1
|
Li F. Halide perovskites, a game changer for future medical imaging technology. BIOPHYSICS REVIEWS 2025; 6:011302. [PMID: 39867461 PMCID: PMC11756926 DOI: 10.1063/5.0217068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 12/11/2024] [Indexed: 01/28/2025]
Abstract
The accurate detection of x-rays enables broad applications in various fields, including medical radiography, safety and security screening, and nondestructive inspection. Medical imaging procedures require the x-ray detection devices operating with low doses and high efficiency to reduce radiation health risks, as well as expect the flexible or wearable ones that offer more comfortable and accurate diagnosis experiences. Recently, halide perovskites have shown promising potential in high-performance, cost-effective x-ray detection owing to their attractive features, such as strong x-ray absorption, high-mobility-lifetime product, tunable bandgap, fast response, as well as low-cost raw materials, facile processing, and excellent flexibility. In this review, we comprehensively summarize the recent advances in halide perovskite x-ray detectors and imaging, focusing on their application potential in medical imaging technology. We highlight the recent demonstrations and optimizations of halide perovskite x-ray detectors and imaging and their application in medical radiography. Finally, we conclude by pointing out the challenges of perovskite x-ray detection devices for the clinical practical applications and by sharing our perspectives on the potential solutions for driving the field forward.
Collapse
Affiliation(s)
- Feng Li
- School of Physics, Australian Centre for Microscopy and Microanalysis, Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
2
|
Wang S, Ren X, Qiu P, Wang Q, Cai H, Lyu W, Gao X, Liu JM, Wu S. A Natural Antioxidant Organic Material Modifying the Buried Interface To Regulate the Photovoltaic Performance and Stability of Pure Tin-Based Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39967292 DOI: 10.1021/acsami.5c01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Despite showing great potential in lead-free green energy, tin-based perovskite materials still face challenges such as inherent material instability and energy level misalignment with the hole transport layer (HTL), which limits the advancement of tin-based perovskite solar cells (Sn-PSCs). In this work, a natural antioxidant organic small molecule, thiolactic acid (TA), is used to modify the interface between PEDOT:PSS and the tin-based perovskite film. The TA molecule can cross-link to form a network polymer and regulate the microstructure and photoelectrical characteristics of PEDOT:PSS. Meanwhile, TA contains C═O and C─S groups, which can interact with Sn2+ to inhibit its oxidation. Moreover, the introduction of TA interfacial modification effectively improves the morphology of the perovskite film, suppresses interfacial charge recombination, and promotes carrier transport. Thus, TA-modified Sn-PSCs achieve a champion power conversion efficiency of 9.03%, surpassing 6.92% of the control PSCs. Even after being stored for 1000 h in a nitrogen atmosphere, the unencapsulated devices with TA modification still maintain 95.4% of their original PCE, compared to only 66.5% of the control devices. This study demonstrates the significance of the PEDOT:PSS/tin-perovskite interfacial modification on the efficiency and stability of Sn-PSCs.
Collapse
Affiliation(s)
- Shuqi Wang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Xuefei Ren
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Peng Qiu
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Qiwei Wang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Hengzhuo Cai
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Wanyang Lyu
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Xingsen Gao
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Jun-Ming Liu
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - Sujuan Wu
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
3
|
Pai N, Angmo D. Powering the Future: Opportunities and Obstacles in Lead-Halide Inorganic Perovskite Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2412666. [PMID: 39899617 DOI: 10.1002/advs.202412666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/02/2025] [Indexed: 02/05/2025]
Abstract
Efficiency, stability, and cost are crucial considerations in the development of photovoltaic technology for commercialization. Perovskite solar cells (PSCs) are a promising third-generation photovoltaic technology due to their high efficiency and low-cost potential. However, the stability of organohalide perovskites remains a significant challenge. Inorganic perovskites, based on CsPbX₃ (X = Br-/I-), have garnered attention for their excellent thermal stability and optoelectronic properties comparable to those of organohalide perovskites. Nevertheless, the development of inorganic perovskites faces several hurdles, including the need for high-temperature annealing to achieve the photoactive α-phase and their susceptibility to transitioning into the nonphotoactive δ-phase under environmental stressors, particularly moisture. These challenges impede the creation of high-efficiency, high-stability devices using low-cost, scalable manufacturing processes. This review provides a comprehensive background on the fundamental structural, physical, and optoelectronic properties of inorganic lead-halide perovskites. It discusses the latest advancements in fabricating inorganic PSCs at lower temperatures and under ambient conditions. Furthermore, it highlights the progress in state-of-the-art inorganic devices, particularly those manufactured in ambient environments and at reduced temperatures, alongside simultaneous advancements in the upscaling and stability of inorganic PSCs.
Collapse
Affiliation(s)
- Narendra Pai
- Flexible Electronics Laboratory, CSIRO Manufacturing, Clayton, VIC, 3168, Australia
| | - Dechan Angmo
- Flexible Electronics Laboratory, CSIRO Manufacturing, Clayton, VIC, 3168, Australia
| |
Collapse
|
4
|
Majewski M, Qiu S, Ronsin O, Lüer L, Le Corre VM, Du T, Brabec CJ, Egelhaaf HJ, Harting J. Simulation of perovskite thin layer crystallization with varying evaporation rates. MATERIALS HORIZONS 2025; 12:555-564. [PMID: 39495118 DOI: 10.1039/d4mh00957f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Perovskite solar cells (PSC) are promising potential competitors to established photovoltaic technologies due to their superior efficiency and low-cost solution processability. However, the limited understanding of the crystallization behaviour hinders the technological transition from lab-scale cells to modules. In this work, advanced phase field (PF) simulations of solution-based film formation are used for the first time to obtain mechanistic and morphological information that is experimentally challenging to access. The well-known transition from a film with many pinholes, for a low evaporation rate, to a smooth film, for high evaporation rates, is recovered in simulation and experiment. The simulation results provide us with an unprecedented understanding of the crystallization process. They show that supersaturation and crystallization confinement effects determine the final morphology. The ratio of evaporation to crystallization rates turns out to be the key parameter driving the final morphology. Increasing this ratio is a robust design rule for obtaining high-quality films, which we expect to be valid independently of the material type.
Collapse
Affiliation(s)
- M Majewski
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (HIERN), Forschungszentrum Jülich, Fürther Straße 248, 90429 Nürnberg, Germany.
| | - S Qiu
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - O Ronsin
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (HIERN), Forschungszentrum Jülich, Fürther Straße 248, 90429 Nürnberg, Germany.
| | - L Lüer
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - V M Le Corre
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - T Du
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (HIERN), Forschungszentrum Jülich, Immerwahrstraße 2, 91058 Erlangen, Germany
| | - C J Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (HIERN), Forschungszentrum Jülich, Immerwahrstraße 2, 91058 Erlangen, Germany
| | - H-J Egelhaaf
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (HIERN), Forschungszentrum Jülich, Immerwahrstraße 2, 91058 Erlangen, Germany
| | - J Harting
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (HIERN), Forschungszentrum Jülich, Fürther Straße 248, 90429 Nürnberg, Germany.
- Department of Chemical and Biological Engineering and Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fürther Straße 248, 90429 Nürnberg, Germany
| |
Collapse
|
5
|
Fu Y, Lohan H, Righetto M, Huang YT, Kavanagh SR, Cho CW, Zelewski SJ, Woo YW, Demetriou H, McLachlan MA, Heutz S, Piot BA, Scanlon DO, Rao A, Herz LM, Walsh A, Hoye RLZ. Structural and electronic features enabling delocalized charge-carriers in CuSbSe 2. Nat Commun 2025; 16:65. [PMID: 39747002 PMCID: PMC11697385 DOI: 10.1038/s41467-024-55254-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
Inorganic semiconductors based on heavy pnictogen cations (Sb3+ and Bi3+) have gained significant attention as potential nontoxic and stable alternatives to lead-halide perovskites for solar cell applications. A limitation of these novel materials, which is being increasingly commonly found, is carrier localization, which substantially reduces mobilities and diffusion lengths. Herein, CuSbSe2 is investigated and discovered to have delocalized free carriers, as shown through optical pump terahertz probe spectroscopy and temperature-dependent mobility measurements. Using a combination of theory and experiment, the critical enabling factors are found to be: 1) having a layered structure, which allows distortions to the unit cell during the propagation of an acoustic wave to be relaxed in the interlayer gaps, with minimal changes in bond length, thus limiting deformation potentials; 2) favourable quasi-bonding interactions across the interlayer gap giving rise to higher electronic dimensionality; 3) Born effective charges not being anomalously high, which, combined with the small bandgap ( ≤ 1.2 eV), result in a low ionic contribution to the dielectric constant compared to the electronic contribution, thus reducing the strength of Fröhlich coupling. These insights can drive forward the rational discovery of perovskite-inspired materials that can avoid carrier localization.
Collapse
Affiliation(s)
- Yuchen Fu
- Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom
| | - Hugh Lohan
- Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom
- Department of Materials and Centre for Processable Electronics, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom
| | - Marcello Righetto
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, United Kingdom
| | - Yi-Teng Huang
- Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom
- Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge, CB3 0HE, United Kingdom
| | - Seán R Kavanagh
- Harvard University Center for the Environment, Cambridge, Massachusetts, 02138, USA
| | - Chang-Woo Cho
- Laboratoire National des Champs Magnétiques Intenses, CNRS, LNCMI, Université Grenoble Alpes, Université Toulouse 3, INSA Toulouse, EMFL, F-38042, Grenoble, France
- Department of Physics, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Szymon J Zelewski
- Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge, CB3 0HE, United Kingdom
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Young Won Woo
- Department of Materials and Centre for Processable Electronics, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Harry Demetriou
- Department of Materials and Centre for Processable Electronics, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom
- London Centre for Nanotechnology, Imperial College London, Prince Consort Road, London, SW7 2AZ, United Kingdom
| | - Martyn A McLachlan
- Department of Materials, Imperial College London, Molecular Sciences Research Hub, Wood Lane, W12 0BZ, London, United Kingdom
| | - Sandrine Heutz
- Department of Materials and Centre for Processable Electronics, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom
- London Centre for Nanotechnology, Imperial College London, Prince Consort Road, London, SW7 2AZ, United Kingdom
| | - Benjamin A Piot
- Laboratoire National des Champs Magnétiques Intenses, CNRS, LNCMI, Université Grenoble Alpes, Université Toulouse 3, INSA Toulouse, EMFL, F-38042, Grenoble, France
| | - David O Scanlon
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge, CB3 0HE, United Kingdom
| | - Laura M Herz
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, United Kingdom
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2a, D-85748, Garching, Germany
| | - Aron Walsh
- Department of Materials and Centre for Processable Electronics, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom
| | - Robert L Z Hoye
- Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom.
| |
Collapse
|
6
|
Hong J, Xing Z, Li D, Hu B, Xu K, Hu X, Hu T, Chen Y. Managing Solvent Complexes to Amplify Ripening Process by Covalent Interaction Driving Force Under External Field for Perovskite Photovoltaic. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2409971. [PMID: 39552249 DOI: 10.1002/adma.202409971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/30/2024] [Indexed: 11/19/2024]
Abstract
Up to now, post-annealing is most commonly used to post treat the perovskite film to accelerate the ripening process. Nonetheless, the top-down crystallization mechanism impedes the efficient desolvation of solvent complexes. Thus, residual solvent complexes tend to accumulate at the bottom of the film during the ripening process and deteriorate the device. Here, a new strategy with unique concept is promoted to amplify ripening process of perovskite film, in which a nematic thermotropic liquid crystal (LC) molecular is introduced to facilitate the conversion of solvent complexes by utilizing the liquid crystalline behavior under external field. Upon the concurrent application of thermal and force fields, the covalent interaction between LC and solvent complexes generates a driving force, which promotes upward migration of solvent complexes, thereby facilitating their engagement in the ripening process. In addition, the driving force under external fields assists the flattening of grain boundary grooves. Therefore, film quality is improved efficiently with amplified ripening process and adequately handled buried interface. Based on the positive effects, the devices achieve a champion efficiency of 25.24%, and sustained ≈75% of its initial efficiency level even after undergoing a damp heat test (85 °C/85% RH) for 1400 h.
Collapse
Affiliation(s)
- Jiajie Hong
- College of Chemistry and Chemical Engineering, Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- Department of Polymer Materials and Engineering, School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Zhi Xing
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Dengxue Li
- College of Chemistry and Chemical Engineering, Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Biao Hu
- Department of Polymer Materials and Engineering, School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Kaiqin Xu
- Department of Polymer Materials and Engineering, School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xiaotian Hu
- College of Chemistry and Chemical Engineering, Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, China
| | - Ting Hu
- College of Chemistry and Chemical Engineering, Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- Department of Polymer Materials and Engineering, School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, China
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering, Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, China
| |
Collapse
|
7
|
Wu W, Tang B, Wan L, Mao X, Wang H, Tong G, Chen T, Zhou R. Enhanced Performance of Close-Spaced Sublimation Processed Antimony Sulfide Solar Cells via Seed-Mediated Growth. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409312. [PMID: 39429215 PMCID: PMC11633527 DOI: 10.1002/advs.202409312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/22/2024] [Indexed: 10/22/2024]
Abstract
Antimony sulfide (Sb2S3) has attracted much attention due to its great prospect to construct highly efficient, cost-effective, and environment-friendly solar cells. The scalable close-spaced sublimation (CSS) is a well-developed physical deposition method to fabricate thin films for photovoltaics. However, the CSS-processed absorber films typically involve small grain size with high-density grain boundaries (GBs), resulting in severe defects-induced charge-carrier nonradiative recombination and further large open-circuit voltage (VOC) losses. In this work, it is demonstrated that a chemical bath deposited-Sb2S3 seed layer can serve as crystal nuclei and mediate the growth of large-grained, highly compact CSS-processed Sb2S3 films. This seed-mediated Sb2S3 film affords reduced defect density and enhanced charge-carrier transport, which yields an improved power conversion efficiency (PCE) of 4.78% for planar Sb2S3 solar cells. Moreover, the VOC of 0.755 V that is obtained is the highest reported thus far for vacuum-based evaporation and sublimation processed Sb2S3 devices. This work demonstrates an effective strategy to deposit high-quality low-defect-density Sb2S3 films via vacuum-based physical methods for optoelectronic applications.
Collapse
Affiliation(s)
- Wentao Wu
- School of Electrical Engineering and AutomationHefei University of TechnologyHefei230009P. R. China
| | - Bo Tang
- School of Electrical Engineering and AutomationHefei University of TechnologyHefei230009P. R. China
| | - Lei Wan
- School of Electrical Engineering and AutomationHefei University of TechnologyHefei230009P. R. China
| | - Xiaoli Mao
- School of PhysicsHefei University of TechnologyHefei230009P. R. China
| | - Haolin Wang
- Hefei National Research Center for Physical Sciences at the MicroscaleSchool of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Guoqing Tong
- School of Materials Science and EngineeringHefei University of TechnologyHefei230009P. R. China
| | - Tao Chen
- Hefei National Research Center for Physical Sciences at the MicroscaleSchool of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Ru Zhou
- School of Electrical Engineering and AutomationHefei University of TechnologyHefei230009P. R. China
| |
Collapse
|
8
|
Wu W, Zhang J, Liu C, Zhang J, Lai H, Hu Z, Zhou H. Spontaneous Cooling Enables High-Quality Perovskite Wafers for High-Sensitivity X-Ray Detectors with a Low-Detection Limit. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410303. [PMID: 39429205 PMCID: PMC11633536 DOI: 10.1002/advs.202410303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Developing high-quality perovskite wafers is essential for integrating perovskite technology throughout the chip industry chain. In this article, a spontaneous cooling strategy with a hot-pressing technique is presented to develop high-purity, wafer-scale, pinhole-free perovskite wafers with a reflective surface. This method can be extended to a variety of perovskite wafers, including organic-inorganic, 2D, and lead-free perovskites. Besides, the size of the wafer with diameters of 10, 15, and 20 mm can be tailored by changing the mold. Furthermore, the mechanism of spontaneous cooling for improving the quality of perovskite wafers is revealed. Finally, the high-quality lead-free Cs3Cu2I5 perovskite wafers demonstrate excellent X-ray detection performances with a high sensitivity of 3433.6 µC Gyair -1 cm-2 and a low detection limit of 33.17 nGyair s-1. Moreover, the Cs3Cu2I5 wafers exhibit outstanding environmental and operational stability even without encapsulation. These research presents a spontaneous cooling strategy to achieve wafer-scale, high-quality perovskites with mirror-like surfaces for X-ray detection, paving the way for integrating perovskites into electronic and optoelectronic devices and promoting the practical application of perovskite X-ray detectors.
Collapse
Affiliation(s)
- Wenyi Wu
- International School of MicroelectronicsDongguan University of TechnologyDongguanGuangdong523808P. R. China
| | - Jianqiang Zhang
- International School of MicroelectronicsDongguan University of TechnologyDongguanGuangdong523808P. R. China
| | - Ciyu Liu
- International School of MicroelectronicsDongguan University of TechnologyDongguanGuangdong523808P. R. China
| | - Jiankai Zhang
- International School of MicroelectronicsDongguan University of TechnologyDongguanGuangdong523808P. R. China
| | - Hoajie Lai
- International School of MicroelectronicsDongguan University of TechnologyDongguanGuangdong523808P. R. China
| | - Zhongqiang Hu
- School of Electronic Science and EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049P. R. China
| | - Hai Zhou
- International School of MicroelectronicsDongguan University of TechnologyDongguanGuangdong523808P. R. China
| |
Collapse
|
9
|
van Blaaderen JJ, van Hattem A, Mulder JT, Biner D, Krämer KW, Dorenbos P. Photoluminescence and Scintillation Mechanism of Cs 4PbBr 6. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:19921-19932. [PMID: 39600377 PMCID: PMC11587101 DOI: 10.1021/acs.jpcc.4c06347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Small bandgap scintillators have gained significant attention in recent years. Especially Cs4PbBr6 is an interesting material, mitigating the small Stokes shift-related problem of perovskites like CsPbBr3. In this work, optical and scintillation properties of Cs4PbBr6 single crystals are investigated as a function of temperature, with a detailed focus at 10 K. The Cs4PbBr6 single crystals were grown using the vertical Bridgman method. Due to incongruent melting, CsPbBr3 inclusions are formed, generating a 540 nm emission band. Prepairing Cs4PbBr6 via solid-state synthesis yields CsPbBr3-inclusion-free material, showing no green 540 nm emission band. In Cs4PbBr6 samples with and without CsPbBr3 inclusions, a new emission band at 610 nm ascribed to an unknown defect was found. Based on the presented experiments, an emission mechanism is proposed for Cs4PbBr6. This shows that both defects and CsPbBr3 inclusions play a role in the emission behavior of Cs4PbBr6 but only the CsPbBr3 inclusions are responsible for the 540 nm emission.
Collapse
Affiliation(s)
- J. Jasper van Blaaderen
- Faculty
of Applied Sciences, Department of Radiation Science and Technology, Delft University of Technology,, Mekelweg 15, 2629 JB Delft, The
Netherlands
| | - Andries van Hattem
- Faculty
of Applied Sciences, Department of Radiation Science and Technology, Delft University of Technology,, Mekelweg 15, 2629 JB Delft, The
Netherlands
| | - Jence T. Mulder
- Faculty
of Applied Sciences, Optoelectronic Materials Section, Delft University of Technology,, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Daniel Biner
- Department
of Chemistry, Biochemistry, and Pharmaceutical Sciences, Univeristy of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Karl W. Krämer
- Department
of Chemistry, Biochemistry, and Pharmaceutical Sciences, Univeristy of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Pieter Dorenbos
- Faculty
of Applied Sciences, Department of Radiation Science and Technology, Delft University of Technology,, Mekelweg 15, 2629 JB Delft, The
Netherlands
| |
Collapse
|
10
|
Hautzinger MP, Mihalyi-Koch W, Jin S. A-Site Cation Chemistry in Halide Perovskites. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:10408-10420. [PMID: 39554283 PMCID: PMC11562073 DOI: 10.1021/acs.chemmater.4c02043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/19/2024]
Abstract
Metal halide perovskites are an important class of semiconductors now being implemented as photovoltaic absorbers and explored for light emission, among other device applications. The semiconducting properties of halide perovskites are deeply intertwined with their composition and structure. Specifically the symmetry, tilting, and distortions of the metal halide octahedra impact the band structure and other optoelectronic properties. In this review, we examine the various compositions of monovalent A-site cations in three-dimensional (3D) halide perovskites AMX3 (M = divalent metal; X = halide). We focus on how the A-site cation templates the inorganic metal-halide perovskite framework, resulting in changes in the crystal structure symmetry, as well as M-X bonding parameters, summarized in a comprehensive table of AMX3 structures. The A-site cation motion, effects of alloying, and 2D Ruddlesden-Popper perovskite structures with unique A-site cations are further overviewed. Correlations are shown between these A-site cation dominated structural parameters and the resulting optoelectronic properties such as band gap. This review should serve as a reference for the A-site cation structural chemistry of metal halide perovskites and inspire continued research into less explored metal halide perovskite compositions and structures.
Collapse
Affiliation(s)
| | - Willa Mihalyi-Koch
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Song Jin
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
11
|
Rajput PK, Salunkhe P, Sarma M, Basu M, Gopal A, Joshi A, Shingote AS, Saha S, Rahman A, Nag A. Entropy-Driven Reversible Melting and Recrystallization of Layered Hybrid Perovskites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406735. [PMID: 39219217 DOI: 10.1002/smll.202406735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Typical layered 2D A2PbX4 (A: organic ammonium cation, X: Br, I) perovskites undergo irreversible decomposition at high temperatures. Can they be designed to melt at lower temperatures without decomposition? Which thermodynamic parameter drive the melting of layered perovskites? These questions are addressed by considering the melt of A2PbX4 as a mixture of ions (like ionic liquids), and hypothesized that the increase in the structural entropy of fusion (ΔSfus) will be the driving force to decrease their melting temperature. Then to increase structural ΔSfus, A-site cations are designed that are rigid in the solid crystal, and become flexible in the molten state. Different tail groups in the A-site cations form hydrogen-, halogen- and even covalent bonding-interactions, making the cation-layer rigid in the solid form. Additionally, the rotation of ─NH3 + head group is suppressed by replacing ─H with ─CH3, further enhancing the rigidity. Six A2PbX4 crystals with high ΔSfus and low melting temperatures are prepared using this approach. For example, [I-(CH2)3-NH2(CH3)]2PbI4 reversibly melts at 388 K (decomposition temperature 500 K), and then recrystallizes back upon cooling. Consequently, melt-pressed films are grown demonstrating the solvent- and vacuum-free perovskite films for future optoelectronic devices.
Collapse
Affiliation(s)
- Parikshit Kumar Rajput
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, 411008, India
| | - Parashurama Salunkhe
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, 411008, India
| | - Manmayuri Sarma
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, 411008, India
| | - Meghasree Basu
- Department of Physics, Indian Institute of Science Education and Research (IISER), Pune, 411008, India
| | - Animesh Gopal
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aprajita Joshi
- Department of Physics, Indian Institute of Science Education and Research (IISER), Bhopal, 462066, India
| | | | - Surajit Saha
- Department of Physics, Indian Institute of Science Education and Research (IISER), Bhopal, 462066, India
| | - Atikur Rahman
- Department of Physics, Indian Institute of Science Education and Research (IISER), Pune, 411008, India
| | - Angshuman Nag
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, 411008, India
| |
Collapse
|
12
|
Cao X, Zhou J, Su G, Song W, Liu Z, Wei J. Solution mediated halide exchange engineering for the fabrication of a thick CsPbCl 3 film and its application in photovoltaics with outstanding performance. Dalton Trans 2024; 53:15882-15889. [PMID: 39254369 DOI: 10.1039/d4dt02224f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
It is a big challenge to prepare thick CsPbCl3 films using traditional solution processed approaches owing to the low solubility of precursors of PbCl2 and CsCl in common solvents. Here, we propose an indirect solution process to prepare thick CsPbCl3 films. In this new approach, a mother film of CsPbBr3 is first prepared through a solution process, and then it is dipped into a diluted HCl/methanol solution. During the dipping process, it triggers a halide exchange reaction between Br- and Cl-, and it eventually produces a thick CsPbCl3 film (∼400 nm) with high quality and purity. Afterwards, a carbon based hole transportation layer (HTL) free solar cell with a configuration of FTO/TiO2/CsPbCl3/carbon is constructed, and it delivers an average PCE of 1.23% and an outstanding PCE of 1.39% in a batch of PSCs. Meanwhile, the solar cell maintains its 82% initial PCE after storage in open air for 31 days. This work overcomes the obstacle of the traditional solution approach for the preparation of CsPbCl3 films, which makes it promising for preparing various CsPbCl3 film-based devices via a solution process.
Collapse
Affiliation(s)
- Xiaobing Cao
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong 529020, P.R. China.
| | - Jian Zhou
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong 529020, P.R. China.
| | - Gengyang Su
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong 529020, P.R. China.
| | - Weidong Song
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong 529020, P.R. China.
| | - Zijin Liu
- School of Textile Science and Engineering, Wuyi University, Jiangmen, Guangdong 529020, P.R. China
| | - Jinquan Wei
- State Key Lab of New Ceramics and Fine Processing; Education Ministry Key Laboratory for Advanced Materials Processing Technology; School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
13
|
Singh A, Dayton D, Ladd DM, Reuveni G, Paluch P, Montagne L, Mars J, Yaffe O, Toney M, Manjunatha Reddy GN, Mitzi DB. Local Structure in Crystalline, Glass and Melt States of a Hybrid Metal Halide Perovskite. J Am Chem Soc 2024; 146:25656-25668. [PMID: 39230963 DOI: 10.1021/jacs.4c07411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The pursuit of structure-property relationships in crystalline metal halide perovskites (MHPs) has yielded an unprecedented combination of advantageous characteristics for wide-ranging optoelectronic applications. While crystalline MHP structures are readily accessible through diffraction-based structure refinements, providing a clear view of associated long-range ordering, the local structures in more recently discovered glassy MHP states remain unexplored. Herein, we utilize a combination of Raman spectroscopy, solid-state nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy, in situ X-ray diffraction (XRD) and pair distribution function (PDF) analysis to investigate the coordination environment in crystalline, glass and melt states of the 2D MHP [(S)-(-)-1-(1-naphthyl)ethylammonium]2PbBr4. While crystalline SNPB shows polarization-dependent Raman spectra, the glassy and melt states exhibit broad features and lack polarization dependence. Solid-state NMR reveals disordering at the organic-inorganic interface of the glass due to significant spatial disruption in the tethering ammonium groups and the corresponding dihedral bond angles connecting the naphthyl and ammonium groups, while still preserving substantial naphthyl group registry and remnants of the layering from the crystalline state (deduced from XRD analysis). Moreover, PDF analysis demonstrates the persistence of corner-sharing PbBr6 octahedra in the inorganic framework of the melt/glass phases, but with a loss of structural coherence over length scales exceeding approximately one octahedron due to disorder in the inter- and intraoctahedra bond angles/lengths. These findings deepen our understanding of diverse MHP structural motifs and how structural alterations within the MHP glass affect properties, offering potential for advancing next-generation phase change materials and devices.
Collapse
Affiliation(s)
- Akash Singh
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
- University Program in Materials Science and Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Damara Dayton
- Materials Science and Engineering Program, University of Colorado─Boulder, Boulder, Colorado 80303, United States
| | - Dylan M Ladd
- Materials Science and Engineering Program, University of Colorado─Boulder, Boulder, Colorado 80303, United States
| | - Guy Reuveni
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Piotr Paluch
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., Lodz 90-363, Poland
- University of Lille, CNRS, Centrale Lille Institut, Université d' Artois, UMR 8181, Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Lionel Montagne
- University of Lille, CNRS, Centrale Lille Institut, Université d' Artois, UMR 8181, Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Julian Mars
- Materials Science and Engineering Program, University of Colorado─Boulder, Boulder, Colorado 80303, United States
| | - Omer Yaffe
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michael Toney
- Materials Science and Engineering Program, University of Colorado─Boulder, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute, University of Colorado─Boulder, Boulder, Colorado 80309, United States
- Department of Chemical and Biological Engineering, University of Colorado─Boulder, Boulder, Colorado 80309, United States
| | - G N Manjunatha Reddy
- University of Lille, CNRS, Centrale Lille Institut, Université d' Artois, UMR 8181, Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - David B Mitzi
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
14
|
Sharme RK, Quijada M, Terrones M, Rana MM. Thin Conducting Films: Preparation Methods, Optical and Electrical Properties, and Emerging Trends, Challenges, and Opportunities. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4559. [PMID: 39336302 PMCID: PMC11432801 DOI: 10.3390/ma17184559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024]
Abstract
Thin conducting films are distinct from bulk materials and have become prevalent over the past decades as they possess unique physical, electrical, optical, and mechanical characteristics. Comprehending these essential properties for developing novel materials with tailored features for various applications is very important. Research on these conductive thin films provides us insights into the fundamental principles, behavior at different dimensions, interface phenomena, etc. This study comprehensively analyzes the intricacies of numerous commonly used thin conducting films, covering from the fundamentals to their advanced preparation methods. Moreover, the article discusses the impact of different parameters on those thin conducting films' electronic and optical properties. Finally, the recent future trends along with challenges are also highlighted to address the direction the field is heading towards. It is imperative to review the study to gain insight into the future development and advancing materials science, thus extending innovation and addressing vital challenges in diverse technological domains.
Collapse
Affiliation(s)
- Razia Khan Sharme
- Division of Physics, Engineering, Mathematics and Computer Sciences, and Research on Nanomaterial-Based Integrated Circuits and Electronics (NICE), Delaware State University, Dover, DE 19901, USA;
| | - Manuel Quijada
- NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA;
| | - Mauricio Terrones
- Department of Physics, The Pennsylvania State University, 104 Davey Lab, PMB 196, University Park, PA 16802, USA;
| | - Mukti M. Rana
- Division of Physics, Engineering, Mathematics and Computer Sciences, and Research on Nanomaterial-Based Integrated Circuits and Electronics (NICE), Delaware State University, Dover, DE 19901, USA;
| |
Collapse
|
15
|
Ying Z, Yang X, Wang X, Ye J. Towards the 10-Year Milestone of Monolithic Perovskite/Silicon Tandem Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311501. [PMID: 39049723 DOI: 10.1002/adma.202311501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/14/2024] [Indexed: 07/27/2024]
Abstract
The perovskite/silicon tandem solar cell represents one of the most promising avenues for exceeding the Shockley-Queisser limit for single-junction solar cells at a reasonable cost. Remarkably, its efficiency has rapidly increased from 13.7% in 2015 to 34.6% in 2024. Despite the significant research efforts dedicated to this topic, the "secret" to achieving high-performance perovskite/silicon tandem solar cells seems to be confined to a few research groups. Additionally, the discrepancies in preparation and characterization between single-junction and tandem solar cells continue to impede the transition from efficient single-junction to efficient tandem solar cells. This review first revisits the key milestones in the development of monolithic perovskite/silicon tandem solar cells over the past decade. Then, a comprehensive analysis of the background, advancements, and challenges in perovskite/silicon tandem solar cells is provided, following the sequence of the tandem fabrication process. The progress and limitations of the prevalent stability measurements for tandem devices are also discussed. Finally, a roadmap for designing efficient, scalable, and stable perovskite/silicon tandem solar cells is outlined. This review takes the growth history into consideration while charting the future course of perovskite/silicon tandem research.
Collapse
Affiliation(s)
- Zhiqin Ying
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo, Zhejiang, 315201, P. R. China
| | - Xi Yang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo, Zhejiang, 315201, P. R. China
| | - Xuezhen Wang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo, Zhejiang, 315201, P. R. China
| | - Jichun Ye
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo, Zhejiang, 315201, P. R. China
| |
Collapse
|
16
|
Ma Y, Shan L, Ying Y, Shen L, Fu Y, Fei L, Lei Y, Yue N, Zhang W, Zhang H, Huang H, Yao K, Chu J. Day-Night imaging without Infrared Cutfilter removal based on metal-gradient perovskite single crystal photodetector. Nat Commun 2024; 15:7516. [PMID: 39209845 PMCID: PMC11362523 DOI: 10.1038/s41467-024-51762-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Day-Night imaging technology that obtains full-color and infrared images has great market demands for security monitoring and autonomous driving. The current mainstream solution relies on wide-spectrum silicon photodetectors combined with Infrared Cutfilter Removal, which increases complexity and failure rate. Here, we address these challenges by employing a perovskite photodetector based on Pb-Sn alloyed single crystal with a vertical bandgap-graded structure that presents variable-spectrum responses at different biases and extends the infrared detection range close to 1100 nm. Taking advantage of the Pb-Sn gradients in mobility and built-in field, the perovskite photodetector shows a large linear dynamic range of 177 dB. In addition, the optoelectronic characteristics feature long-term operational stability over a year. We further develop an imaging module prototype without Infrared Cutfilter Removal that exhibits excellent color fidelity with RGB color differences ranging from 0.48 to 2.46 under infrared interference and provides over 26-bit grayscale resolution in infrared imaging.
Collapse
Affiliation(s)
- Yao Ma
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, International Center of Future Science, Jilin University, Changchun, China
| | - Leting Shan
- Institute of Photovoltaics, School of Physics and Materials Science, Nanchang University, Nanchang, China
| | - Yiran Ying
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Liang Shen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, International Center of Future Science, Jilin University, Changchun, China
| | - Yufeng Fu
- Institute of Photovoltaics, School of Physics and Materials Science, Nanchang University, Nanchang, China
| | - Linfeng Fei
- Institute of Photovoltaics, School of Physics and Materials Science, Nanchang University, Nanchang, China
| | - Yusheng Lei
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, China
| | - Nailin Yue
- College of Materials Science and Engineering, Electron Microscopy Center, Jilin University, Changchun, China
| | - Wei Zhang
- College of Materials Science and Engineering, Electron Microscopy Center, Jilin University, Changchun, China
| | - Hong Zhang
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, China
| | - Haitao Huang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Kai Yao
- Institute of Photovoltaics, School of Physics and Materials Science, Nanchang University, Nanchang, China.
| | - Junhao Chu
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Soto-Montero T, Morales-Masis M. Laser Deposition of Metal Halide Perovskites. ACS ENERGY LETTERS 2024; 9:4199-4208. [PMID: 39144808 PMCID: PMC11320642 DOI: 10.1021/acsenergylett.4c01466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 08/16/2024]
Abstract
Vacuum-based or vapor-phase deposition is the most mature and widely used method for thin-film growth in the semiconductor industry. Yet, the vapor-phase growth of halide perovskites remains relatively underexplored compared to solution process deposition. The intrinsically largely distinct volatilities of organic and inorganic components in halide perovskites challenge the standard physical vapor deposition techniques. Thermal coevaporation tackles this with independent thermally controlled sources per precursor. Alternatively, pulsed laser deposition uses the energy of a laser to eject material from a target via thermal and nonthermal processes. This provides high versatility in the target composition, enabling the deposition of complex (including hybrid) thin films from a single-source target. This Perspective presents an overview of recent advances in laser-based deposition of halide perovskites, discusses advantages and challenges, and motivates the development of physical vapor deposition methods for hybrid materials, especially for applications requiring dry, conformal, and multilayer deposition.
Collapse
Affiliation(s)
- Tatiana Soto-Montero
- MESA+ Institute for Nanotechnology, University of Twente, Enschede 7500 AE, The Netherlands
| | - Monica Morales-Masis
- MESA+ Institute for Nanotechnology, University of Twente, Enschede 7500 AE, The Netherlands
| |
Collapse
|
18
|
Minussi FB, Silva RM, Moraes JCS, Araújo EB. Organic cations in halide perovskite solid solutions: exploring beyond size effects. Phys Chem Chem Phys 2024; 26:20770-20784. [PMID: 39072678 DOI: 10.1039/d4cp02419b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Halide perovskites are a class of materials of consolidated optoelectronic and electrochemical applications, reaching efficiencies compared to established materials in respective fields. In this scenario, the design and understanding of composition-structure-property relations is imperative. In solid solutions containing mixed cations, some direct relations between the sizes of the substituents and the properties of perovskites are generally observed. However, in several cases, these relations are not observed, implying that other characteristics of these cations play a major role. Despite its importance, this understanding has not been comprehensively deepened. To address this issue, we synthesized and characterized the structure, electrical behavior, and stability of methylammonium lead iodide-based perovskites with equal amounts of the substituents guanidinium, ethylammonium, and acetamidinium. These three large organic cations have essentially equal sizes but other remarkably different characteristics, such as the number of N-H bonds, intrinsic dipole moment, and order of C-N bonds. Herein, we show that these cations have dramatically different effects over important fundamental and applied properties of resulting perovskites, including the orthorhombic-to-tetragonal and tetragonal-to-cubic phase transitions, microstructural development, ionic conductivity, I-V hysteresis, electronic carrier mobility, and stability against light-induced degradation. These effects are correlated with the characteristics of the large substituent cations and help pave the way for a better rational chemical design of halide perovskites.
Collapse
Affiliation(s)
- F B Minussi
- Department of Physics and Chemistry, São Paulo State University, Ilha Solteira, 15385-007, SP, Brazil.
| | - R M Silva
- Department of Electrical Engineering, São Paulo State University, Ilha Solteira, 15385-007, SP, Brazil
| | - J C S Moraes
- Department of Physics and Chemistry, São Paulo State University, Ilha Solteira, 15385-007, SP, Brazil.
| | - E B Araújo
- Department of Physics and Chemistry, São Paulo State University, Ilha Solteira, 15385-007, SP, Brazil.
| |
Collapse
|
19
|
Deng C, Huang Q, Fu Z, Lu Y. Ligand Engineering of Inorganic Lead Halide Perovskite Quantum Dots toward High and Stable Photoluminescence. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1201. [PMID: 39057878 PMCID: PMC11280295 DOI: 10.3390/nano14141201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
The ligand engineering of inorganic lead halide perovskite quantum dots (PQDs) is an indispensable strategy to boost their photoluminescence stability, which is pivotal for optoelectronics applications. CsPbX3 (X = Cl, Br, I) PQDs exhibit exceptional optical properties, including high color purity and tunable bandgaps. Despite their promising characteristics, environmental sensitivity poses a challenge to their stability. This article reviews the solution-based synthesis methods with ligand engineering. It introduces the impact of factors like humidity, temperature, and light exposure on PQD's instability, as well as in situ and post-synthesis ligand engineering strategies. The use of various ligands, including X- and L-type ligands, is reviewed for their effectiveness in enhancing stability and luminescence performance. Finally, the significant potential of ligand engineering for the broader application of PQDs in optoelectronic devices is also discussed.
Collapse
Affiliation(s)
- Changbo Deng
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qiuping Huang
- Hefei National Research Center for Physical Sciences at the Microscale, Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Zhengping Fu
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Hefei National Research Center for Physical Sciences at the Microscale, Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Yalin Lu
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Hefei National Research Center for Physical Sciences at the Microscale, Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
20
|
Luo F, Lim D, Seok HJ, Kim HK. Solvent-free preparation and thermocompression self-assembly: an exploration of performance improvement strategies for perovskite solar cells. RSC Adv 2024; 14:17261-17294. [PMID: 38808244 PMCID: PMC11132079 DOI: 10.1039/d4ra02191f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024] Open
Abstract
Perovskite solar cells (PSCs) exhibit sufficient technological efficiency and economic competitiveness. However, their poor stability and scalability are crucial factors limiting their rapid development. Therefore, achieving both high efficiency and good stability is an urgent challenge. In addition, the preparation methods for PSCs are currently limited to laboratory-scale methods, so their commercialization requires further research. Effective packaging technology is essential to protect the PSCs from degradation by external environmental factors and ensure their long-term stability. The industrialization of PSCs is also inseparable from the preparation technology of perovskite thin films. This review discusses the solvent-free preparation of PSCs, shedding light on the factors that affect PSC performance and strategies for performance enhancement. Furthermore, this review analyzes the existing simulation techniques that have contributed to a better understanding of the interfacial evolution of PSCs during the packaging process. Finally, the current challenges and possible solutions are highlighted, providing insights to facilitate the development of highly efficient and stable PSC modules to promote their widespread application.
Collapse
Affiliation(s)
- Fang Luo
- School of Advanced Materials Science and Engineering, Sungkyunkwan University 2066, Seobu-ro Jangan-gu Suwon-si Gyeonggi-do 16419 the Republic of Korea
| | - Doha Lim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University 2066, Seobu-ro Jangan-gu Suwon-si Gyeonggi-do 16419 the Republic of Korea
| | - Hae-Jun Seok
- School of Advanced Materials Science and Engineering, Sungkyunkwan University 2066, Seobu-ro Jangan-gu Suwon-si Gyeonggi-do 16419 the Republic of Korea
| | - Han-Ki Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University 2066, Seobu-ro Jangan-gu Suwon-si Gyeonggi-do 16419 the Republic of Korea
| |
Collapse
|
21
|
Cai S, Li Z, Zhang Y, Liu T, Wang P, Ju MG, Pang S, Lau SP, Zeng XC, Zhou Y. Intragrain impurity annihilation for highly efficient and stable perovskite solar cells. Nat Commun 2024; 15:2329. [PMID: 38485944 PMCID: PMC10940583 DOI: 10.1038/s41467-024-46588-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
Intragrain impurities can impart detrimental effects on the efficiency and stability of perovskite solar cells, but they are indiscernible to conventional characterizations and thus remain unexplored. Using in situ scanning transmission electron microscopy, we reveal that intragrain impurity nano-clusters inherited from either the solution synthesis or post-synthesis storage can revert to perovskites upon irradiation stimuli, leading to the counterintuitive amendment of crystalline grains. In conjunction with computational modelling, we atomically resolve crystallographic transformation modes for the annihilation of intragrain impurity nano-clusters and probe their impacts on optoelectronic properties. Such critical fundamental findings are translated for the device advancement. Adopting a scanning laser stimulus proven to heal intragrain impurity nano-clusters, we simultaneously boost the efficiency and stability of formamidinium-cesium perovskite solar cells, by virtual of improved optoelectronic properties and relaxed intra-crystal strain, respectively. This device engineering, inspired and guided by atomic-scale in situ microscopic imaging, presents a new prototype for solar cell advancement.
Collapse
Affiliation(s)
- Songhua Cai
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
| | - Zhipeng Li
- Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| | - Yalan Zhang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Tanghao Liu
- Department of Physics, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Peng Wang
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Ming-Gang Ju
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China.
| | - Shuping Pang
- Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China.
| | - Shu Ping Lau
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Xiao Cheng Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yuanyuan Zhou
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China.
| |
Collapse
|
22
|
Wu XG, Sun S, Song T, Zhang X, Wang C, Yang Y, Wang S, Zhong H. Revealing the vertical structure of in-situ fabricated perovskite nanocrystals films toward efficient pure red light-emitting diodes. FUNDAMENTAL RESEARCH 2024; 4:362-368. [PMID: 38933501 PMCID: PMC11197484 DOI: 10.1016/j.fmre.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022] Open
Abstract
The development of efficient perovskite light-emitting diodes (PeLEDs) relies strongly on the fabrication of perovskite films with rationally designed structures (grain size, composition, surface, etc.). Therefore, an understanding of structure-performance relationships is of vital importance for developing high-performance perovskite devices, particularly for devices with in-situ fabricated perovskite nanocrystal films. In this study, we reveal the vertical structure of an in-situ fabricated quasi-two-dimensional perovskite film. By combining time-of-flight secondary ion mass spectrometry, energy dispersive spectroscopy, grazing incidence wide-angle X-ray scattering (GIWAXS), and low-temperature photoluminescence spectra, we illustrate that the resulting in-situ fabricated DPPA2Csn-1Pbn(Br0.3I0.7)3n+1 (DPPA+: 3,3-diphenylpropylammonium) film has a gradient structure with a very thin layer of ligands on the surface, predominantly small-n domains at the top, and predominantly large-n domains at the bottom owing to the solubility difference of the precursors. In addition, GIWAXS measurements show that the domain of n = 2 on the top layer has an ordered in-plane alignment. Based on the understanding of the film structure, we developed an in-situ fabrication process with ligand exchange to achieve efficient pure red PeLEDs at 638 nm with an average external quantum efficiency (EQE) of 7.4%. The optimized device had a maximum luminance of 623 cd/m2 with a peak EQE of 9.7%.
Collapse
Affiliation(s)
- Xian-gang Wu
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shipei Sun
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tinglu Song
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xin Zhang
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chenhui Wang
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yingguo Yang
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Shuangpeng Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau 999078, China
| | - Haizheng Zhong
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
23
|
Li M, Zhu Z, Wang Z, Pan W, Cao X, Wu G, Chen R. High-Quality Hybrid Perovskite Thin Films by Post-Treatment Technologies in Photovoltaic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309428. [PMID: 37983565 DOI: 10.1002/adma.202309428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Incredible progress in photovoltaic devices based on hybrid perovskite materials has been made in the past few decades, and a record-certified power conversion efficiency (PCE) of over 26% has been achieved in single-junction perovskite solar cells (PSCs). In the fabrication of high-efficiency PSCs, the postprocessing procedures toward perovskites are essential for designing high-quality perovskite thin films; developing efficient and reliable post-treatment techniques is very important to promote the progress of PSCs. Here, recent post-treatment technological reforms toward perovskite thin films are summarized, and the principal functions of the post-treatment strategies on the design of high-quality perovskite films have been thoroughly analyzed by dividing into two categories in this review: thermal annealing (TA)-related technique and TA-free technique. The latest research progress of the above two types of post-treatment techniques is summarized and discussed, focusing on the optimization of postprocessing conditions, the regulation of perovskite qualities, and the enhancement of device performance. Finally, an outlook of the prospect trends and future challenges for the fabrication of the perovskite layer and the production of highly efficient PSCs is given.
Collapse
Affiliation(s)
- Mingguang Li
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China
| | - Zheng Zhu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Zhizhi Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Wenjing Pan
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Xinxiu Cao
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China
| | - Guangbao Wu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Runfeng Chen
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
24
|
Dudipala KR, Le T, Nie W, Hoye RLZ. Halide Perovskites and Their Derivatives for Efficient, High-Resolution Direct Radiation Detection: Design Strategies and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304523. [PMID: 37726105 PMCID: PMC11475525 DOI: 10.1002/adma.202304523] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/03/2023] [Indexed: 09/21/2023]
Abstract
The past decade has witnessed a rapid rise in the performance of optoelectronic devices based on lead-halide perovskites (LHPs). The large mobility-lifetime products and defect tolerance of these materials, essential for optoelectronics, also make them well-suited for radiation detectors, especially given the heavy elements present, which is essential for strong X-ray and γ-ray attenuation. Over the past decade, LHP thick films, wafers, and single crystals have given rise to direct radiation detectors that have outperformed incumbent technologies in terms of sensitivity (reported values up to 3.5 × 106 µC Gyair -1 cm-2 ), limit of detection (directly measured values down to 1.5 nGyair s-1 ), along with competitive energy and imaging resolution at room temperature. At the same time, lead-free perovskite-inspired materials (e.g., methylammonium bismuth iodide), which have underperformed in solar cells, have recently matched and, in some areas (e.g., in polarization stability), surpassed the performance of LHP detectors. These advances open up opportunities to achieve devices for safer medical imaging, as well as more effective non-invasive analysis for security, nuclear safety, or product inspection applications. Herein, the principles behind the rapid rises in performance of LHP and perovskite-inspired material detectors, and how their properties and performance link with critical applications in non-invasive diagnostics are discussed. The key strategies to engineer the performance of these materials, and the important challenges to overcome to commercialize these new technologies are also discussed.
Collapse
Affiliation(s)
| | - Thanh‐Hai Le
- Center for Integrated NanotechnologiesLos Alamos National LaboratoryLos AlamosNM87545USA
| | - Wanyi Nie
- Center for Integrated NanotechnologiesLos Alamos National LaboratoryLos AlamosNM87545USA
| | | |
Collapse
|
25
|
Tang J, Zhang G, Wang C, Deng L, Zhu X, Yu H, Wang K, Li J. Investigation of the Role of K 2SO 4 Electrolyte in Hole Transport Layer for Efficient Quasi-2D Perovskite Light-Emitting Diodes. J Phys Chem Lett 2024; 15:1112-1120. [PMID: 38262437 DOI: 10.1021/acs.jpclett.3c03417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Quasi-two-dimensional (2D) perovskite light-emitting diodes are promising light sources for color display and lighting. However, poor carrier injection and transport between the bottom hole transport layer (HTL) and perovskite limit the device performance. Here we demonstrate a simple and effective way to modify the HTL for enhancing the performance of perovskite light-emitting diodes (PeLEDs). An electrolyte K2SO4 is used to mix with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as the hole transport layer. The K+ doping helped the quasi-2D perovskite phases grow vertically along the interface of the PEDOT:PSS, fine-modulate the phase distribution, and simultaneously reduce the defect density of quasi-2D perovskites. It also significantly reduced the exciton quenching and injection barrier at PEDOT:PSS and quasi-2D perovskite interface. The optimized green PeLEDs with the K2SO4 doped PEDOT:PSS HTL showed a maximum luminance of 17185 cd/m2 which is almost 4.7 times brighter than the control one, with a maximum external quantum efficiency of 18.64%.
Collapse
Affiliation(s)
- Jun Tang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Guoshuai Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Chenming Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Liangliang Deng
- Center of Micro-Nano System, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Xixiang Zhu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Haomiao Yu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Kai Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jinpeng Li
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
26
|
Nyiekaa EA, Aika TA, Orukpe PE, Akhabue CE, Danladi E. Development on inverted perovskite solar cells: A review. Heliyon 2024; 10:e24689. [PMID: 38298729 PMCID: PMC10828711 DOI: 10.1016/j.heliyon.2024.e24689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/22/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
Recently, inverted perovskite solar cells (IPSCs) have received note-worthy consideration in the photovoltaic domain because of its dependable operating stability, minimal hysteresis, and low-temperature manufacture technique in the quest to satisfy global energy demand through renewable means. In a decade transition, perovskite solar cells in general have exceeded 25 % efficiency as a result of superior perovskite nanocrystalline films obtained via low temperature synthesis methods along with good interface and electrode materials management. This review paper presents detail processes of refining the stability and power conversion efficiencies in IPSCs. The latest development in the power conversion efficiency, including structural configurations, prospect of tandem solar cells, mixed cations and halides, films' fabrication methods, charge transport material alterations, effects of contact electrode materials, additive and interface engineering materials used in IPSCs are extensively discussed. Additionally, insights on the state of the art and IPSCs' continued development towards commercialization are provided.
Collapse
Affiliation(s)
- Emmanuel A. Nyiekaa
- Department of Electrical and Electronics Engineering, University of Benin, Benin City, Nigeria
- Department of Electrical and Electronics Engineering, Joseph Sarwuan Tarka University Makurdi, Nigeria
| | - Timothy A. Aika
- Department of Electrical and Electronics Engineering, University of Benin, Benin City, Nigeria
| | - Patience E. Orukpe
- Department of Electrical and Electronics Engineering, University of Benin, Benin City, Nigeria
| | | | - Eli Danladi
- Department of Physics, Federal University of Health Sciences, Otukpo, Nigeria
| |
Collapse
|
27
|
Liu X, Cai Z, Wan L, Xiao P, Che B, Yang J, Niu H, Wang H, Zhu J, Huang YT, Zhu H, Zelewski SJ, Chen T, Hoye RLZ, Zhou R. Grain Engineering of Sb 2 S 3 Thin Films to Enable Efficient Planar Solar Cells with High Open-Circuit Voltage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305841. [PMID: 37947249 DOI: 10.1002/adma.202305841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/21/2023] [Indexed: 11/12/2023]
Abstract
Sb2 S3 is a promising environmentally friendly semiconductor for high performance solar cells. But, like many other polycrystalline materials, Sb2 S3 is limited by nonradiative recombination and carrier scattering by grain boundaries (GBs). This work shows how the GB density in Sb2 S3 films can be significantly reduced from 1068 ± 40 to 327 ± 23 nm µm-2 by incorporating an appropriate amount of Ce3+ into the precursor solution for Sb2 S3 deposition. Through extensive characterization of structural, morphological, and optoelectronic properties, complemented with computations, it is revealed that a critical factor is the formation of an ultrathin Ce2 S3 layer at the CdS/Sb2 S3 interface, which can reduce the interfacial energy and increase the adhesion work between Sb2 S3 and the substrate to encourage heterogeneous nucleation of Sb2 S3 , as well as promote lateral grain growth. Through reductions in nonradiative recombination at GBs and/or the CdS/Sb2 S3 heterointerface, as well as improved charge-carrier transport properties at the heterojunction, this work achieves high performance Sb2 S3 solar cells with a power conversion efficiency reaching 7.66%. An impressive open-circuit voltage (VOC ) of 796 mV is achieved, which is the highest reported thus far for Sb2 S3 solar cells. This work provides a strategy to simultaneously regulate the nucleation and growth of Sb2 S3 absorber films for enhanced device performance.
Collapse
Affiliation(s)
- Xinnian Liu
- School of Electrical Engineering and Automation, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Zhiyuan Cai
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Lei Wan
- School of Electrical Engineering and Automation, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Peng Xiao
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Bo Che
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Junjie Yang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Haihong Niu
- School of Electrical Engineering and Automation, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Huan Wang
- School of Electrical Engineering and Automation, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Jun Zhu
- Academy of OptoElectric Technology, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Yi-Teng Huang
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Huimin Zhu
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
- Gallium Oxide Optoelectronic Devices, Department of Physics, University of Strathclyde, Glasgow, G4 0NG, UK
| | - Szymon J Zelewski
- Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge, CB3 0HE, UK
| | - Tao Chen
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Robert L Z Hoye
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Ru Zhou
- School of Electrical Engineering and Automation, Hefei University of Technology, Hefei, 230009, P. R. China
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| |
Collapse
|
28
|
Zou Y, Bai X, Kahmann S, Dai L, Yuan S, Yin S, Heger JE, Schwartzkopf M, Roth SV, Chen CC, Zhang J, Stranks SD, Friend RH, Müller-Buschbaum P. A Practical Approach Toward Highly Reproducible and High-Quality Perovskite Films Based on an Aging Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307024. [PMID: 37739404 DOI: 10.1002/adma.202307024] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Solution processing of hybrid perovskite semiconductors is a highly promising approach for the fabrication of cost-effective electronic and optoelectronic devices. However, challenges with this approach lie in overcoming the controllability of the perovskite film morphology and the reproducibility of device efficiencies. Here, a facile and practical aging treatment (AT) strategy is reported to modulate the perovskite crystal growth to produce sufficiently high-quality perovskite thin films with improved homogeneity and full-coverage morphology. The resulting AT-films exhibit fewer defects, faster charge carrier transfer/extraction, and suppressed non-radiative recombination compared with reference. The AT-devices achieve a noticeable improvement in the reproducibility, operational stability, and photovoltaic performance of devices, with the average efficiency increased by 16%. It also demonstrates the feasibility and scalability of AT strategy in optimizing the film morphology and device performance for other perovskite components including MAPbI3 , (MAPbBr3 )15 (FAPbI3 )85 , and Cs0.05 (MAPbBr3 )0.17 (FAPbI3 )0.83 . This method opens an effective avenue to improve the quality of perovskite films and photovoltaic devices in a scalable and reproducible manner.
Collapse
Affiliation(s)
- Yuqin Zou
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748, Garching, Germany
| | - Xinyu Bai
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Simon Kahmann
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Linjie Dai
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Shuai Yuan
- Department of Chemistry, Renmin University of China, No. 59 Zhongguancun Street, Beijing, 100872, P. R. China
| | - Shanshan Yin
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748, Garching, Germany
| | - Julian E Heger
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748, Garching, Germany
| | | | - Stephan V Roth
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, Stockholm, SE-100 44, Sweden
| | - Chun-Chao Chen
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jianping Zhang
- Department of Chemistry, Renmin University of China, No. 59 Zhongguancun Street, Beijing, 100872, P. R. China
| | - Samuel D Stranks
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Richard H Friend
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Peter Müller-Buschbaum
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748, Garching, Germany
- Heinz Maier-Leibnitz-Zentrum (MLZ), Technical University of Munich, Lichtenbergstr. 1, 85748, Garching, Germany
| |
Collapse
|
29
|
Cao X, Zhou R, Xiong Y, Du G, Feng Z, Pan Q, Chen Y, Ji H, Ni Z, Lu J, Hu H, You Y. Volume-Confined Fabrication of Large-Scale Single-Crystalline Molecular Ferroelectric Thin Films and Their Applications in 2D Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305016. [PMID: 38037482 PMCID: PMC10811469 DOI: 10.1002/advs.202305016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/23/2023] [Indexed: 12/02/2023]
Abstract
With outstanding advantages of chemical synthesis, structural diversity, and mechanical flexibility, molecular ferroelectrics have attracted increasing attention, demonstrating themselves as promising candidates for next-generation wearable electronics and flexible devices in the film form. However, it remains a challenge to grow high-quality thin films of molecular ferroelectrics. To address the above issue, a volume-confined method is utilized to achieve ultrasmooth single-crystal molecular ferroelectric thin films at the sub-centimeter scale, with the thickness controlled in the range of 100-1000 nm. More importantly, the preparation method is applicable to most molecular ferroelectrics and has no dependency on substrates, showing excellent reproducibility and universality. To demonstrate the application potential, two-dimensional (2D) transitional metal dichalcogenide semiconductor/molecular ferroelectric heterostructures are prepared and investigated by optical spectroscopic method, proving the possibility of integrating molecular ferroelectrics with 2D layered materials. These results may unlock the potential for preparing and developing high-performance devices based on molecular ferroelectric thin films.
Collapse
Affiliation(s)
- Xiao‐Xing Cao
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189People's Republic of China
| | - Ru‐Jie Zhou
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189People's Republic of China
| | - Yu‐An Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189People's Republic of China
| | - Guo‐Wei Du
- Key Laboratory of Quantum Materials and Devices of Ministry of EducationSchool of PhysicsSoutheast UniversityNanjing211189People's Republic of China
| | - Zi‐Jie Feng
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189People's Republic of China
| | - Qiang Pan
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189People's Republic of China
| | - Yin‐Zhu Chen
- Key Laboratory of Quantum Materials and Devices of Ministry of EducationSchool of PhysicsSoutheast UniversityNanjing211189People's Republic of China
| | - Hao‐Ran Ji
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189People's Republic of China
| | - Zhenhua Ni
- Key Laboratory of Quantum Materials and Devices of Ministry of EducationSchool of PhysicsSoutheast UniversityNanjing211189People's Republic of China
| | - Junpeng Lu
- Key Laboratory of Quantum Materials and Devices of Ministry of EducationSchool of PhysicsSoutheast UniversityNanjing211189People's Republic of China
| | - Huihui Hu
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189People's Republic of China
| | - Yu‐Meng You
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189People's Republic of China
| |
Collapse
|
30
|
Lee GH, Kim K, Kim Y, Yang J, Choi MK. Recent Advances in Patterning Strategies for Full-Color Perovskite Light-Emitting Diodes. NANO-MICRO LETTERS 2023; 16:45. [PMID: 38060071 PMCID: PMC10704014 DOI: 10.1007/s40820-023-01254-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/19/2023] [Indexed: 12/08/2023]
Abstract
Metal halide perovskites have emerged as promising light-emitting materials for next-generation displays owing to their remarkable material characteristics including broad color tunability, pure color emission with remarkably narrow bandwidths, high quantum yield, and solution processability. Despite recent advances have pushed the luminance efficiency of monochromic perovskite light-emitting diodes (PeLEDs) to their theoretical limits, their current fabrication using the spin-coating process poses limitations for fabrication of full-color displays. To integrate PeLEDs into full-color display panels, it is crucial to pattern red-green-blue (RGB) perovskite pixels, while mitigating issues such as cross-contamination and reductions in luminous efficiency. Herein, we present state-of-the-art patterning technologies for the development of full-color PeLEDs. First, we highlight recent advances in the development of efficient PeLEDs. Second, we discuss various patterning techniques of MPHs (i.e., photolithography, inkjet printing, electron beam lithography and laser-assisted lithography, electrohydrodynamic jet printing, thermal evaporation, and transfer printing) for fabrication of RGB pixelated displays. These patterning techniques can be classified into two distinct approaches: in situ crystallization patterning using perovskite precursors and patterning of colloidal perovskite nanocrystals. This review highlights advancements and limitations in patterning techniques for PeLEDs, paving the way for integrating PeLEDs into full-color panels.
Collapse
Affiliation(s)
- Gwang Heon Lee
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kiwook Kim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Yunho Kim
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jiwoong Yang
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
- Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| | - Moon Kee Choi
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea.
| |
Collapse
|
31
|
Moral RF, Malfatti-Gasperini AA, Bonato LG, Vale BRC, Fonseca AFV, Padilha LA, Oliveira CLP, Nogueira AF. Self-assembly of perovskite nanoplates in colloidal suspensions. MATERIALS HORIZONS 2023; 10:5822-5834. [PMID: 37842783 DOI: 10.1039/d3mh01401k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
In recent years, perovskite nanocrystal superlattices have been reported with collective optical phenomena, offering a promising platform for both fundamental science studies and device engineering. In this same avenue, superlattices of perovskite nanoplates can be easily prepared on different substrates, and they too present an ensemble optical response. However, the self-assembly and optical properties of these aggregates in solvents have not been reported to date. Here, we report on the conditions for this self-assembly to occur and show a simple strategy to induce the formation of these nanoplate stacks in suspension in different organic solvents. We combined wide- and small-angle X-ray scattering and scanning transmission electron microscopy to evaluate CsPbBr3 and CsPbI3 perovskite nanoplates with different thickness distributions. We observed the formation of these stacks by changing the concentration of nanoplates and the viscosity of the colloidal suspensions, without the need for antisolvent addition. We found that, in hexane, the concentration for the formation of the stacks is rather high and approximately 80 mg mL-1. In contrast, in decane, dodecane, and hexadecane, we observe a much easier self-assembly of the nanoplates, presenting a clear correlation between the degree of aggregation and viscosity. We, then, discuss the impact of the self-assembly of perovskite nanoplates on Förster resonant energy transfer. Our predictions suggest an energy transfer efficiency higher than 50% for all the donor-acceptor systems evaluated. In particular, we demonstrate how the aggregation of these particles in hexadecane induces FRET for CsPbBr3 nanowires. For the n = 2 nanowires (donor) to the n = 3 nanowires (acceptor), the FRET rate was found to be 4.1 ns-1, with an efficiency of 56%, in agreement with our own predictions.
Collapse
Affiliation(s)
- Raphael F Moral
- Instituto de Química-Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
| | | | - Luiz G Bonato
- Instituto de Física Gleb Wataghin-Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Brener R C Vale
- Instituto de Física Gleb Wataghin-Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - André F V Fonseca
- Instituto de Química-Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Lazaro A Padilha
- Instituto de Física Gleb Wataghin-Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Ana F Nogueira
- Instituto de Química-Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
32
|
Raman RK, Ganesan S, Alagumalai A, Sudhakaran Menon V, Gurusamy Thangavelu SA, Krishnamoorthy A. Rational Design, Synthesis, and Structure-Property Relationship Studies of a Library of Thermoplastic Polyurethane Films as an Effective and Scalable Encapsulation Material for Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53935-53950. [PMID: 37935023 DOI: 10.1021/acsami.3c12607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Hybrid organic-inorganic metal halide perovskite solar cell (PSC) technology is experiencing rapid growth due to its simple solution chemistry, high power conversion efficiency (PCE), and potential for low-cost mass production. Nevertheless, the primary obstacle preventing the upscaling and widespread outdoor deployment of PSC technology is the poor long-term device stability, which stems from the inherent instability of perovskite materials in the presence of oxygen and moisture. To address this issue, in this work, we have synthesized a series of thermoplastic polyurethanes (TPUs) through a rational design by utilizing polyols having different molecular weights and diverse isocyanates (aromatic and aliphatic). Thorough characterization of these TPUs (ASTM and ISO standards) along with structure-property relationship studies were carried out for the first time and were then used as the encapsulation material for PSCs. The prepared TPUs were robust and adhered well with the glass substrate, and the use of low temperature during the encapsulation process avoided the degradation of the perovskite absorber and other organic layers in the device stack. The encapsulated devices retained more than 93% of their initial power conversion efficiency (PCE) for over 1000 h after exposure to harsh environmental conditions such as high relative humidity (80 ± 5% RH). Furthermore, the encapsulated perovskite absorbers showed remarkable stability when they were soaked in water. This article demonstrates the potential of TPU as a suitable and easily scalable encapsulant for PSCs and pave the way for extending the lifetime and commercialization of PSCs.
Collapse
Affiliation(s)
- Rohith Kumar Raman
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Saraswathi Ganesan
- Organic and Perovskite Photovoltaics Laboratory (OPPV), Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ananthan Alagumalai
- Organic and Perovskite Photovoltaics Laboratory (OPPV), Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Vidya Sudhakaran Menon
- Organic and Perovskite Photovoltaics Laboratory (OPPV), Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Senthil A Gurusamy Thangavelu
- Organic and Perovskite Photovoltaics Laboratory (OPPV), Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ananthanarayanan Krishnamoorthy
- Organic and Perovskite Photovoltaics Laboratory (OPPV), Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| |
Collapse
|
33
|
Starger JL, Fafarman AT, Baxter JB, Alvarez NJ, Cairncross RA. Quasi-2D Model to Predict Solid Microstructure in Drying Thin Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16231-16243. [PMID: 37939230 DOI: 10.1021/acs.langmuir.3c01469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The microstructure of solid coatings produced by solution processing is highly dependent on the coupling between growth, solute diffusion, and solvent evaporation. Here, a quasi-2D numerical model coupling drying and solidification is used to predict the transient lateral growth of two adjacent nuclei growing toward each other. Lateral gradients of the solute and solvent influence the evolution of film thickness and solid growth rate. The important process parameters and solvent properties are captured by the dimensionless Peclet number (Pe) and the Biot number (Bi), modified by an aspect ratio defined by the film thickness and distance between nuclei. By variation of Pe and Bi, the evaporation dynamics and aspect ratio are shown to largely determine the coating quality. These findings are applied to drying thin films of crystallizing halide perovskites, demonstrating a convenient process map for capturing the relationship between the modified Bi and well-defined coating regimes, which may be generalized for any solution-processed thin film coating systems.
Collapse
Affiliation(s)
- Jesse L Starger
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Aaron T Fafarman
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Jason B Baxter
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Nicolas J Alvarez
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Richard A Cairncross
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
34
|
Xiang Y, Zheng R, Li C, Ren K, Ye Q, Shi B, Liu S, Fang Z. Multistep optimization for the electrodeposited mixed perovskite FA 1-yCs yPbBr xI 3-xsolar cells. NANOTECHNOLOGY 2023; 35:015706. [PMID: 37788663 DOI: 10.1088/1361-6528/acff77] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/03/2023] [Indexed: 10/05/2023]
Abstract
The electrodeposition method has recently been developed for the fabrication of perovskite solar cells due to its potential advantages in commercial preparation. However, there is few studies on the preparation of perovskite solar cells by the electrodeposition method, especially on the perovskite FAPbI3-based solar cells. Herein, we fabricated the mixed perovskite FA1-yCsyPbBrxI3-xsolar cells by an optimized electrodeposition method, in which the electrodeposited PbO2reacts directly with FAI and an appropriate amount of CsBr dopants. The corresponding solar cells display the best PCE of 4.97%. By regulating the growth temperature in the reaction between PbO2and FAI/CsBr, the efficiency of the mixed perovskite solar cells can be promoted to 10.18%. These results illustrate that the element doping and growth environment regulation can optimize the quality of the perovskite films, thus promoting the efficiency of the perovskite solar cells. With further optimizing the growth process in the electrodeposition method, it is expected to open up a new commercial preparation route for the perovskite solar cells in the near future.
Collapse
Affiliation(s)
- Yanhong Xiang
- Zhejiang Engineering Research Center of MEMS, School of Mathematical Information, Shaoxing University, Shaoxing 312000, People's Republic of China
| | - Ren Zheng
- Zhejiang Engineering Research Center of MEMS, School of Mathematical Information, Shaoxing University, Shaoxing 312000, People's Republic of China
| | - Chunhe Li
- Zhejiang Engineering Research Center of MEMS, School of Mathematical Information, Shaoxing University, Shaoxing 312000, People's Republic of China
| | - Kuankuan Ren
- Zhejiang Engineering Research Center of MEMS, School of Mathematical Information, Shaoxing University, Shaoxing 312000, People's Republic of China
| | - Qiufeng Ye
- Zhejiang Engineering Research Center of MEMS, School of Mathematical Information, Shaoxing University, Shaoxing 312000, People's Republic of China
| | - Biyun Shi
- Zhejiang Engineering Research Center of MEMS, School of Mathematical Information, Shaoxing University, Shaoxing 312000, People's Republic of China
| | - Shiyan Liu
- Zhejiang Engineering Research Center of MEMS, School of Mathematical Information, Shaoxing University, Shaoxing 312000, People's Republic of China
| | - Zebo Fang
- Zhejiang Engineering Research Center of MEMS, School of Mathematical Information, Shaoxing University, Shaoxing 312000, People's Republic of China
| |
Collapse
|
35
|
Lê K, Heshmati N, Mathur S. Potential and perspectives of halide perovskites in light emitting devices. NANO CONVERGENCE 2023; 10:47. [PMID: 37831205 PMCID: PMC10575846 DOI: 10.1186/s40580-023-00395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023]
Abstract
Light emitting diodes (LEDs) have become part of numerous electrical and electronic systems such as lighting, displays, status indicator lamps and wearable electronics. Owing to their excellent optoelectronic properties and deposition via simple solution process, metal halide perovskites possess unique potential for developing halide perovskite-based LEDs (PeLEDs) with superior photoluminescence efficiencies leading to external quantum efficiencies beyond 20% for PeLEDS. However, the limited durability, high operative voltages, and challenges of scale-up are persisting barriers in achieving required technology readiness levels. To build up the existing knowledge and raise the device performance this review provides a state-of-the-art study on the properties, film and device fabrication, efficiency, and stability of PeLEDs. In terms of commercialization, PeLEDs need to overcome materials and device challenges including stability, ion migration, phase segregation, and joule heating, which are discussed in this review. We hope, discussions about the strategies to overcome the stability issues and enhancement the materials intrinsic properties towards development more stable and efficient optoelectronic devices can pave the way for scalability and cost-effective production of PeLEDs.
Collapse
Affiliation(s)
- Khan Lê
- Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, 50939, Cologne, Germany
| | - Niusha Heshmati
- Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, 50939, Cologne, Germany
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, 50939, Cologne, Germany.
| |
Collapse
|
36
|
Cai W, Yang T, Liu C, Wang Y, Wang S, Du Y, Wu N, Huang W, Wang S, Wang Z, Chen X, Feng J, Zhao G, Ding Z, Pan X, Zou P, Yao J, Liu SF, Zhao K. Interfacial Engineering for Efficient Low-Temperature Flexible Perovskite Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202309398. [PMID: 37624069 DOI: 10.1002/anie.202309398] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 08/26/2023]
Abstract
Photovoltaic technology with low weight, high specific power in cold environments, and compatibility with flexible fabrication is highly desired for near-space vehicles and polar region applications. Herein, we demonstrate efficient low-temperature flexible perovskite solar cells by improving the interfacial contact between electron-transport layer (ETL) and perovskite layer. We find that the adsorbed oxygen active sites and oxygen vacancies of flexible tin oxide (SnO2 ) ETL layer can be effectively decreased by incorporating a trace amount of titanium tetrachloride (TiCl4 ). The effective defects elimination at the interfacial increases the electron mobility of flexible SnO2 layer, regulates band alignment at the perovskite/SnO2 interface, induces larger perovskite crystal growth, and improves charge collection efficiency in a complete solar cell. Correspondingly, the improved interfacial contact transforms into high-performance solar cells under one-sun illumination (AM 1.5G) with efficiencies up to 23.7 % at 218 K, which might open up a new era of application of this emerging flexible photovoltaic technology to low-temperature environments such as near-space and polar regions.
Collapse
Affiliation(s)
- Weilun Cai
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Tinghuan Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Chou Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yajie Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Shiqiang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yachao Du
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Nan Wu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wenliang Huang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Shumei Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhichao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xin Chen
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jiangshan Feng
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Guangtao Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zicheng Ding
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xu Pan
- Key Laboratory of Novel Thin-Film Solar Cells Institute of Plasma Physics Chinese Academy of Sciences, Hefei, 230031, China
| | - Pengchen Zou
- Shaanxi State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing, 102206, P. R. China
| | - Jianxi Yao
- Shaanxi State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing, 102206, P. R. China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
37
|
Crace EJ, Singh A, Haley S, Claes B, Mitzi DB. Meltable Hybrid Antimony and Bismuth Iodide One-Dimensional Perovskites. Inorg Chem 2023; 62:16161-16169. [PMID: 37729091 DOI: 10.1021/acs.inorgchem.3c02441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Hybrid lead-halide perovskites have been studied extensively for their promising optoelectronic properties and prospective applications, including photovoltaics, solid-state lighting, and radiation detection. Research into these materials has also been aided by the simple and low-temperature synthetic conditions involved in solution-state deposition/crystallization or melt-processing techniques. However, concern over lead toxicity has plagued the field since its infancy. One of the most promising routes to mitigating toxicity in hybrid perovskite materials is substituting isoelectronic Bi(III) for Pb(II). Various methods have been developed to allow pnictide-based systems to capture properties of the Pb(II) analogues, but the ability to melt extended hybrid pnictide-halide materials has not been investigated. In this work, we prepare a series of one-dimensional antimony- and bismuth-iodide hybrid materials employing tetramethylpiperazinium (TMPZ)-related cations. We observe, for the first time, the ability to melt extended hybrid pnictide-halide materials for both the Sb(III) and Bi(III) systems. Additionally, we find that Sb(III) analogues melt at lower temperatures and attribute this observation to structural changes induced by the increased stereochemical activity of the Sb(III) lone pair coupled with the reduction in effective dimensionality due to steric interactions with the organic cations. Finally, we demonstrate the ability to melt process phase pure thin films of (S-MeTMPZ)SbI5.
Collapse
Affiliation(s)
- Ethan J Crace
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Akash Singh
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
- University Program in Materials Science and Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Stella Haley
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Bethany Claes
- Department of Materials Science and Engineering, University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| | - David B Mitzi
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
38
|
Zhang Z, Wang J, Liang J, Zheng Y, Wu X, Tian C, Sun A, Huang Y, Zhou Z, Yang Y, Liu Y, Tang C, Chen Z, Chen CC. Organizing Uniform Phase Distribution in Methylammonium-Free 1.77 eV Wide-Bandgap Inverted Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303213. [PMID: 37269195 DOI: 10.1002/smll.202303213] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/17/2023] [Indexed: 06/04/2023]
Abstract
Disordered crystallization and poor phase stability of mixed halide perovskite films are still the main factors that compromise the performance of inverted wide bandgap (WBG; 1.77 eV) perovskite solar cells (PSCs). Great difficulties are evidenced due to the very different crystallization rates between I- and Br-based perovskite components through DMSO-alone assisted anti-solvent process. Here, a zwitterionic additive strategy is reported for finely regulating the crystal growth of Cs0.2 FA0.8 Pb(I0.6 Br0.4 )3 , thereby obtaining high-performance PSCs. The aminoethanesulfonic acid (AESA) is introduced to form hydrogen bonds and strong PbO bonds with perovskite precursors, realizing the complete coordination with both the organic (FAI) and inorganic (CsI, PbI2 , PbBr2 ) components, balancing their complexation effects, and realizing AESA-guided fast nucleation and retarded crystallization processes. This treatment substantially promotes homogeneous crystal growth of I- and Br-based perovskite components. Besides, this uniformly distributed AESA passivates the defects and inhibits the photo-induced halide segregation effectively. This strategy generates a record efficiency of 19.66%, with a Voc of 1.25 V and FF of 83.7% for an MA-free WBG p-i-n device at 1.77 eV. The unencapsulated devices display impressive humidity stability at 30 ± 5% RH for 1000 h and much improved continuous operation stability at MPP for 300 h.
Collapse
Affiliation(s)
- Zhanfei Zhang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Jianli Wang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Jianghu Liang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Yiting Zheng
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Xueyun Wu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Congcong Tian
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Anxin Sun
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Ying Huang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Zhuang Zhou
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Yajuan Yang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Yuan Liu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Chen Tang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Zhenhua Chen
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Chun-Chao Chen
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| |
Collapse
|
39
|
Vasilopoulou M, Mohd Yusoff ARB, Nazeeruddin MK. Perovskite Materials and Perovskite Solar Cells. PRINTABLE MESOSCOPIC PEROVSKITE SOLAR CELLS 2023:137-165. [DOI: 10.1002/9783527834297.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
40
|
Wang Y, Wu Z, Cao Q, Xia Y, Zhou Y, Yu J, Zhou J. Multifunctional Thiophene Cascading SnO 2/Perovskite Interfaces for Efficient and Stable MAPbI 3 Photovoltaics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38154-38162. [PMID: 37505507 DOI: 10.1021/acsami.3c08970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The power conversion efficiency (PCE) and stability of n-i-p perovskite solar cells (PSCs) are significantly affected by inherent defects of SnO2 and perovskite layers. In this work, we incorporate 2-bromo-3-thiophenic acid (BrThCOOH) as a multifunctional passivant to simultaneously passivate the defects of SnO2 surface and perovskite layer. BrThCOOH permeates evenly into the MAPbI3 and coordinates with Pb2+ and iodine vacancies (VI+) to reduce surface defect density and inhibit the decomposition of MAPbI3. Carboxylic acid effectively passives the oxygen vacancy on the surface of SnO2 through coordination bonds, reducing the probability of electron capture by SnO2 surface defects, thus contributing to electron transport in device. The interaction of BrThCOOH with MAPbI3 and SnO2 surfaces leads to an upward shift in energy levels, reducing energy loss during charge migration. The optimal MAPbI3 device with BrThCOOH-modified SnO2 (T-SnO2) reveals an improved PCE of 21.12%, much higher than that of the control one (19.12%). The hydrophobicity of BrThCOOH-modified MAPbI3 is also improved, which is beneficial to the durability of the device. After 100 h of storage in the environment, the generated PSCs maintain their initial PCE of 75%, demonstrating excellent long-term stability without any encapsulation.
Collapse
Affiliation(s)
- Yan Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zinan Wu
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qin Cao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuanhao Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yu Zhou
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiangsheng Yu
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jie Zhou
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
41
|
Royo R, Sánchez JG, Li W, Martinez-Ferrero E, Palomares E, Andreu R, Franco S. Novel Spiro-Core Dopant-Free Hole Transporting Material for Planar Inverted Perovskite Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2042. [PMID: 37513053 PMCID: PMC10385314 DOI: 10.3390/nano13142042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
Hole-transporting materials (HTMs) have demonstrated their crucial role in promoting charge extraction, interface recombination, and device stability in perovskite solar cells (PSCs). Herein, we present the synthesis of a novel dopant-free spiro-type fluorine core-based HTM with four ethoxytriisopropylsilane groups (Syl-SC) for inverted planar perovskite solar cells (iPSCs). The thickness of the Syl-SC influences the performance of iPSCs. The best-performing iPSC is achieved with a 0.8 mg/mL Syl-SC solution (ca. 15 nm thick) and exhibits a power conversion efficiency (PCE) of 15.77%, with Jsc = 20.00 mA/cm2, Voc = 1.006 V, and FF = 80.10%. As compared to devices based on PEDOT:PSS, the iPSCs based on Syl-SC exhibit a higher Voc, leading to a higher PCE. Additionally, it has been found that Syl-SC can more effectively suppress charge interfacial recombination in comparison to PEDOT:PSS, which results in an improvement in fill factor. Therefore, Syl-SC, a facilely processed and efficient hole-transporting material, presents a promising cost-effective alternative for inverted perovskite solar cells.
Collapse
Affiliation(s)
- Raquel Royo
- Instituto de Nanociencia y Materiales de Aragón (INMA), Departamento de Química Orgánica, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - José G Sánchez
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology (ICIQ-BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Wenhui Li
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology (ICIQ-BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Eugenia Martinez-Ferrero
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology (ICIQ-BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Emilio Palomares
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology (ICIQ-BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys, 23, 08010 Barcelona, Spain
| | - Raquel Andreu
- Instituto de Nanociencia y Materiales de Aragón (INMA), Departamento de Química Orgánica, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Santiago Franco
- Instituto de Nanociencia y Materiales de Aragón (INMA), Departamento de Química Orgánica, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
42
|
Thakur S, Giri A. Origin of Ultralow Thermal Conductivity in Metal Halide Perovskites. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37235795 DOI: 10.1021/acsami.3c03499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Resulting from their remarkable structure-property relationships, metal halide perovskites have garnered tremendous attention in recent years for a plethora of applications. For instance, their ultralow thermal conductivities make them promising candidates for thermoelectric and thermal barrier coating applications. It is widely accepted that the "guest" cations inside the metal halide framework act as "rattlers", which gives rise to strong intrinsic phonon resistances, thus explaining the structure-property relationship dictating their ultralow thermal conductivities. In contrast, through systematic atomistic simulations, we show that this conventionally accepted "rattling" behavior is not the mechanism dictating the ultralow thermal conductivities in metal halide perovskites. Instead, we show that the ultralow thermal conductivities in these materials mainly originate from the strongly anharmonic and mechanically soft metal halide framework. By comparing the thermal transport properties of the prototypical fully inorganic CsPbI3 and an empty PbI6 framework, we show that the addition of Cs+ ions inside the nanocages leads to an enhancement in thermal conductivity through vibrational hardening of the framework. Our extensive spectral energy density calculations show that the Cs+ ions have well-defined phase relations with the lattice dynamics of the "host" framework resulting in additional pathways for heat conduction, which is in disagreement with the description of the individual "rattling" of guests inside the framework that has been widely assumed to dictate their ultralow thermal conductivities. Furthermore, we show that an efficient strategy to control the heat transfer efficacy in these materials is through the manipulation of the framework anharmonicity achieved via strain and octahedral tilting. Our work provides the fundamental insights into the lattice dynamics that dictate heat transfer in these novel materials, which will ultimately help guide their further advancement in the next-generation of electronics such as in thermoelectric and photovoltaic applications.
Collapse
Affiliation(s)
- Sandip Thakur
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Ashutosh Giri
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
43
|
Peng Z, Jin L, Zuo Z, Qi Q, Hou S, Fu Y, Zou D. Isolating the Oxygen Adsorption Defects on Sputtered Tin Oxide for Efficient Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23518-23526. [PMID: 37130153 DOI: 10.1021/acsami.3c03679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Tin oxide (SnO2) is the most commonly used electron transport material for perovskite solar cells (PSCs). Various techniques have been applied to deposit tin dioxide, including spin-coating, chemical bath deposition, and magnetron sputtering. Among them, magnetron sputtering is one of the most mature industrial deposition techniques. However, PSCs based on magnetron-sputtered tin oxide (sp-SnO2) have a lower open-circuit voltage (Voc) and power conversion efficiency (PCE) than those prepared by the mainstream solution method. This is mainly due to the oxygen-related defects at the sp-SnO2/perovskite interface, and traditional passivation strategies usually have little effect on them. Herein, we successfully isolate the oxygen adsorption (Oads) defects located on the surface of sp-SnO2 from the perovskite layer using a PCBM double-electron transport layer. This isolation strategy effectively suppresses the Shockley-Read-Hall recombination at the sp-SnO2/perovskite interface, which results in an increase in the Voc from 0.93 to 1.15 V and an increase in PCE from 16.66 to 21.65%. To our knowledge, this is the highest PCE achieved using a magnetron-sputtered charge transport layer to date. The unencapsulated devices maintain 92% of their initial PCE after storage in air with a relative humidity of 30-50% after 750 h. We further use the solar cell capacitance simulator (1D-SCAPS) to confirm the effectiveness of the isolation strategy. This work highlights the application prospect of magnetron sputtering in the field of perovskite solar cells and provides a simple yet effective way to tackle the interfacial defect issue.
Collapse
Affiliation(s)
- Zongyang Peng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Leyang Jin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhuang Zuo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qi Qi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shaocong Hou
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Yongping Fu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Dechun Zou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
44
|
Hao M, Duan T, Ma Z, Ju MG, Bennett JA, Liu T, Guo P, Zhou Y. Flattening Grain-Boundary Grooves for Perovskite Solar Cells with High Optomechanical Reliability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211155. [PMID: 36688433 DOI: 10.1002/adma.202211155] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Optomechanical reliability has emerged as an important criterion for evaluating the performance and commercialization potential of perovskite solar cells (PSCs) due to the mechanical-property mismatch of metal halide perovskites with other device layer. In this work, grain-boundary grooves, a rarely discussed film microstructural characteristic, are found to impart significant effects on the optomechanical reliability of perovskite-substrate heterointerfaces and thus PSC performance. By pre-burying iso-butylammonium chloride additive in the electron-transport layer (ETL), GB grooves (GBGs) are flattened and an optomechanically reliable perovskite heterointerface that resists photothermal fatigue is created. The improved mechanical integrity of the ETL-perovskite heterointerfaces also benefits the charge transport and chemical stability by facilitating carrier injection and reducing moisture or solvent trapping, respectively. Accordingly, high-performance PSCs which exhibit efficiency retentions of 94.8% under 440 h damp heat test (85% RH and 85 °C), and 93.0% under 2000 h continuous light soaking are achieved.
Collapse
Affiliation(s)
- Mingwei Hao
- Department of Physics, Hong Kong Baptist University, Kowloon, Hong Kong SAR, P. R. China
| | - Tianwei Duan
- Department of Physics, Hong Kong Baptist University, Kowloon, Hong Kong SAR, P. R. China
| | - Zhiwei Ma
- Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ming-Gang Ju
- Department of Physics, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| | - Joseph A Bennett
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Tanghao Liu
- Department of Physics, Hong Kong Baptist University, Kowloon, Hong Kong SAR, P. R. China
| | - Peijun Guo
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520, USA
| | - Yuanyuan Zhou
- Department of Physics, Hong Kong Baptist University, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
45
|
Peng C, He Z, Guo R, Li X, Chen H, Chen B, Sun L, Chen J, Wang L. The Synergy of the Buried Interface Surface Energy and Temperature for Thermal Evaporated Perovskite Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15768-15774. [PMID: 36924193 DOI: 10.1021/acsami.3c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Multisource coevaporation is such a promising method for the preparation of perovskite films. However, there is limited research about the effects of the buried interface on thermal-evaporated perovskite light-emitting diodes (PeLEDs). In this study, the effects of buried interfaces on thermal-evaporated all-inorganic perovskite films are systematically investigated. It is found that the low-surface-energy buried interface promotes the formation of columnar grain by suppressing heterogeneous nucleation, and functional groups on the high-surface-energy interface have a significant effect on the actual element ratio of the film. The substrate temperature can affect the nucleation and film-formation kinetics of the columnar grains. As a result of the synergistic strategy, a peak external quantum efficiency (EQE) of 8.6% is achieved in the green PeLEDs with a stable emission peak at 516 nm, which is among the best thermal-evaporated PeLEDs reported. This work provides an insight into the preparation of perovskites by thermal evaporation and builds the groundwork for future studies.
Collapse
Affiliation(s)
- Chencheng Peng
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhiyuan He
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Runda Guo
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongting Chen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ben Chen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liang Sun
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiangshan Chen
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Lei Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
46
|
Krummer M, Glissmann N, Zimmermann B, Klingenberg P, Daub M, Hillebrecht H. Interactions of Pyridine‐Based Organic Cations as Structure‐Determining Factors in Perovskite‐Related Compounds
A
x
Pb(II)
y
Br
z. Eur J Inorg Chem 2023. [DOI: 10.1002/ejic.202200671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
47
|
Ge Y, Wang H, Wang C, Wang C, Guan H, Shao W, Wang T, Ke W, Tao C, Fang G. Intermediate Phase Engineering with 2,2-Azodi(2-Methylbutyronitrile) for Efficient and Stable Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2210186. [PMID: 36961356 DOI: 10.1002/adma.202210186] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/17/2023] [Indexed: 05/17/2023]
Abstract
Sequential deposition has been widely employed to modulate the crystallization of perovskite solar cells because it can avoid the formation of nucleation centers and even initial crystallization in the precursor solution. However, challenges remain in overcoming the incomplete and random transformation of PbI2 films with organic ammonium salts. Herein, a unique intermediate phase engineering strategy has been developed by simultaneously introducing 2,2-azodi(2-methylbutyronitrile) (AMBN) to both PbI2 and ammonium salt solutions to regulate perovskite crystallization. AMBN not only coordinates with PbI2 to form a favorably mesoporous PbI2 film due to the coordination between Pb2+ and the cyano group (C≡N), but also suppresses the vigorous activity of FA+ ions by interacting with FAI, leading to the full PbI2 transformation with the preferred orientation. Therefore, perovskites with favorable facet orientations are obtained, and the defects are largely suppressed owing to the passivation of uncoordinated Pb2+ and FA+ . As a result, a champion power conversion efficiency over 25% with a stabilized efficiency of 24.8% is achieved. Moreover, the device exhibits an improved operational stability, retaining 96% of initial power conversion efficiency under 1000 h continuous white-light illumination with an intensity of 100 mW cm-2 at ≈55 °C in N2 atmosphere.
Collapse
Affiliation(s)
- Yansong Ge
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, China
| | - Haibing Wang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, China
| | - Cheng Wang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, China
| | - Chen Wang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, China
| | - Hongling Guan
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, China
| | - Wenlong Shao
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, China
| | - Ti Wang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, China
| | - Weijun Ke
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, China
| | - Chen Tao
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, China
| | - Guojia Fang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, China
| |
Collapse
|
48
|
Lee SU, Park H, Shin H, Park NG. Atomic layer deposition of SnO 2 using hydrogen peroxide improves the efficiency and stability of perovskite solar cells. NANOSCALE 2023; 15:5044-5052. [PMID: 36804638 DOI: 10.1039/d2nr06884b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Low-temperature processed SnO2 is a promising electron transporting layer in perovskite solar cells (PSCs) due to its optoelectronic advantage. Atomic layer deposition (ALD) is suitable for forming a conformal SnO2 layer on a high-haze substrate. However, oxygen vacancy formed by the conventional ALD process using H2O might have a detrimental effect on the efficiency and stability of PSCs. Here, we report on the photovoltaic performance and stability of PSCs based on the ALD-SnO2 layer with low oxygen vacancies fabricated via H2O2. Compared to the ALD-SnO2 layer formed using H2O vapors, the ALD-SnO2 layer prepared via H2O2 shows better electron extraction due to a reduced oxygen vacancy associated with the highly oxidizing nature of H2O2. As a result, the power conversion efficiency (PCE) is enhanced from 21.42% for H2O to 22.34% for H2O2 mainly due to an enhanced open-circuit voltage. Operational stability is simultaneously improved, where 89.3% of the initial PCE is maintained after 1000 h under an ambient condition for the H2O2-derived ALD SnO2 as compared to the control device maintaining 72.5% of the initial PCE.
Collapse
Affiliation(s)
- Sang-Uk Lee
- School of Chemical Engineering, Center for Antibonding Regulated Crystals, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Hyoungmin Park
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyunjung Shin
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Nam-Gyu Park
- School of Chemical Engineering, Center for Antibonding Regulated Crystals, Sungkyunkwan University, Suwon 16419, Republic of Korea.
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
49
|
Aminzare M, Jiang J, Mandl GA, Mahshid S, Capobianco JA, Dorval Courchesne NM. Biomolecules incorporated in halide perovskite nanocrystals: synthesis, optical properties, and applications. NANOSCALE 2023; 15:2997-3031. [PMID: 36722934 DOI: 10.1039/d2nr05565a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Halide perovskite nanocrystals (HPNCs) have emerged at the forefront of nanomaterials research over the past two decades. The physicochemical and optoelectronic properties of these inorganic semiconductor nanoparticles can be modulated through the introduction of various ligands. The use of biomolecules as ligands has been demonstrated to improve the stability, luminescence, conductivity and biocompatibility of HPNCs. The rapid advancement of this field relies on a strong understanding of how the structure and properties of biomolecules influences their interactions with HPNCs, as well as their potential to extend applications of HPNCs towards biological applications. This review addresses the role of several classes of biomolecules (amino acids, proteins, carbohydrates, nucleotides, etc.) that have shown promise for improving the performance of HPNCs and their potential applications. Specifically, we have reviewed the recent advances on incorporating biomolecules with HP nanomaterials on the formation, physicochemical properties, and stability of HP compounds. We have also shed light on the potential for using HPs in biological and environmental applications by compiling some recent of proof-of-concept demonstrations. Overall, this review aims to guide the field towards incorporating biomolecules into the next-generation of high-performance HPNCs for biological and environmental applications.
Collapse
Affiliation(s)
- Masoud Aminzare
- Department of Chemical Engineering, McGill University, 3610 University Street, Wong Building, Room 4180, Montréal, QC, H3A 0C5, Canada.
| | - Jennifer Jiang
- Department of Chemical Engineering, McGill University, 3610 University Street, Wong Building, Room 4180, Montréal, QC, H3A 0C5, Canada.
| | - Gabrielle A Mandl
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, 7141 Rue Sherbrooke Ouest, Concordia University, Montreal, QC, H4B 1R6, Canada
| | - Sara Mahshid
- Department of Bioengineering, McGill University, 817 Sherbrooke Street West, Macdonald Engineering Building, Room 355, Montréal, QC, H3A 0C3, Canada
| | - John A Capobianco
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, 7141 Rue Sherbrooke Ouest, Concordia University, Montreal, QC, H4B 1R6, Canada
| | - Noémie-Manuelle Dorval Courchesne
- Department of Chemical Engineering, McGill University, 3610 University Street, Wong Building, Room 4180, Montréal, QC, H3A 0C5, Canada.
| |
Collapse
|
50
|
Reuveni G, Diskin-Posner Y, Gehrmann C, Godse S, Gkikas GG, Buchine I, Aharon S, Korobko R, Stoumpos CC, Egger DA, Yaffe O. Static and Dynamic Disorder in Formamidinium Lead Bromide Single Crystals. J Phys Chem Lett 2023; 14:1288-1293. [PMID: 36722023 PMCID: PMC9923750 DOI: 10.1021/acs.jpclett.2c03337] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/06/2023] [Indexed: 05/28/2023]
Abstract
We show that formamidinium-based crystals are distinct from methylammonium-based halide perovskite crystals because their inorganic sublattice exhibits intrinsic local static disorder that coexists with a well-defined average crystal structure. Our study combines terahertz-range Raman scattering with single-crystal X-ray diffraction and first-principles calculations to probe the evolution of inorganic sublattice dynamics with temperature in the range of 10-300 K. The temperature evolution of the Raman spectra shows that low-temperature, local static disorder strongly affects the crystal structural dynamics and phase transitions at higher temperatures.
Collapse
Affiliation(s)
- Guy Reuveni
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot76100, Israel
| | - Yael Diskin-Posner
- Chemical
Research Support, Weizmann Institute of
Science, Rehovot76100, Israel
| | - Christian Gehrmann
- Department
of Physics, Technical University of Munich, 85748Garching, Germany
| | - Shravan Godse
- Department
of Physics, Technical University of Munich, 85748Garching, Germany
| | - Giannis G. Gkikas
- Department
of Materials Science and Technology, University
of Crete, Voutes Campus, Heraklion, GR70013, Greece
| | - Isaac Buchine
- Department
of Chemistry and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan5290002, Israel
| | - Sigalit Aharon
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot76100, Israel
| | - Roman Korobko
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot76100, Israel
| | - Constantinos C. Stoumpos
- Department
of Materials Science and Technology, University
of Crete, Voutes Campus, Heraklion, GR70013, Greece
| | - David A. Egger
- Department
of Physics, Technical University of Munich, 85748Garching, Germany
| | - Omer Yaffe
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot76100, Israel
| |
Collapse
|