1
|
Su Y, Xu Z, Wang J, Qian J, Liu C, Shi J, Liu W, An X, Qin W, Liu Y. Design and synthesis of esterase-activated fluorescent probe for diagnosis and surgical guidance of liver cancer. Talanta 2025; 283:127210. [PMID: 39541716 DOI: 10.1016/j.talanta.2024.127210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/24/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Liver cancer seriously threatens the health of human beings. Studies have found that esterase is overexpressed in liver cancer cells. Therefore, esterase can be one of the biomarkers of liver cancer. Previous literature studies have shown that the structures of fluorescent probe detection groups significantly impact the probes themselves and enzyme detection. In this paper, three "off-on" esterase-activated fluorescent probes (RHO-1, RHO-2 and RHO-3) with different length of the carbon chains of the detection groups were designed and synthesized. Density functional theory (DFT) calculation and Michaelis-Menten equations were applied to study the optical properties and affinity with esterase of the probes. Compared with RHO-1 and RHO-2, RHO-3 showed superior optical properties and affinity with esterase. Subsequently, RHO-3 was further used to detect esterase activity in vitro and in vivo. RHO-3 was the first esterase-activated fluorescent probe applied to image-guided diagnosis and surgical resection of liver cancer. It was expected to be a promising molecular imaging diagnostic tool in clinical applications.
Collapse
Affiliation(s)
- Yaling Su
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Zhongsheng Xu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Jiemin Wang
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, PR China
| | - Jing Qian
- School of Pharmacy and Medical Technology, Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine of Fujian Province, Putian University, Putian, 351100, PR China
| | - Cong Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Junqi Shi
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Wei Liu
- The School of Chemistry & Environmental Engineering, Sichuan University of Science & Engineering, Zigong, 643000, PR China
| | - Xiaoli An
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, 643000, PR China
| | - Wenwu Qin
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China; Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, Xining, 810016, PR China.
| | - Yun Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China.
| |
Collapse
|
2
|
Zhang ZY, Li ZJ, Tang YH, Hou TT, Xu L, Wang ZH, Qin TY, Wang YL, Zhu MQ. Tailoring near-infrared amyloid-β probes with high-affinity and low background based on CN and amphipathic regulatory strategies and in vivo imaging of AD mice. Talanta 2025; 281:126858. [PMID: 39260248 DOI: 10.1016/j.talanta.2024.126858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Amyloid-β (Aβ) species (Aβ fibrils and Aβ plaques), as one of the typical pathological markers of Alzheimer's disease (AD), plays a crucial role in AD diagnosis. Currently, some near-infrared I (NIR I) Aβ probes have been reported in AD diagnosis. However, they still face challenges such as strong background interference and the lack of effective probe design. In this study, we propose molecular design strategy that incorporates CN group and amphiphilic modulation to synthesize a series of amphiphilic NIR I Aβ probes, surpassing the commercial probe ThT and ThS. Theoretical calculations indicate that these probes exhibit stronger interaction with amino acid residues in the cavities of Aβ. Notably, the probes containing CN group display the ability of binding two distinct sites of Aβ, which dramatically enhanced the affinity to Aβ species. Furthermore, these probes exhibit minimal fluorescence in aqueous solution and offer ultra-high signal-to-noise ratio (SNR) for in vitro labeling, even in wash-free samples. Finally, the optimal probe DM-V2CN-PYC3 was utilized for in vivo imaging of AD mice, demonstrating its rapid penetration through the blood-brain barrier and labelling to Aβ species. Moreover, it enabled long-term monitoring for a duration of 120 min. These results highlight the enhanced affinity and superior performance of the designed NIR I Aβ probe for AD diagnosis. The molecular design strategy of CN and amphiphilic modulation presents a promising avenue for the development Aβ probes with low background in vivo/in vitro imaging for Aβ species.
Collapse
Affiliation(s)
- Zhen-Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Ze-Jun Li
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Ying-Hao Tang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Ting-Ting Hou
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Liang Xu
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Zhao-Hui Wang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Tian-Yi Qin
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China.
| | - Ya-Long Wang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China.
| | - Ming-Qiang Zhu
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China; Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
3
|
Jdanova S, Guthrie JG, Taylor MS. Site-Selective O-Arylation of Carbohydrate Derivatives through Nickel-Photoredox Catalysis. J Org Chem 2024. [PMID: 39689901 DOI: 10.1021/acs.joc.4c02402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Site-selective O-arylations of glycoside-derived diols have been achieved by couplings with bromoarenes upon irradiation with blue LEDs in the presence of an iridium photocatalyst and a nickel complex. The use of hexamethylenetetramine (hexamine) in place of quinuclidine, along with the application of a methoxy-substituted 2,2'-bipyridine ligand, provided improvements in yield for this relatively challenging substrate class. Selective arylation took place at the less sterically hindered OH group, as determined by the substitution pattern and configuration of the glycoside substrate. Percent buried volume calculations were used to quantify the relative levels of steric hindrance at the two reactive sites.
Collapse
Affiliation(s)
- Sofia Jdanova
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - James G Guthrie
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Mark S Taylor
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
4
|
Sil S, Hussain A, Das Sarma J, Gupta P. Cyclometalated Iridium(III) Complex with Substituted Benzimidazole: pH Directed Organelle-Specific Localization Within Lysosome. Chembiochem 2024; 25:e202400597. [PMID: 39285747 DOI: 10.1002/cbic.202400597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/12/2024] [Indexed: 11/06/2024]
Abstract
We report the synthesis and pH dependent emission spectral behaviour of four emissive iridium(III) complexes (Ir1-Ir4) with two isomeric pairs of bis-trifluoromethyl appended benzimidazole ligands. The imidazolyl hydrogen(N-H) has been replaced by phenyl groups (N-Ph) in two ligands to understand the impact of hydrogen bonding on the photophysical properties of the complexes and it indeed plays interesting role in the charge-transfer dynamics. The pH dependent electronic spectral change is observed for two of the complexes. The enhancement of emission intensity is observed at different wavelength for pH<7 and pH>7 for Ir1 and Ir3. The emission sensing of biogenic amines with pka values ranging from 5.80-9.74 is reported along with cellular imaging. The complex Ir1 specifically localizes within lysosome (pH=4.5-5) and thus image this organelle with great precision. The detail electronic spectra and electrochemical behaviour were reported here along with TDDFT results.
Collapse
Affiliation(s)
- Subhra Sil
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Afaq Hussain
- Bio-inspired Innovation Private Limited (RISE Foundation IISER, The Incubation Center of IISER Kolkata), Mohanpur, West Bengal, 741246, India
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Parna Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| |
Collapse
|
5
|
Wang H, Zhuang Y, Fu S, Shen Y, Qian H, Yan X, Ge J. Modular and Fast Assembly of Self-Immobilizing Fluorogenic Probes for β-Galactosidase Detection. Anal Chem 2024. [PMID: 39561279 DOI: 10.1021/acs.analchem.4c02307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
β-Galactosidase (β-gal) has emerged as a pivotal biomarker in primary ovarian cancer. Despite the existence of numerous fluorescent probes for β-gal activity detection, quinone methide-based immobilizing probes were shown to avoid rapid diffusion of the activated fluorophore and improve the resolution. However, the synthesis of these fluorophores, particularly near-infrared fluorophores, still exhibits lower efficiency. In this study, we introduce modular and rapidly assembled self-immobilizing fluorogenic probes, capitalizing on the proximity labeling properties of quinone methide (QM). Compared to conventional fluorescent probes, these new probes not only exhibit a fluorogenic response but also achieve permanent retention, demonstrating improved detection sensitivity, particularly after cell fixation and in vivo animal model studies. This straightforward synthesis approach holds promise for broader applications in detecting other analytes.
Collapse
Affiliation(s)
- Hongfeng Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuli Zhuang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Siyi Fu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuxuan Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huijuan Qian
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaoqiao Yan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
6
|
Sarkar S, Chatterjee A, Kim D, Saritha C, Barman S, Jana B, Ryu JH, Das A. Host-Guest Adduct as a Stimuli-Responsive Prodrug: Enzyme-Triggered Self-Assembly Process of a Short Peptide Within Mitochondria to Induce Cell Apoptosis. Adv Healthc Mater 2024:e2403243. [PMID: 39506431 DOI: 10.1002/adhm.202403243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/25/2024] [Indexed: 11/08/2024]
Abstract
To address the issue of nonspecific biodistribution of a chemotherapeutic drug, stable [2]pseudorotaxane complexes (PK@CAOPP and PR@CAOPP) are used to demonstrate a proof of concept. Cationic -PPh3 + moiety in CAOPP allows specific localization of the PK@CAOPP/ PR@CAOPP in the mitochondrial membrane (MM). Electrostatic interaction between the cationic LysinePK or ArgininePR moiety and the negatively charged phosphoesterCAOPP functionality in CAOPP favours strong adduct formation. The ALP-induced hydrolytic cleavage of the phosphoester moiety in cancer cells triggers dephosphorylation and releases PK/ PR moiety from PK@CAOPP/PR@CAOPP. PK or PR, derived from the Phe-Phe dipeptide, formed fibril-like molecular aggregates in the MM to induce dysfunction, depolarization, ROS generation and apoptotic MCF7 cell death. Such phenomena were not observed in ALP-negative HEK293 normal cells. These propositions were confirmed through control studies using NBDK and PE, other guest molecules. Smaller size and inclusion of the short peptides (PK or PR) within the hydrophobic interior of CAOPP, were attributed to their stability in blood serum. Thus, we have demonstrated the use of supramolecular adducts as a potential therapeutic option for treating cancer cells without affecting healthy cells. The efficacy was also established with an in-vivo MCF7 tumour xenograft model using Balb/c nude mice.
Collapse
Affiliation(s)
- Sandip Sarkar
- Department of Chemical Sciences and Center for Advanced Functional Material, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Atin Chatterjee
- Department of Chemical Sciences and Center for Advanced Functional Material, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Dohyun Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Cevella Saritha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, 844102, India
| | - Surajit Barman
- Department of Chemical Sciences and Center for Advanced Functional Material, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Batakrishna Jana
- Department of Chemical Sciences and Center for Advanced Functional Material, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Amitava Das
- Department of Chemical Sciences and Center for Advanced Functional Material, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| |
Collapse
|
7
|
Fan X, Wu J, Zhang T, Liu J. Electrochemical/Electrochemiluminescence Sensors Based on Vertically-Ordered Mesoporous Silica Films for Biomedical Analytical Applications. Chembiochem 2024; 25:e202400320. [PMID: 38874487 DOI: 10.1002/cbic.202400320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/15/2024]
Abstract
Vertically-ordered mesoporous silica films (VMSF, also named as silica isoporous membranes) have shown tremendous potential in the field of electroanalytical sensors due to their unique features in terms of controllable and ultrasmall nanopores, high molecular selectivity and permeability, and mechanical stability. This review will present the recent progress on the biomedical analytical applications of VMSF, focusing on the small biomolecules, diseases-related biomarkers, drugs and cancer cells. Finally, conclusions with recent developments and future perspective of VMSF in the relevant fields will be envisioned.
Collapse
Affiliation(s)
- Xue Fan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jiayi Wu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Tongtong Zhang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Jiyang Liu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
8
|
Fei W, Tang SY, Li MB. Luminescent metal nanoclusters and their application in bioimaging. NANOSCALE 2024; 16:19589-19605. [PMID: 39359125 DOI: 10.1039/d4nr03111c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Owing to their unique optical properties and atomically precise structures, metal nanoclusters (MNCs) constitute a new generation of optical probe materials. This mini-review provides a brief overview of luminescence mechanisms and modulation methods of luminescent metal nanoclusters in recent years. Based on these photophysical phenomena, the applications of cluster-based optical probes in optical bioimaging and related sensing, disease diagnosis, and treatment are summarized. Some challenges are also listed at the end.
Collapse
Affiliation(s)
- Wenwen Fei
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China.
| | - Sheng-Yan Tang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China.
| | - Man-Bo Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China.
| |
Collapse
|
9
|
Sun ST, Chen JS, Dong BL, Wang MX, Guo X, Chen YY, Zhang MQ, Ren QD, Liu YF, Sun JY, Lin ST, Liu C. An intramolecular charge transfer based fluorescent probe for imaging of OCl . Bioorg Chem 2024; 153:107900. [PMID: 39442460 DOI: 10.1016/j.bioorg.2024.107900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
The discovery and utilization of new fluorescent chromophore is indispensable to exploit high performance probes for biological research. Stokes shift is one of the most important properties of chromophore accounting for super-resolution fluorescence imaging. Intramolecular charge transfer (ICT) is one of the fundamental mechanisms for fluorescence that accompanied by large Stokes shifts. Based on the conformational changes between ground and excited states, ICT models can be divided into two types: conformation-steady ICT, whose conformation remains unchanged, and conformation-changeable ICT, which is characterized by the rotation of the chromophore around an axis upon excitation. Herein, we report a new chromophore whose donor and acceptor parts took a butterfly geometry with a dihedral angle of 21° in ground state and a planar conformation upon photo excitation. The bent conformation might be ascribed to the extra conjugated double bond, which made the coplanarity of the chromophore in ground state get worse. The chromophore shows a remarkable Stokes shift over 150 nm and a high fluorescence quantum yieldof 0.62. The limit of detection is 41 nM, which enabled the imaging of basal as well as induced OCl- in different cells. Moreover, the pronounced spectroscopic properties ensure the in vivo monitoring of OCl- in arthritic mice. This finding would shed light on the exploitation of small molecule probes based on new fluorescence chromophore for precise biological imaging.
Collapse
Affiliation(s)
- Shu-Tao Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China
| | - Jia-Shu Chen
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China
| | - Bao-Li Dong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Mu-Xuan Wang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China
| | - Xu Guo
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China
| | - Ying-Ying Chen
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China
| | - Meng-Qi Zhang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China
| | - Qi-Dong Ren
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China
| | - Yan-Fei Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China
| | - Jin-Yue Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China
| | - Sheng-Tian Lin
- Food Hygiene Section, Tai'an Center for Disease Control and Prevention, Tai'an, Shandong 271000, China.
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China.
| |
Collapse
|
10
|
Stachelska-Wierzchowska A, Narczyk M, Wierzchowski J, Bzowska A, Wielgus-Kutrowska B. Interaction of Tri-Cyclic Nucleobase Analogs with Enzymes of Purine Metabolism: Xanthine Oxidase and Purine Nucleoside Phosphorylase. Int J Mol Sci 2024; 25:10426. [PMID: 39408755 PMCID: PMC11477426 DOI: 10.3390/ijms251910426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Fluorescent markers play important roles in spectroscopic and microscopic research techniques and are broadly used in basic and applied sciences. We have obtained markers with fluorescent properties, two etheno derivatives of 2-aminopurine, as follows: 1,N2-etheno-2-aminopurine (1,N2-ε2APu, I) and N2,3-etheno-2-aminopurine (N2,3-ε2APu, II). In the present paper, we investigate their interaction with two key enzymes of purine metabolism, purine nucleoside phosphorylase (PNP), and xanthine oxidase (XO), using diffraction of X-rays on protein crystals, isothermal titration calorimetry, and fluorescence spectroscopy. Crystals were obtained and structures were solved for WT PNP and D204N-PNP mutant in a complex with N2,3-ε2APu (II). In the case of WT PNP-1,N2-ε2APu (I) complex, the electron density corresponding to the ligand could not be identified in the active site. Small electron density bobbles may indicate that the ligand binds to the active site of a small number of molecules. On the basis of spectroscopic studies in solution, we found that, in contrast to PNP, 1,N2-ε2APu (I) is the ligand with better affinity to XO. Enzymatic oxidation of (I) leads to a marked increase in fluorescence near 400 nm. Hence, we have developed a new method to determine XO activity in biological material, particularly suitable for milk analysis.
Collapse
Affiliation(s)
- Alicja Stachelska-Wierzchowska
- Department of Physics and Biophysics, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, 4 Oczapowskiego St., PL-10-719 Olsztyn, Poland; (A.S.-W.); (J.W.)
| | - Marta Narczyk
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland;
| | - Jacek Wierzchowski
- Department of Physics and Biophysics, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, 4 Oczapowskiego St., PL-10-719 Olsztyn, Poland; (A.S.-W.); (J.W.)
| | - Agnieszka Bzowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland;
| | - Beata Wielgus-Kutrowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland;
| |
Collapse
|
11
|
Xue SS, Zhu W, Li Y, Pan W, Li N, Tang B. Dual-stimuli responsive theranostic agents based on small molecules. Chem Commun (Camb) 2024; 60:9860-9870. [PMID: 39157895 DOI: 10.1039/d4cc02565b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Stimuli-responsive theranostic agents represent a class of molecules that integrate therapeutic and diagnostic functions, offering the capability to respond to disease-associated biomarkers. Dual-stimuli responsive agents, particularly those based on small molecules, have shown considerable promise for precise imaging-guided therapeutic applications. In this Highlight, we summarize the progress of dual-stimuli responsive theranostic agents based on small molecules, for diagnostic and therapeutic studies in biological systems. The Highlight focuses on comparing different responsive groups and chemical structures of these dual-stimuli responsive theranostic agents towards different biomarkers. The potential future directions of the agents for further applications in biological systems are also discussed.
Collapse
Affiliation(s)
- Shan-Shan Xue
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Wanqi Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yuanyuan Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
- Laoshan Laboratory, Qingdao 266237, P. R. China
| |
Collapse
|
12
|
Price S, Que EL. Probing metalloenzyme dynamics in living systems: Contemporary advances in fluorescence imaging tools and applications. Curr Opin Chem Biol 2024; 81:102475. [PMID: 38852500 DOI: 10.1016/j.cbpa.2024.102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/11/2024]
Abstract
Metalloenzymes are essential to cellular function, and their overexpression or enhanced activation are potential therapeutic targets. However, the study of metalloenzymes in vitro presents various challenges, leading many to develop tools to study them in their native cellular environment. Small-molecule fluorescence probes are commonly used to monitor metalloenzyme function, activity, and distribution in situ. These include probes that are activity-based (fluorescence is mediated by enzyme activity) or binding-based (fluorescence is mediated by interactions with the enzyme upon binding its metal cofactor). We discuss recent innovations that overcome key design challenges, such as the rapid diffusion of activity-based probes, the difficulty of probing redox-active enzymes, the selectivity of binding-based probes, and the poor penetration depth of fluorescence, and describe novel applications of these tools.
Collapse
Affiliation(s)
- Sky Price
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Emily L Que
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
13
|
Dey AK, Das S, Jose SM, Sreedharan S, Kandoth N, Barman S, Patra A, Das A, Pramanik SK. Surface functionalized perovskite nanocrystals: a design strategy for organelle-specific fluorescence lifetime multiplexing. Chem Sci 2024; 15:10935-10944. [PMID: 39027267 PMCID: PMC11253202 DOI: 10.1039/d4sc01447b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024] Open
Abstract
Fluorescent molecules or materials with high photoluminescence quantum yields and stability towards photobleaching are ideally suited for multiplex imaging. Despite complying with such properties, perovskite nanocrystals (Pv-NCs) are rarely used for bioimaging owing to their toxicity and limited stability in aqueous media and towards human physiology. We aim to address these deficiencies by designing core-shell structures with Pv-NCs as the core and surface-engineered silica as the shell (SiO2@Pv-NCs) since silica is recognized as a biologically benign carrier material and is known to be excreted through urine. The post-grafting methodology is adopted for developing [SiO2@Pv-NCs]tpm and [SiO2@Pv-NCs]tsy (tpm: triphenylphosphonium ion, tsy: tosylsulfonamide) for specific imaging of mitochondria and endoplasmic reticulum (ER) of the live HeLa cell, respectively. A subtle difference in their average fluorescence decay times ([SiO2@Pv-NCs]tpm: tpm τ av = 3.1 ns and [SiO2@Pv-NCs]tsy: tsy τ av = 2.1 ns) is used for demonstrating a rare example of perovskite nanocrystals in fluorescence lifetime multiplex imaging.
Collapse
Affiliation(s)
- Anik Kumar Dey
- CSIR - Central Salt and Marine Chemicals Research Institute Gijubhai Badheka Marg Bhavnagar Gujarat 364002 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre Ghaziabad Uttar Pradesh 201 002 India
| | - Subhadeep Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal India
| | - Sharon Mary Jose
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata Mohanpur West Bengal India
| | - Sreejesh Sreedharan
- Human Science Research Centre, University of Derby Kedleston Road DE22 1GB UK
| | - Noufal Kandoth
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata West Bengal India
| | - Surajit Barman
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata West Bengal India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal India
| | - Amitava Das
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata West Bengal India
| | - Sumit Kumar Pramanik
- CSIR - Central Salt and Marine Chemicals Research Institute Gijubhai Badheka Marg Bhavnagar Gujarat 364002 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre Ghaziabad Uttar Pradesh 201 002 India
| |
Collapse
|
14
|
Chakraborty S, Bindra AK, Thomas A, Zhao Y, Ajayaghosh A. pH-Assisted multichannel heat shock monitoring in the endoplasmic reticulum with a pyridinium fluorophore. Chem Sci 2024; 15:10851-10857. [PMID: 39027278 PMCID: PMC11253182 DOI: 10.1039/d4sc01977f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 07/20/2024] Open
Abstract
Heat shock is a global health concern as it causes permanent damage to living cells and has a relatively high mortality rate. Therefore, diagnostic tools that facilitate a better understanding of heat shock damage and the defense mechanism at the sub-cellular level are of great importance. In this report, we have demonstrated the use of a pyridinium-based fluorescent molecule, PM-ER-OH, as a 'multichannel' imaging probe to monitor the pH change associated with a heat shock in the endoplasmic reticulum. Among the three pyridinium derivatives synthesized, PM-ER-OH was chosen for study due to its excellent biocompatibility, good localization in the endoplasmic reticulum, and intracellular pH response signaled by a yellow fluorescence (λ max = 556 nm) at acidic pH and a far red fluorescence (λ max = 660 nm) at basic pH. By changing the excitation wavelength, we could modulate the fluorescence signal in 'turn-ON', single excitation ratiometric and 'turn-OFF' modes, making the fluorophore a 'multichannel' probe for both ex vitro and in vitro pH monitoring in the endoplasmic reticulum. The probe could efficiently monitor the pH change when heat shock was applied to cells either directly or in a pre-heated manner, which gives insight on cellular acidification caused by heat stress.
Collapse
Affiliation(s)
- Sandip Chakraborty
- CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Anivind Kaur Bindra
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Anagha Thomas
- CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Ayyappanpillai Ajayaghosh
- CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Department of Chemistry, SRM Institute of Science and Technology Chennai 603203 India
| |
Collapse
|
15
|
Nehra N, Kaushik R, Kanika, Rahul, Khan R. Benzothiazole-Quinoline-Based Fluorescent Probe for Fe 3+ and its Applications in Environmental and Biological Samples. J Fluoresc 2024:10.1007/s10895-024-03827-1. [PMID: 39002051 DOI: 10.1007/s10895-024-03827-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Due to the its high abundance, iron ion contamination and toxicity is one of the most challenging issue for living beings. Although, iron is extremenly important for several body functions, excess amount of iron in the body can also be fatal. In last century, rapid industrialization, iron extraction and mismanagement of industrial waste disposal leads to iron contamination in water bodies. Therefore, versatile iron sensors needs to be develop which can be employed for detection in biological as well as real water samples. 8-hydroxyquinoline is well-known for its strong affinity towards transition metals including Fe3+. In this regard, we have synthesised benzothiazole-quinoline derived 1,2,3- triazole (4HBTHQTz), in which 4-(benzo[d]thiazol-2-yl)phenolic (4-HBT) group acts as a fluorophore. 4HBTHQTz showed high fluorescence and induced a selective decrease in fluorescence with Fe3+ at 380 nm (λex. = 320 nm). The detection limit of 4HBTHQTz with Fe3+ is calculated as 0.64 μM, which is lower than the WHO recommended limit in drinking water. 4HBTHQTz works over the 5-8 pH range and has shown promising results for quantitative detection of Fe3+ in water samples collected from tap, river and seawater. 4HBTHQTz can also detect the Fe3+ in biological samples which is confirmed by fluorescence cell imaging using L929 mouse fibroblast cells. Overall, 4HBTHQTz showed advantages such as high selectivity, quick detection, and good limit of detection (LOD) for Fe3+.
Collapse
Affiliation(s)
- Nidhi Nehra
- Department of Chemistry, National Institute of Technology, Kurukshetra, Haryana, 136119, India
- Department of Chemistry, Indian Institute of Technology, Powai, Mumbai, 400 076, India
| | - Rahul Kaushik
- Chemical Oceanography Division, CSIR- National Institute of Oceanography, Dona Paula, 403004, Goa, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Kanika
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, 140306, India
| | - Rahul
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, 140306, India
- Department of Chemistry, Malaviya National Institute of Technology Jaipur (MNIT), JLN Marg, Jaipur, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, 140306, India
| |
Collapse
|
16
|
Li K, Chen X, Wang B, Liu S. Biotin-tagged fluorescent probe for in situ visualization of γ-glutamyl transpeptidase in cancerous cells and tissues. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124274. [PMID: 38640627 DOI: 10.1016/j.saa.2024.124274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
γ-Glutamyl transpeptidase (GGT), a cell-surface enzyme, is strongly implicated in mammalian malignancy growth and migration processes including human hepatocarcinogens. However, simply and conveniently detect of GGT on the cell membrane remains highly challenging. In this study, a biotin-tagged fluorescent probe Nap-biotin-glu was developed using glutamic acid, naphthalimide, and biotin as the reaction site, fluorescent reporter, and membrane-targeting group, which required only three steps. Colocalization fluorescence imaging and immunofluorescence analysis indicated that probe Nap-biotin-glu was successfully realized in situ visualizing of GGT on the cell membrane.Owing to the significant over-expressed GGT level in tumor, the probe was successfully applied to distinguish cancer tissues from adjacent normal tissues.
Collapse
Affiliation(s)
- Ke Li
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, Hunan Province, China.
| | - Xu Chen
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha 410005, China
| | - Benhua Wang
- College of Chemistry & Chemical Engineering, Central South University, Changsha 410083, Hunan Province, China
| | - Sulai Liu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha 410005, China.
| |
Collapse
|
17
|
Stachelska-Wierzchowska A, Wierzchowski J. Chemo-Enzymatic Generation of Highly Fluorescent Nucleoside Analogs Using Purine-Nucleoside Phosphorylase. Biomolecules 2024; 14:701. [PMID: 38927104 PMCID: PMC11201700 DOI: 10.3390/biom14060701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Chemo-enzymatic syntheses of strongly fluorescent nucleoside analogs, potentially applicable in analytical biochemistry and cell biology are reviewed. The syntheses and properties of fluorescent ribofuranosides of several purine, 8-azapurine, and etheno-purine derivatives, obtained using various types of purine nucleoside phosphorylase (PNP) as catalysts, as well as α-ribose-1-phosphate (r1P) as a second substrate, are described. In several instances, the ribosylation sites are different to the canonical purine N9. Some of the obtained ribosides show fluorescence yields close to 100%. Possible applications of the new analogs include assays of PNP, nucleoside hydrolases, and other enzyme activities both in vitro and within living cells using fluorescence microscopy.
Collapse
Affiliation(s)
| | - Jacek Wierzchowski
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| |
Collapse
|
18
|
Dong XX, Liu JG, Zhang HX, Zhang B. A Practical and Modular Method for Direct C-H Functionalization of the BODIPY Core via Thianthrenium Salts. Chemistry 2024:e202401929. [PMID: 38818768 DOI: 10.1002/chem.202401929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/01/2024]
Abstract
Direct structural modification of small-molecule fluorophores represents a straightforward and appealing strategy for accessing new fluorescent dyes with desired functionalities. We report herein a general and efficient visible-light-mediated method for the direct C-H functionalization of BODIPY, an important fluorescent chromophore, using readily accessible and bench-stable aryl and alkenylthianthrenium salts. This practical approach operates at room temperature with extraordinary site-selectivity, providing a step-economical means to construct various valuable aryl- and alkenyl-substituted BODIPY dyes. Remarkably, this protocol encompasses a broad substrate scope and excellent functional-group tolerance, and allows for the modular synthesis of sophisticated symmetrical and asymmetrical disubstituted BODIPYs by simply employing different combinations of thianthrenium salts. Moreover, the late-stage BODIPY modification of complex drug molecules further highlights the potential of this novel methodology in the synthesis of fluorophore-drug conjugates.
Collapse
Affiliation(s)
- Xin-Xin Dong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Jing-Guo Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Hao-Xiang Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Bo Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
19
|
Wang Q, Wang P, Xiao Y, Feng S, Zhang G, Gong YJ. An asymmetrical flavylium based probe with large Stokes shift and near infrared emission for highly sensitive detecting and visualizing cellular drug induced H 2S fluctuations. Talanta 2024; 271:125734. [PMID: 38309114 DOI: 10.1016/j.talanta.2024.125734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Hydrogen sulfide (H2S) has been recognized as an important gaseous signaling molecule in living systems, and is of great significance in many pathological and physiological processes. Misregulation of endogenous H2S is implicated in various diseases in the neuronal, gastrointestinal, circulatory, and endocrine systems. Fluorescent probe with large Stokes shift and near infrared emission, is ideal candidate for imaging applications to prevent excitation scattering, autofluorescence interference, matrix absorption caused signal loss, and sample destruction. In this study, a dual-side expansion approach was performed to develop spectra tunable hydroxyl functional flavylium derivative named HN8 with enlarged Stokes shift of 81 nm, lengthened emission of 671 nm, satisfied quantum yield of 0.23, and good fluorescence enhancement factor of 14.3-fold. Moreover, based on HN8, the screened probe HN8DNP displayed 225-fold fluorescence enhancement containing linear correlations to H2S from 0 to 50 μM with good limit of detection (LOD) of 0.31 μM. Therefore, HN8DNP was then applied for imaging exogenous H2S and drug induced enzymatic H2S generation in living cells with satisfied results, revealing the relationship between intracellular H2S levels and related enzyme activities. In a word, the present work provided a potential fluorescence probe for highly selective and sensitive detecting H2S in vitro and in living cells. And the promising dual-side expansion strategy for regulation optical feature of traditional fluorophore may meet the increasing requirements of sensing and imaging applications.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Panpan Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Yang Xiao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Suling Feng
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, PR China.
| | - Yi Jun Gong
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, PR China.
| |
Collapse
|
20
|
Jiang G, Liu H, Deng G, Liu H, Zhou Z, Ren TB, Wang L, Zhang XB, Yuan L. "Zero" Intrinsic Fluorescence Sensing-Platforms Enable Ultrasensitive Whole Blood Diagnosis and In Vivo Imaging. Angew Chem Int Ed Engl 2024; 63:e202400637. [PMID: 38409519 DOI: 10.1002/anie.202400637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
Abnormal physiological processes and diseases can lead to content or activity fluctuations of biocomponents in organelles and whole blood. However, precise monitoring of these abnormalities remains extremely challenging due to the insufficient sensitivity and accuracy of available fluorescence probes, which can be attributed to the background fluorescence arising from two sources, 1) biocomponent autofluorescence (BCAF) and 2) probe intrinsic fluorescence (PIF). To overcome these obstacles, we have re-engineered far-red to NIR II rhodol derivatives that possess weak BCAF interference. And a series of "zero" PIF sensing-platforms were created by systematically regulating the open-loop/spirocyclic forms. Leveraging these advancements, we devised various ultra-sensitive NIR indicators, achieving substantial fluorescence boosts (190 to 1300-fold). Among these indicators, 8-LAP demonstrated accurate tracking and quantifying of leucine aminopeptidase (LAP) in whole blood at various stages of tumor metastasis. Furthermore, coupling 8-LAP with an endoplasmic reticulum-targeting element enabled the detection of ERAP1 activity in HCT116 cells with p53 abnormalities. This delicate design of eliminating PIF provides insights into enhancing the sensitivity and accuracy of existing fluorescence probes toward the detection and imaging of biocomponents in abnormal physiological processes and diseases.
Collapse
Affiliation(s)
- Gangwei Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Hong Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Guohui Deng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Han Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Zhixuan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Lu Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| |
Collapse
|
21
|
Ganguly T, Das S, Maity D, Baitalik S. Luminescent Ruthenium-Terpyridine Complexes Coupled with Stilbene-Appended Naphthalene, Anthracene, and Pyrene Motifs Demonstrate Fluoride Ion Sensing and Reversible Trans-Cis Photoisomerization. Inorg Chem 2024; 63:6883-6897. [PMID: 38567656 DOI: 10.1021/acs.inorgchem.4c00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A new family of luminescent heteroleptic Ru(II)-terpyridine complexes coupled with stilbene-appended naphthalene, anthracene, and pyrene motifs is reported. Each of the complexes features moderately intense emission at room temperature having a lifetime of 16.7 ns for naphthalene and 11.4 ns for anthracene, while a substantially elevated lifetime of 8.3 μs was observed for the pyrene derivative. All the three complexes display a reversible couple in the positive potential window due to Ru2+/Ru3+ oxidation but multiple reversible and/or quasi-reversible peaks in the negative potential domain because of the reduction of the terpyridine moieties. All the complexes selectively sense F- among the studied anions via the intermediary of different noncovalent interactions. The interaction event is monitored through absorption, emission, and 1H and 19F NMR spectroscopy. Additionally, upon utilizing the stilbene motif, reversible trans-cis isomerization of the complexes has been undertaken upon alternate treatment of visible and UV light so that the complexes can act as potential photomolecular switches. We also carried out the anion sensing characterization of the cis form of the complexes. Theoretical calculation employing density functional theory is also executed for a selective complex (naphthalene derivative) to elucidate different noncovalent interactions that are operative during the complex-fluoride interplay.
Collapse
Affiliation(s)
- Tanusree Ganguly
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Soumi Das
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Dinesh Maity
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
- Department of Chemistry, Katwa College, Purba Bardhaman, West Bengal 713130, India
| | - Sujoy Baitalik
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
22
|
Jouclas R, Laine S, Eliseeva SV, Mandel J, Szeremeta F, Retailleau P, He J, Gallard JF, Pallier A, Bonnet CS, Petoud S, Durand P, Tóth É. Lanthanide-Based Probes for Imaging Detection of Enzyme Activities by NIR Luminescence, T1- and ParaCEST MRI. Angew Chem Int Ed Engl 2024; 63:e202317728. [PMID: 38376889 DOI: 10.1002/anie.202317728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
Applying a single molecular probe to monitor enzymatic activities in multiple, complementary imaging modalities is highly desirable to ascertain detection and to avoid the complexity associated with the use of agents of different chemical entities. We demonstrate here the versatility of lanthanide (Ln3+) complexes with respect to their optical and magnetic properties and their potential for enzymatic detection in NIR luminescence, CEST and T1 MR imaging, controlled by the nature of the Ln3+ ion, while using a unique chelator. Based on X-ray structural, photophysical, and solution NMR investigations of a family of Ln3+ DO3A-pyridine model complexes, we could rationalize the luminescence (Eu3+, Yb3+), CEST (Yb3+) and relaxation (Gd3+) properties and their variations between carbamate and amine derivatives. This allowed the design ofL n L G a l 5 ${{{\bf L n L}}_{{\bf G a l}}^{5}}$ probes which undergo enzyme-mediated changes detectable in NIR luminescence, CEST and T1-weighted MRI, respectively governed by variations in their absorption energy, in their exchanging proton pool and in their size, thus relaxation efficacy. We demonstrate that these properties can be exploited for the visualization of β-galactosidase activity in phantom samples by different imaging modalities: NIR optical imaging, CEST and T1-weighted MRI.
Collapse
Affiliation(s)
- Rémy Jouclas
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Sophie Laine
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans, France
| | - Svetlana V Eliseeva
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans, France
| | - Jérémie Mandel
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Frédéric Szeremeta
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans, France
| | - Pascal Retailleau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Jiefang He
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Jean-François Gallard
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Agnès Pallier
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans, France
| | - Célia S Bonnet
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans, France
| | - Stéphane Petoud
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans, France
| | - Philippe Durand
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans, France
| |
Collapse
|
23
|
Wralstad EC, Raines RT. Sensitive detection of SARS-CoV-2 main protease 3CL pro with an engineered ribonuclease zymogen. Protein Sci 2024; 33:e4916. [PMID: 38501598 PMCID: PMC10949392 DOI: 10.1002/pro.4916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 03/20/2024]
Abstract
Alongside vaccines and antiviral therapeutics, diagnostic tools are a crucial aid in combating the COVID-19 pandemic caused by the etiological agent SARS-CoV-2. All common assays for infection rely on the detection of viral sub-components, including structural proteins of the virion or fragments of the viral genome. Selective pressure imposed by human intervention of COVID-19 can, however, induce viral mutations that decrease the sensitivity of diagnostic assays based on biomolecular structure, leading to an increase in false-negative results. In comparison, mutations are unlikely to alter the function of viral proteins, and viral machinery is under less selective pressure from vaccines and therapeutics. Accordingly, diagnostic assays that rely on biomolecular function can be more robust than ones that rely on biopolymer structure. Toward this end, we used a split intein to create a circular ribonuclease zymogen that is activated by the SARS-CoV-2 main protease, 3CLpro . Zymogen activation by 3CLpro leads to a >300-fold increase in ribonucleolytic activity, which can be detected with a highly sensitive fluorogenic substrate. This coupled assay can detect low nanomolar concentrations of 3CLpro within a timeframe comparable to that of common antigen-detection protocols. More generally, the concept of detecting a protease by activating a ribonuclease could be the basis of diagnostic tools for other indications.
Collapse
Affiliation(s)
- Evans C. Wralstad
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Ronald T. Raines
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
24
|
Singh A, Dhau J, Kumar R, Badru R, Kaushik A. Exploring the fluorescence properties of tellurium-containing molecules and their advanced applications. Phys Chem Chem Phys 2024; 26:9816-9847. [PMID: 38497121 DOI: 10.1039/d3cp05740b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
This review article explores the fascinating realm of fluorescence using organochalcogen molecules, with a particular emphasis on tellurium (Te). The discussion encompasses the underlying mechanisms, structural motifs influencing fluorescence, and the applications of these intriguing phenomena. This review not only elucidates the current state of knowledge but also identifies avenues for future research, thereby serving as a valuable resource for researchers and enthusiasts in the field of fluorescence chemistry with a focus on Te-based molecules. By highlighting challenges and prospects, this review sparks a conversation on the transformative potential of Te-containing compounds across different fields, ranging from environmental solutions to healthcare and materials science applications. This review aims to provide a comprehensive understanding of the distinct fluorescence behaviors exhibited by Te-containing compounds, contributing valuable insights to the evolving landscape of chalcogen-based fluorescence research.
Collapse
Affiliation(s)
- Avtar Singh
- Research and Development, Molekule Group Inc., 3802 Spectrum Blvd., Tampa, Florida 33612, USA.
- Department of Chemistry, Sri Guru Teg Bahadur Khalsa College, Anandpur Sahib, Punjab 140118, India
| | - Jaspreet Dhau
- Research and Development, Molekule Group Inc., 3802 Spectrum Blvd., Tampa, Florida 33612, USA.
| | - Rajeev Kumar
- Department of Environment Studies, Panjab University, Chandigarh 160014, India
| | - Rahul Badru
- Department of Chemistry, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab 140406, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA
- School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India
| |
Collapse
|
25
|
Xie H, Cheng Y, Cai Y, Ren T, Zhang B, Chen N, Wang J. A H 2O 2-specific fluorescent probe for evaluating oxidative stress in pesticides-treated cells, rice roots and zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133426. [PMID: 38185089 DOI: 10.1016/j.jhazmat.2024.133426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/26/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Hydrogen peroxide (H2O2) plays an irreplaceable role in the evaluation of the redox status in versatile circumstances. The levels of H2O2 can be affected by both internal and external stimuli, including environmental hazards. Abnormal production of H2O2 is a common characteristic of pesticide-caused damage. Therefore, H2O2 levels can intuitively and conveniently reflect the oxidative stress caused by various pesticides in cells and organisms. However, reliable and convenient monitoring of H2O2 in living cells is still limited by the lack of specific imaging probes. In this study, a fluorescent probe (HBTM-HP) was developed for in situ observation of H2O2 fluctuations caused by pesticide treatment over time in mammalian cells, rice roots and zebrafish. HBTM-HP showed high sensitivity and selectivity for H2O2. Fluorescence imaging results confirmed that HBTM-HP could be applied to reveal H2O2 production induced by multiple pesticides. This study revealed that HBTM-HP could serves as a versatile tool to monitor the redox status related to H2O2 both in vitro and in vivo upon exposure to pesticides, and also provides a basis for clarifying the mechanisms of pesticides in physiological and pathological processes.
Collapse
Affiliation(s)
- Hui Xie
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China; Department of Environmental Engineering, School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China
| | - Yuchun Cheng
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China
| | - Yiheng Cai
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China
| | - Tianrui Ren
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China
| | - Bo Zhang
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China
| | - Nan Chen
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China.
| | - Jian Wang
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China.
| |
Collapse
|
26
|
Gadiyaram S, Aakshika Sree M, Sharma N, Amilan Jose D. An amphiphilic dansyl based multianalyte sensor for the detection of Hg 2+, PPi, and TNP: A three-in-one chemical sensor. Methods 2024; 223:45-55. [PMID: 38272245 DOI: 10.1016/j.ymeth.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/06/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024] Open
Abstract
A fluorescent dansyl-based amphiphilic probe, 5-(dimethylamino)-N-hexadecylnaphthalene-1-sulfonamide (DLC), was synthesized and characterized to detect multiple analytes at different sensing environments. In acetonitrile, DLC detects nitro explosives such as trinitrophenol (TNP) and 2,4-dinitrophenol (2,4-DNP) by an emission "on-off" response method, and the detection limits (LOD) were estimated to be as low as 4.3 µM and 17.4 µM, respectively. Amphiphilic long chains of the probe were embedded into lipid bilayers to form nanoscale vesicles DLC.Ves. Nanovesicular probe DLC.Ves was found to be highly selective for Hg2+ among other metal ions and for pyrophosphate (PPi) ions among various anions. DLC.Ves could detect Hg2+ with a turn "on-off" emission and PPi with ratiometric change in emission at 525 nm. It is proposed that DLC.Ves could detect Hg2+ via the Hg2+-induced aggregation quenching mechanism and PPi through the Hydrogen bonding. The LODs are estimated as 6.41 µM and 70.9 µM for Hg2+ and PPi, respectively. 1H NMR, SEM, and fluorescence lifetime measurements confirmed the binding mechanism. Thus, it is believed that the simple fluorescent probe DLC could be a prominent sensor to detect multiple analytes depending on the sensing medium.
Collapse
Affiliation(s)
- Srushti Gadiyaram
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra 136119, Haryana, India
| | - M Aakshika Sree
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra 136119, Haryana, India
| | - Nancy Sharma
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra 136119, Haryana, India
| | - D Amilan Jose
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra 136119, Haryana, India.
| |
Collapse
|
27
|
Yuan F, Zhao Q, Zeng Y, Liao XF, Li J, Liu B, Kou JF, Zhong X, Wu XH, Zhang JF, Ren WX. A COX2-targeting cancer-specific fluorescent probe for hydrogen sulfide detection in living cells, Caenorhabditis elegans, and zebrafish. Analyst 2024; 149:1489-1495. [PMID: 38314794 DOI: 10.1039/d3an01847d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
A novel cyclooxygenase-2 (COX-2) targeted H2S-activated cancer-specific fluorescent probe, namely, COX2-H2S, was designed and synthesized, with naphthalimide as the fluorophore and indomethacin as the targeting group. This H2S-sensing probe was developed to differentiate tumor cells from normal cells and was tested in living cells, Caenorhabditis elegans (C. elegans), and zebrafish. The probe could successfully be used for imaging endogenous and exogenous H2S in living cells, demonstrating high sensitivity and specificity and strong anti-interference. COX2-H2S had the ability to not only discern cancer cells from normal cells but also specifically recognize 9L/lacZ cells from other glioblastoma cells (U87-MG and LN229). It could also be successfully applied for the fluorescent live imaging of H2S in both C. elegans and zebrafish.
Collapse
Affiliation(s)
- Fengying Yuan
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu 610000, China
| | - Qiao Zhao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| | - Yanyan Zeng
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Xu Fang Liao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| | - Jiali Li
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Bo Liu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| | - Jun Feng Kou
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| | - Xiaolin Zhong
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiang Hua Wu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| | - Jun Feng Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| | - Wen Xiu Ren
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
28
|
Zhang Y, Zhang Z, Wu M, Zhang R. Advances and Perspectives of Responsive Probes for Measuring γ-Glutamyl Transpeptidase. ACS MEASUREMENT SCIENCE AU 2024; 4:54-75. [PMID: 38404494 PMCID: PMC10885334 DOI: 10.1021/acsmeasuresciau.3c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 02/27/2024]
Abstract
Gamma-glutamyltransferase (GGT) is a plasma-membrane-bound enzyme that is involved in the γ-glutamyl cycle, like metabolism of glutathione (GSH). This enzyme plays an important role in protecting cells from oxidative stress, thus being tested as a key biomarker for several medical conditions, such as liver injury, carcinogenesis, and tumor progression. For measuring GGT activity, a number of bioanalytical methods have emerged, such as chromatography, colorimetric, electrochemical, and luminescence analyses. Among these approaches, probes that can specifically respond to GGT are contributing significantly to measuring its activity in vitro and in vivo. This review thus aims to highlight the recent advances in the development of responsive probes for GGT measurement and their practical applications. Responsive probes for fluorescence analysis, including "off-on", near-infrared (NIR), two-photon, and ratiometric fluorescence response probes, are initially summarized, followed by discussing the advances in the development of other probes, such as bioluminescence, chemiluminescence, photoacoustic, Raman, magnetic resonance imaging (MRI), and positron emission tomography (PET). The practical applications of the responsive probes in cancer diagnosis and treatment monitoring and GGT inhibitor screening are then highlighted. Based on this information, the advantages, challenges, and prospects of responsive probe technology for GGT measurement are analyzed.
Collapse
Affiliation(s)
- Yiming Zhang
- Australian Institute for
Bioengineering and Nanotechnology, The University
of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zexi Zhang
- Australian Institute for
Bioengineering and Nanotechnology, The University
of Queensland, St. Lucia, Queensland 4072, Australia
| | - Miaomiao Wu
- Australian Institute for
Bioengineering and Nanotechnology, The University
of Queensland, St. Lucia, Queensland 4072, Australia
| | - Run Zhang
- Australian Institute for
Bioengineering and Nanotechnology, The University
of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
29
|
Lo YP, Nivetha N, Velmathi S, Wu SP. A near-infrared fluorescent probe with a substantial Stokes shift designed for the detection and imaging of β-galactosidase within living cells and animals. Methods 2024; 222:10-18. [PMID: 38154527 DOI: 10.1016/j.ymeth.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023] Open
Abstract
β-Galactosidase serves as a pivotal biomarker for both cancer and cellular aging. The advancement of fluorescent sensors for tracking β-galactosidase activity is imperative in the realm of cancer diagnosis. We have designed a near-infrared fluorescent probe (PTA-gal) for the detection of β-galactosidase in living systems with large Stokes shifts. PTA-gal exhibits remarkable sensitivity and selectivity in detecting β-galactosidase, producing near-infrared fluorescent signals with a remarkably low detection limit (2.2 × 10-5 U/mL) and a high quantum yield (0.30). Moreover, PTA-gal demonstrates biocompatibility and can effectively detect β-galactosidase in cancer cells as well as within living animals.
Collapse
Affiliation(s)
- Yuan-Pin Lo
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Narayanasamy Nivetha
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| | - Sivan Velmathi
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| | - Shu-Pao Wu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan.
| |
Collapse
|
30
|
Li K, Yang M. Activatable organic probes for in situ imaging of biomolecules. Chem Asian J 2024; 19:e202301037. [PMID: 38116891 DOI: 10.1002/asia.202301037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
Biomolecules are fundamental for various chemical and biological processes of living organisms. High-resolution in situ imaging of the dynamics and local distribution of biomolecules may facilitate better interpretation of diverse complex cell events in the biomedicine field. In different advanced imaging tools, fluorescence imaging-based activatable organic probes can be noninvasively and effortlessly internalized into cells and can be easily modified, which is essential for the in situ imaging of targets in living organisms. We here briefly summarize the existing general design strategies of activatable organic probes for retaining the fluorescence signal inside cells. We particularly describe the bioapplication of these probes for the in situ bioimaging. This review is expected to promote the development of new molecular tools for extending the application of these in situ imaging strategies to other biomolecules.
Collapse
Affiliation(s)
- Ke Li
- College of Chemistry & Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, China
| | - Minghui Yang
- College of Chemistry & Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, China
| |
Collapse
|
31
|
Eleni Karakatsani M, Estrada H, Chen Z, Shoham S, Deán-Ben XL, Razansky D. Shedding light on ultrasound in action: Optical and optoacoustic monitoring of ultrasound brain interventions. Adv Drug Deliv Rev 2024; 205:115177. [PMID: 38184194 PMCID: PMC11298795 DOI: 10.1016/j.addr.2023.115177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Monitoring brain responses to ultrasonic interventions is becoming an important pillar of a growing number of applications employing acoustic waves to actuate and cure the brain. Optical interrogation of living tissues provides a unique means for retrieving functional and molecular information related to brain activity and disease-specific biomarkers. The hybrid optoacoustic imaging methods have further enabled deep-tissue imaging with optical contrast at high spatial and temporal resolution. The marriage between light and sound thus brings together the highly complementary advantages of both modalities toward high precision interrogation, stimulation, and therapy of the brain with strong impact in the fields of ultrasound neuromodulation, gene and drug delivery, or noninvasive treatments of neurological and neurodegenerative disorders. In this review, we elaborate on current advances in optical and optoacoustic monitoring of ultrasound interventions. We describe the main principles and mechanisms underlying each method before diving into the corresponding biomedical applications. We identify areas of improvement as well as promising approaches with clinical translation potential.
Collapse
Affiliation(s)
- Maria Eleni Karakatsani
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Héctor Estrada
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Shy Shoham
- Department of Ophthalmology and Tech4Health and Neuroscience Institutes, NYU Langone Health, NY, USA
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland.
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland.
| |
Collapse
|
32
|
Bhattacharya S, Pal P, Baitalik S. Design of molecular sensors and switches based on luminescent ruthenium-terpyridine complexes bearing active methylene and triphenylphosphonium motifs as anion recognition sites: experimental and DFT/TD-DFT investigation. Dalton Trans 2024; 53:1307-1321. [PMID: 38115813 DOI: 10.1039/d3dt03681b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Synthesis, characterization and thorough investigation of the photophysical and electrochemical properties of a new category of emissive homo- and heteroleptic Ru(II)-complexes derived from the [4'-(p-triphenylphosphonium methyl phenyl)-2,2':6',2''-terpyridine]bromide (tpy-PhCH2PPh3Br) ligand have been executed in this work. Incorporation of the PhCH2PPh3+Br- group at the terpyridine motif appropriately adjusts the triplet metal-to-ligand charge transfer (3MLCT) and metal-centered (3MC) excited states so that the complexes luminesce at room temperature (RT) having lifetimes within the range of 6.82-9.63 ns. The RT emission characteristics of the complexes get further enhanced via aggregation phenomena through the use of different solvent/non-solvent mixtures (DMSO/H2O and DMSO/PhCH3 mixtures). Temperature dependent emission spectral measurements indicate that the emission intensity, quantum yield and lifetime increase upon dropping down the temperature, thereby designated as the on-state, while the increase of temperature causes a reduction of the said properties, indicating the off-state and the process is fully reversible. Taking advantage of the active methylene group coupled with a phosphonium motif, anion sensing characteristics of the complexes are investigated systematically in DMSO through the use of various optical channels and spectroscopic tools. The complexes are very much sensitive to fluoride and to a lesser extent acetate and dihydrogen phosphate among the studied anions. In essence, the complexes function as sensors for temperature and fluoride ion. Computational investigations were also executed via density functional theory (DFT) and time-dependent (TD)-DFT to obtain a clear understanding of the electronic structures of the metalloreceptors, appropriate assignment of the spectral bands and their mode of interaction with selected anions.
Collapse
Affiliation(s)
- Sohini Bhattacharya
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India.
| | - Poulami Pal
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India.
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & B Raja S C Mullick Road, Kolkata 700032, India
| | - Sujoy Baitalik
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
33
|
Wang X, Song X, Wu J, Dong P, Men X, Zhang X, Yang F, Sun W. Mitochondria-targeting two-photon fluorescent probe for sequential recognition of Cu 2+ and ATP in neurons and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123260. [PMID: 37591016 DOI: 10.1016/j.saa.2023.123260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/25/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
Highly active mitochondria play a significant role in neuron function. Cu2+ and ATP levels in mitochondria regulate neuronal mitochondrial activity. However, mitochondrial activity was often evaluated by mitochondrial membrane potential. Less is known about the dynamics of Cu2+ and ATP in mitochondria. Herein, we developed a two-photon fluorescence probe (MP), which provided a determination of mitochondrial ATP and Cu2+. The fluorescence of MP showed remarkable quenching in the presence of Cu2+ and then gradually recovered in the presence of ATP, which can be used for sequential recognition. MP has high sensitivity to Cu2+ and ATP, with limits of detection (LOD) close to 0.31 nM and 13.6 nM, respectively. Using this useful probe, we monitor the fluctuation of concentrations of Cu2+ and ATP by fluorescence imaging at single neuron and zebrafish.
Collapse
Affiliation(s)
- Xuefeng Wang
- Shandong Provincial Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou 253023, China
| | - Xinlei Song
- Maternity & Child Care Center of Dezhou, Dezhou 253000, China
| | - Juanjuan Wu
- Shandong Provincial Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou 253023, China
| | - Pingxuan Dong
- Shandong Provincial Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou 253023, China
| | - Xiaoxia Men
- Shandong Provincial Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou 253023, China
| | - Xiaolei Zhang
- Shandong Provincial Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou 253023, China
| | - Fan Yang
- Shandong Provincial Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou 253023, China; State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Wan Sun
- Shandong Provincial Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou 253023, China.
| |
Collapse
|
34
|
Dodds AC, Sansom HG, Magennis SW, Sutherland A. Synthesis of Thiazoloindole α-Amino Acids: Chromophores Amenable to One- and Two-Photon Induced Fluorescence. Org Lett 2023; 25:8942-8946. [PMID: 38055619 PMCID: PMC10729019 DOI: 10.1021/acs.orglett.3c03851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
Thiazoloindole α-amino acids have been synthesized in four steps from tryptophan using a dual-catalytic thiolation reaction and a copper-mediated intramolecular N-arylation process. Late-stage diversification of the thiazoloindole core with electron-deficient aryl substituents produced chromophores that on one-photon excitation displayed blue-green emission, mega-Stokes shifts, and high quantum yields. The thiazoloindole amino acids could also be excited via two-photon absorption in the near-infrared, demonstrating their potential for biomedical imaging applications.
Collapse
Affiliation(s)
- Amy C. Dodds
- School of Chemistry, The Joseph Black
Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Henry G. Sansom
- School of Chemistry, The Joseph Black
Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Steven W. Magennis
- School of Chemistry, The Joseph Black
Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Andrew Sutherland
- School of Chemistry, The Joseph Black
Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
35
|
Ye C, Huang R, Chiou MF, Wang B, Li D, Bao H. Synthesis of a new fluorophore: wavelength-tunable bisbenzo[ f]isoindolylidenes. Chem Sci 2023; 14:13151-13158. [PMID: 38023512 PMCID: PMC10664550 DOI: 10.1039/d3sc04445a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
The creation of new functional molecules is a central task in chemical synthesis. Herein, we report the synthesis of a new type of fluorophore, bisbenzo[f]isoindolylidenes, from easily accessible dipropargyl benzenesulfonamides. Wavelength-tunable fluorophores emitting strong fluorescence of green to red light were obtained in this reaction. Late-stage modifications and incorporation of bioactive molecules into these fluorophores give rise to potential applications in biological studies. Detailed computational and experimental studies were conducted to elucidate the mechanism, and suggest a reaction sequence involving Garratt-Braverman type cyclization, isomerization, fragmentation, dimerization and oxidation.
Collapse
Affiliation(s)
- Changqing Ye
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Rui Huang
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University Fuzhou Fujian 350002 P. R. China
| | - Mong-Feng Chiou
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Bo Wang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University Fuzhou Fujian 350002 P. R. China
| | - Daliang Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University Fuzhou Fujian 350002 P. R. China
| | - Hongli Bao
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
36
|
Sahoo A, Bar M, Biswas R, Abedin T, Baitalik S. Modulation of ground and excited state properties of ruthenium complexes through sequential incorporation of metal into a polypyridyl-imidazole bridging ligand. Dalton Trans 2023; 52:15896-15906. [PMID: 37840479 DOI: 10.1039/d3dt02757k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
A polypyridyl-imidazole-based bridging ligand, 2-(4-(4,5-di(pyridine-2-yl)-1H-imidazole-2-yl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline (phen-H2PhImz-bpy), possessing three bidentate coordinating sites, has been designed in this work. The bridging ligand is employed to synthesize mono-, bi-, and trimetallic Ru(II) complexes in combination with terminal bipyridine units for the systematic modulation of photophysical and redox properties upon sequential incorporation of the metal unit into the bridge. All the compounds are characterized via NMR spectroscopy and electrospray ionization mass spectrometry. Absorption and both steady-state and time-resolved emission spectroscopic investigations of the ligand as well as Ru(II) complexes are thoroughly conducted in different solvents. The redox behaviors of the complexes are examined through cyclic voltammetry (CV) in acetonitrile. The focus of the investigation is centered on the systematic modulation of MLCT absorption and emission as well as the redox behavior of the complex entity upon the gradual incorporation of the Ru2+ unit into the complex backbone. The emission energy, quantum yield and lifetime are found to decrease systematically with an increase in the Ru2+ unit in the complex backbone and a linear relationship is observed in each case. A good correlation is also observed between the emission energies of complexes with their respective ΔE1/2 values (the difference between the first oxidation and first reduction potential).
Collapse
Affiliation(s)
- Anik Sahoo
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Manoranjan Bar
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Raju Biswas
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Tuhin Abedin
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Sujoy Baitalik
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
37
|
Zhang Y, Ranaei Pirmardan E, Barakat A, Hafezi-Moghadam A. Breath Biopsy Reveals Systemic Immunothrombosis and Its Resolution through Bioorthogonal Dendritic Nanoprobes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304903. [PMID: 37439390 DOI: 10.1002/adma.202304903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023]
Abstract
Immunothrombosis, an inflammation-dependent activation of the coagulation cascade, leads to microthrombi formations in small vessels. It is a dreaded complication of COVID-19 and a major cause of respiratory failure. Due to their size and disseminated nature, microthrombi are currently undetectable. Here, noninvasive detection of a volatile reporter in the exhaled air is introduced for assessment of systemic immunothrombosis. A dendritic nanoprobe, containing high loading of a thrombin-sensitive substrate, is selectively cleaved by thrombin, resulting in release of a synthetic bioorthogonal volatile organic compound (VOC). The VOC is quantitated in the exhaled air biopsies via gas chromatography-mass spectrometry (GC-MS), allowing near real-time assessment of systemic immunothrombosis. The VOC detection can be further improved with more rapid and sensitive MS-based technologies. The amount of the VOC in the exhaled air decreases with resolution of the microvascular inflammation and intravascular fibrin depositions. Through conjugation of the thrombin-sensitive peptide with a rhodol derivative, a novel thrombin-sensitive fluorescent nanoprobe is developed for intravital visualization of thrombin activity in actively growing thrombi. These results establish unprecedented detection of thrombin activity in vivo, addressing this unmet medical need. This novel approach facilitates diagnosis of immunothrombosis in diseases such as diabetic complications, disseminated intravascular coagulation, and COVID-19.
Collapse
Affiliation(s)
- Yuanlin Zhang
- Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital and Department of Radiology, Harvard Medical School, 75 Francis St., Boston, MA, 02115, USA
| | - Ehsan Ranaei Pirmardan
- Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital and Department of Radiology, Harvard Medical School, 75 Francis St., Boston, MA, 02115, USA
| | - Aliaa Barakat
- Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital and Department of Radiology, Harvard Medical School, 75 Francis St., Boston, MA, 02115, USA
| | - Ali Hafezi-Moghadam
- Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital and Department of Radiology, Harvard Medical School, 75 Francis St., Boston, MA, 02115, USA
| |
Collapse
|
38
|
Wu M, Gong D, Zhou Y, Zha Z, Xia X. Activatable probes with potential for intraoperative tumor-specific fluorescence-imaging guided surgery. J Mater Chem B 2023; 11:9777-9797. [PMID: 37749982 DOI: 10.1039/d3tb01590d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Owing to societal development and aging population, the impact of cancer on human health and quality of life has increased. Early detection and surgical treatment are the most effective approaches for most cancer patients. As the scope of conventional tumor resection is determined by auxiliary examination and surgeon experience, there is often insufficient recognition of tiny tumors. The ability to detect such tumors can be improved by using fluorescent tumor-specific probes for surgical navigation. This review mainly describes the design principles and mechanisms of activatable probes for the fluorescence imaging of tumors. This type of probe is nonfluorescent in normal tissue but exhibits obvious fluorescence emission upon encountering tumor-specific substrates, such as enzymes or bioactive molecules, or changes in the microenvironment, such as a low pH. In some cases, a single-factor response does not guarantee the effective fluorescence labeling of tumors. Therefore, two-factor-activatable fluorescence imaging probes that react with two specific factors in tumor cells have also been developed. Compared with single biomarker testing, the simultaneous monitoring of multiple biomarkers may provide additional insight into the role of these substances in cancer development and aid in improving the accuracy of early cancer diagnosis. Research and progress in this field can provide new methods for precision medicine and targeted therapy. The development of new approaches for early diagnosis and treatment can effectively improve the prognosis of cancer patients and help enhance their quality of life.
Collapse
Affiliation(s)
- Mingzhu Wu
- Department of Obstetrics and Gynecology, Anhui Provincial Children's Hospital, Children's Hospital of Fudan University Anhui Hospital, Children's Hospital of Anhui Medical University, Hefei, Anhui 230051, P. R. China.
| | - Deyan Gong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Yuanyuan Zhou
- Department of Obstetrics and Gynecology, Anhui Provincial Children's Hospital, Children's Hospital of Fudan University Anhui Hospital, Children's Hospital of Anhui Medical University, Hefei, Anhui 230051, P. R. China.
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Xiaoping Xia
- Department of Obstetrics and Gynecology, Anhui Provincial Children's Hospital, Children's Hospital of Fudan University Anhui Hospital, Children's Hospital of Anhui Medical University, Hefei, Anhui 230051, P. R. China.
| |
Collapse
|
39
|
Li R, She Z, Zeng F, Wu S. Visualization detection of mycotoxin patulin in fruit juices by a small-molecule fluorescent probe. Analyst 2023; 148:5416-5421. [PMID: 37791608 DOI: 10.1039/d3an01404e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The mycotoxin patulin is a common contaminant in rotten fruits, posing severe food safety risks and threats to human health. Developing a convenient, sensitive and reliable method for patulin detection is of utmost importance but remains challenging. In this study, we have successfully designed and synthesized a small-molecule fluorescent probe, FITC-Lys, which demonstrates good sensitivity in detecting patulin. Upon contact with patulin, the terminal Lys group of the FITC-Lys probe reacts with patulin, resulting in the formation of the fluorescein dimer that subsequently quenches fluorescence. This variation of fluorescence enables the visualization and sensitive detection of patulin. The probe exhibits good sensitivity with a low LOD of 8 ng mL-1 for the fluorescence spectrum method and a LOD of 12 ng mL-1 for the fluorescence imaging method. Moreover, we have validated the probe's capability for patulin detection in apple and pear juices, achieving good recoveries ranging from 98.60% to 103.80%. Notably, the probe FITC-Lys is the first small-molecule fluorescent probe that has proven successful in visualizing patulin in juices derived from decayed apples and pears. Consequently, this probe holds great potential as a practical tool for monitoring patulin in foodstuffs, thereby contributing to enhanced food safety standards.
Collapse
Affiliation(s)
- Rong Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Zunpan She
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
40
|
Nehra N, Kaushik R. ESIPT-based probes for cations, anions and neutral species: recent progress, multidisciplinary applications and future perspectives. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5268-5285. [PMID: 37800698 DOI: 10.1039/d3ay01249b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Fluorescent and colourimetric probes for small analytes (cations, anions and neutral molecules) have drawn significant attention in recent years. These probes interact with analytes and induce spectral change due to the variations in the photo-physical properties of the fluorophore/chromophore used. Among several photo-physical mechanisms, ESIPT (excited state intramolecular proton transfer) based probes are more advantageous due to their photo-physical properties viz. solvent polarity effect, large spectral shift with multi-channel fluorescence, high quantum yield etc. In recent years, ESIPT-based probes have shown several promising applications, especially monitoring small analytes in biological samples, smartphone app-assisted heavy metal detection in environmental samples, inkless writing, anti-counterfeiting applications etc. Therefore, this review is dedicated to recently reported ESIPT-based probes for small analytes. We have highlighted the organic units responsible for the ESIPT mechanism, their photo-physical parameters, selectivity and sensitivity properties and recent advances in their applications.
Collapse
Affiliation(s)
- Nidhi Nehra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Rahul Kaushik
- Chemical Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
41
|
Liu Y, Li J, Huang H, Shu Y. A fluorescent probe for imaging nitroreductase with signal amplification in high-viscosity environments. J Mater Chem B 2023; 11:9509-9515. [PMID: 37740378 DOI: 10.1039/d3tb01760e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Herein, we developed a fluorescent probe ENBT for in vitro detection of nitroreductase (NTR) as well as imaging intracellular NTR. ENBT itself is non-fluorescent and it could be catalyzed by NTR to generate a viscosity-sensitive fluorophore EBT. The fluorescence intensity of EBT could be further enhanced in cancer cells with relatively high viscosity due to the inhibition of the twisted intramolecular charge transfer effect. The probe ENBT has a good response to NTR with a detection limit of 36.8 ng mL-1, and EBT has a good response to viscosity. Furthermore, different concentrations of NTR (0-1.4 μg mL-1) were used to react with the probe and the reaction systems were subjected to different viscosity solutions, and the fluorescence signals of the products in the viscosity range of 45.86-163.60 cP were increased up to 1.69-fold. ENBT was successfully used to image NTR in cells under different hypoxic conditions as well as in Staphylococcus aureus. Finally, lipopolysaccharide was added to stimulate an increase in cellular viscosity after ENBT was catalyzed by intracellular NTR into EBT, and the fluorescence signals were observed to increase by 1.72-fold. The signal amplification capability gives ENBT higher sensitivity and immunity to interference. Moreover, it has the advantages of mitochondrial targeting, large Stokes shift (190 nm), high selectivity, and can be easily synthesized.
Collapse
Affiliation(s)
- Yunfan Liu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Jiaying Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Hongjin Huang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
42
|
Schiavone DV, Gallardo J, Kapkayeva DM, Baucom JC, Murelli RP. Lactam-fused tropolones: a new tunable, environmentally sensitive fluorophore class. Org Biomol Chem 2023; 21:7900-7907. [PMID: 37750360 DOI: 10.1039/d3ob01263h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Fluorescent small-molecules capable of altering their profiles in response to environmental changes are exceptionally valuable tool compounds throughout the scientific community. The following manuscriipt describes a new class of fluorescent small molecules based on lactam-fused tropolones that are responsive to a dynamic range of environmental changes. These molecules can be easily obtained through a rapid annulation procedure between appropriately functionalized tropolones and primary amines, which is often complete within minutes at room temperature. Molecules generated through this approach have been identified with fluoresence emission across the visible light spectra, and can be tuned based on either the tropolone or amine component. They are also highly responsive to changes in solvent, pH, and certain divalent metal ions. Tropolone-fused lactams thus represent a new class of tunable fluorescent small molecules that could find value throughout the scientific community.
Collapse
Affiliation(s)
- Daniel V Schiavone
- Department of Chemistry and Biochemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA.
- PhD Program in Chemistry, The Graduate Center, The City University of New York, New York, NY, USA
| | - Joel Gallardo
- Department of Chemistry and Biochemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA.
- PhD Program in Chemistry, The Graduate Center, The City University of New York, New York, NY, USA
| | - Diana M Kapkayeva
- Department of Chemistry and Biochemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA.
| | - John-Charles Baucom
- Department of Chemistry and Biochemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA.
- PhD Program in Chemistry, The Graduate Center, The City University of New York, New York, NY, USA
| | - Ryan P Murelli
- Department of Chemistry and Biochemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA.
- PhD Program in Chemistry, The Graduate Center, The City University of New York, New York, NY, USA
- PhD Program in Biochemistry, The Graduate Center, The City University of New York, New York, NY, USA
| |
Collapse
|
43
|
Bargakshatriya R, Pramanik SK. Stimuli-Responsive Prodrug Chemistries for Cancer Therapy. Chembiochem 2023; 24:e202300155. [PMID: 37341379 DOI: 10.1002/cbic.202300155] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/22/2023]
Abstract
Prodrugs are pharmacologically inactive, chemically modified derivatives of active drugs, which, following in vivo administration, are converted to the parent drugs through chemical or enzymatic cleavage. The prodrug approach holds tremendous potential to create the enhanced version of an existing pharmacological agent and leverage those improvements to augment the drug molecules' bioavailability, targeting ability, therapeutic efficacy, safety, and marketability. Especially in cancer therapy, prodrug application has received substantial attention. A prodrug can effectively broaden the therapeutic window of its parent drug by enhancing its release at targeted tumor sites while reducing its access to healthy cells. The spatiotemporally controlled release can be achieved by manipulating the chemical, physical, or biological stimuli present at the targeted tumor site. The critical strategy comprises drug-carrier linkages that respond to physiological or biochemical stimuli in the tumor milieu to yield the active drug form. This review will focus on the recent advancements in the development of various fluorophore-drug conjugates that are widely used for real-time monitoring of drug delivery. The use of different stimuli-cleavable linkers and the mechanisms of linker cleavage will be discussed. Finally, the review will conclude with a critical discussion of the prospects and challenges that might impede the future development of such prodrugs.
Collapse
Affiliation(s)
- Rupa Bargakshatriya
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumit Kumar Pramanik
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
44
|
Songsri S, Harkiss AH, Sutherland A. Synthesis and Photophysical Properties of Charge-Transfer-Based Pyrimidine-Derived α-Amino Acids. J Org Chem 2023; 88:13214-13224. [PMID: 37621156 PMCID: PMC10507667 DOI: 10.1021/acs.joc.3c01437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Indexed: 08/26/2023]
Abstract
The four-step synthesis of fluorescent pyrimidine-derived α-amino acids from an l-aspartic acid derivative is described. The key synthetic steps involved preparation of ynone intermediates via the reaction of alkynyl lithium salts with a Weinreb amide, followed by an ytterbium-catalyzed heterocyclization reaction with amidines. Variation of substituents at the C2- and C4-position of the pyrimidine ring allowed tuning of the photoluminescent properties of the α-amino acids. This revealed that a combination of highly conjugated or electron-rich aryl substituents with the π-deficient pyrimidine motif resulted in fluorophores with the highest quantum yields and overall brightness. Further analysis of the most fluorogenic α-amino acid demonstrated solvatochromism and sensitivity to pH.
Collapse
Affiliation(s)
- Sineenard Songsri
- School of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Alexander H Harkiss
- School of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Andrew Sutherland
- School of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
45
|
Pandit NR, Bej S, Das R, Ghosal N, Mondal A, Pal R, Ghosh M, Banerjee P, Biswas B. Anion-directed structural tuning of two azomethine-derived Zn 2+ complexes with optoelectronic recognition of Cu 2+ in aqueous medium with anti-cancer activities: from micromolar to femtomolar sensitivity with DFT revelation. Dalton Trans 2023; 52:11130-11142. [PMID: 37496325 DOI: 10.1039/d3dt01901b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Herein, two novel mononuclear transition metal Zn2+ complexes i.e. [Zn(HL)(N3)(OAc)] (NS-1) & [Zn(HL)2(ClO4)2] (NS-2) have been synthesised using a tridentate clickable Schiff base ligand, HL (2-methyl-2-((pyridin-2-ylmethyl)amino)propan-1-ol), and the polyatomic monoanions N3- and ClO4- for NS-1 and NS-2 respectively. Interestingly, NS-1 and NS-2 have been explored for the detection of Cu2+ with an LOD of 48.6 fM (response time ∼6 s) and 2.4 μM respectively through two mutually independent pathways that were studied using sophisticated methods like UV-Vis, cyclic voltammetry, ESI-MS etc. with theoretical DFT support. Herein, both chemosensors are equally responsive towards the detection of Cu2+ in aqueous as well as other targeted real field samples with appreciable recovery percentage (74.8-102%), demonstrating their practical applicability. Moreover, the detection of unbound Cu2+ in a human urine specimen was also analysed which may be helpful for the diagnosis of Cu2+-related disorders like Wilson's disease. Taking one step ahead, TLC strips have been employed for on-field detection of the targeted analytes by contact mode analysis. Additionally, the anti-cancer activity of these complexes has also been studied on breast cancer cells with the help of the MTT assay. It has been found that at a 0.5 mM dose, both NS-1 and NS-2 could kill 81.4% and 73.2% of cancer cells respectively. However, it has been found that NS-1 destroys normal cells together with cancer cells. Hence, NS-2 could be administered as a better anticancer drug for MDA-MB-231 cancer cells in comparison with NS-1. In a nutshell, the present work describes how anion-directed synthesis of two architecturally different metal complexes leads toward the detection of the same analyte via an independent chemodosimetric pathway along with their anti-cancer activities on breast cancer cells.
Collapse
Affiliation(s)
- Nithun Ranjan Pandit
- Department of Chemistry, Presidency University, 86/1, College Street, Kolkata 700073, India.
| | - Sourav Bej
- Electric Mobility and Tribology Research Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, India.
- Academy of Scientific & Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad - 201002, Uttar Pradesh, India
| | - Riyanka Das
- Electric Mobility and Tribology Research Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, India.
- Academy of Scientific & Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad - 201002, Uttar Pradesh, India
| | - Nirajan Ghosal
- Department of Life Sciences, Presidency University, Kolkata-700073, India
| | - Ananya Mondal
- Department of Chemistry, Presidency University, 86/1, College Street, Kolkata 700073, India.
- Vidyasagar College for Women, 39 Sankar Ghosh Lane, Kolkata, 6, West Bengal, India
| | - Ranjana Pal
- Department of Life Sciences, Presidency University, Kolkata-700073, India
| | - Meenakshi Ghosh
- Vidyasagar College for Women, 39 Sankar Ghosh Lane, Kolkata, 6, West Bengal, India
| | - Priyabrata Banerjee
- Electric Mobility and Tribology Research Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, India.
- Academy of Scientific & Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad - 201002, Uttar Pradesh, India
| | - Biplab Biswas
- Department of Chemistry, Presidency University, 86/1, College Street, Kolkata 700073, India.
| |
Collapse
|
46
|
McGrory R, Morgan DC, Jamieson AG, Sutherland A. Rotamer-Controlled Dual Emissive α-Amino Acids. Org Lett 2023; 25:5844-5849. [PMID: 37506290 PMCID: PMC10425982 DOI: 10.1021/acs.orglett.3c02112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Indexed: 07/30/2023]
Abstract
The synthesis and photoluminescent properties of novel α-amino acids are described in which the biaryl benzotriazinone-containing chromophores were found to display dual emission fluorescence via locally excited (LE) and twisted intramolecular charge transfer (TICT) states. The intensity of each emission band could be controlled by the electronics and position of the substituents, and this led to the design of a 2-methoxyphenyl analogue that, due to twisting, displayed bright TICT fluorescence, solvatochromism, and pH sensitivity.
Collapse
Affiliation(s)
- Rochelle McGrory
- School
of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United
Kingdom
| | - Danielle C. Morgan
- School
of Chemistry, Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, United
Kingdom
| | - Andrew G. Jamieson
- School
of Chemistry, Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, United
Kingdom
| | - Andrew Sutherland
- School
of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United
Kingdom
| |
Collapse
|
47
|
Zhang Z, Chen P, Sun Y. Enzyme-Instructed Aggregation/Dispersion of Fluorophores for Near-Infrared Fluorescence Imaging In Vivo. Molecules 2023; 28:5360. [PMID: 37513233 PMCID: PMC10385274 DOI: 10.3390/molecules28145360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Near-infrared (NIR) fluorescence is a noninvasive, highly sensitive, and high-resolution modality with great potential for in vivo imaging. Compared with "Always-On" probes, activatable NIR fluorescent probes with "Turn-Off/On" or "Ratiometric" fluorescent signals at target sites exhibit better signal-to-noise ratio (SNR), wherein enzymes are one of the ideal triggers for probe activation, which play vital roles in a variety of biological processes. In this review, we provide an overview of enzyme-activatable NIR fluorescent probes and concentrate on the design strategies and sensing mechanisms. We focus on the aggregation/dispersion state of fluorophores after the interaction of probes and enzymes and finally discuss the current challenges and provide some perspective ideas for the construction of enzyme-activatable NIR fluorescent probes.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Xianning Medical College, Hubei University of Science & Technology, Xianning 437000, China
| | - Peiyao Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yao Sun
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
48
|
Wang Y, Zhao L, Xie L, Pang M, Zhang Y, Ran H, Huang J, Wang J, Tao Y, Lyu S. Construction of a robust turn-on fluorescence NIR sensor for rapid detection and imaging of ONOO - in inflammatory models. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122624. [PMID: 36933443 DOI: 10.1016/j.saa.2023.122624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Peroxynitrite (OONO-) is closely related to the occurrence and development of health and inflammatory diseases. The physiological and pathological results of OONO- are related to the local concentration of ONOO-. Therefore, to develop of a simple, rapid and reliable OONO- detection tool is badly needed. In this work, we developed a small-molecule near-infrared (NIR) turn-on fluorescence sensor (NN1), harnessing a well-known response group phenylboronic acid response toward OONO-. It shows high detection sensitivity and yields a ratio (I658/I0) fluorescence enhancement (∼280-fold). In addition, NN1 can be effectively used to detect endogenous and exogenous ONOO- in living inflammatory cells. Notably, NN1 can be applied to OONO- imaging analysis in drug-induced inflammatory mice model with satisfactory results. Therefore, NN1 is a robust molecular biological tool, which has a good prospect in the study of ONOO- and the occurrence and development of inflammatory diseases.
Collapse
Affiliation(s)
- Yan Wang
- Phase I Clinical Trial Ward, Department of Planning and Finance, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Lulu Zhao
- College of Pharmacy, International Medical College, and Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Liyun Xie
- College of Pharmacy, International Medical College, and Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Meiling Pang
- College of Pharmacy, International Medical College, and Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Yazhen Zhang
- College of Pharmacy, International Medical College, and Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Hongyan Ran
- College of Pharmacy, International Medical College, and Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Jianji Huang
- College of Pharmacy, International Medical College, and Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Junyi Wang
- College of Pharmacy, International Medical College, and Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Yi Tao
- College of Pharmacy, International Medical College, and Department of Anesthesiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Shunqiao Lyu
- Phase I Clinical Trial Ward, Department of Planning and Finance, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
49
|
Bartolucci S, Retini M, Fanini F, Paderni D, Piersanti G. Synthesis and Fluorescence Properties of 4-Cyano and 4-Formyl Melatonin as Putative Melatoninergic Ligands. ACS OMEGA 2023; 8:22190-22194. [PMID: 37360469 PMCID: PMC10286092 DOI: 10.1021/acsomega.3c02518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023]
Abstract
Fluorescent ligands are imperative to many facets of chemical biology and medicinal chemistry. Herein, we report the syntheses of two fluorescent melatonin-based derivatives as potential ligands of melatonin receptors. The two compounds, namely, 4-cyano and 4-formyl melatonin (4CN-MLT and 4CHO-MLT, respectively), which differ from melatonin by only two/three atoms that are very compact in size, were prepared using the selective C3-alkylation of indoles with N-acetyl ethanolamines involving the "borrowing hydrogen" strategy. These compounds exhibit absorption/emission spectra that are red-shifted from those of melatonin. Binding studies on two melatonin receptor subtypes showed that these derivatives have a modest affinity and selectivity ratio.
Collapse
Affiliation(s)
- Silvia Bartolucci
- Department
of Biomolecular Sciences, University of
Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, Pesaro and Urbino, Italy
| | - Michele Retini
- Department
of Biomolecular Sciences, University of
Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, Pesaro and Urbino, Italy
| | - Fabiola Fanini
- Department
of Biomolecular Sciences, University of
Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, Pesaro and Urbino, Italy
| | - Daniele Paderni
- Department
of Pure and Applied Sciences, University
of Urbino Carlo Bo, Via della Stazione 4, 61029 Urbino, Pesaro and Urbino, Italy
| | - Giovanni Piersanti
- Department
of Biomolecular Sciences, University of
Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, Pesaro and Urbino, Italy
| |
Collapse
|
50
|
Pelletier R, Danylchuk DI, Benaissa H, Broch F, Vauchelles R, Gautier A, Klymchenko AS. Genetic Targeting of Solvatochromic Dyes for Probing Nanoscale Environments of Proteins in Organelles. Anal Chem 2023. [PMID: 37229557 DOI: 10.1021/acs.analchem.3c00515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A variety of protein tags are available for genetically encoded protein labeling, which allow their precise localization and tracking inside the cells. A new dimension in protein imaging can be offered by combining protein tags with polarity-sensitive fluorescent probes, which provide information about local nanoscale environments of target proteins within the subcellular compartments (organelles). Here, we designed three fluorescent probes based on solvatochromic nile red dye, conjugated to a HaloTag reactive targeting group through polyethylene glycol linkers of varying lengths. The probe with medium linker length, NR12-Halo, was found to label specifically a large variety of proteins localized in defined cell compartments, such as plasma membranes (outer and inner leaflets), endoplasmic reticulum, Golgi apparatus, cytosol, microtubules, actin, and chromatin. Owing to its polarity-sensitive fluorophore, the probe clearly distinguished the proteins localized within apolar lipid membranes from other proteins. Moreover, it revealed dramatic changes in the environment during the life cycle of proteins from biosynthesis to their expected localization and, finally, to recycling inside lysosomes. Heterogeneity in the local polarity of some membrane proteins also suggested a formation of low-polar protein aggregates, for example, within cell-cell contacts. The approach also showed that mechanical stress (cell shrinking by osmotic shock) induced a general polarity decrease in membrane proteins, probably due to the condensation of biomolecules. Finally, the nanoenvironment of some membrane proteins was affected by a polyunsaturated fatty acid diet, which provided the bridge between organization of lipids and proteins. The developed solvatochromic HaloTag probe constitutes a promising tool for probing nanoscale environments of proteins and their interactions within subcellular structures.
Collapse
Affiliation(s)
- Rémi Pelletier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 Route du Rhin, Strasbourg, Illkirch 67401, France
| | - Dmytro I Danylchuk
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 Route du Rhin, Strasbourg, Illkirch 67401, France
| | - Hela Benaissa
- CNRS, Laboratoire des Biomolécules, LBM, Sorbonne Université, École Normale Supérieure, Université PSL, Paris 75005 France
| | - Fanny Broch
- CNRS, Laboratoire des Biomolécules, LBM, Sorbonne Université, École Normale Supérieure, Université PSL, Paris 75005 France
| | - Romain Vauchelles
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 Route du Rhin, Strasbourg, Illkirch 67401, France
| | - Arnaud Gautier
- CNRS, Laboratoire des Biomolécules, LBM, Sorbonne Université, École Normale Supérieure, Université PSL, Paris 75005 France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 Route du Rhin, Strasbourg, Illkirch 67401, France
| |
Collapse
|