1
|
Masset T, Breider F, Renaud M, Müller J, Bergmann A, Vermeirssen E, Dudefoi W, Schirmer K, Ferrari BJD. Effects of tire particles on earthworm (Eisenia andrei) fitness and bioaccumulation of tire-related chemicals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125780. [PMID: 39894153 DOI: 10.1016/j.envpol.2025.125780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/16/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Tire and Road Wear Particles (TRWP) are produced during the wear of tire rubber on the road pavement and contain various chemicals originating from the road environment and from the rubber. Toxic effects of TRWP and their associated chemicals on soil organisms remain poorly characterized. In a series of laboratory experiments, this study investigated the bioaccumulation kinetics of several common tire-related chemicals in the earthworm species Eisenia andrei using Cryogenically Milled Tire Tread (CMTT), as a surrogate for environmental TRWP. Effects on survival, growth, reproductive output and behaviour were determined. Average biota-soil accumulation factors ranged from 0.8 to 4.7 indicating low to moderate bioaccumulation of the tire-related chemicals. Toxicokinetics showed both high uptake (0.0-13.2 days-1) and elimination rates (0.0-6.3 days-1) in E.andrei. Still, the uptake of tire-related chemicals in earthworms' tissues and ingestion of tire particles could lead to trophic transfer to preys feeding on earthworms and requires further investigated. No significant effects on survival and growth were recorded after exposure to 0.05 and 5% CMTT. In the reproduction test, a slight increase of the reproductive output with increasing CMTT concentration and a slight decrease of the weight of the juveniles were observed. Moreover, a strong and significant avoidance behaviour was observed for worms exposed to 5% CMTT. This work highlights that soil highly contaminated with tire particles can negatively impact habitat function due to changes in texture and/or chemical stressors, lead to uptake of tire-related additives by earthworms and that high concentrations can impact organism's fitness.
Collapse
Affiliation(s)
- Thibault Masset
- Ecole Polytechnique Fédérale de Lausanne - EPFL, Central Environmental Laboratory, IIE, ENAC, Station 2, CH-1015, Lausanne, Switzerland.
| | - Florian Breider
- Ecole Polytechnique Fédérale de Lausanne - EPFL, Central Environmental Laboratory, IIE, ENAC, Station 2, CH-1015, Lausanne, Switzerland
| | - Mathieu Renaud
- Ecotox Centre - EPFL ENAC IIE, GE, Station 2, CH-1015, Lausanne, Switzerland
| | - Jonas Müller
- Ecotox Centre - EPFL ENAC IIE, GE, Station 2, CH-1015, Lausanne, Switzerland
| | - Alan Bergmann
- Ecotox Centre, Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | | | - William Dudefoi
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, Department Environmental Toxicology, Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | - Kristin Schirmer
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, Department Environmental Toxicology, Überlandstrasse 133, 8600, Dübendorf, Switzerland; ETHZ, Institute of Biogeochemistry and Pollutant Dynamics, Zurich, 8092, Switzerland
| | - Benoit J D Ferrari
- Ecotox Centre - EPFL ENAC IIE, GE, Station 2, CH-1015, Lausanne, Switzerland; Ecotox Centre, Überlandstrasse 133, 8600, Dübendorf, Switzerland
| |
Collapse
|
2
|
Rigano L, Schmitz M, Linnemann V, Krauss M, Hollert H, Pfenninger M. Exposure to complex mixtures of urban sediments containing Tyre and Road Wear Particles (TRWPs) increases the germ-line mutation rate in Chironomus riparius. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 281:107292. [PMID: 39985910 DOI: 10.1016/j.aquatox.2025.107292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/16/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Tyre and road wear particles (TRWPs) are a significant yet often underestimated source of environmental pollution, contributing to the accumulation of microplastics and a complex mixture of contaminants in both terrestrial and aquatic ecosystems. Despite their prevalence, the long-term evolutionary effects of TRWPs, beyond their immediate toxicity, remain largely unknown. In this study, we assessed mutagenicity in the non-biting midge Chironomus riparius, upon exposure to urban sediment collected from a runoff sedimentation basin. To assess the extent of mutagenic effects over multiple generations, we combined the urban sediment exposure model with short-term mutation accumulation lines (MALs) and subsequent whole genome sequencing (WGS). The study was conducted over five generations, with urban sediment concentrations of 0.5 % and 10 %. Our results reveal that the exposure to urban sediment significantly increases mutation rates compared to control groups by 50 %, independent of concentration (0.5 % and 10 %). To infer potential causal processes, we conducted a comparative analysis using known mutational spectra from previous studies. This comparison showed that the mutation profiles induced by urban sediment clearly clustered with those caused by Benzo[a]Pyrene (BaP), a known Polycyclic Aromatic Hydrocarbon (PAH). A comprehensive chemical characterization of the sediment confirmed a considerable impact of road runoff and traffic-related contamination, including PAHs of primarily petrogenic origin. This suggests that PAH-like compounds present in urban sediments may play a significant role in the observed mutagenic effects. Our study shows that urban sediments influence mutation rates and alter mutational spectra in exposed organisms, potentially compromising genomic stability and shaping evolutionary trajectories. These genetic changes can have profound long-term effects on population dynamics and ecosystem health, underlining the importance of understanding the evolutionary consequences of environmental pollution. Additionally, we show that comparatively analysing of mutational spectra may provide valuable insights into mutational processes.
Collapse
Affiliation(s)
- Lorenzo Rigano
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany; LOEWE Centre of Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany.
| | - Markus Schmitz
- Department of Evolutionary Ecology & Environmental Toxicology (E3T), Institute for Ecology, Evolution and Diversity, Faculty 15 Biological Sciences, Goethe University Frankfurt am Main, Germany
| | - Volker Linnemann
- Institute for Environmental Engineering, RWTH Aachen University, Germany
| | - Martin Krauss
- Department of Exposure Science, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany
| | - Henner Hollert
- LOEWE Centre of Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany; Department of Evolutionary Ecology & Environmental Toxicology (E3T), Institute for Ecology, Evolution and Diversity, Faculty 15 Biological Sciences, Goethe University Frankfurt am Main, Germany; Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Markus Pfenninger
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany; LOEWE Centre of Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany; Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Johann-Joachim-Becker-Weg 7, D-55128, Mainz, Germany
| |
Collapse
|
3
|
Román-Zas C, Ferreiro B, Terán-Baamonde J, Estela Del Castillo Busto M, Andrade JM, Muniategui S. Measurement of tyre-based microplastics using traditional and quantum cascade laser-based infrared spectrometry. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125321. [PMID: 39476590 DOI: 10.1016/j.saa.2024.125321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/30/2024] [Accepted: 10/19/2024] [Indexed: 12/08/2024]
Abstract
BACKGROUND Despite the potential environmental impact of TWPs (tyre wear particles), there is a lack of reliable analytical methodologies suitable for their routine identification and characterization. The number of papers dealing with this topic is, so far, very reduced and, therefore, there is a need for addressing it, mostly because traditional transmittance-based IR techniques are suboptimal due to scattering caused by black carbon in tyres. RESULTS This study aims to evaluate the most appropriate infrared (IR) spectrometric technique for monitoring TWPs. Macro attenuated total reflectance (ATR), reflectance microscopy, and quantum cascade laser-based micro transflectance (QCL-LDIR) were employed to analyse samples from used car and truck tyres in two sample configurations: small tyre fragments (∼1 cm2) and TWPs (< 1 mm). ATR yielded well-defined spectra with good signal-to-noise ratios, allowing for a straightforward interpretation of the major functional moieties. Despite reflectance measurements on tyre fragments provided good results, those on TWPs offered limited information due to noise and scattering. Transflectance offered clear peaks and enhanced resolution in the fingerprint region -compared to the other techniques-, much faster analysis times and the ability to effectively measure particles down to 20-10 µm, thus, emerging as the most effective technique for TWPs analysis. However, spectral interpretation is not immediate. Further, a proof-of-concept chemometric study was done to evaluate whether the analytical techniques contain information to differentiate types of tyres. An unsupervised pattern recognition and a supervised classification technique (principal components analysis and classification trees, respectively) were used, which were able to differentiate among the tyres, notably the truck tyre from the cars tyres. SIGNIFICANCE The study presents first time the use of micro transflectance IR to study tyre particles down to 20 µm. Traditional total attenuated reflectance is demonstrated as a suitable way to analyse bigger microplastics. These two options open pathways to monitor this important emerging contaminant in environmental matrices.
Collapse
Affiliation(s)
- Cristina Román-Zas
- Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Borja Ferreiro
- Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Javier Terán-Baamonde
- Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Universidade da Coruña, 15071 A Coruña, Spain
| | - M Estela Del Castillo Busto
- Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Universidade da Coruña, 15071 A Coruña, Spain
| | - José M Andrade
- Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Universidade da Coruña, 15071 A Coruña, Spain.
| | - Soledad Muniategui
- Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Universidade da Coruña, 15071 A Coruña, Spain
| |
Collapse
|
4
|
Wang Y, Wu J, Wang D. 6-PPD quinone causes lipid accumulation across multiple generations differentially affected by metabolic sensors and components of COMPASS complex in Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125539. [PMID: 39689833 DOI: 10.1016/j.envpol.2024.125539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/06/2024] [Accepted: 12/14/2024] [Indexed: 12/19/2024]
Abstract
The toxicity of 6-PPD quinone (6-PPDQ) has been frequently detected. However, the possible transgenerational effects of 6-PPDQ remain largely unclear. Due to short life cycle and high sensitivity to environmental exposure, Caenorhabditis elegans is useful for study of transgenerational toxicology. In C. elegans, we observed the transgenerational increase in lipid accumulation after parental generation (P0-G) exposure to 6-PPDQ at 0.1-10 μg/L. Accompanied with this, transgenerational increase in expressions of genes governing fatty acid synthesis and monounsaturated fatty acyl-CoAs synthesis and decrease in genes governing fatty acid β-oxidation were induced by 6-PPDQ exposure. Moreover, 6-PPDQ exposure at P0-G caused transgenerational activation of mdt-15 and sbp-1 encoding lipid metabolic sensors. Meanwhile, exposure to 6-PPDQ induced transgenerational activation of set-2 and inhibition in rbr-2, two genes encoding components of COMPASS complex. The 6-PPDQ induced transgenerational lipid accumulation could be strengthened by RNAi of set-2 and suppressed by RNAi of rbr-2. Additionally, 6-PPDQ induced transgenerational neurotoxicity could be increased by RNAi of mdt-15, sbp-1, and rbr-2, and inhibited by RNAi of set-2. Therefore, our results demonstrated the possibility in resulting in transgenerational lipid accumulation by exposure to 6-PPDQ.
Collapse
Affiliation(s)
- Yuxing Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Jingwei Wu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
5
|
Lladó J, Díaz AM, Lopez-Vinent N, Pérez S, Montemurro N, Cruz-Alcalde A, Lao C, Fuente E, Ruiz B. Lignocellulosic pruning waste adsorbents to remove emerging contaminants from tyre wear and pharmaceuticals present in wastewater in circular economy scenario. BIORESOURCE TECHNOLOGY 2025; 418:131847. [PMID: 39581476 DOI: 10.1016/j.biortech.2024.131847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024]
Abstract
The following work explores a sustainable approach to repurpose organic waste from poplar pruning into lignocellulosic waste-based activated carbons (LPWACs) through environmentally friendly thermochemical processes and in line with circular economy principles. The developed LPWACs, activated by potassium hydroxide (KOH) at two different temperatures and weight ratios, exhibited promising textural properties with BET surface area (SBET) and total pore volume (VTOT) reaching up to 1336 m2·g-1 and 0.588 cm3·g-1, respectively. In addition, they displayed a developed microporous structure with a significant oxygen content (up to 11 %). These activated carbons were used to remove five emerging organic pollutants from the leaching of tyre wear particles (TWPs) and pharmaceuticals present in water. The increase in oxygen groups had a negative effect on the adsorption capacity of 1H-benzotriazole (BZTL), while electrostatic influences hindered diatrizoic acid (DZT) adsorption. LPWACs effectively remove pharmaceutical and tyre contaminants, supporting the circular economy in water treatment.
Collapse
Affiliation(s)
- J Lladó
- Department of Mining, Industrial and TIC Engineering (EMIT) Escola Politècnica Superior d'Enginyeria de Manresa. Univesitat Politécnica de Catalunya. Manresa, Spain
| | - A M Díaz
- Biocarbon, Circularity & Sustainability Group. Carbon Science and Technology Institute (INCAR), CSIC. C/ Francisco Pintado Fe 26, 33011 Oviedo, Spain
| | - N Lopez-Vinent
- Department of Environmental Chemistry Water and Soil Research Group, Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA), Barcelona, Spain
| | - S Pérez
- Department of Environmental Chemistry Water and Soil Research Group, Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA), Barcelona, Spain
| | - N Montemurro
- Department of Environmental Chemistry Water and Soil Research Group, Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA), Barcelona, Spain
| | - A Cruz-Alcalde
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona (UB), Barcelona, Spain
| | - C Lao
- Department of Mining, Industrial and TIC Engineering (EMIT) Escola Politècnica Superior d'Enginyeria de Manresa. Univesitat Politécnica de Catalunya. Manresa, Spain
| | - E Fuente
- Biocarbon, Circularity & Sustainability Group. Carbon Science and Technology Institute (INCAR), CSIC. C/ Francisco Pintado Fe 26, 33011 Oviedo, Spain
| | - B Ruiz
- Biocarbon, Circularity & Sustainability Group. Carbon Science and Technology Institute (INCAR), CSIC. C/ Francisco Pintado Fe 26, 33011 Oviedo, Spain.
| |
Collapse
|
6
|
Shi R, Zhang Z, Zeb A, Fu X, Shi X, Liu J, Wang J, Wang Q, Chen C, Sun W, Liu W. Environmental occurrence, fate, human exposure, and human health risks of p-phenylenediamines and their quinones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177742. [PMID: 39608260 DOI: 10.1016/j.scitotenv.2024.177742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/03/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
P-phenylenediamine antioxidants (PPDs) are widely used in the rubber industry and their release and transformation in the environment has become one of the current environmental research hotspots. PPDs are readily oxidized in the environment to form quinone transformation products (PPD-Qs), some of which (e.g. 6PPD-Q) have been shown to be highly toxic and persistent in the environment, posing a potential threat to aquatic organisms and ecosystems. The present study provides an overview of the physicochemical properties, environmental distribution, and potential human exposure and toxicological effects of PPDs and PPD-Qs. PPDs and PPD-Qs are found in water, air, dust and soil around the world, and humans are inevitably exposed to them by inhaling, ingesting and through dermal contact. There is growing evidence indicates that PPDs and PPD-Qs are present in human body fluids and tissues, where they are subject to metabolic and transformational processes in the liver and blood. Furthermore, PPDs and PPD-Qs have the potential to induce adverse health effects, including digestive, respiratory, neurotoxic and reproductive toxicity. Nevertheless, there is a paucity of evidence concerning the direct effects of PPDs and PPD-Qs on human health. Consequently, future research should concentrate on this area in order to provide quantitative support for the assessment of the risk posed by PPDs and PPD-Qs to human health.
Collapse
Affiliation(s)
- Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhao Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin Institute of Coloproctology, Tianjin 300000, China.
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiuping Fu
- Department of Intelligent Medical Engineering, School of Life Sciences, Tiangong University, Tianjin 300387, China.
| | - Xinwei Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Cuihong Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wei Sun
- Laboratory of Molecular Genetics, School of Medicine, Nankai University, Tianjin 300071, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
7
|
Chang J, Zhang L, Zhao J, Zhang Z, Wang Z, Wang H, Wan B. 6PPD, Not 6PPD-Quinone, Induced Serious Zebrafish Eye Damage by Disrupting the Thyroid Signaling Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22076-22088. [PMID: 39632073 DOI: 10.1021/acs.est.4c11264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
N-(1,3-Dimethylbutyl)-N'-phenyl-1,4-phenylenediamine (6PPD) and its oxidation product 6PPD-quinone (6PPDQ) showed different acute toxicities and bioaccumulation potencies in fish. In this study, we compared the thyroid disrupting effects of 6PPD and 6PPDQ through in vitro, in silico, and in vivo assays. Interestingly, although 6PPD and 6PPDQ showed similar docking affinities with thyroid hormone receptor (TR) isoforms and GH3 cell inhibition effects, the thyroid signaling pathway, eye development, phototactic behaviors, and cell density in the retinal layer in the larval zebrafish were significantly affected only following 6PPD exposure. Further investigation demonstrates that 6PPD can act as a TR antagonist to reduce the opsin protein abundance and inhibit the cone photoreceptor cell proliferation, which finally alters the retinal layer structure and causes microphthalmus in zebrafish. Especially, under environmental relevant concentration exposure, 6PPD induced alterations of trβ, opn1lw1, opn1mw1, rpe65a, nr2e3 gene expressions although no significant eye histopathological change was observed. This study illustrates for the first time the more serious visual system impairment of 6PPD compared to 6PPDQ, with thyroid signaling disruption being a contributing factor, while other important toxic targets still require further research.
Collapse
Affiliation(s)
- Jing Chang
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Leisen Zhang
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
- University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Juan Zhao
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
- University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Zhaoguang Zhang
- North China Electric Power University, Beinong RD 2, Beijing 102206, China
| | - Zijian Wang
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Huili Wang
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Bin Wan
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
- University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| |
Collapse
|
8
|
Obanya HE, Khan FR, Carrasco-Navarro V, Rødland ES, Walker-Franklin I, Thomas J, Cooper A, Molden N, Amaeze NH, Patil RS, Kukkola A, Michie L, Green-Ojo B, Rauert C, Couceiro F, Hutchison GR, Tang J, Ugor J, Lee S, Hofmann T, Ford AT. Priorities to inform research on tire particles and their chemical leachates: A collective perspective. ENVIRONMENTAL RESEARCH 2024; 263:120222. [PMID: 39490547 DOI: 10.1016/j.envres.2024.120222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Concerns over the ecological impacts of urban road runoff have increased, partly due to recent research into the harmful impacts of tire particles and their chemical leachates. This study aimed to help the community of researchers, regulators and policy advisers in scoping out the priority areas for further study. To improve our understanding of these issues an interdisciplinary, international network consisting of experts (United Kingdom, Norway, United States, Australia, South Korea, Finland, Austria, China and Canada) was formed. We synthesised the current state of the knowledge and highlighted priority research areas for tire particles (in their different forms) and their leachates. Ten priority research questions with high importance were identified under four themes (environmental presence and detection; chemicals of concern; biotic impacts; mitigation and regulation). The priority research questions include the importance of increasing the understanding of the fate and transport of these contaminants; better alignment of toxicity studies; obtaining the holistic understanding of the impacts; and risks they pose across different ecosystem services. These issues have to be addressed globally for a sustainable solution. We highlight how the establishment of the intergovernmental science-policy panel on chemicals, waste, and pollution prevention could further address these issues on a global level through coordinated knowledge transfer of car tire research and regulation. We hope that the outputs from this research paper will reduce scientific uncertainty in assessing and managing environmental risks from TP and their leachates and aid any potential future policy and regulatory development.
Collapse
Affiliation(s)
- Henry E Obanya
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DY, UK
| | - Farhan R Khan
- Norwegian Research Centre (NORCE), Nygårdsporten 112, NO-5008, Bergen, Norway
| | - Victor Carrasco-Navarro
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, PO Box 1627, 70211, Kuopio, Finland
| | | | | | - Jomin Thomas
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| | - Adam Cooper
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nick Molden
- Emissions Analytics, Unit 2 CR Bates Industrial Estate, Stokenchurch, High Wycombe, Buckinghamshire, HP14 3PD, UK
| | - Nnamdi H Amaeze
- School of the Environment, Memorial Hall, University of Windsor, 401 Sunset Avenue Windsor, Ontario, N9B 3P4, Canada
| | - Renuka S Patil
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| | - Anna Kukkola
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Laura Michie
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DY, UK
| | - Bidemi Green-Ojo
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DY, UK
| | - Cassandra Rauert
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, QLD, Australia
| | - Fay Couceiro
- School of Civil Engineering and Surveying at the University of Portsmouth, Hampshire, PO1 3AH, UK
| | - Gary R Hutchison
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, EH11 4BN, UK
| | - Jinglong Tang
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Joshua Ugor
- School of the Environment, Geography and Geosciences, University of Portsmouth, UK
| | - Seokhwan Lee
- Environment System Research Division, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
| | - Thilo Hofmann
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department for Environmental Geosciences, Josef-Holaubek-Platz 2, 1090, Vienna, Austria; University of Vienna, Research Platform Plastics in the Environment and Society (Plenty), Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Alex T Ford
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DY, UK.
| |
Collapse
|
9
|
Chen X, Sun S, Xu P, Du L, Sun C, Feng F, Feng T, Yao X, Cui Z, Liang D, Feng J, Hu H. Rubber additives and relevant oxidation products in groundwater in a central China region: Levels, influencing factors and exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125155. [PMID: 39427951 DOI: 10.1016/j.envpol.2024.125155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/30/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
This study investigated the presence of rubber additives and relevant oxidation products (RAROPs) in groundwater in central China's aboveground river region. Seven RAROPs were detected, and their levels in shallow groundwater showed a mild decreasing trend from the area near the Yellow River (Avg: 8.49 ng L-1) to the area on the far bank of the Yellow River (Avg: 5.01 ng L-1). In contrast, deep groundwater's RAROPs contents showed a dramatic decrease to only 0.26 ng L-1. The dominant contaminant was found to be N-(1, 3-dimethylbutyl) -N'-phenyl -p-phenylenediamine (6PPD). The vicinity of the garages and car parks was often characterized as contamination hotspots. Correlation analyses further indicated that aquaculture was likely to be a potential pathway for shallow groundwater contaminant inputs. The amount of RAROPs intake by humans through groundwater is nearly 30 times different due to the imbalanced development between urban and rural areas. Children were the most vulnerable to RAROPs. Therefore, human activities (transportation, waste tire storage, water resource allocation and utilization patterns, diversion of Yellow River water to aquaculture ponds) may exacerbate RAROPs pollution in groundwater by leaching contaminants through the surface soil. These results are important for developing appropriate utilization and protection strategies for groundwater resources in developing countries.
Collapse
Affiliation(s)
- Xing Chen
- Engineering Research Center for the Operation and Ecological Safety of Cross-Basin Water Diversion and Transfer in Henan Province, Engineering and Technology Research Center for Disaster Prevention of Giant Water Networks in Henan Province, Yellow River Conservancy Technical Institute, Kaifeng, Henan, 475004, PR China; School of Environmental Engineering, Yellow River Conservancy Technical Institute, Henan Engineering Technology Research Center of Green Coating Materials, Kaifeng Engineering Technology Research Center of Aquatic Environmental Pollution Monitoring, Kaifeng, Henan, 475004, PR China
| | - Siyuan Sun
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, PR China
| | - Peng Xu
- Engineering Research Center for the Operation and Ecological Safety of Cross-Basin Water Diversion and Transfer in Henan Province, Engineering and Technology Research Center for Disaster Prevention of Giant Water Networks in Henan Province, Yellow River Conservancy Technical Institute, Kaifeng, Henan, 475004, PR China
| | - Lingnan Du
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Henan Engineering Technology Research Center of Green Coating Materials, Kaifeng Engineering Technology Research Center of Aquatic Environmental Pollution Monitoring, Kaifeng, Henan, 475004, PR China
| | - Chenyang Sun
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, PR China
| | - Feng Feng
- Henan Engineering Technology Center for Water Resources Conservation and Utilization in the Middle and Lower Reaches of Yellow River, Yellow River Conservancy Technical Institute, Kaifeng, Henan, 475004, PR China
| | - Tao Feng
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Henan Engineering Technology Research Center of Green Coating Materials, Kaifeng Engineering Technology Research Center of Aquatic Environmental Pollution Monitoring, Kaifeng, Henan, 475004, PR China
| | - Xinding Yao
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Henan Engineering Technology Research Center of Green Coating Materials, Kaifeng Engineering Technology Research Center of Aquatic Environmental Pollution Monitoring, Kaifeng, Henan, 475004, PR China
| | - Zhengyan Cui
- Engineering Research Center for the Operation and Ecological Safety of Cross-Basin Water Diversion and Transfer in Henan Province, Engineering and Technology Research Center for Disaster Prevention of Giant Water Networks in Henan Province, Yellow River Conservancy Technical Institute, Kaifeng, Henan, 475004, PR China
| | - Dongfang Liang
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, United Kingdom
| | - Jinglan Feng
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, PR China.
| | - Hao Hu
- Engineering Research Center for the Operation and Ecological Safety of Cross-Basin Water Diversion and Transfer in Henan Province, Engineering and Technology Research Center for Disaster Prevention of Giant Water Networks in Henan Province, Yellow River Conservancy Technical Institute, Kaifeng, Henan, 475004, PR China.
| |
Collapse
|
10
|
Liu C, Wan S, Cheng Y, Lv Z, Luo S, Liang Y, Xie Y, Leng X, Hu M, Zhang B, Yang X, Zheng G. Occurrence, sources, and human exposure assessment of amine-based rubber additives in dust from various micro-environments in South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177023. [PMID: 39423893 DOI: 10.1016/j.scitotenv.2024.177023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Despite the ubiquitous use and potential health effects of amine-based rubber additives, information regarding their occurrences in indoor environments remains scarce and is basically investigated in traffic-related environments. In this study, a total of 140 dust samples collected from eight indoor micro-environments were analyzed for twelve amine-based rubber additives. Overall, 1,3-diphenylguanidine (DPG), dicyclohexylamine (DCHA), N-(1,3-dimethylbutyl)-N'-phenyl-p-penylenediamine (6PPD), 6PPD-quinone (6PPDQ), and hexa(methoxymethyl)melamine (HMMM) were frequently detected across all micro-environments with detection frequencies of 97 %, 51 %, 71 %, 99 %, and 77 %, respectively. The highest total concentration of amine-based rubber additives was found in parking lots (median 10,300 ng/g), indicating heavier emission sources of these compounds in vehicle-related indoor environments. Despite this, amine-based rubber additives were also frequently detected in various non-vehicle-related environments, such as markets, cinemas, and hotels, probably due to the widespread use of consumer products and more frequent air exchanges with outdoor environments. Further tracking of tire rubber products and paint particles from flooring materials in parking lots revealed that paint particles might be an overlooked contributor to amine-based rubber additives in indoor environments. Finally, the highest estimated daily intakes (EDIs) of all amine-based rubber additives via dust ingestion at home were observed for toddlers (3.48 ng/kg bw/d). This research provides a comprehensive overview of human exposure to a variety of amine-based rubber additives in various indoor environments. ENVIRONMENTAL IMPLICATION: This study highlights the presence of high concentrations of amine-based additives in indoor dust from both traffic-related and non-traffic-related indoor environments. Additional efforts are needed to identify potential sources of amine-based rubber additives indoors, beyond just tire rubber. This is critical because the widespread presence of rubber products in indoor settings could pose a risk to human health.
Collapse
Affiliation(s)
- Chenglin Liu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Sheng Wan
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yao Cheng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhong Lv
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shusheng Luo
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuge Liang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yichun Xie
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinrui Leng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Min Hu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bintian Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guomao Zheng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
11
|
Wu X, Hu J, Yuan Z, Wang S, Tong L. p-phenylenediamines (PPDs) and PPD-quinones (PPD-Qs) in human urine and breast milk samples: Urgent need for focus on PPD-Qs and the establishment of health threshold criteria. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136176. [PMID: 39418905 DOI: 10.1016/j.jhazmat.2024.136176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/26/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
PPDs and their oxidation products, PPD-Qs, are emerging environmental contaminants arising from the addition and oxidation of rubber products. Although numerous studies have been conducted to elucidate their risks, the primary focus has been on 6PPD and 6PPD-Q, with limited attention given to other PPDs and especially other PPD-Qs. This study comprehensively examines the occurrences of frequently used PPDs and their degradation products, PPD-Qs, in human urine and breast milk samples. The average concentrations of ΣPPDs and ΣPPD-Qs in urine were 27 ± 78 ng/mL and 16 ± 12 ng/mL, respectively. IPPD and DNPD were the predominant PPDs, while DPPD-Q, CPPD-Q, and IPPD-Q were the predominant PPD-Qs. Notably, the concentrations of 6PPD, CPPD, and DPPD were significantly lower than their oxidized quinone products. Weak or no correlations were observed between most PPDs and their corresponding PPD-Qs, suggesting that PPD-Qs in the human body are primarily derived from direct environmental intake rather than in vivo conversion of PPDs. PPDs and PPD-Qs were widely detected in breast milk, exhibiting concentrations and patterns similar to those found in urine, with comparable major pollutants. Estimated daily intakes of PPDs + PPD-Qs for infants were several μg/(kg·day), with the 95th percentile intake approaching 10 μg/(kg·day).
Collapse
Affiliation(s)
- Xiaoguo Wu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China.
| | - Jiangshan Hu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Zijiao Yuan
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Shanshan Wang
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China; Wuhu Dongyuan New Country Developing Co., Ltd., Wuhu, Anhui, 241000, PR China; CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Tong
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| |
Collapse
|
12
|
Thodhal Yoganandham S, Daeho K, Heewon J, Shen K, Jeon J. Unveiling the environmental impact of tire wear particles and the associated contaminants: A comprehensive review of environmental and health risk. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136155. [PMID: 39423645 DOI: 10.1016/j.jhazmat.2024.136155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
This review offers a novel perspective on the environmental fate and ecotoxicological effects of tire wear particles (TWPs), ubiquitous environmental contaminants ranging in size from micrometers to millimeters (averaging 10-100 micrometers). These particles pose a growing threat due to their complex chemical composition and potential toxicity. Human exposure primarily occurs through inhalation, ingesting contaminated food and water, and dermal contact. Our review delves into the dynamic interplay between TWP composition, transformation products (TPs), and ecological impacts, highlighting the importance of considering both individual chemical effects and potential synergistic interactions. Notably, our investigation reveals that degradation products of certain chemicals, such as diphenylguanidine (DPG) and diphenylamine (DPA), can be more toxic than the parent compounds, underscoring the need to fully understand these contaminants' environmental profile. Furthermore, we explore the potential human health implications of TWPs, emphasizing the need for further research on potential respiratory, cardiovascular, and endocrine disturbances. Addressing the challenges in characterizing TWPs, assessing their environmental fate, and understanding their potential health risks requires a multidisciplinary approach. Future research should prioritize standardized TWP characterization and leachate analysis methods, conduct field studies to enhance ecological realism, and utilize advanced analytical techniques to decipher complex mixture interactions and identify key toxicants. By addressing these challenges, we can better mitigate the environmental and health risks associated with TWPs and ensure a more sustainable future.
Collapse
Affiliation(s)
- Suman Thodhal Yoganandham
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea; Department of Computational Biology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Kang Daeho
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea
| | - Jang Heewon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea
| | - Kailin Shen
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea; School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Republic of Korea.
| |
Collapse
|
13
|
Jiang N, Li M, Wang Z, Hao X, Guo Z, Guo J, Zhang R, Zhang H, Chen J, Geng N. P-phenylenediamines (PPDs) and 6PPD-quinone in tunnel PM 2.5: From the perspective of characterization, emission factors, and health risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136269. [PMID: 39461291 DOI: 10.1016/j.jhazmat.2024.136269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
P-phenylenediamines (PPDs) and a quinone derivative (6PPD-Q), as antioxidants added to tires, can inevitably enter into the environment during tire wear emission, posing potential health and ecological risks. However, investigation on their pollution characteristics in PM2.5 is still lacking, especially for high-pollution scenarios, such as tunnels. Herein, we investigated the pollution characteristics and emission factors, as well as the correlation analysis and daily intakes of PM2.5-bound PPDs and 6PPD-Q in tunnel. The results indicated heavy PPDs and 6PPD-Q pollution were observed in tunnel PM2.5, with the concentration at the two tunnel sites being 3.83 and 8.73 times higher than those at the urban site, respectively. PPDs were negatively correlated to relative humidity and positively to temperature. Emission factors of 6PPD and 6PPD-Q were 3013.54 and 1466.67 ng·veh-1·km-1 for large vehicles. PPDs and 6PPD-Q were most harmful to children, and annual exposure dosages at the tunnel sites were 4.64 times higher than those at the urban site. This study conducted a comparison of PPDs and 6PPD-Q in urban and tunnel environments for the first time. Our findings clarified the key factors to reduce the pollution of PPDs in tunnel and supported policy-making for emission reduction of PPDs and 6PPD-Q.
Collapse
Affiliation(s)
- Nan Jiang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Minzhen Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Zichen Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Xuexin Hao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Zhangpeng Guo
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Jiasen Guo
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Ruiqin Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Haijun Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ningbo Geng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
14
|
Jin L, Cheng S, Ge M, Ji L. Evidence for the formation of 6PPD-quinone from antioxidant 6PPD by cytochrome P450. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136273. [PMID: 39471629 DOI: 10.1016/j.jhazmat.2024.136273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/23/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) as a rubber antioxidant has attracted global concern, since its ozone-oxidation product 6PPD-quinone (6PPDQ) was found to be the primary toxicant responsible for urban runoff mortality syndrome in coho salmon. However, the biotransformation fate and associated toxicological mechanism of 6PPD have not received much study yet. In this work, the in vitro assays showed 6PPD can be transformed into 6PPDQ by cytochromes P450 (CYP450) in human liver microsomes (HLMs) with 0.98 % production rate, and the adducts of 6PPDQ with calf thymus DNA and the N-N coupling product between 6PPD and 6PPDQ were further identified after 6PPD incubation in HLMs. Further evidence for the 6PPDQ formation can be obtained from the in vivo assays that the 6PPDQ-DNA adducts and 6PPD-N-N-6PPDQ dimer were detected in mice by oral gavage with 6PPD, and the latter dimer species was detected as well in 6PPD exposure to zebrafish larvae. Especially, the bioaccumulation property and high reactivity of 6PPDQ result in the continuous formation of the significant DNA adducts and 6PPD-N-N-6PPDQ dimer even in case of low production rate of biotransformation of 6PPD to 6PPDQ, which may provide potentially effective biomarkers for such process. DFT computations revealed the formation mechanism of 6PPDQ is the (N)H-abstraction of 6PPD by CYP450, followed by amino radical rebound at the nearby ortho-carbon, yielding a quinol intermediate due to spin delocalization, that might readily undergo further oxidation by CYP450 into 6PPDQ.
Collapse
Affiliation(s)
- Lingmin Jin
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Shiyang Cheng
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Mintong Ge
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Li Ji
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China.
| |
Collapse
|
15
|
Kuntz V, Zahn D, Reemtsma T. Quantification and occurrence of 39 tire-related chemicals in urban and rural aerosol from Saxony, Germany. ENVIRONMENT INTERNATIONAL 2024; 194:109189. [PMID: 39671825 DOI: 10.1016/j.envint.2024.109189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024]
Abstract
Tire and road wear particles (TRWP) are a major contributor to non-exhaust traffic emissions, but their contribution to and dynamics in urban aerosol is not well known. Urban particulate matter (PM) in the size fraction below 10 µm (PM10) from two German cities was collected over 2 weeks and analysed for 39 tire-related chemicals, including amines, guanidines, ureas, benzothiazoles, p-phenylenediamines, quinolines and several transformation products (TPs). Of these, 37 compounds were determined in PM10 at median concentrations of 212 pg/m3 for 1,3-diphenylguanidine (DPG) and 132 pg/m3 for benzothiazole-2-sulfonic acid (BTSA); 10 of the compounds have not been reported in urban aerosol before. Median concentrations of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6-PPD), 6-PPD quinone (6-PPDQ), and 1,2-dihydro-2,2,4-trimethylquinoline (TMQ) were 1.0, 4.1, and 8.1 pg/m3, respectively. Some parent compounds showed positive correlation with their TPs, e.g. 6-PPD with 4-aminodiphenylamine (4-ADPA), N,N'-diphenyl-p-phenylenediamine (DPPD) with DPPD quinone (DPPDQ), and DPG with phenylguanidine (PG). The concentration pattern of the compounds in PM10 did not agree to the pattern found for cryo-milled tire tread (CMTTmix), likely reflecting transformation processes in tires or the aerosol and the influence from other sources than TRWP. Concentrations in PM2.5 were determined from one of the sites and were by a factor of 4 - 10 lower than in PM10-2.5 for 9 compounds, but a few others, mostly benzothiazoles showed similar or higher concentrations. Many of the tire-related chemicals were also determined in PM10 of one rural site, although at median concentrations up to two orders of magnitude lower. A large number of tire chemicals with a wide concentration range is present in urban PM10 and PM2.5 aerosol and requires scrutiny with respect to its relevance for human exposure.
Collapse
Affiliation(s)
- Volkwin Kuntz
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Daniel Zahn
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Thorsten Reemtsma
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany; University of Leipzig, Institute for Analytical Chemistry, Linnéstrasse 3, 04103 Leipzig, Germany.
| |
Collapse
|
16
|
Zhang P, Tang X, Qin N, Shuai Y, Wang J, Wang H, Ouyang Z, Jia H. Advanced understanding of the natural forces accelerating aging and release of black microplastics (tire wear particles) based on mechanism and toxicity analysis. WATER RESEARCH 2024; 266:122409. [PMID: 39270502 DOI: 10.1016/j.watres.2024.122409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
Currently, tire wear particles (TWPs), a typical type of black microplastics (MPs), are frequently overlooked as the major source of MPs in aquatic environments. TWPs are widely distributed and exhibit complex environmental behaviors. However, how natural forces affect the aging and release behavior of TWPs at the nano(micro)scale remains inadequately explored. This study systematically investigated the aging behavior and mechanism of TWPs under the action of simulated natural light and high-temperature in both dry and wet environments, as well as the effect of aging treatment on the released leachate. The findings demonstrated that aging treatment significantly altered the physicochemical properties of TWPs, including chain scission and surface oxidation, and facilitated the release of heavy metals and organic additives in the meantime. In particular, the leaching concentration of Zn exhibited a positive linear relationship with exposure time. In the thermal-aging process, the oxidation of TWPs was primarily caused by superoxide anion (O2•-). During the photo-aging exposure, TWPs exhibited heightened electron-donating capacity, resulting in the formation of more O2•- and singlet oxygen (1O2) to attack TWPs. Moreover, the analysis of leachate produced under light and high-temperature conditions suggested that heavy metals exerted low ecological risks in water. Nonetheless, the photo-aging process enhanced the toxicity of released leachate to L929 cells, which could be attributed to highly toxic additive transformation products (such as HMMM-411 and 6PPD-Q) and more heavy metals. These findings shed light on the fate of TWPs and the ecological risks posed by aged TWPs in aquatic environments.
Collapse
Affiliation(s)
- Puxing Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiwang Tang
- Hebei Engineering Research Center for Ecological Restoration of Rivers and Coastal Areas, Hebei University of Environmental Engineering, Qinhuangdao 066102, China
| | - Ning Qin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yiping Shuai
- School of General Education, Hunan University of Information Technology, Changsha, 410148, China
| | - Jingzhen Wang
- Guangxi Key Laboratory of Marine Environmental Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Han Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| | - Zhuozhi Ouyang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| |
Collapse
|
17
|
Rigano L, Schmitz M, Hollert H, Linnemann V, Krauss M, Pfenninger M. Mind your tyres: The ecotoxicological impact of urban sediments on an aquatic organism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175597. [PMID: 39155001 DOI: 10.1016/j.scitotenv.2024.175597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/19/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
The presence of tyre and road wear particles (TRWP) in the environment is an underestimated threat due to their potential impact on ecosystems and human health. However, their mode of action and potential impacts on aquatic ecosystems remain largely unknown. In the present study, we adopted a sediment exposure scenario to investigate the influence of sediment coming from an urban runoff sedimentation basin on the life cycle of Chironomus riparius. Targeted broad-spectrum chemical analysis helped to characterise the urban sediments and confirmed the significant contribution of contaminants from traffic (e.g. tyre wear contribution, Polycyclic Aromatic Hydrocarbons [PAHs], metals, tyre rubber additives). First-stage chironomid larvae were subjected to increasing concentrations of urban whole sediment. The results showed that exposure to this urban sediment influenced all measured endpoints. In vivo quantification of ROS showed that larvae exposed to the lowest concentration of contaminated sediment exhibited increased fluorescence. The contaminated sediment conditions increased mortality by almost 30 %, but this effect was surprisingly not concentration-dependent. Fertility decreased significantly and concentration-dependently. The results of the Mean Emergence Time (EmT50) and larval size showed an optimality curve. Furthermore, as a consequence of the effects on fitness, the Population Growth Rate (PGR) exhibited a significant decrease, which was concentration-dependent. Therefore, after a single generation, PGR calculation can be adopted as a sensitive tool to monitor pollution caused by complex matrices, i.e. composed of several contaminants. Our research highlights the importance of effective management of road runoff and underlines the need for further investigation to better understand the toxicity of TRWPs.
Collapse
Affiliation(s)
- Lorenzo Rigano
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany; LOEWE Centre of Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany.
| | - Markus Schmitz
- Department of Evolutionary Ecology & Environmental Toxicology (E3T), Institute for Ecology, Evolution and Diversity, Faculty 15 Biological Sciences, Goethe University Frankfurt am Main, Germany
| | - Henner Hollert
- LOEWE Centre of Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany; Department of Evolutionary Ecology & Environmental Toxicology (E3T), Institute for Ecology, Evolution and Diversity, Faculty 15 Biological Sciences, Goethe University Frankfurt am Main, Germany
| | - Volker Linnemann
- Institute for Environmental Engineering, RWTH Aachen University, Germany
| | - Martin Krauss
- Department of Exposure Science, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany
| | - Markus Pfenninger
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany; LOEWE Centre of Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany; Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Johann-Joachim-Becker-Weg 7, D-55128 Mainz, Germany
| |
Collapse
|
18
|
Peng C, Wang Y, Sha X, Li M, Wang X, Wang J, Wang Y, Liu C, Wang L. Adverse effect of TWPs on soil fungi and the contribution of benzothiazole rubber additives. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135574. [PMID: 39197278 DOI: 10.1016/j.jhazmat.2024.135574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/31/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024]
Abstract
Tire wear particles (TWPs) pollution is widely present in soil, especially in areas severely affected by traffic. Herein, regular variation of fungal biomass with TWPs was found in soils with different distances from the highway. In addition, the concentrations of benzothiazole compounds (BTHs), an important class of rubber vulcanization accelerators, were found to be positively correlated to the TWPs abundance. Sixty days' soil microcosm experiments were conducted to further confirm the adverse effect of TWPs and BTHs on soil fungi. TWPs spiking at 1000 mg/kg, a detectable level in the roadside, resulted in significant reduction of biomass and significant changes of soil fungal community structure, with Eurotium and Polyporales being the sensitive species. BTH+ 2-hydroxybenzothiazole (OHBT) (the dominant BTHs in soil) spiking at 200 ng/kg, the dose equivalent to 1000 mg/kg TWPs pollution, also caused a similar magnitude of soil fungal biomass reduction. Adonis demonstrated no significant difference of fungal community structure between TWPs and BTH+OHBT spiked soil, suggesting the adverse effect of TWPs on soil fungi may be explained by the act of BTHs. Pure culture using the representative soil fungi Eurotium and Polyporales also confirmed that BTHs were the main contributors to the adverse effect of TWPs on soil fungi.
Collapse
Affiliation(s)
- Chu Peng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoyu Sha
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mengxi Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xinling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiao Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chunguang Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
19
|
Foetisch A, Grunder A, Kuster B, Stalder T, Bigalke M. All black: a microplastic extraction combined with colour-based analysis allows identification and characterisation of tire wear particles (TWP) in soils. MICROPLASTICS AND NANOPLASTICS 2024; 4:25. [PMID: 39493282 PMCID: PMC11525289 DOI: 10.1186/s43591-024-00102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
While tire wear particles (TWP) have been estimated to represent more than 90% of the total microplastic (MP) emitted in European countries and may have environmental health effects, only few data about TWP concentrations and characteristics are available today. The lack of data stems from the fact that no standardized, cost efficient or accessible extraction and identification method is available yet. We present a method allowing the extraction of TWP from soil, performing analysis with a conventional optical microscope and a machine learning approach to identify TWP in soil based on their colour. The lowest size of TWP which could be measured reliably with an acceptable recovery using our experimental set-up was 35 µm. Further improvements would be possible given more advanced technical infrastructure (higher optical magnification and image quality). Our method showed a mean recovery of 85% in the 35-2000 µm particle size range and no blank contamination. We tested for possible interference from charcoal (as another black soil component with similar properties) in the soils and found a reduction of the interference from charcoal by 92% during extraction. We applied our method to a highway adjacent soil at 1 m, 2 m, 5 m, and 10 m and detected TWP in all samples with a tendency to higher concentrations at 1 m and 2 m from the road compared to 10 m from the road. The observed TWP concentrations were in the same order of magnitude as what was previously reported in literature in highway adjacent soils. These results demonstrate the potential of the method to provide quantitative data on the occurrence and characteristics of TWP in the environment. The method can be easily implemented in many labs, and help to address our knowledge gap regarding TWP concentrations in soils. Supplementary Information The online version contains supplementary material available at 10.1186/s43591-024-00102-9.
Collapse
Affiliation(s)
- Alexandra Foetisch
- Institute of Geography, University of Bern, Hallerstraβe 12, Bern, 3012 Switzerland
- Institute of Applied Geoscience, Technical University of Darmstadt, Schnittspahnstraβe 9, Darmstadt, 64287 Germany
| | - Adrian Grunder
- Institute of Geography, University of Bern, Hallerstraβe 12, Bern, 3012 Switzerland
| | - Benjamin Kuster
- Institute of Geography, University of Bern, Hallerstraβe 12, Bern, 3012 Switzerland
| | - Tobias Stalder
- Institute of Geography, University of Bern, Hallerstraβe 12, Bern, 3012 Switzerland
| | - Moritz Bigalke
- Institute of Geography, University of Bern, Hallerstraβe 12, Bern, 3012 Switzerland
- Institute of Applied Geoscience, Technical University of Darmstadt, Schnittspahnstraβe 9, Darmstadt, 64287 Germany
| |
Collapse
|
20
|
Zhang L, Yuan W, Zhao W, Yang B, Jiao X, Zhou L, Long S, Xu J, Huang W, Liu C, Zheng G, Shen H, Ye J, Zhu L, Fu TM, Yang X, Wang C. Formation of Nitrosamines from the Heterogeneous Reaction of Nitrous Acid and Organic Amines in Indoor Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18881-18891. [PMID: 39388381 DOI: 10.1021/acs.est.4c05636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Carcinogenic nitrosamines have been widely studied due to their risk to human health. However, the universality and evolutionary processes of their generation, particularly concerning their secondary sources, remain unclear at present. We demonstrated through laboratory flow tube experiments that corresponding nitrosamines were generated from heterogeneous reactions of nitrous acid (HONO) with five structurally diverse amines commonly found indoors, including diphenylamine (DPhA), dibenzylamine (DBzA), dioctylamine (DOtA), N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), and N-phenyl-1-naphthylamine (PANA). The heterogeneous reaction rate constants of DBzA and DOtA with HONO (∼70 ppb) were 1.21 × 10-3 and 2.13 × 10-3 min-1 at 30% relative humidity (RH), resulting in a lifetime of 13.8 and 7.8 h. As compared to higher RH (∼80%), more nitrosamines were produced from the reaction of HONO with surface-sorbed DBzA, DOtA, 6PPD, and PANA at lower RH (30%), with product yields ranging from <0.1% to 0.5%. Furthermore, we observed the formation of nitroso-6PPDs and nitro-6PPDs during room air exposure of 6PPD in a genuine indoor environment, in addition to various other transformation products indicative of reactions of 6PPD with HONO, NOx, and ozone indoors. This study confirmed the universality of the heterogeneous reaction of surface-sorbed amine with HONO as a source of nitrosamines indoors.
Collapse
Affiliation(s)
- Lifang Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenting Yuan
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wangchao Zhao
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bo Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaoqiao Jiao
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Li Zhou
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shiqian Long
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiwen Xu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weilin Huang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chenglin Liu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guomao Zheng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huizhong Shen
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianhuai Ye
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lei Zhu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tzung-May Fu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen Wang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
21
|
Dominique E, Renault C. Towards the rational design of N-(1,3-dimethylbutyl)- N'-phenyl-1,4-benzenediamine (6PPD) electrochemical sensor. Analyst 2024; 149:5165-5173. [PMID: 39196540 DOI: 10.1039/d4an00973h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
N-(1,3-Dimethylbutyl)-N'-phenyl-1,4-benzenediamine (6PPD) is a common additive in tires. 6PPD protects rubber from oxidative damage by ozone. Leaching of 6PPD in the environment leads to the formation of harmful byproducts such as 6PPD quinone. In this work we provide the fundamental basis for the detection of 6PPD by electrochemical techniques. We use cyclic voltammetry to study the adsorption of 6PPD on glassy carbon. We show that adsorbed 6PPD can be reversibly oxidized and reduced without disturbing the adsorption process. This result enables repeated electrochemical titrations. We determine, in neutral condition at 22 °C, an adsorption constant of Kads = 1.2 ± 0.5 μM-1 and kinetics of adsorption kads∈[0.74-5.60] × 104 L mol-1 s-1. Based on this knowledge we demonstrate the lowest concentration of 6PPD ever detected electrochemically, 10 nM. We also identify current challenges for electrochemical sensing of 6PPD. Multiple layers are formed at concentrations above 4.6 μM and the slow kinetics of adsorption requires long (hour) measurement time to reach maximum sensitivity.
Collapse
Affiliation(s)
- Emily Dominique
- Department of Chemistry & Biochemistry, Loyola University Chicago, Flanner Hall, 1068 W Sheridan Road, Chicago, Illinois 60660, USA.
| | - Christophe Renault
- Department of Chemistry & Biochemistry, Loyola University Chicago, Flanner Hall, 1068 W Sheridan Road, Chicago, Illinois 60660, USA.
| |
Collapse
|
22
|
Tang C, Zhu Y, Zheng R, Liu L, Zeng YH, Luo XJ, Mai BX. Nontarget analysis and characterization of p-phenylenediamine-quinones and -phenols in tire rubbers by LC-HRMS and chemical species-specific algorithm. Anal Chim Acta 2024; 1326:343123. [PMID: 39260913 DOI: 10.1016/j.aca.2024.343123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/06/2024] [Accepted: 08/18/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND N,N'-disubstituted p-phenylenediamine-quinones (PPDQs) are oxidization derivatives of p-phenylenediamines (PPDs) and have raised extensive concerns recently, due to their toxicities and prevalence in the environment, particularly in water environment. PPDQs are derived from tire rubbers, in which other PPD oxidization products besides reported PPDQs may also exist, e.g., unknown PPDQs and PPD-phenols (PPDPs). RESULTS This study implemented nontarget analysis and profiling for PPDQ/Ps in aged tire rubbers using liquid chromatography-high-resolution mass spectrometry and a species-specific algorithm. The algorithm took into account the ionization behaviors of PPDQ/Ps in both positive and negative electrospray ionization, and their specific carbon isotopologue distributions. A total of 47 formulas of PPDQ/Ps were found and elucidated with tentative or accurate structures, including 25 PPDQs, 18 PPDPs and 4 PPD-hydroxy-quinones (PPDHQs). The semiquantified total concentrations of PPDQ/Ps were 14.08-30.62 μg/g, and the concentrations followed the order as: PPDPs (6.48-17.39) > PPDQs (5.86-12.14) > PPDHQs (0.16-1.35 μg/g). SIGNIFICANCE The high concentrations and potential toxicities indicate that these PPDQ/Ps could seriously threaten the eco-environment, as they may finally enter the environment, accordingly requiring further investigation. The analysis strategy and data-processing algorithm can be extended to nontarget analysis for other zwitterionic pollutants, and the analysis results provide new understandings on the environmental occurrence of PPDQ/Ps from source and overall perspectives.
Collapse
Affiliation(s)
- Caiming Tang
- Laboratory of Advanced Analytical Chemistry and Detection Technology, Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China; Guangdong Key Laboratory of Environmental Resources Utilization and Protection, State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Yizhe Zhu
- Laboratory of Advanced Analytical Chemistry and Detection Technology, Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Ruifen Zheng
- Laboratory of Advanced Analytical Chemistry and Detection Technology, Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Ling Liu
- Laboratory of Advanced Analytical Chemistry and Detection Technology, Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Yan-Hong Zeng
- Guangdong Key Laboratory of Environmental Resources Utilization and Protection, State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xiao-Jun Luo
- Guangdong Key Laboratory of Environmental Resources Utilization and Protection, State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Bi-Xian Mai
- Guangdong Key Laboratory of Environmental Resources Utilization and Protection, State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
23
|
Wang Y, Wang D. Exposure to 6-PPD quinone enhances glycogen accumulation in Caenorhabditiselegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124600. [PMID: 39047886 DOI: 10.1016/j.envpol.2024.124600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Glycogen metabolism is an important biological process for organisms. In Caenorhabditis elegans, effect of 6-PPD quinone (6-PPDQ) on glycogen accumulation and underlying mechanism were examined. Exposure to 6-PPDQ (1 and 10 μg/L) increased glycogen accumulation. Meanwhile, exposure to 6-PPDQ (1 and 10 μg/L) increased expression of gsy-1 encoding glycogen synthase and decreased expression of pygl-1 encoding glycogen phosphorylase. In 6-PPDQ exposed animals, glycogen content and glycogen accumulation were inhibited by RNAi of gsy-1 and enhanced by RNAi of pygl-1. RNAi of gsy-1 increased pygl-1 expression, and RNAi of pygl-1 increased gsy-1 expression after 6-PPDQ exposure. In 6-PPDQ exposed nematodes, daf-16 and aak-2 expressions were decreased and glycogen accumulation was suppressed by RNAi of daf-16 and aak-2, suggesting alteration in daf-16 and aak-2 expressions did not mediate glycogen accumulation. Moreover, resistance to 6-PPDQ toxicity on locomotion and brood size was observed in gsy-1(RNAi) animals, and susceptibility to 6-PPDQ toxicity was found in pygl-1(RNAi) animals. Therefore, glycogen accumulation could be enhanced by exposure to 6-PPDQ in nematodes. In addition, alteration in expressions of gsy-1 and pygl-1 governing this enhancement in glycogen accumulation mediated induction of 6-PPDQ toxicity.
Collapse
Affiliation(s)
- Yuxing Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China.
| |
Collapse
|
24
|
Wu W, Xu Q, Li J, Wang Z, Li G. The spatio-temporal accumulation of 6 PPD-Q in greenbelt soils and its effects on soil microbial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124477. [PMID: 38950845 DOI: 10.1016/j.envpol.2024.124477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/03/2024]
Abstract
6 PPD-Q (6 PPD-Quinone) is an ozone-induced byproduct derived from the degradation of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6 PPD), commonly found in road dust resulting from tire wear. However, the extent of 6 PPD-Q pollution in urban soil remains unclear. This study investigates the spatial and temporal accumulation patterns of 6 PPD-Q in greenbelt soils in Ningbo, and explores the correlation between 6 PPD-Q accumulation and soil microbial community composition and functions. Our findings indicate that 6 PPD-Q is present (ranging from 0.85 to 12.58 μg/kg) in soil samples collected from both sides of urban traffic arteries. Soil fungi exhibit higher sensitivity to 6 PPD-Q accumulation compared to bacteria, and associated fungi (Basidiomycota) may be potential biomarkers for environmental 6 PPD-Q contamination. Co-occurrence network analysis reveals that the bacterial microbial network in summer exhibits greater stability and resilience in response to 6 PPD-Q inputs than in winter. However, 6 PPD-Q accumulation disrupts the network structure of fungal communities to some extent, leading to reduced diversity in fungal microbial communities. Long-term accumulation of 6 PPD-Q weakens the nitrogen and phosphorus cycling potential within urban soil, while the enhancement of carbon cycling may further promote 6 PPD-Q degradation in urban soil. Taken together, this study provides new insights into the ecological risks of 6 PPD-Q in urban soils.
Collapse
Affiliation(s)
- Wei Wu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, PR China; School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China
| | - Qiao Xu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, PR China.
| | - Jinhu Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, PR China
| | - Zhen Wang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, PR China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
25
|
Mao T, Liu W, Deng J, Chen C, Jia T, Li H, Yin F. p-Phenylenediamines and p-phenylenediamine quinone derivatives in rubber consumer products and typical urban dust: Sources, transformation profiles, and health risks. ENVIRONMENT INTERNATIONAL 2024; 192:109042. [PMID: 39362086 DOI: 10.1016/j.envint.2024.109042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
N,N'-Substituted p-phenylenediamines (PPDs) are widely used as antioxidants in the rubber industry and are released into the environment in large quantities during the production and use of rubber products. We quantified PPDs and PPD quinone derivatives (PPD-Qs) in rubber consumer products, including car tires, rubber belts, rubber gloves, rubber cables, and rubber hoses, to obtain information on the degree of weathering over time during their use. Additionally, we investigated the occurrences and sources of PPDs and PPD-Qs in dust samples collected from four typical urban environments (roads, parking lots, automotive repair shops, and residences). The detected compounds included the highly toxic N-(1,3-dimethylbutyl)-N'-phenyl-1,4-phenylenediamine quinone, which can cause acute mortality of coho salmon (Oncorhynchus kisutch). Concentrations of PPDs in the automotive repair shops reached 56.0 μg/g, and were much higher than in the other environments, while the residential samples had the lowest contaminant concentrations. In road and residential samples, N,N'-di-2-naphthyl-p-phenylenediamine accounted for 17 %-30 % of the PPDs, and may have originated from different sources. We preliminarily identified 32 transformation products, and 11 of these were N,N'-di-2-naphthyl-p-phenylenediamine transformation products. The average daily intakes of PPDs and PPD-Qs were calculated to assess the health risks of dust exposure in each environment. Workers had high total intakes of PPD [60.3 ng/(kg day)] and PPD-Qs [20.1 ng/(kg day)], and were at some risk of occupational exposure. These results improve our understanding of the environmental occurrences, sources, transformation, and health risks of PPDs and PPD-Qs.
Collapse
Affiliation(s)
- Tianao Mao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Wenbin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| | - Jinglin Deng
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Chunci Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Tianqi Jia
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Haifeng Li
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Fei Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
26
|
Sheng D, Jing S, He X, Klein AM, Köhler HR, Wanger TC. Plastic pollution in agricultural landscapes: an overlooked threat to pollination, biocontrol and food security. Nat Commun 2024; 15:8413. [PMID: 39333509 PMCID: PMC11437009 DOI: 10.1038/s41467-024-52734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Ecosystem services such as pollination and biocontrol may be severely affected by emerging nano/micro-plastics (NMP) pollution. Here, we synthesize the little-known effects of NMP on pollinators and biocontrol agents on the organismal, farm and landscape scale. Ingested NMP trigger organismal changes from gene expression, organ damage to behavior modifications. At the farm and landscape level, NMP will likely amplify synergistic effects with other threats such as pathogens, and may alter floral resource distributions in high NMP concentration areas. Understanding exposure pathways of NMP on pollinators and biocontrol agents is critical to evaluate future risks for agricultural ecosystems and food security.
Collapse
Affiliation(s)
- Dong Sheng
- Sustainable Agricultural Systems & Engineering Lab, School of Engineering, Westlake University, Hangzhou, 310030, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310030, China
| | - Siyuan Jing
- Sustainable Agricultural Systems & Engineering Lab, School of Engineering, Westlake University, Hangzhou, 310030, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Xueqing He
- Sustainable Agricultural Systems & Engineering Lab, School of Engineering, Westlake University, Hangzhou, 310030, China
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Alexandra-Maria Klein
- Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, 79106, Germany
| | - Heinz-R Köhler
- Animal Physiological Ecology, University of Tübingen, Tübingen, 72076, Germany
| | - Thomas C Wanger
- Sustainable Agricultural Systems & Engineering Lab, School of Engineering, Westlake University, Hangzhou, 310030, China.
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China.
- Agroecology, University of Göttingen, Göttingen, 37073, Germany.
| |
Collapse
|
27
|
Tian L, Zhao S, Zhang R, Lv S, Chen D, Li J, Jones KC, Sweetman AJ, Peng P, Zhang G. Tire Wear Chemicals in the Urban Atmosphere: Significant Contributions of Tire Wear Particles to PM 2.5. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39264297 DOI: 10.1021/acs.est.4c04378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Tire wear particles (TWPs) containing tire wear chemicals (TWCs) are of global concern due to their large emissions and potential toxicity. However, TWP contributions to urban fine particles are poorly understood. Here, 72 paired gas-phase and PM2.5 samples were collected in the urban air of the Pearl River Delta, China. The concentrations of 54 compounds were determined, and 28 TWCs were detected with total concentrations of 3130-317,000 pg/m3. Most p-phenylenediamines (PPDs) were unstable in solvent, likely leading to their low detection rates. The TWCs were mainly (73 ± 26%) in the gas phase. 2-OH-benzothiazole contributed 82 ± 21% of the gas-phase TWCs and benzothiazole-2-sulfonic acid contributed 74 ± 18% of the TWCs in PM2.5. Guangzhou and Foshan were "hotspots" for atmospheric TWCs. Most TWC concentrations significantly correlated with the road length nearby. More particulate TWCs were observed than model predictions, probably due to the impacts of nonexchangeable portion and sampling artifacts. Source apportionment combined with characteristic molecular markers indicated that TWPs contributed 13 ± 7% of urban PM2.5. Our study demonstrates that TWPs are important contributors to urban air pollution that could pose risks to humans. There is an urgent need to develop strategies to decrease TWP emissions, along with broader urban air quality improvement strategies.
Collapse
Affiliation(s)
- Lele Tian
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shizhen Zhao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Ruiling Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Shaojun Lv
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Duohong Chen
- Environmental Key Laboratory of Regional Air Quality Monitoring, Ministry of Ecology and Environment, Guangdong Environmental Monitoring Center, Guangzhou 510308, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K
| | - Andrew J Sweetman
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| |
Collapse
|
28
|
Jiang N, Hao X, Wang Z, Li M, Zhang D, Cao R, Zhang R, Zhang H, Chen J, Geng N. p‑Phenylenediamine antioxidants in PM 2.5: New markers for traffic in positive matrix factorization source apportionment. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135122. [PMID: 38986411 DOI: 10.1016/j.jhazmat.2024.135122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/24/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
The extensive utilization of rubber-related products can lead to a substantial release of p-phenylenediamine (PPD) antioxidants into the environment. In recent years, studies mainly focus on the pollution characteristics and health risks of PM2.5-bound PPDs. This study presents long-time scale data of PPDs and N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-Q) in PM2.5 and proposes the innovative use of PPDs as new markers for vehicular emissions in the Positive Matrix Factorization (PMF) source apportionment. The results indicate that PPDs and 6PPD-Q were detectable in 100 % of the winter PM2.5 samples, and the concentration ranges of PPDs and 6PPD-Q are 15.6-2.92 × 103 pg·m-3 and 3.90-27.4 pg·m-3, respectively, in which 6PPD and DNPD are the main compounds. Moreover, a competitive formation mechanism between sulfate, nitrate, ammonium (SNA) and 6PPD-Q was observed. The source apportionment results show that the incorporation of PPDs in PMF reduced the contribution of traffic source to PM2.5 from 13.5 % to 9.5 %. In the traffic source factor profiles, the load of IPPD, CPPD, DPPD, DNPD and 6PPD reaches 91.8 %, 91.6 %, 92.9 %, 80.6 % and 87.2 %, respectively. It`s amazing that traditional markers of traffic source, which often overlap with coal burning and industrial sources, over-estimated the contribution of vehicles by one third or more. The discovery of PPDs as specific markers for vehicular emissions holds significant utility, particularly considering the growing proportion of new energy vehicles in the future. The results may prove more accurate policy implications for pollution control. SYNOPSIS: PPDs are excellent indicators of vehicle emissions, and PMF without PPDs over-estimated the contribution of traffic source to PM2.5.
Collapse
Affiliation(s)
- Nan Jiang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Xuexin Hao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Zichen Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Minzhen Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Dong Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Rong Cao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ruiqin Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Haijun Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ningbo Geng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
29
|
Liu C, Zhao X, Guo L, Yu Q, Zhang W, Peng Z, Gao Y, Gong X, Li P, Jiao H, Zhou T, Zhang Q, Song S, Jiang G. Emerging N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and 6PPD quinone in paired human plasma and urine from Tianjin, China: Preliminary assessment with demographic factors. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134818. [PMID: 38901252 DOI: 10.1016/j.jhazmat.2024.134818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
With increasing concerns about N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and 6PPD-quinone (6PPD-Q), relevant environmental investigations and toxicological research have sprung up in recent years. However, limited information could be found for human body burden assessment. This work collected and analyzed 200 samples consisting of paired urine and plasma samples from participants (50 male and 50 female) in Tianjin, China. Low detection frequencies (DF, <15 %) were found except for urinary 6PPD-Q (86 %), which suggested the poor residue tendency of 6PPD and 6PPD-Q in blood. The low DFs also lead to no substantial association between two chemicals. Data analysis based on urinary 6PPD-Q showed a significant difference between males and females (p < 0.05). No significant correlation was found for other demographic factors (Body Mass Index (BMI), age, drinking, and smoking). The mean values of daily excretion (ng/kg bw/day) calculated using urinary 6PPD-Q for females and males were 7.381 ng/kg bw/day (female) and 3.360 ng/kg bw/day (male), and apparently female suffered higher daily exposure. Further analysis with daily excretion and ALT (alanine aminotransferase)/TSH (thyroid stimulating hormone)/ blood cell analysis indicators found a potential correlation with 6PPD-Q daily excretion and liver/immune functions. Considering this preliminary assessment, systematic research targeting the potential organs at relevant concentrations is required.
Collapse
Affiliation(s)
- Chunyu Liu
- National Institute of Metrology, Beijing 100029, China; School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xingchen Zhao
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Liqiong Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Tianjin Fourth Central Hospital, Tianjin 300140, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weifei Zhang
- National Institute of Metrology, Beijing 100029, China
| | - Zijuan Peng
- National Institute of Metrology, Beijing 100029, China
| | - Yan Gao
- National Institute of Metrology, Beijing 100029, China
| | - Xiaoyun Gong
- National Institute of Metrology, Beijing 100029, China
| | - Penghui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Hui Jiao
- National Institute of Metrology, Beijing 100029, China
| | - Tao Zhou
- National Institute of Metrology, Beijing 100029, China
| | - Qinghe Zhang
- National Institute of Metrology, Beijing 100029, China
| | - Shanjun Song
- National Institute of Metrology, Beijing 100029, China; School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Guibin Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
30
|
Ma CS, Li DL, Wang F, Wang JP, He MT. Neurotoxicity from long-term exposure to 6-PPDQ: Recent advances. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116689. [PMID: 39002379 DOI: 10.1016/j.ecoenv.2024.116689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
The recent acceleration of industrialization and urbanization has brought significant attention to N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6-PPDQ), an emerging environmental pollutant from tire wear, due to its long-term effects on the environment and organisms. Recent studies suggest that 6-PPDQ can disrupt neurotransmitter synthesis and release, impact receptor function, and alter signaling pathways, potentially causing oxidative stress, inflammation, and apoptosis. This review investigates the potential neurotoxic effects of prolonged 6-PPDQ exposure, the mechanisms underlying its cytotoxicity, and the associated health risks. We emphasize the need for future research, including precise exposure assessments, identification of individual differences, and development of risk assessments and intervention strategies. This article provides a comprehensive overview of 6-PPDQ's behavior, impact, and neurotoxicity in the environment, highlighting key areas and challenges for future research.
Collapse
Affiliation(s)
- Chang-Sheng Ma
- Department of Diagnostic Pathology, Shandong Second Medical University, Weifang 261041, China
| | - Dong-Lun Li
- Department of Diagnostic Pathology, Shandong Second Medical University, Weifang 261041, China
| | - Fang Wang
- Department of Neurosurgery, Weifang People's Hospital, Weifang 261041, China
| | - Jin-Peng Wang
- Department of Diagnostic Pathology, Shandong Second Medical University, Weifang 261041, China; Department of Neurosurgery, Weifang People's Hospital, Weifang 261041, China.
| | - Mao-Tao He
- Department of Diagnostic Pathology, Shandong Second Medical University, Weifang 261041, China; Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang 261041, China.
| |
Collapse
|
31
|
Bergmann AJ, Masset T, Breider F, Dudefoi W, Schirmer K, Ferrari BJD, Vermeirssen ELM. Estrogenic, Genotoxic, and Antibacterial Effects of Chemicals from Cryogenically Milled Tire Tread. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1962-1972. [PMID: 39031710 DOI: 10.1002/etc.5934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/07/2024] [Accepted: 05/22/2024] [Indexed: 07/22/2024]
Abstract
Tire and road wear particles (TRWP) contain complex mixtures of chemicals and release them to the environment, and potential toxic effects of these chemicals still need to be characterized. We used a standardized surrogate for TRWP, cryogenically milled tire tread (CMTT), to isolate and evaluate effects of tire-associated chemicals. We examined organic chemical mixtures extracted and leached from CMTT for the toxicity endpoints genotoxicity, estrogenicity, and inhibition of bacterial luminescence. The bioassays were performed after chromatographic separation on high-performance thin-layer chromatography (HPTLC) plates. Extracts of CMTT were active in all three HPTLC bioassays with two estrogenic zones, two genotoxic zones, and two zones inhibiting bacterial luminescence. Extracts of CMTT artificially aged with thermooxidation were equally bioactive in each HPTLC bioassay. Two types of aqueous leachates of unaged CMTT, simulating either digestion by fish or contact with sediment and water, contained estrogenic chemicals and inhibitors of bacterial luminescence with similar profiles to those of CMTT extracts. Of 11 tested tire-associated chemicals, two were estrogenic, three were genotoxic, and several inhibited bacterial luminescence. 1,3-Diphenylguanidine, transformation products of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine, and benzothiazoles were especially implicated through comparison to HPTLC retention factors in the CMTT samples. Other bioactive bands in CMTT samples did not correspond to any target chemicals. Tire particles clearly contain and can leach complex mixtures of toxic chemicals to the environment. Although some known chemicals contribute to estrogenic, genotoxic, and antibacterial hazards, unidentified toxic chemicals are still present and deserve further investigation. Overall, our study expands the understanding of potential adverse effects from tire particles and helps improve the link between those effects and the responsible chemicals. Environ Toxicol Chem 2024;43:1962-1972. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Alan J Bergmann
- Swiss Centre for Applied Ecotoxicology, Dübendorf, Switzerland
| | - T Masset
- Central Environmental Laboratory, Ecole Polytechnique Fédérale de Lausanne-EPFL, Lausanne, Switzerland
| | - F Breider
- Central Environmental Laboratory, Ecole Polytechnique Fédérale de Lausanne-EPFL, Lausanne, Switzerland
| | - W Dudefoi
- Department Environmental Toxicology, Eawag, Dübendorf, Switzerland
| | - K Schirmer
- Department Environmental Toxicology, Eawag, Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETHZ, Zürich, Switzerland
- Laboratory of Environmental Toxicology, Ecole Polytechnique Fédérale de Lausanne-EPFL, Lausanne, Switzerland
| | - B J D Ferrari
- Swiss Centre for Applied Ecotoxicology, Dübendorf, Switzerland
- Swiss Centre for Applied Ecotoxicology, Lausanne, Switzerland
| | | |
Collapse
|
32
|
Chen C, Gao L, Ding P, Zhang S, Wang X, Yang K, Zhou Y, Chi B, Tuo X. The potential impact of 6PPD and its oxidation product 6PPD-quinone on human health: A case study on their interaction with human serum albumin. CHEMOSPHERE 2024; 362:142675. [PMID: 38908442 DOI: 10.1016/j.chemosphere.2024.142675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
6PPD and its oxidation product, 6PPD-quinone have garnered widespread attention due to their adverse effects on aquatic ecosystems and human health, and are recognized as emerging pollutants. In this study, we investigated the interaction mechanism between 6PPD/6PPD-quinone and human serum albumin (HSA) through various experiments. Experimental findings reveal that the IC50 values of 6PPD-quinone and 6PPD against HEK293T cells were 11.78 and 40.04 μM, respectively. Additionally, the cytotoxicity of these compounds was regulated by HSA, displaying an inverse correlation with their binding affinity to HSA. Furthermore, 6PPD/6PPD-quinone can spontaneously insert into site I on HSA, forming a binary complex that induces changes in the secondary structure of HSA. However, their effects on the esterase-like activity of HSA exhibit a dichotomy. While 6PPD activates the esterase-like activity of HSA, 6PPD-quinone inhibits it. Molecular docking analyses reveal that both 6PPD and 6PPD-quinone interact with many amino acid residues on HSA, including TRP214, ARG222, ARG218, ALA291, PHE211. The π electrons on the benzene rings of 6PPD/6PPD-quinone play pivotal roles in maintaining the stability of complexes. Moreover, the stronger binding affinity observed between 6PPD and HSA compared to 6PPD-quinone, may be attributed to the larger negative surface potential of 6PPD.
Collapse
Affiliation(s)
- Chaolan Chen
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Linna Gao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Pei Ding
- School of Pharmacy, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Shuyuan Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xiaowei Wang
- School of Pharmacy, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Kaiyu Yang
- School of Pharmacy, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Yikun Zhou
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Baozhu Chi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, China.
| | - Xun Tuo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, China.
| |
Collapse
|
33
|
Bartnick R, Rodionov A, Oster SDJ, Löder MGJ, Lehndorff E. Plastic Quantification and Polyethylene Overestimation in Agricultural Soil Using Large-Volume Pyrolysis and TD-GC-MS/MS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13047-13055. [PMID: 38977269 PMCID: PMC11270980 DOI: 10.1021/acs.est.3c10101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/11/2024] [Accepted: 05/29/2024] [Indexed: 07/10/2024]
Abstract
Quantification of microplastics in soil is needed to understand their impact and fate in agricultural areas. Often, low sample volume and removal of organic matter (OM) limit representative quantification. We present a method which allows simultaneous quantification of microplastics in homogenized, large environmental samples (>1 g) and tested polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS) (200-400 μm) overestimation by fresh and diagenetically altered OM in agricultural soils using a new combination of large-volume pyrolysis adsorption with thermal desorption-gas chromatography-tandem mass spectrometry (TD-GC-MS/MS). Characteristic MS/MS profiles for PE, PET, and PS were derived from plastic pyrolysis and allowed for a new mass separation of PET. Volume-defined standard particles (125 × 125 × 20 μm3) were developed with the respective weight (PE: 0.48 ± 0.12, PET: 0.50 ± 0.10, PS: 0.31 ± 0.08 μg), which can be spiked into solid samples. Diagenetically altered OM contained compounds that could be incorrectly identified as PE and suggest a mathematical correction to account for OM contribution. With a standard addition method, we quantified PS, PET, and PEcorrected in two agricultural soils. This provides a base to simultaneously quantify a variety of microplastics in many environmental matrices and agricultural soil.
Collapse
Affiliation(s)
- Ryan Bartnick
- Soil
Ecology, University of Bayreuth, Dr.-Hans-Frisch-Str. 1-3, 95448 Bayreuth, Germany
| | - Andrei Rodionov
- Soil
Ecology, University of Bayreuth, Dr.-Hans-Frisch-Str. 1-3, 95448 Bayreuth, Germany
| | | | - Martin G. J. Löder
- Animal
Ecology I, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Eva Lehndorff
- Soil
Ecology, University of Bayreuth, Dr.-Hans-Frisch-Str. 1-3, 95448 Bayreuth, Germany
| |
Collapse
|
34
|
Xiao Y, Zhang Q, Yang Y, Li K, Xiao Y, Zhang S, Guo F, Jiang X, Liu S, Sanganyado E, Xia X. Unraveling the Pollution and Discharge of Aminophenyl Sulfone Compounds, Sulfonamide Antibiotics, and Their Acetylation Products in Municipal Wastewater Treatment Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11695-11706. [PMID: 38877970 DOI: 10.1021/acs.est.4c02292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Aminophenyl sulfone compounds (ASCs) are widely used in various fields, such as the pharmaceutical and textile industries. ASCs and their primary acetylation products are inevitably discharged into the environment. However, the high toxicity of ASCs could be released from the deacetylation of acetylation products. Still, the occurrence and ecological risks of ASCs and their acetylation products remain largely unknown. Here, we integrated all of the existing ASCs based on the core structure, together with their potential acetylation products, to establish a database covering 1105 compounds. By combining the database with R programming, 45 ASCs, sulfonamides, and their acetylation products were identified in the influent and effluent of 19 municipal wastewater treatment plants in 4 cities of China. 13 of them were detected for the first time in the aquatic environment, and 12 acetylation products were newly identified. The cumulative concentrations of 45 compounds in the influent and effluent were in the range of 231-9.96 × 103 and 26-2.70 × 103 ng/L, respectively. The proportion of the unrecognized compounds accounted for 60.6% of the influent and 62.8% of the effluent. Furthermore, nearly half of the ASCs (46.7%), other sulfonamides (49.9%), and their acetylation products (46.2%) were discharged from the effluent, posing a low-to-medium risk to aquatic organisms. The results provide a guideline for future monitoring programs, particularly for sulfadiazine and dronedarone, and emphasize that the ecological risk of ASCs, sulfonamides, and their acetylation products needs to be considered in the aquatic environment.
Collapse
Affiliation(s)
- Yilin Xiao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Qing Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yingying Yang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Kaixuan Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yu Xiao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shangwei Zhang
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Feng Guo
- National Research Center for Geoanalysis, Beijing 100037, China
| | - Xiaoman Jiang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shaoda Liu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Edmond Sanganyado
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
35
|
Ihenetu SC, Xu Q, Khan ZH, Shabi Ui Hassan Kazmi S, Ding J, Sun Q, Li G. Environmental fate of tire-rubber related pollutants 6PPD and 6PPD-Q: A Review. ENVIRONMENTAL RESEARCH 2024; 258:119492. [PMID: 38936499 DOI: 10.1016/j.envres.2024.119492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
To enhance tire durability, the antioxidant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) is used in rubber, but it converts into the toxic 6PPD quinone (6PPD-Q) when exposed to oxidants like ozone (O3), causing ecological concerns. This review synthesizes the existing data to assess the transformation, bioavailability, and potential hazards of two tire-derived pollutants 6PPD and 6PPD-Q. The comparative analysis of different thermal methods utilized in repurposing waste materials like tires and plastics into valuable products are analyzed. These methods shed light on the aspects of pyrolysis and catalytic conversion processes, providing valuable perspectives into optimizing the waste valorization and mitigating environmental impacts. Furthermore, we have examined the bioavailability and potential hazards of chemicals used in tire manufacturing, based on the literature included in this review. The bioavailability of these chemicals, particularly the transformation of 6PPD to 6PPD-Q, poses significant ecological risks. 6PPD-Q is highly bioavailable in aquatic environments, indicating its potential for widespread ecological harm. The persistence and mobility of 6PPD-Q in the environment, along with its toxicological effects, highlight the critical need for ongoing monitoring and the development of effective mitigation strategies to reduce its impact on both human health and ecosystem. Future research should focus on understanding the chronic effects of low-level exposure to these compounds on both terrestrial and aquatic ecosystems, as well as the potential for bioaccumulation in the food chain. Additionally, this review outlines the knowledge gaps, recommending further research into the toxicity of tire-derived pollutants in organisms and the health implications for humans and ecosystems.
Collapse
Affiliation(s)
- Stanley Chukwuemeka Ihenetu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Qiao Xu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Zulqarnain Haider Khan
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Syed Shabi Ui Hassan Kazmi
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Qian Sun
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| |
Collapse
|
36
|
Sun T, Cai S, Zhang X, Wang D, Zhang W. Leaching hazards of tire wear particles in hydrothermal treatment of sludge: Exploring molecular composition, transformation mechanism, and ecological effects of tire wear particle-derived compounds. WATER RESEARCH 2024; 257:121669. [PMID: 38728786 DOI: 10.1016/j.watres.2024.121669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/31/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
Tire wear particles (TWPs) are considered a significant contributor of microplastics (MPs) in the sludge during heavy rainfall events. Numerous studies have shown that hydrothermal treatment (HT) of sludge can accelerate the leaching of MP-derived compound into hydrothermal liquid, thus impairing the performance of subsequent anaerobic digestion and the quality of the hydrothermal liquid fertilizer. However, the leaching behavior of TWPs in the HT of sludge remains inadequately explored. This study examined the molecular composition of TWP-derived compounds and transformation pathways of representative tire-related additives under different hydrothermal temperatures using liquid chromatography-tandem mass spectrometry (LC-MS/MS) combined with mass difference analysis. The acute toxicity and phytotoxicity of TWP leachates were assessed using Vibrio qinghaiensis Q67 and rice hydroponics experiments. The results indicated that elevating the hydrothermal temperature not only amplified the leaching behavior of TWPs but also enhanced the chemical complexity of the TWP leachate. Utilizing both suspect and non-target screenings, a total of 144 compounds were identified as additives, including N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6-PDD), hexa(methoxymethyl)melamine (HMMM), dibutyl phthalate (DBP). These additives underwent various reactions, such as desaturation, acetylation, and other reactions, leading to the formation of different transformation products (TPs). Moreover, certain additives, including caprolactam and 2,2,6,6-tetramethyl-4-piperidinol, demonstrated the potential to form conjugate products with amino acids or Maillard products. Meanwhile, TWP-derived compounds showed significant acute toxicity and detrimental effects on plant growth. This study systematically investigated the environmental fate of TWPs and their derived compounds during the HT of sludge, offering novel insights into the intricate interactions between the micropollutants and dissolved organic matter (DOM) in sludge.
Collapse
Affiliation(s)
- Tong Sun
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Siying Cai
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Xinyu Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Dongsheng Wang
- Department of environmental engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Weijun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
37
|
Wagner S, Funk CW, Müller K, Raithel DJ. The chemical composition and sources of road dust, and of tire and road wear particles-A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171694. [PMID: 38485005 DOI: 10.1016/j.scitotenv.2024.171694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/25/2024] [Accepted: 03/11/2024] [Indexed: 04/17/2024]
Abstract
To gain better understanding of how the transition to electric vehicles affects road dust (RD) composition, and potential health and environmental risks, it is crucial to analyze the chemical composition of RD and identify its sources. Sources of RD include wear of tire tread (TT), brake wear (BW) and road wear (RW). A relevant component of RD are tire and road wear particles (TRWPs). This literature review compiles data on the chemical bulk composition of RD sources, RD in Asia, Europe and North America and TRWP as a RD component. The focus is on elements such as Cd, Co, Cr, Cu, Ni, Pb, V, and Zn. Although the comparability of global RD data is limited due to differences in sampling and analytical methods, no significant differences in the composition from Asia, Europe, and North America were found for most of the investigated elements studied, except for Cd, Co, and V. Sources of RD were analyzed using elemental markers. On average TT, BW, and RW contributed 3 %, 1 %, and 96 %, respectively. The highest concentrations of TT (9 %) and BW (2 %) were observed in the particle size fraction of RD ≤ 10 μm. It is recommended that these results be verified using additional marker compounds. The chemical composition of TRWPs from different sources revealed that (i) TRWPs isolated from a tunnel dust sample are composed of 31 % TT, 6 % BW, and 62 % RW, and (ii) test material from tire test stands show a similar TT content but different chemical bulk composition likely because e.g., of missing BW. Therefore, TRWPs from test stands need to be chemically characterized prior to their use in hazard testing to validate their representativeness.
Collapse
Affiliation(s)
- Stephan Wagner
- Hochschule Fresenius, Institute for Analytical Research, Idstein, Germany; Hochschule für Angewandte Wissenschaften Hof, Germany.
| | | | - Kathrin Müller
- Hochschule Fresenius, Institute for Analytical Research, Idstein, Germany
| | | |
Collapse
|
38
|
Zhang Z, Dai C, Chen S, Hu H, Kang R, Xu X, Huo X. Spatiotemporal variation of 6PPD and 6PPDQ in dust and soil from e-waste recycling areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171495. [PMID: 38453087 DOI: 10.1016/j.scitotenv.2024.171495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its derivative 6PPDQ have been detected in various environmental media, with harmful consequences for both ecosystems and biological health. However, the distribution of 6PPD and 6PPDQ in areas around e-waste recycling areas is currently unknown. We collected soil and dust samples from areas around a traditional e-waste recycling zone, an emerging recycling park, and a reference area. Higher levels of 6PPD were found in dust from residential areas around the traditional e-waste recycling zone compared to the reference area (median: 108.99 versus 33.57 ng/g, P < 0.01). Lower levels of 6PPDQ were detected in dust samples from around the emerging e-waste recycling parks compared to traditional e-waste recycling zones (median: 15.40 versus 46.37 ng/g, P < 0.05). The median concentrations of 6PPD and 6PPDQ were higher in the dust samples than in the soil samples (P < 0.001). The concentrations of 6PPD and 6PPDQ in the dust and soil varied seasonally, with the highest total concentrations occurring in the winter. Results from a multiple linear regression analysis indicate that 6PPDQ is negatively correlated with temperature and positively correlated with 6PPD, O3, and radiation. This study confirms that e-waste is a potential contributor to 6PPD and 6PPDQ. In residential areas, 6PPD and 6PPDQ are more likely to accumulate in dust than in soil. The emerging e-waste recycling parks have greatly improved the local 6PPDQ pollution situation. Further studies are necessary to understand the distribution of newly found substances in various settings.
Collapse
Affiliation(s)
- Zhuxia Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Chenxu Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Siyan Chen
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Hongfei Hu
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Rongyi Kang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China.
| |
Collapse
|
39
|
Jiang Y, Wang C, Ma L, Gao T, Wāng Y. Environmental profiles, hazard identification, and toxicological hallmarks of emerging tire rubber-related contaminants 6PPD and 6PPD-quinone. ENVIRONMENT INTERNATIONAL 2024; 187:108677. [PMID: 38677083 DOI: 10.1016/j.envint.2024.108677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) is commonly used in rubber compounds as antioxidants to protect against degradation from heat, oxygen, and ozone exposure. This practice extends the lifespan of rubber products, including tires, by preventing cracking, aging, and deterioration. However, the environmental consequences of waste generated during rubber product use, particularly the formation of 6PPD-quinone (6PPD-Q) through the reaction of 6PPD with ozone, have raised significant concerns due to their detrimental effects on ecosystems. Extensive research has revealed the widespread occurrence of 6PPD and its derivate 6PPD-Q in various environmental compartments, including air, water, and soil. The emerging substance of 6PPD-Q has been shown to pose acute mortality and long-term hazards to aquatic and terrestrial organisms at concentrations below environmentally relevant levels. Studies have demonstrated toxic effects of 6PPD-Q on a range of organisms, including zebrafish, nematodes, and mammals. These effects include neurobehavioral changes, reproductive dysfunction, and digestive damage through various exposure pathways. Mechanistic insights suggest that mitochondrial stress, DNA adduct formation, and disruption of lipid metabolism contribute to the toxicity induced by 6PPD-Q. Recent findings of 6PPD-Q in human samples, such as blood, urine, and cerebrospinal fluid, underscore the importance of further research on the public health and toxicological implications of these compounds. The distribution, fate, biological effects, and underlying mechanisms of 6PPD-Q in the environment highlight the urgent need for additional research to understand and address the environmental and health impacts of these compounds.
Collapse
Affiliation(s)
- Yang Jiang
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University; School of Public Health, Anhui Medical University, Hefei 230601, China
| | - Chunzhi Wang
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University; School of Public Health, Anhui Medical University, Hefei 230601, China
| | - Ling Ma
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University; School of Public Health, Anhui Medical University, Hefei 230601, China
| | - Tiantian Gao
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University; School of Public Health, Anhui Medical University, Hefei 230601, China
| | - Yán Wāng
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University; School of Public Health, Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
40
|
Liu H, Tan X, Wu Y, Li X, Hu Z, Lei S, Fan W, Wang Z. Long-term exposure to 6-PPD quinone at environmentally relevant concentrations causes neurotoxicity by affecting dopaminergic, serotonergic, glutamatergic, and GABAergic neuronal systems in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171291. [PMID: 38423311 DOI: 10.1016/j.scitotenv.2024.171291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
6-PPD quinone (6-PPDQ), an emerging environmental pollutant, is converted based on 6-PPD via ozonation. However, a systematic evaluation on possible neurotoxicity of long-term and low-dose 6-PPDQ exposure and the underlying mechanism remain unknown. In the present work, 0.1-10 μg/L 6-PPDQ was added to treat Caenorhabditis elegans for 4.5 days, with locomotion behavior, neuronal development, sensory perception behavior, neurotransmitter content, and levels of neurotransmission-related genes being the endpoints. 6-PPDQ exposure at 0.1-10 μg/L significantly reduced locomotion behavior, and that at 1-10 μg/L decreased sensory perception behavior in nematodes. Moreover, 6-PPDQ exposure at 10 μg/L notably induced damage to the development of dopaminergic, glutamatergic, serotonergic, and GABAergic neurons. Importantly, nematodes with chronic 6-PPDQ exposure at 10 μg/L were confirmed to suffer obviously decreased dopamine, serotonin, glutamate, dopamine, and GABA contents and altered neurotransmission-related gene expression. Meanwhile, the potential binding sites of 6-PPDQ and neurotransmitter synthesis-related proteins were further shown by molecular docking method. Lastly, Pearson's correlation analysis showed that locomotion behavior and sensory perception behavior were positively correlated with the dopaminergic, serotonergic, glutamatergic, and GABAergic neurotransmission. Consequently, 6-PPDQ exposure disturbed neurotransmitter transmission, while such changed molecular foundation for neurotransmitter transmission was related to 6-PPDQ toxicity induction. The present work sheds new lights on the mechanisms of 6-PPDQ and its possible neurotoxicity to organisms at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Huanliang Liu
- Environment and Health research division, Public Health Research Center,Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China; Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaochao Tan
- Environment and Health research division, Public Health Research Center,Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Yu Wu
- Environment and Health research division, Public Health Research Center,Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhiyong Hu
- School of Public Health and Management, Binzhou Medical University, Yantai 264003, China
| | - Shuhan Lei
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wendong Fan
- Environment and Health research division, Public Health Research Center,Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
41
|
Zhang Y, Yan L, Wang L, Zhang H, Chen J, Geng N. A nation-wide study for the occurrence of PPD antioxidants and 6PPD-quinone in road dusts of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171393. [PMID: 38431175 DOI: 10.1016/j.scitotenv.2024.171393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/05/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
N,N'-substituted p-phenylenediamines (PPDs) are widely used antioxidants in rubber tires, which could be released and accumulated in road dusts with rubber tires wear. As ozonation product of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), 6PPD-quinone (6PPD-Q) exhibited higher toxicity to coho salmon. However, studies on their environmental behaviors are still limited. Road dust is the major medium PPDs exist, which significantly affects the levels of PPDs in other mediums, especially surface water and particulate matter. In this study, road dust samples were collected in 55 major cities of China to explore the distribution characteristics of PPDs and 6PPD-Q. The concentrations of total PPDs (ΣPPDs) and 6PPD-Q in urban trunk road dust samples were in the ranges of 7.90-727 and 3.00-349 ng/g, with median concentrations of 68 and 49 ng/g, respectively. 6PPD and 6PPD-Q are the dominant components in most road dusts. The functional region-dependent pollution characteristics of PPDs and 6PPD-Q give the first finding that urban tunnel road was the highly polluted region, followed by urban trunk roads. Suburban road dusts had a lower pollution level. Moreover, the estimated daily intake (EDI) of PPDs and 6PPD-Q for children was much higher than adults.
Collapse
Affiliation(s)
- Yuying Zhang
- College of Resources and Environment, Northeast Agriculture University, Harbin 150030, China; CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lei Yan
- College of Resources and Environment, Northeast Agriculture University, Harbin 150030, China.
| | - Longxing Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ningbo Geng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
42
|
Zhang Z, Xu X, Qian Z, Zhong Q, Wang Q, Hylkema MN, Snieder H, Huo X. Association between 6PPD-quinone exposure and BMI, influenza, and diarrhea in children. ENVIRONMENTAL RESEARCH 2024; 247:118201. [PMID: 38220074 DOI: 10.1016/j.envres.2024.118201] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-quinone) has received extensive attention due to its ubiquitous distribution and potential toxicity. However, the distribution characteristics of 6PPD-quinone in dust from e-waste recycling areas and the consequential health risks to children are unclear. A total of 183 dust samples were collected from roads (n = 40), homes (n = 91), and kindergartens (n = 52) in Guiyu (the e-waste-exposed group) and Haojiang (the reference group) from 2019 to 2021. The results show that the concentrations of 6PPD-quinone in kindergarten and house dust from the exposed group were significantly higher than those from the reference group (P < 0.001). These findings show that e-waste may be another potential source of 6PPD-quinone, in addition to rubber tires. The exposure risk of 6PPD-quinone in children was assessed using their daily intake. The daily intake of 925 kindergarten children was calculated using the concentration of 6PPD-quinone in kindergarten dust. The daily intake of 6PPD-quinone via ingestion was approximately five orders of magnitude higher than via inhalation. Children in the exposed group had a higher exposure risk to 6PPD-quinone than the reference group. A higher daily intake of 6PPD-quinone from kindergarten dust was associated with a lower BMI and a higher frequency of influenza and diarrhea in children. This study reports the distribution of 6PPD-quinone in an e-waste recycling town and explores the associated health risks to children.
Collapse
Affiliation(s)
- Zhuxia Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Ziyi Qian
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Qi Zhong
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qihua Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China; Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Machteld N Hylkema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China.
| |
Collapse
|
43
|
Wohlleben W, Bossa N, Mitrano DM, Scott K. Everything falls apart: How solids degrade and release nanomaterials, composite fragments, and microplastics. NANOIMPACT 2024; 34:100510. [PMID: 38759729 DOI: 10.1016/j.impact.2024.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
To ensure the safe use of materials, one must assess the identity and quantity of exposure. Solid materials, such as plastics, metals, coatings and cements, degrade to some extent during their life cycle, and releases can occur during manufacturing, use and end-of-life. Releases (e.g., what is released, how does release happen, and how much material is released) depend on the composition and internal (nano)structures of the material as well as the applied stresses during the lifecycle. We consider, in some depth, releases from mechanical, weathering and thermal stresses and specifically address the use cases of fused-filament 3D printing, dermal contact, food contact and textile washing. Solid materials can release embedded nanomaterials, composite fragments, or micro- and nanoplastics, as well as volatile organics, ions and dissolved organics. The identity of the release is often a heterogenous mixture and requires adapted strategies for sampling and analysis, with suitable quality control measures. Control materials enhance robustness by enabling comparative testing, but reference materials are not always available as yet. The quantity of releases is typically described by time-dependent rates that are modulated by the nature and intensity of the applied stress, the chemical identity of the polymer or other solid matrix, and the chemical identity and compatibility of embedded engineered nanomaterials (ENMs) or other additives. Standardization of methods and the documentation of metadata, including all the above descriptors of the tested material, applied stresses, sampling and analytics, are identified as important needs to advance the field and to generate robust, comparable assessments. In this regard, there are strong methodological synergies between the study of all solid materials, including the study of micro- and nanoplastics. From an outlook perspective, we review the hazard of the released entities, and show how this informs risk assessment. We also address the transfer of methods to related issues such as tyre wear, advanced materials and advanced manufacturing, biodegradable polymers, and non-solid matrices. As the consideration of released entities will become more routine in industry via lifecycle assessment in Safe-and-Sustainable-by-Design practices, release assessments will require careful design of the study with quality controls, the use of agreed-on test materials and standardized methods where these exist and the adoption of clearly defined data reporting practices that enable data reuse, meta-analyses, and comparative studies.
Collapse
Affiliation(s)
- Wendel Wohlleben
- BASF SE, Dept. of Analytical and Materials Science, 67056 Ludwigshafen, Germany.
| | - Nathan Bossa
- TEMAS Solutions GmbH, Lätterweg 5, 5212 Hausen, Switzerland; Department of Civil & Environmental Engineering, Duke University, Durham, NC 27708, United States
| | - Denise M Mitrano
- Environmental Systems Science Department, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Keana Scott
- Materials Measurement Science Division, National Institute of Standards and Technology, 100 Bureau Drive, MS-8372, Gaithersburg, MD 20899, United States
| |
Collapse
|
44
|
Ren Y, Li W, Jia Q, Zhao Y, Qu C, Liu L, Liu J, Wu C. Separation and quantification of tire and road wear particles in road dust samples: Bonded-sulfur as a novel marker. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133089. [PMID: 38016316 DOI: 10.1016/j.jhazmat.2023.133089] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Tire road wear particles (TRWPs) are a large source of microplastics in the environment, while the quantification of TRWPs is still challenging due to the complex interferences and the uncertainties and inconsistencies among different methods. This study developed a TRWPs quantification method using optimized pretreatments and bonded-sulfur as marker. Road dust samples (n = 48) were collected, pretreatments including density separation, digestion and extraction were optimized to remove interferences of the bonded-sulfur (minerals, sulfur-containing proteins, hydrosoluble/hydrophobic sulfur-containing substances). Presence of TRWPs in the samples was confirmed by microscopy and scanning electron microscopyenergy dispersive spectrometry. Bonded-sulfur in the samples were quantified by inductively coupled plasmamass spectrometry (ICPMS). Additionally, bonded-sulfur in tire wear particles (TWPs) abraded from tires of top 10 best-selling brands were measured to calculate conversion factor (1.1 ×104 μg/g) for the quantification of TRWPs in real samples. TRWPs contents were 5.40 × 104 μg/g11.02 × 104 μg/g and 2.36 × 104 μg/g5.30 × 104 μg/g in samples from heavy and light traffic roads, respectively. The method provided better recoveries (88-107%, n = 18) and repeatability (RSD=2.0-7.9%, n = 3) compared to methods using rubber, benzothiazole and organic zinc as markers. Furthermore, stability of the bonded-sulfur was validated by Raman and ICPMS. Thus, this accurate and stable quantification method could promote research on TRWPs.
Collapse
Affiliation(s)
- Yifan Ren
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenhui Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qi Jia
- China Testing & Certification International Group Co., Ltd., Beijing 100024, China
| | - Yanjun Zhao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chen Qu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Li Liu
- Beijing University of Chemical Technology, State Key Laboratory of Chemical Resource Engineering, Beijing 100029, China
| | - Jiemin Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Chuandong Wu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
45
|
Wang W, Cao G, Zhang J, Qiao H, Li H, Yang B, Chen Y, Zhu L, Sang Y, Du L, Cai Z. UV-induced photodegradation of emerging para-phenylenediamine quinones in aqueous environment: Kinetics, products identification and toxicity assessments. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133427. [PMID: 38185090 DOI: 10.1016/j.jhazmat.2024.133427] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/11/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Substituted para-phenylenediamine quinones (PPD-quinones) are a class of emerging contaminants frequently detected in the aqueous environment. One of them, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-Q), was found to cause acute toxicities to aquatic species at extremely low environmental levels. The ubiquitousness and ecotoxicity of such pollutants underscore the importance of their transformation and elimination. In this work, we demonstrated effective removals of five PPD-quinones in aqueous environments under UV irradiation, with up to 94% of 6PPD-Q eliminated after a 40-min treatment. By applying high-resolution mass spectrometry (HRMS) non-targeted screening in combination with isotope labeling strategies, a total of 22 transformation products (TPs) were identified. Coupling with the time-based dynamic patterns, potential transformation mechanisms were identified as an •OH-induced photocatalysis reaction involving bond cleavage, hydroxylation, and oxidation. Computational toxicity assessment predicted lower aquatic toxicity of the TPs than their parent PPD-quinones. Our results in parallel evidenced an obvious reduction of PPD-quinones accompanied by the presence of their TPs in the effluent after UV disinfection in real municipal wastewater. This work builds a comprehensive understanding of the fate, transformation products, and related toxicological characteristics of emerging PPD-quinone contaminants in the aqueous environment.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Guodong Cao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Jing Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Han Qiao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Huankai Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Biwei Yang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Yanyan Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Yuecheng Sang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Lei Du
- Huangpu Hydrogen Energy Innovation Center/School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China.
| |
Collapse
|
46
|
Dudefoi W, Ferrari BJD, Breider F, Masset T, Leger G, Vermeirssen E, Bergmann AJ, Schirmer K. Evaluation of tire tread particle toxicity to fish using rainbow trout cell lines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168933. [PMID: 38042189 DOI: 10.1016/j.scitotenv.2023.168933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
Tire and road wear particles (TRWP) resulting from tire abrasion while driving raise concerns due to their potential contribution to aquatic toxicity. Our study aimed to assess cryogenically milled tire tread (CMTT) particle toxicity, used as a proxy for TRWP, and associated chemicals to fish using two Rainbow Trout (Oncorhynchus mykiss) cell lines representing the gill (RTgill-W1) and the intestinal (RTgutGC) epithelium. CMTT toxicity was evaluated through several exposure pathways, including direct contact, leaching, and digestion, while also assessing the impact of particle aging. Following OECD TG249, cell viability was assessed after 24 h acute exposure using a multiple-endpoint assay indicative of cell metabolic activity, membrane integrity and lysosome integrity. In vitro EC50 values for the fish cell lines exceeded river TRWP concentrations (2.02 g/L and 4.65 g/L for RTgill-W1 and RTgutGC cell lines, respectively), and were similar to in vivo LC50 values estimated at 6 g/L. Although toxicity was mainly driven by the leaching of tire-associated chemicals, the presence of the particles contributed to the overall toxicity by inducing a continuous leaching, highlighting the importance of considering combined exposure scenarios. Aging and digestion conditions were also found to mediate CMTT toxicity. Thermooxidation resulted in a decreased chemical leaching and toxicity, while in vitro digestion under mimicked gastrointestinal conditions increased leaching and toxicity. Specific chemicals, especially Zn, 2-mercaptobenzothiazole, 1,3-diphenylguanidine, and N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) were identified as contributors to the overall toxicity. Although 6PPD-quinone was detected in CMTT digestate, cytotoxicity assays with RTgill-W1 and RTgutGC cell lines showed no toxicity up to 6 mg/L, supporting the notion of a specific mode of action of this chemical. This study provides insights into the toxicological mechanisms induced by tire particles and their associated chemicals and can help in the evaluation of potential risks to aquatic life associated with TRWP.
Collapse
Affiliation(s)
- W Dudefoi
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, Department Environmental Toxicology, Überlandstrasse 133, 8600 Dübendorf, Switzerland.
| | - B J D Ferrari
- Ecotox Centre - EPFL ENAC IIE, GE, Station 2, CH-1015 Lausanne, Switzerland; Ecotox Centre, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - F Breider
- EPFL, Central Environmental Laboratory, IIE, ENAC, Station 2, CH-1015 Lausanne, Switzerland
| | - T Masset
- EPFL, Central Environmental Laboratory, IIE, ENAC, Station 2, CH-1015 Lausanne, Switzerland
| | - G Leger
- EPFL, Central Environmental Laboratory, IIE, ENAC, Station 2, CH-1015 Lausanne, Switzerland
| | - E Vermeirssen
- Ecotox Centre, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - A J Bergmann
- Ecotox Centre, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - K Schirmer
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, Department Environmental Toxicology, Überlandstrasse 133, 8600 Dübendorf, Switzerland; EPFL, School of Architecture, Civil and Environmental Engineering, Lausanne 1015, Switzerland; ETHZ, Institute of Biogeochemistry and Pollutant Dynamics, Zurich 8092, Switzerland
| |
Collapse
|
47
|
Wang H, Luo Z, Dai A, Liao X, Yan C, Yu R, Zhou S, Xing B. Ascertaining appropriate measuring methods to determine tire wear particle pollution on driving school grounds in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133657. [PMID: 38309163 DOI: 10.1016/j.jhazmat.2024.133657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Tire wear particles (TWPs) are garnering increasing attention due to their potential adverse environmental impacts. However, precisely ascertaining TWPs content is challenging due to the complexity and variability of the tire components used in the environment, indicating that more reliable methods to accurately determine TWPs are necessary. In this study, driving school grounds were used as a case study to ascertain an appropriate and reliable method to determine TWPs levels based on a comprehensive comparison between different analytical results using styrene butadiene rubber (SBR), N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), and zinc (Zn) as analytical markers. Thermogravimetric analysis-Gas chromatography mass spectrometry (TGA-GC-MS) method reliability using SBR was verified and applied to measure TWPs levels on driving school grounds. By reliably converting SBR content to TWPs content, the average TWPs content on driving school grounds was measured at 190.13 ± 101.89 mg/g. The highest TWPs content was 281.83 ± 171.44 mg/g under the reverse stall parking driving programs, while the slope start and stop driving programs was lower at 208.36 ± 124.11 mg/g. Our findings highlight the importance of accurately determining TWPs content within specific environments while comprehensively exploring associated patterns of change to better understand the environmental risks of TWPs.
Collapse
Affiliation(s)
- Haiming Wang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhuanxi Luo
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Anteng Dai
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Xu Liao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ruilian Yu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Shufeng Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
48
|
Zeb A, Liu W, Ali N, Shi R, Lian Y, Wang Q, Wang J, Li J, Zheng Z, Liu J, Yu M, Liu J. Integrating metabolomics and high-throughput sequencing to investigate the effects of tire wear particles on mung bean plants and soil microbial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122872. [PMID: 37926408 DOI: 10.1016/j.envpol.2023.122872] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Tire wear particles (TWPs) generated by vehicle tires are ubiquitous in soil ecosystems, while their impact on soil biota remains poorly understood. In this study, we investigated the effects of TWPs (0.1%, 0.7%, and 1.5% of dry soil weight) on the growth and metabolism of mung bean (Vigna radiata) plants over 32 days in soil pots. We found that TWPs-treated soils had high levels of heavy metals and polycyclic aromatic hydrocarbons (PAHs). However, there was no significant impact of TWPs exposure on plant growth, suggesting that mung bean plants have a degree of tolerance to TWPs. Despite the lack of impact on plant growth, exposure to TWPs had significant effects on soil enzyme activities, with a decrease of over 50% in urease and dehydrogenase activity. Furthermore, TWPs exposure resulted in marked changes in the plant metabolite profile, including altered levels of sugars, carboxylic acids, and amino acids, indicating altered nitrogen and amino acid-related metabolic pathways. TWPs exposure also disrupted the rhizospheric and bulk soil microbiota, with a decrease in the abundance of bacterial (Blastococcus) and fungal (Chaetomium) genera involved in nitrogen cycles and suppressing plant diseases. In summary, our study provides new insights into the effects of TWPs on plants and soil, highlighting the potential ecological consequences of TWPs pollution in terrestrial ecosystems and underscoring the need for further research in this area.
Collapse
Affiliation(s)
- Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China.
| | - Nouman Ali
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China
| | - Yuhang Lian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China
| | - Jiantao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China
| | - Zeqi Zheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China
| | - Miao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China
| | - Jianv Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China
| |
Collapse
|
49
|
Redman ZC, Begley JL, Hillestad I, DiMento BP, Stanton RS, Aguaa AR, Pirrung MC, Tomco PL. Reactive Oxygen Species and Chromophoric Dissolved Organic Matter Drive the Aquatic Photochemical Pathways and Photoproducts of 6PPD-quinone under Simulated High-Latitude Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20813-20821. [PMID: 38032317 DOI: 10.1021/acs.est.3c05742] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The photochemical degradation pathways of 6PPD-quinone (6PPDQ, 6PPD-Q), a toxic transformation product of the tire antiozonant 6PPD, were determined under simulated sunlight conditions typical of high-latitude surface waters. Direct photochemical degradation resulted in 6PPDQ half-lives ranging from 17.5 h at 20 °C to no observable degradation over 48 h at 4 °C. Sensitization of excited triplet-state pathways using Cs+ and Ar purging demonstrated that 6PPDQ does not decompose significantly from a triplet state relative to a singlet state. However, assessment of processes involving reactive oxygen species (ROS) quenchers and sensitizers indicated that singlet oxygen and hydroxyl radical do significantly contribute to the degradation of 6PPDQ. Investigation of these processes in natural lake waters indicated no difference in attenuation rates for direct photochemical processes at 20 °C. This suggests that direct photochemical degradation will dominate in warm waters, while indirect photochemical pathways will dominate in cold waters, involving ROS mediated by chromophoric dissolved organic matter (CDOM). Overall, the aquatic photodegradation rate of 6PPDQ will be strongly influenced by the compounding effects of environmental factors such as light screening and temperature on both direct and indirect photochemical processes. Transformation products were identified via UHPLC-Orbitrap mass spectrometry, revealing four major processes: (1) oxidation and cleavage of the quinone ring in the presence of ROS, (2) dealkylation, (3) rearrangement, and (4) deamination. These data indicate that 6PPDQ can photodegrade in cool, sunlit waters under the appropriate conditions: t1/2 = 17.4 h tono observable decrease (direct); t1/2 = 5.2-11.2 h (indirect, CDOM).
Collapse
Affiliation(s)
- Zachary C Redman
- Department of Chemistry, College of Arts and Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, Alaska 99508, United States
| | - Jessica L Begley
- Department of Chemistry, College of Arts and Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, Alaska 99508, United States
| | - Isabel Hillestad
- Department of Chemistry, College of Arts and Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, Alaska 99508, United States
| | - Brian P DiMento
- Department of Chemistry, College of Arts and Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, Alaska 99508, United States
| | - Ryan S Stanton
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Alon R Aguaa
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Michael C Pirrung
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Patrick L Tomco
- Department of Chemistry, College of Arts and Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, Alaska 99508, United States
| |
Collapse
|
50
|
Calarnou L, Traïkia M, Leremboure M, Malosse L, Dronet S, Delort AM, Besse-Hoggan P, Eyheraguibel B. Assessing biodegradation of roadway particles via complementary mass spectrometry and NMR analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165698. [PMID: 37499838 DOI: 10.1016/j.scitotenv.2023.165698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Roadway particles (RP) that can be collected with on-vehicle system, consist of a mixture of Tire and road wear particles (TRWP) with other traffic-derived particles (exhaust or non-exhaust) and/or biogenic compounds and represent a significant source of xenobiotics, susceptible to reach the different environmental compartments. The study of the RP fate is thus a major challenge to tackle in order to understand their degradation and impact. They offer a variety of carbon sources potentially usable by microorganisms, ranging from the tire-derived plasticizers, vulcanizing agents, protective agents and their transformation products, to other traffic, road and environmental-derived contaminants. A multi-analytical approach was implemented to characterize RP and study their biodegradation. Kinetics of RP extractions were monitored during 21 days in water, methanol, acetone and chloroform to identify leaching and extractable compounds and monitor the particle composition. The results confirmed that hundreds of readily leachable chemicals can be extracted from RP directly into water according to a dynamic process with time while additional poorly soluble compounds remain in the particles. Mass spectrometry (LC-HRMS and GC-MS) allowed us to propose 296 putative compounds using an extensive rubber database. The capacity of 6 bacterial strains, belonging to Rhodococcus, Pseudomonas and Streptomyces genera, to biodegrade RP was then evaluated over 14 days of incubation. The selected strains were able to grow on RP using various substrates. Elastomer monitoring by 1H NMR revealed a significant 12 % decrease of the extractable SBR fraction when the particles were incubated with Rhodococcus ruber. After incubation, the biodegradation of 171 compounds among leachable and extractable compounds was evaluated. Fatty acids and alkanes from rubber plasticizers and paraffin waxes were the most degraded putative compounds by the six strains tested, reaching 75 % of biodegradation for some of them.
Collapse
Affiliation(s)
- Laurie Calarnou
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut de Chimie (ICCF), F-63000 Clermont- Ferrand, France
| | - Mounir Traïkia
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut de Chimie (ICCF), F-63000 Clermont- Ferrand, France
| | - Martin Leremboure
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut de Chimie (ICCF), F-63000 Clermont- Ferrand, France
| | - Lucie Malosse
- Manufacture Française des Pneumatiques MICHELIN, Centre de Technologies Ladoux, F-63040 Clermont-Ferrand, France
| | - Séverin Dronet
- Manufacture Française des Pneumatiques MICHELIN, Centre de Technologies Ladoux, F-63040 Clermont-Ferrand, France
| | - Anne-Marie Delort
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut de Chimie (ICCF), F-63000 Clermont- Ferrand, France
| | - Pascale Besse-Hoggan
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut de Chimie (ICCF), F-63000 Clermont- Ferrand, France
| | - Boris Eyheraguibel
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut de Chimie (ICCF), F-63000 Clermont- Ferrand, France.
| |
Collapse
|