiliation(s)
- Bernard G Stevenson
- Department of Chemistry, State University of New York at Binghamton, Vestal, New York 13850, United States
| | - Cameron Gironda
- Department of Chemistry, State University of New York at Binghamton, Vestal, New York 13850, United States
| | - Eric Talbott
- Department of Chemistry, State University of New York at Binghamton, Vestal, New York 13850, United States
| | - Amanda Prascsak
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Nora L Burnett
- Department of Chemistry, State University of New York at Binghamton, Vestal, New York 13850, United States
| | - Victoria Kompanijec
- Department of Chemistry, State University of New York at Binghamton, Vestal, New York 13850, United States
| | - Roman Nakhamiyayev
- Department of Chemistry, State University of New York at Binghamton, Vestal, New York 13850, United States
| | - Lisa A Fredin
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - John R Swierk
- Department of Chemistry, State University of New York at Binghamton, Vestal, New York 13850, United States
| |
Collapse
|
25
|
Zeng X. The Strategies Towards Electrochemical Generation of Aryl Radicals. Chemistry 2024; 30:e202402220. [PMID: 39012680 DOI: 10.1002/chem.202402220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
The advancement in electrochemical techniques has unlocked a new path for achieving unprecedented oxidations and reductions of aryl radical precursors in a controlled and selective manner. This approach facilitates the construction of aromatic carbon-carbon and carbon-heteroatom bonds. In light of the green merits and the growing importance of this technique in aryl radical chemistry, this review aims to provide an overview of the recent advance in the electrochemical generation of aryl radicals organized by the aryl radical precursor type, with a focus on the substrate scope, limitation, and underlying mechanism, thereby inspiring future work on electrochemical aryl radical generation.
Collapse
Affiliation(s)
- Xiaobao Zeng
- School of Pharmacy and Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong, 226019, People's Republic of China
| |
Collapse
|
26
|
Niu KK, Bi YS, Liu H, Xing LB. Perylene-Diimide-Based Supramolecular Radical Anion as a Platform for Highly Effective Photoreduction of Inert Sulfoxide to Sulfide. Org Lett 2024; 26:7987-7992. [PMID: 39255467 DOI: 10.1021/acs.orglett.4c03005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Due to the limitations of common photoredox catalysts, unlocking their applications in photoreduction reactions remains an ongoing challenge. We herein present a supramolecular radical anion, PDI(CB[7])2, that formed by the assembly of perylene diimide derivative (PDI) and cucurbit[7]uril (CB[7]) via a host-guest interaction for an effective photoreduction reaction. Studies revealed that it could effectively accomplish a consecutive excitation process by two-photon excitation, enabling a potent photoreductant PDI(CB[7])2• - * that can even reduce the inert feedstocks, such as sulfoxides to sulfides. Mechanistic investigations indicate that, besides exceptional photophysical properties, supramolecular PDI(CB[7])2 also significantly enhances the lifetime and robustness of the in situ generated higher energy photoreductant PDI(CB[7])2• - * upon second quantum photon excitation, leading to the observed highly active photoreducing behavior.
Collapse
Affiliation(s)
- Kai-Kai Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, People's Republic of China
| | - Yu-Song Bi
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, People's Republic of China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, People's Republic of China
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, People's Republic of China
| |
Collapse
|
27
|
Drev M, Brodnik H, Grošelj U, Perdih F, Svete J, Štefane B, Požgan F. 2-Bromopyridines as Versatile Synthons for Heteroarylated 2-Pyridones via Ru(II)-Mediated Domino C-O/C-N/C-C Bond Formation Reactions. Molecules 2024; 29:4418. [PMID: 39339413 PMCID: PMC11433726 DOI: 10.3390/molecules29184418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
A novel methodology for the synthesis of 2-pyridones bearing a 2-pyridyl group on nitrogen and carbon atoms, starting from 2-bromopyridines, was developed employing a simple Ru(II)-KOPiv-Na2CO3 catalytic system. Unsubstituted 2-bromopyridine was successfully converted to the penta-heteroarylated 2-pyridone product using this method. Preliminary mechanistic studies revealed a possible synthetic pathway leading to the multi-heteroarylated 2-pyridone products, involving consecutive oxygen incorporation, a Buchwald-Hartwig-type reaction, and C-H bond activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Franc Požgan
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia (F.P.); (J.S.)
| |
Collapse
|
28
|
Xu S, Ping Y, Xu M, Wu G, Ke Y, Miao R, Qi X, Kong W. Stereoselective and site-divergent synthesis of C-glycosides. Nat Chem 2024:10.1038/s41557-024-01629-3. [PMID: 39271916 DOI: 10.1038/s41557-024-01629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 08/13/2024] [Indexed: 09/15/2024]
Abstract
Carbohydrates play important roles in medicinal chemistry and biochemistry. However, their synthesis relies on specially designed glycosyl donors, which are often unstable and require multi-step synthesis. Furthermore, the catalytic and stereoselective installation of arylated quaternary stereocentres on sugar rings remains a formidable challenge. Here we report a facile and versatile method for the synthesis of diverse C-R (where R is an aryl, heteroaryl, alkenyl, alkynyl or alkyl) glycosides from readily available and bench-stable 1-deoxyglycosides. The reaction proceeds under mild conditions and exhibits high stereoselectivity across a broad range of glycosyl units. This protocol can be used to synthesize challenging 2-deoxyglycosides, unprotected glycosides, non-classical glycosides and deuterated glycosides. We further developed the catalyst-controlled site-divergent functionalization of carbohydrates for the synthesis of various unexplored carbohydrates containing arylated quaternary stereocentres that are inaccessible by existing methods. The synthetic utility of this strategy is further demonstrated in the synthesis of pharmaceutically relevant molecules and carbohydrates.
Collapse
Affiliation(s)
- Sheng Xu
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Yuanyuan Ping
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Minghao Xu
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Guozhen Wu
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Yang Ke
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Rui Miao
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Xiaotian Qi
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China.
| | - Wangqing Kong
- The Institute for Advanced Studies, Wuhan University, Wuhan, China.
- Wuhan Institute of Photochemistry and Technology, Wuhan, China.
| |
Collapse
|
29
|
Arango-Daza JC, Rivero-Crespo MA. Multi-Catalytic Metal-Based Homogeneous-Heterogeneous Systems in Organic Chemistry. Chemistry 2024; 30:e202400443. [PMID: 38958991 DOI: 10.1002/chem.202400443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
The combination of metal-based homogeneous and heterogeneous catalysts in the same reaction media is a powerful, yet relatively unexplored approach in organic chemistry. This strategy can address important limitations associated with purely homogeneous or heterogeneous catalysis such as the incompatibility of different catalytic species in solution, or the limited tunability of solid catalysts, respectively. Moreover, the facile reusability of the solid catalyst, contributes to increase the overall sustainability of the process. As a result, this semi-heterogeneous multi-catalytic approach has unlocked significant advances in organic chemistry, improving existing reactions and even enabling the discovery of novel transformations, exemplified by the formal alkane metathesis. This concept article aims to showcase the benefits of this strategy through the exploration of diverse relevant examples from the literature, hoping to spur research on new metal-based homogeneous-heterogeneous catalyst combinations that will result in reactivity challenging to achieve by conventional homogeneous or heterogeneous catalysis alone.
Collapse
Affiliation(s)
- Juan Camilo Arango-Daza
- Department of Organic Chemistry, Stockholm University, 114 18, Stockholm, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Organic Chemistry, Stockholm University, 114 18, Stockholm, Sweden
| | - Miguel A Rivero-Crespo
- Department of Organic Chemistry, Stockholm University, 114 18, Stockholm, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Organic Chemistry, Stockholm University, 114 18, Stockholm, Sweden
| |
Collapse
|
30
|
Xu Y, Lin Y, Homölle SL, Oliveira JC, Ackermann L. Enantioselective Cobaltaphotoredox-Catalyzed C-H Activation. J Am Chem Soc 2024; 146:24105-24113. [PMID: 39143928 PMCID: PMC11363020 DOI: 10.1021/jacs.4c08459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
The quest for sustainable strategies in molecular synthesis has spurred the emergence of photocatalysis as a particularly powerful technique. In recent years, the application of photocatalysis in this context has greatly promoted the development of asymmetric catalysis. Despite the impressive advances, enantioselective photoinduced strong arene C-H activations by cobalt catalysis remain unexplored. Herein, we report a strategy that merges organic photoredox catalysis and enantioselective cobalt-catalyzed C-H activation, enabling the regio- and stereoselective dual functionalization of indoles in an enantioselective fashion. Thereby, the assembly of various chiral indolo[2,3-c]isoquinolin-5-ones was realized with high enantioselectivities of up to 99%. The robustness of the cobaltaphotoredox catalysis was demonstrated through enantioselective C-H activation and annulations in a continuous flow to provide straightforward access to central and axially chiral molecules.
Collapse
Affiliation(s)
| | | | - Simon L. Homölle
- Wöhler-Research Institute
for Sustainable Chemistry (WISCh), Georg-August-Universität
Göttingen Tammannstraße 2, Göttingen 37077, Germany
| | - João C.
A. Oliveira
- Wöhler-Research Institute
for Sustainable Chemistry (WISCh), Georg-August-Universität
Göttingen Tammannstraße 2, Göttingen 37077, Germany
| | - Lutz Ackermann
- Wöhler-Research Institute
for Sustainable Chemistry (WISCh), Georg-August-Universität
Göttingen Tammannstraße 2, Göttingen 37077, Germany
| |
Collapse
|
31
|
Goodwin MJ, Deetz AM, Griffin PJ, Meyer GJ. Periodic Trends in Intra-ionic Excited State Quenching by Halide. Inorg Chem 2024; 63:15772-15783. [PMID: 39120873 DOI: 10.1021/acs.inorgchem.4c01726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The preassociation of reactants in a photoinitiated redox reaction through the use of noncovalent interactions can have a significant impact on excited state reactivity. As these noncovalent interactions render some stabilization to the associated species, they impact the kinetics and thermodynamics of photoinitiated electron transfer. Reported herein is a novel iridium(III) photocatalyst, equipped with an anion-sensitive, amide-substituted bipyridine ligand, and its reactivity with the halides (X = I-, Br-, Cl-) in acetonitrile and dichloromethane. A noteworthy periodic trend was observed, where the size and electron affinity dramatically altered the observed photoredox behavior. The binding affinity for the halides increased with decreasing ionic radius (Keq ∼103 to >106) in a polar medium but association was stoichiometric for each halide in a nonpolar medium. Evidence for the static quenching of iodide and bromide is presented while dynamic quenching was observed with all halides. These results highlight how the photophysics of halide adducts and the thermodynamics of intra-ionic photo-oxidation are impacted as a consequence of preassociation of a quencher through hydrogen bonding.
Collapse
Affiliation(s)
- Matthew J Goodwin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alexander M Deetz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Paul J Griffin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
32
|
Kommoju A, Snehita K, Sowjanya K, Mukkamala SB, Padala K. Recent advances in dual photoredox/nickel catalyzed alkene carbofunctionalised reactions. Chem Commun (Camb) 2024; 60:8946-8977. [PMID: 39086201 DOI: 10.1039/d4cc02914c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Alkene carbofunctionalization reactions have great potential for synthesizing complex molecules and constructing complex structures in natural products and medicinal chemistry. Recently, dual photoredox/nickel catalysis has emerged as a novel strategy for alkene carbofunctionalization. Nickel offers numerous advantages over other transition metals, such as cost-effectiveness, abundance, and low toxicity, and moreover, it has many oxidation states. Nickel catalysts exhibit excellent catalytic activity in dual photoredox/transition metal catalysis, facilitating the formation of carbon-carbon or carbon-heteroatom bonds in organic transformations. This review highlights the latest advancements in dual photoredox/nickel-catalyzed alkene carbofunctionalizations and includes the literature published from 2020 to 2024.
Collapse
Affiliation(s)
- Anilkumar Kommoju
- Department of Chemistry, Central Tribal University of Andhra Pradesh, Vizianagaram, Andhra Pradesh-535003, India.
| | - Kattamuri Snehita
- Department of Chemistry, Central Tribal University of Andhra Pradesh, Vizianagaram, Andhra Pradesh-535003, India.
| | - Kandi Sowjanya
- Department of Chemistry, Central Tribal University of Andhra Pradesh, Vizianagaram, Andhra Pradesh-535003, India.
| | - Saratchandra Babu Mukkamala
- Department of Chemistry, Central Tribal University of Andhra Pradesh, Vizianagaram, Andhra Pradesh-535003, India.
| | - Kishor Padala
- Department of Chemistry, Central Tribal University of Andhra Pradesh, Vizianagaram, Andhra Pradesh-535003, India.
| |
Collapse
|
33
|
Janaagal A, Kushwaha A, Jhaldiyal P, Dhilip Kumar TJ, Gupta I. Photoredox Catalysis by 21-Thiaporphyrins: A Green and Efficient Approach for C-N Borylation and C-H Arylation. Chemistry 2024; 30:e202401623. [PMID: 38825798 DOI: 10.1002/chem.202401623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
Photoredox catalysis provides a green and sustainable alternative for C-H activation of organic molecules that eludes harsh conditions and use of transition metals. The photocatalytic C-N borylation and C-H arylation mostly depend on the ruthenium and iridium complexes or eosin Y and the use of porphyrin catalysts is still in infancy. A series of novel 21-thiaporphyrins (A2B2 and A3B type) were synthesized having carbazole/phenothiazine moieties at their meso-positions and screened as catalysts for C-N borylation and C-H arylation. This paper demonstrates the 21-thiaporphyrin catalyzed C-N borylation and het-arylation of anilines under visible light. The method utilizes only 0.1 mol % of 21-thiaporphyrin catalyst under blue light for the direct C-N borylation and het-arylation reactions. A variety of substituted anilines were used as source for expensive and unstable aryl diazonium salts in the reactions. The heterobiaryls and aryl boronic esters were obtained in decent yields (up to 88 %). Versatility of the 21-thiaporphyrin catalyst was tested by thiolation and selenylation of anilines under similar conditions. Mechanistic insight was obtained from DFT studies, suggesting that 21-thiaporphyrin undergo an oxidative quenching pathway. The photoredox process catalyzed by 21-thiaporphyrins offers a mild, efficient and metal-free alternative for the formation of C-C, C-S, and C-Se bonds in aryl compounds; it can also be extended to borylation reaction.
Collapse
Affiliation(s)
- Anu Janaagal
- Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, 382055, India
| | - Apoorv Kushwaha
- Department of Chemistry, Indian Institute of Technology, Ropar, Rupnagar, 140001, India
| | - Pranjali Jhaldiyal
- Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, 382055, India
| | - T J Dhilip Kumar
- Department of Chemistry, Indian Institute of Technology, Ropar, Rupnagar, 140001, India
| | - Iti Gupta
- Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, 382055, India
| |
Collapse
|
34
|
Ripak A, Vega Salgado AK, Valverde D, Cristofaro S, de Gary A, Olivier Y, Elias B, Troian-Gautier L. Factors Controlling Cage Escape Yields of Closed- and Open-Shell Metal Complexes in Bimolecular Photoinduced Electron Transfer. J Am Chem Soc 2024; 146:22818-22828. [PMID: 39078742 DOI: 10.1021/jacs.4c08158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The cage escape yield, i.e., the separation of the geminate radical pair formed immediately after bimolecular excited-state electron transfer, was studied in 11 solvents using six Fe(III), Ru(II), and Ir(III) photosensitizers and tri-p-tolylamine as the electron donor. Among all complexes, the largest cage escape yields (0.67-1) were recorded for the Ir(III) photosensitizer, showing the highest potential as a photocatalyst in photoredox catalysis. These yields dropped to values around 0.65 for both Ru(II) photosensitizers and to values around 0.38 for the Os(II) photosensitizer. Interestingly, for both open-shell Fe(III) complexes, the yields were small (<0.1) in solvents with dielectric constant greater than 20 but were shown to reach values up to 0.58 in solvents with low dielectric constants. The results presented herein on closed-shell photosensitizers suggest that the low rate of triplet-singlet intersystem crossing within the manifold of states of the geminate radical pair implies that charge recombination toward the ground state is a spin-forbidden process, favoring large cage escape yields that are not influenced by dielectric effects. Geminate charge recombination in open-shell metal complexes, such as the two Fe(III) photosensitizers studied herein, is no longer a spin-forbidden process and becomes highly sensitive to solvent effects. Altogether, this study provides general guidelines for factors influencing bimolecular excited-state reactivity using prototypical photosensitizers but also allows one to foresee a great development of Fe(III) photosensitizers with the 2LMCT excited state in photoredox catalysis, providing that solvents with low dielectric constants are used.
Collapse
Affiliation(s)
- Alexia Ripak
- Molecular Chemistry, Materials and Catalysis (MOST), UCLouvain, Institut de la Matière Condensée et des Nanosciences (IMCN), Place Louis Pasteur 1/L4.01.02, B-1348 Louvain-la-Neuve, Belgium
| | - Ana Karem Vega Salgado
- Molecular Chemistry, Materials and Catalysis (MOST), UCLouvain, Institut de la Matière Condensée et des Nanosciences (IMCN), Place Louis Pasteur 1/L4.01.02, B-1348 Louvain-la-Neuve, Belgium
| | - Danillo Valverde
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Silvia Cristofaro
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Alban de Gary
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Benjamin Elias
- Molecular Chemistry, Materials and Catalysis (MOST), UCLouvain, Institut de la Matière Condensée et des Nanosciences (IMCN), Place Louis Pasteur 1/L4.01.02, B-1348 Louvain-la-Neuve, Belgium
| | - Ludovic Troian-Gautier
- Molecular Chemistry, Materials and Catalysis (MOST), UCLouvain, Institut de la Matière Condensée et des Nanosciences (IMCN), Place Louis Pasteur 1/L4.01.02, B-1348 Louvain-la-Neuve, Belgium
- Wel Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium
| |
Collapse
|
35
|
Mandal T, Chaturvedi A, Azim A, Maji R, De Sarkar S. Earth-Abundant Recyclable Magnetic Iron Oxide Nanoparticles for Green-light Mediated C-H Arylation in Heterogeneous Phase. Chemistry 2024; 30:e202401617. [PMID: 38788130 DOI: 10.1002/chem.202401617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 05/26/2024]
Abstract
A magnetically isolable iron oxide nanoparticles is introduced as an efficient heterogeneous photocatalyst for non-directed C-H arylation employing aryl diazonium salts as the aryl precursors. This first-row transition metal-based photocatalyst revealed versatile activities and is applicable to a wide range of substrates, demonstrating brilliant efficacy and superior recyclability. Detailed catalytic characterization describes the physical properties and redox behavior of the Fe-catalyst. Adequate control experiments helped to establish the radical-based mechanism for the C-H arylation.
Collapse
Affiliation(s)
- Tanumoy Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Ashwin Chaturvedi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Aznur Azim
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Rohan Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| |
Collapse
|
36
|
Jhun BH, Jang J, Lee S, Cho EJ, You Y. Efficient photoredox catalysis in C-C cross-coupling reactions by two-coordinated Au(I) complex. Nat Commun 2024; 15:6586. [PMID: 39097596 PMCID: PMC11297913 DOI: 10.1038/s41467-024-50979-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024] Open
Abstract
Photocatalysis provides a versatile approach to redox activation of various organic substrates for synthetic applications. To broaden the scope of photoredox catalysis, developing catalysts with strong oxidizing or reducing power in the excited state is imperative. Catalysts that feature highly cathodic oxidation potentials and long lifetimes in their excited states are particularly in demand. In this research, we demonstrate the catalytic utility of two-coordinate Au(I) complex photocatalysts that exhibit an exclusive ligand-to-ligand charge-transfer (LLCT) transition in C-C cross-coupling reactions between N-heterocycles and (hetero)aryl halides, including redox-resistant (hetero)aryl chlorides. Our photocatalysis system can steer reactions under visible-light irradiation at a catalyst loading as low as 0.1 mol% and exhibits a broad substrate scope with high chemo- and regioselectivity. Our mechanistic investigations provide direct spectroscopic evidence for each step in the catalysis cycle and demonstrate that the LLCT-active Au(I) complex catalysts offer several benefits, including strong visible-light absorption, a 210 ns-long excited-state lifetime without short-lived components, and a 91% yield in the production of free-radical intermediates. Given the wide structural versatility of the proposed catalysts, we envision that our research will provide useful insights into the future utilization of the LLCT-active Au(I) complex for organic transformations.
Collapse
Affiliation(s)
- Byung Hak Jhun
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jihoon Jang
- Department of Chemistry, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Shinae Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Youngmin You
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
37
|
He S, Liu X, Lv G, Fan H, Zhang X, Ren Y, Luo W, Hai L, Wu Y. Visible-Light-Driven Coupling of 1,3,4-Oxadiazoles and Hydroxamic Acid Derivatives. J Org Chem 2024; 89:10012-10020. [PMID: 38952027 DOI: 10.1021/acs.joc.4c00902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
A visible-light-induced radical-radical cross-coupling reaction between 1,3,4-oxadiazoles and hydroxamic acid derivatives has been realized under base- and metal-free conditions. The protocol was characterized by broad substrate scope, excellent functional group tolerance, and simple operation procedures. By using this protocol, a variety of biologically important 5-aryl-1,3,4-oxadiazole-2-methylamines were obtained in good yields with excellent chemoselectivity.
Collapse
Affiliation(s)
- Shiyun He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Xingyu Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Guanghui Lv
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China
- Department of Pharmacy, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Hubei, Shiyan 442000, China
| | - Hongying Fan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Xue Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Yun Ren
- Sichuan Kelun Pharmaceutical Co., Ltd, No.36 West Baihua Road, Qingyang District, Chengdu, Sichaun 610072, People's Republic of China
| | - Wei Luo
- Sichuan Kelun Pharmaceutical Co., Ltd, No.36 West Baihua Road, Qingyang District, Chengdu, Sichaun 610072, People's Republic of China
| | - Li Hai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China
| |
Collapse
|
38
|
Dai L, Fu Y, Wei M, Wang F, Tian B, Wang G, Li S, Ding M. Harnessing Electro-Descriptors for Mechanistic and Machine Learning Analysis of Photocatalytic Organic Reactions. J Am Chem Soc 2024; 146:19019-19029. [PMID: 38963153 DOI: 10.1021/jacs.4c03085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Photocatalysis has emerged as an effective tool for addressing the contemporary challenges in organic synthesis. However, the trial-and-error-based screening of feasible substrates and optimal reaction conditions remains time-consuming and potentially expensive in industrial practice. Here, we demonstrate an electrochemical-based data-acquisition approach that derives a simple set of redox-relevant electro-descriptors for effective mechanistic analysis and performance evaluation through machine learning (ML) in photocatalytic synthesis. These electro-descriptors correlate to the quantification of shifted charge transfer processes in response to the photoirradiation and enabled construction of reactivity diagram where high-yield reactive "hot zones" can reflect subtle changes of the reaction system. For the model reaction of photocatalytic deoxygenation reaction, the influence of varying carboxylic acids (substrate A, oxidation-intended) and alkenes (substrate B, reduction-intended) and varying reaction conditions on the reaction yield can be visualized, while mathematical analysis of the electro-descriptor patterns further revealed distinct mechanistic/kinetic impacts from different substrates and conditions. Additionally, in the application of ML algorithms, the experimentally derived electro-descriptors reflect an overall redox kinetic outcome contributed from vast reaction parameters, serving as a capable means to reduce the dimensionality in the case of complex multiparameter chemical space. As a result, utilization of electro-descriptors enabled efficient and robust quantitative evaluation of chemical reactivity, demonstrating promising potential of introducing operando-relevant experimental insights in the data-driven chemistry.
Collapse
Affiliation(s)
- Luhan Dai
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yulong Fu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Mengran Wei
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fangyuan Wang
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bailin Tian
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Guoqiang Wang
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuhua Li
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Mengning Ding
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
39
|
Zurakowski JA, Durfy CS, Stocek NB, Fanchini G, Drover MW. Oxidatively-induced C(sp 3)-C(sp 3) bond formation at a tucked-in iron(iii) complex. Chem Sci 2024; 15:10359-10365. [PMID: 38994411 PMCID: PMC11234878 DOI: 10.1039/d4sc03292f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024] Open
Abstract
Carbon-carbon (C-C) bond formation is a cornerstone of synthetic chemistry, relying on routes such as transition-metal mediated cross-coupling for the introduction of new carbon-based functionality. For {[M] n+-C} (M = metal) structural units, studies that offer well-defined relationships between metal oxidation state, hydrocarbon strain, and {[M] n+-C} bond thermochemistry are thus informative, providing a means to reliably access new product classes. Here, we show that one-electron oxidation of the iron tucked-in complex [(η6-C5Me4[double bond, length as m-dash]CH2)Fe(dnppe)] (dnppe = 1,2-bis(di-n-propylphosphino)ethane) results in C(sp3)-C(sp3) bond formation giving unique {Fe2} dimers. Freeze-quenched CW X-band EPR spectroscopy allowed for spectroscopic identification of the reactive [(η6-C5Me4[double bond, length as m-dash]CH2)Fe(dnppe)]+ intermediate. Density functional theory (DFT) calculations reveal a primarily Fe-centered radical and a weak {[Fe]-C} bond (BDE[Fe]-C = 24.5 kcal mol-1, c.f. BDEC-C(ethane) = 90 kcal mol-1). For comparison, a structurally analogous Fe(iii) methyl complex was prepared, [Cp*Fe(dnppe)(CH3)]+ (Cp* = C5Me5 -), where C(sp3)-C(sp3) coupling was not observed, consistent with a larger calculated BDE[Fe]-C value of 47.8 kcal mol-1. These data are analogized to the simple hydrocarbons ethane and cyclopropane, where a strain-induced BDEC-C decrease of 33 kcal mol-1 is witnessed on cyclization.
Collapse
Affiliation(s)
- Joseph A Zurakowski
- Department of Chemistry, Western University 1151 Richmond Street London ON N8K 3G6 Canada
- Department of Chemistry and Biochemistry, University of Windsor 401 Sunset Avenue Windsor ON N9B 3P4 Canada
| | - Connor S Durfy
- Department of Chemistry, Western University 1151 Richmond Street London ON N8K 3G6 Canada
| | - Noah B Stocek
- Department of Physics and Astronomy, Western University 1151 Richmond Street London ON N6A 3K7 Canada
| | - Giovanni Fanchini
- Department of Chemistry, Western University 1151 Richmond Street London ON N8K 3G6 Canada
- Department of Physics and Astronomy, Western University 1151 Richmond Street London ON N6A 3K7 Canada
| | - Marcus W Drover
- Department of Chemistry, Western University 1151 Richmond Street London ON N8K 3G6 Canada
| |
Collapse
|
40
|
Wang L, Wu Y, Hu J, Yin D, Wei W, Wen J, Chen X, Gao C, Zhou Y, Liu J, Hu G, Li X, Wu J, Zhou Z, Liu L, Song W. Unlocking the function promiscuity of old yellow enzyme to catalyze asymmetric Morita-Baylis-Hillman reaction. Nat Commun 2024; 15:5737. [PMID: 38982157 PMCID: PMC11233575 DOI: 10.1038/s41467-024-50141-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
Exploring the promiscuity of native enzymes presents a promising strategy for expanding their synthetic applications, particularly for catalyzing challenging reactions in non-native contexts. In this study, we explore the promiscuous potential of old yellow enzymes (OYEs) to facilitate the Morita-Baylis-Hillman reaction (MBH reaction), leveraging substrate similarities between MBH reaction and reduction reaction. Using mass spectrometry and spectroscopic techniques, we confirm promiscuity of GkOYE in both MBH and reduction reactions. By blocking H- and H+ transfer pathways, we engineer GkOYE.8, which loses its reduction ability but enhances its MBH activity. The structural basis of MBH reaction catalyzed by GkOYE.8 is obtained through mutation studies and kinetic simulations. Furthermore, enantiocomplementary mutants GkOYE.11 and GkOYE.13 are obtained by directed evolution, exhibiting the ability to accept various aromatic aldehydes and alkenes as substrates. This study demonstrates the potential of leveraging substrate similarities to unlock enzyme functionalities, enabling the catalysis of new-to-nature reactions.
Collapse
Affiliation(s)
- Lei Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yaoyun Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jun Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Dejing Yin
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Wanqing Wei
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jian Wen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xiulai Chen
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yiwen Zhou
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jia Liu
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xiaomin Li
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhi Zhou
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
41
|
Tan X, Song Z, Liang X, Wang Z, Yuan H, Zhang Z, Yang Z. Regioselective Syntheses of 1,4- and 1,6-Dicarbonyl Compounds via Photoredox-Based Oxidative Heterocoupling of Enolsilanes with Oxygen as an Oxidant. Org Lett 2024; 26:5403-5408. [PMID: 38634728 DOI: 10.1021/acs.orglett.4c00768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
A photoredox-based oxidative heterocoupling of enolsilanes to the corresponding 1,4- and 1,6-dicarbonyl compounds was developed by using Mes-Acr+BF4- as the photocatalyst, and oxygen was used as the oxidant. This newly developed chemistry adheres to the principles of atom economy, step economy, and redox economy, making it a concise and efficient method.
Collapse
Affiliation(s)
- Xinyu Tan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhilin Song
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xinting Liang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhenbao Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Hongyi Yuan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhongchao Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Science and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Institute of Molecular Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
42
|
Liang T, Yuan Q, Xu L, Liu JQ, Kärkäs MD, Wang XS. Silver-Catalyzed Radical Umpolung Cross-Coupling of Silyl Enol Ethers with Activated Methylene Compounds: Access to Diverse Tricarbonyl Derivatives. J Org Chem 2024; 89:9298-9302. [PMID: 38877984 PMCID: PMC11232002 DOI: 10.1021/acs.joc.4c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
A silver-catalyzed protocol for the intermolecular radical umpolung cross-coupling protocol of silyl enol ethers with activated methylene compounds is disclosed. The protocol exhibits excellent functional group tolerance, enabling the expedient preparation of a variety of tricarbonyl compounds. Preliminary mechanistic investigations suggest that the reaction proceeds through a process involving free radicals in which silver oxide has a dual role, acting as both a catalyst and a base.
Collapse
Affiliation(s)
- Tongwei Liang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Qingjia Yuan
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Li Xu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Jian-Quan Liu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Markus D Kärkäs
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Xiang-Shan Wang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
43
|
Sato K, Egami H, Hamashima Y. Thiobenzoic Acid-Catalyzed Cα-H Cross Coupling of Benzyl Alcohols with α-Ketoacid Derivatives. Org Lett 2024; 26:5285-5289. [PMID: 38869244 DOI: 10.1021/acs.orglett.4c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The C-H alkylation of benzyl alcohols with α-ketoacid derivatives was achieved in the presence of thiobenzoic acid with or without Ru or Ir photoredox catalysts. The thiobenzoic acid serves as a photoexcited single-electron reducing reagent and a hydrogen atom transfer catalyst, while addition of the metal photoredox catalyst assists the electron transfer and improves the reaction efficiency. Various functional groups were tolerant of the reaction conditions, and sterically hindered diols were produced in good to high yield.
Collapse
Affiliation(s)
- Kaichi Sato
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiromichi Egami
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoshitaka Hamashima
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
44
|
Mohamadpour F, Amani AM. Photocatalytic systems: reactions, mechanism, and applications. RSC Adv 2024; 14:20609-20645. [PMID: 38952944 PMCID: PMC11215501 DOI: 10.1039/d4ra03259d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
The photocatalytic field revolves around the utilization of photon energy to initiate various chemical reactions using non-adsorbing substrates, through processes such as single electron transfer, energy transfer, or atom transfer. The efficiency of this field depends on the capacity of a light-absorbing metal complex, organic molecule, or substance (commonly referred to as photocatalysts or PCs) to execute these processes. Photoredox techniques utilize photocatalysts, which possess the essential characteristic of functioning as both an oxidizing and a reducing agent upon activation. In addition, it is commonly observed that photocatalysts exhibit optimal performance when irradiated with low-energy light sources, while still retaining their catalytic activity under ambient temperatures. The implementation of photoredox catalysis has resuscitated an array of synthesis realms, including but not limited to radical chemistry and photochemistry, ultimately affording prospects for the development of the reactions. Also, photoredox catalysis is utilized to resolve numerous challenges encountered in medicinal chemistry, as well as natural product synthesis. Moreover, its applications extend across diverse domains encompassing organic chemistry and catalysis. The significance of photoredox catalysts is rooted in their utilization across various fields, including biomedicine, environmental pollution management, and water purification. Of course, recently, research has evaluated photocatalysts in terms of cost, recyclability, and pollution of some photocatalysts and dyes from an environmental point of view. According to these new studies, there is a need for critical studies and reviews on photocatalysts and photocatalytic processes to provide a solution to reduce these limitations. As a future perspective for research on photocatalysts, it is necessary to put the goals of researchers on studies to overcome the limitations of the application and efficiency of photocatalysts to promote their use on a large scale for the development of industrial activities. Given the significant implications of the subject matter, this review seeks to delve into the fundamental tenets of the photocatalyst domain and its associated practical use cases. This review endeavors to demonstrate the prospective of a powerful tool known as photochemical catalysis and elucidate its underlying tenets. Additionally, another goal of this review is to expound upon the various applications of photocatalysts.
Collapse
Affiliation(s)
- Farzaneh Mohamadpour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
45
|
Michiyuki T, Maksso I, Ackermann L. Photo-Induced Ruthenium-Catalyzed C-H Arylation Polymerization at Ambient Temperature. Angew Chem Int Ed Engl 2024; 63:e202400845. [PMID: 38634987 DOI: 10.1002/anie.202400845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024]
Abstract
Transition metal-catalyzed C-H arylation polymerization (CHAP) is an attractive tool for constructing π-conjugated polymers in a sustainable manner. However, the existing methods primarily rely on palladium catalysis, which usually entails harsh reaction conditions and branching/cross-linking. Here we report the first example of an ambient-temperature ruthenium-catalyzed C-H arylation polymerization induced by visible light irradiation. The present polymerization can produce various meta- and para-linked polymers in excellent yields with high molecular weights. The remarkable feature of our mild reaction platform is represented by high chemoselectivity, leading to polymers that are otherwise inaccessible under conventional reaction conditions at high temperatures.
Collapse
Affiliation(s)
- Takuya Michiyuki
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Isaac Maksso
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
- Wöhler Research Institute for Sustainable Chemistry, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
46
|
Goodwin MJ, Dickenson JC, Ripak A, Deetz AM, McCarthy JS, Meyer GJ, Troian-Gautier L. Factors that Impact Photochemical Cage Escape Yields. Chem Rev 2024; 124:7379-7464. [PMID: 38743869 DOI: 10.1021/acs.chemrev.3c00930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The utilization of visible light to mediate chemical reactions in fluid solutions has applications that range from solar fuel production to medicine and organic synthesis. These reactions are typically initiated by electron transfer between a photoexcited dye molecule (a photosensitizer) and a redox-active quencher to yield radical pairs that are intimately associated within a solvent cage. Many of these radicals undergo rapid thermodynamically favored "geminate" recombination and do not diffuse out of the solvent cage that surrounds them. Those that do escape the cage are useful reagents that may undergo subsequent reactions important to the above-mentioned applications. The cage escape process and the factors that determine the yields remain poorly understood despite decades of research motivated by their practical and fundamental importance. Herein, state-of-the-art research on light-induced electron transfer and cage escape that has appeared since the seminal 1972 review by J. P. Lorand entitled "The Cage Effect" is reviewed. This review also provides some background for those new to the field and discusses the cage escape process of both homolytic bond photodissociation and bimolecular light induced electron transfer reactions. The review concludes with some key goals and directions for future research that promise to elevate this very vibrant field to even greater heights.
Collapse
Affiliation(s)
- Matthew J Goodwin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - John C Dickenson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alexia Ripak
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
| | - Alexander M Deetz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jackson S McCarthy
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ludovic Troian-Gautier
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
- Wel Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium
| |
Collapse
|
47
|
Kohila Rani K, Xiao YH, Devasenathipathy R, Gao K, Wang J, Kang X, Zhu C, Chen H, Jiang L, Liu Q, Qiao F, Li Z, Wu DY, Lu G. Raman Monitoring of the Electro-Optical Synergy-Induced Enhancements in Carbon-Bromine Bond Cleavage, Reaction Rate, and Product Selectivity of p-Bromothiophenol. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27831-27840. [PMID: 38757708 DOI: 10.1021/acsami.4c01259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Electro-optical synergy has recently been targeted to improve the separation of hot carriers and thereby further improve the efficiency of plasmon-mediated chemical reactions (PMCRs). However, the electro-optical synergy in PMCRs needs to be more deeply understood, and its contribution to bond dissociation and product selectivity needs to be clarified. Herein, the electro-optical synergy in plasmon-mediated reduction of p-bromothiophenol (PBTP) was studied on a plasmonic nanostructured silver electrode using in situ Raman spectroscopy and theoretical calculations. It was found that the electro-optical synergy-induced enhancements in the cleavage of carbon-bromine bonds, reaction rate, and product selectivity (4,4'-biphenyl dithiol vs thiophenol) were largely affected by the applied bias, laser wavelength, and laser power. The theoretical simulation further clarified that the strong electro-optical synergy is attributed to the matching of energy band diagrams of the plasmonic silver with those of the adsorbed PBTP molecules. A deep understanding of the electro-optical synergy in PBTP reduction and the clarification of the mechanism will be highly beneficial for the development of other highly efficient PMCRs.
Collapse
Affiliation(s)
- Karuppasamy Kohila Rani
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Yuan-Hui Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, PR China
| | - Rajkumar Devasenathipathy
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Kun Gao
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Jiazheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, PR China
| | - Xing Kang
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Chengcheng Zhu
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Haonan Chen
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Lu Jiang
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Qinghua Liu
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Furong Qiao
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Zhuoyao Li
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, PR China
| | - Gang Lu
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| |
Collapse
|
48
|
Deckers C, Rehm TH. In situ Diazonium Salt Formation and Photochemical Aryl-Aryl Coupling in Continuous Flow Monitored by Inline NMR Spectroscopy. Chemistry 2024; 30:e202303692. [PMID: 38462439 DOI: 10.1002/chem.202303692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/09/2024] [Accepted: 03/10/2024] [Indexed: 03/12/2024]
Abstract
A novel class of diazonium salts is introduced for the photochemical aryl-aryl coupling to produce (substituted) biphenyls. As common diazonium tetrafluoroborate salts fail, soluble and safe aryl diazonium trifluoroacetates are applied. In this mild synthesis route no catalysts are required to generate an aryl-radical by irradiation with UV-A light (365 nm). This reactive species undergoes direct C-H arylation at an arene, forming the product in reasonable reaction times. With the implementation of a continuous flow setup in a capillary photoreactor 13 different biphenyl derivatives are successfully synthesized. By integrating an inline 19F-NMR benchtop spectrometer, samples are reliably quantified as the fluorine-substituents act as a probe. Here, real-time NMR spectroscopy is a perfect tool to monitor the continuously operated system, which produces fine chemicals of industrial relevance even in a multigram scale.
Collapse
Affiliation(s)
- Christoph Deckers
- Division Chemistry, Sustainable Chemical Syntheses Group, Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Strasse 18-20, 55129, Mainz, Germany
- Johannes Gutenberg University Mainz, Department of Chemistry, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Thomas H Rehm
- Division Chemistry, Sustainable Chemical Syntheses Group, Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Strasse 18-20, 55129, Mainz, Germany
| |
Collapse
|
49
|
Wan Q, Wu XD, Hou ZW, Ma Y, Wang L. Organophotoelectrocatalytic C(sp 2)-H alkylation of heteroarenes with unactivated C(sp 3)-H compounds. Chem Commun (Camb) 2024; 60:5502-5505. [PMID: 38699797 DOI: 10.1039/d4cc01335b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
An organophotoelectrocatalytic method for the C(sp2)-H alkylation of heteroarenes with unactivated C(sp3)-H compounds through dehydrogenation cross-coupling has been developed. The C(sp2)-H alkylation combines organic catalysis, photochemistry and electrochemistry, avoiding the need for external metal-reagents, HAT-reagents, and oxidants. This protocol exhibits good substrate tolerance and functional group compatibility, providing a straightforward and powerful pathway to access a variety of alkylated heteroarenes under green conditions.
Collapse
Affiliation(s)
- Qinhui Wan
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
| | - Xia-Die Wu
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
| | - Zhong-Wei Hou
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
| | - Yongmin Ma
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
| | - Lei Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| |
Collapse
|
50
|
Kopp A, Oyama T, Ackermann L. Fluorescent coumarin-alkynes for labeling of amino acids and peptides via manganese(I)-catalyzed C-H alkenylation. Chem Commun (Camb) 2024. [PMID: 38683668 DOI: 10.1039/d4cc00361f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The late-stage fluorescent labeling of structurally complex peptides bears immense potential for molecular imaging. Herein, we report on a manganese(I)-catalyzed peptide C-H alkenylation under exceedingly mild conditions with natural fluorophores as coumarin- and chromone-derivatives. The robustness and efficiency of the manganese(I) catalysis regime was reflected by a broad functional group tolerance and low catalyst loading in a resource- and atom-economical fashion.
Collapse
Affiliation(s)
- Adelina Kopp
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, Göttingen 37077, Germany.
| | - Tsuyoshi Oyama
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, Göttingen 37077, Germany.
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, Göttingen 37077, Germany.
- Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, Göttingen 37077, Germany
| |
Collapse
|