1
|
Babczyńska A, Bańska M, Mizera K, Tarnawska M, Augustyniak M, Rozpędek K, Łozowski B, Brożek J, Potocka I, Kowalewska-Groszkowska M, Sawadro M, Czerwonka A, Žaltauskaitė J, Sujetovienė G, Giulianini P, Renzi M, Giglio A. The effects of tread rubber and road dust particles on stress, immunity and digestive biomarkers in the larvae of the mealworm Tenebrio molitor. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 298:118289. [PMID: 40344779 DOI: 10.1016/j.ecoenv.2025.118289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 05/06/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Airborne road and abrasive car parts particles penetrate into aquatic and soil environments, but also, settling on vegetation along highways, enter trophic chains as a result of consumption by herbivorous invertebrates. The effects of this exposure are poorly recognized. The study aimed to assess the toxicity of two traffic-connected materials: tread rubber (TR) particles and environmentally relevant field-collected road dust (RD), to the Tenebrio molitor larvae under laboratory conditions using a set of protective (heat shock protein - HSP70, metallothionein - Mts levels), immunity (lysozyme - Lys, defensin - Def levels) and digestive (protease, amylase, and celulase activities) biomarkers. ELISA assay was used for protein levels, while fluorimetric and spectrophotometric methods were used for enzymatic activity studies. RD and TR particles were characterized by SEM/EDS techniques. The representative TR particle sizes were within the range of 31 µm and 274 µm. For the RD, the size of the particles were 153-587 µm. Fat body HSP70 levels were, on average, twice lower in groups exposed to RD particles. For fat body Mts, RD and TR caused the decrease while in the gut, the effect depended on the particle type. Gut lysozyme levels increased for both particles while in fat body this effect was made by RD. Digestive enzyme activity did not reflect exposure to TR and RD particles. RD induced changes in more experimental groups than TR. This may be due to the greater complexity of their composition. Further studies focusing on material type, concentration, exposure duration, and particle size are necessary to understand the effects of traffic-connected material on terrestrial herbivores.
Collapse
Affiliation(s)
- Agnieszka Babczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice Jagiellońska 28, Katowice 40-032, Poland.
| | - Michalina Bańska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice Jagiellońska 28, Katowice 40-032, Poland
| | - Katarzyna Mizera
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice Jagiellońska 28, Katowice 40-032, Poland
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice Jagiellońska 28, Katowice 40-032, Poland
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice Jagiellońska 28, Katowice 40-032, Poland
| | - Katarzyna Rozpędek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice Jagiellońska 28, Katowice 40-032, Poland
| | - Bartosz Łozowski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice Jagiellońska 28, Katowice 40-032, Poland
| | - Jolanta Brożek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice Jagiellońska 28, Katowice 40-032, Poland
| | - Izabela Potocka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice Jagiellońska 28, Katowice 40-032, Poland
| | | | - Marta Sawadro
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice Jagiellońska 28, Katowice 40-032, Poland
| | - Agnieszka Czerwonka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice Jagiellońska 28, Katowice 40-032, Poland
| | - Jūratė Žaltauskaitė
- Department of Environmental Sciences, Vytautas Magnus University., Universiteto st. 10, Akademija, Kaunas LT-53361, Lithuania
| | - Gintarė Sujetovienė
- Department of Environmental Sciences, Vytautas Magnus University., Universiteto st. 10, Akademija, Kaunas LT-53361, Lithuania
| | - Piero Giulianini
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, Trieste 34127, Italy
| | - Monia Renzi
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, Trieste 34127, Italy
| | - Anita Giglio
- Department of Biology, Ecology and Earth Sciences, Di.B.E.S.T., University of Calabria, Cosenza, Italy
| |
Collapse
|
2
|
Bolea E, Brunetti LS, Abad-Alvaro I, Cellini E, Ruffolo SA, La Russa MF, Laborda F. Release of heavy metals during in vitro fish gastrointestinal digestion from microplastics collected at Calabrian coasts. MARINE POLLUTION BULLETIN 2025; 217:118080. [PMID: 40315743 DOI: 10.1016/j.marpolbul.2025.118080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
Migration of different environmentally relevant elements (Pb, Cd, Cr, As, Sb, Sn, Zn, and Hg) from microplastics collected at different points on the Calabrian coast (areas of both Tyrrhenian and Ionian seas) during simulated fish digestion processes has been studied. The effect of particle size and polymer composition on migration processes has been studied using three different polymers (low density polyethylene (LDPE), polypropylene (PP), and polyvinyl chloride (PVC)) as models. In vitro fish digestion simulation consists of two different phases: gastric (simulated gastric fluid (SGF)) and intestinal (simulated intestinal fluid (SIF)). In general, larger percentages of released metal were found during the gastric phase with respect to the intestinal, likely due to the more acidic conditions along the gastric phase. The total amount of migrated metals after the whole process (SGF + SIF) was also measured, being lower than the initially migrated during the gastric step. In comparison, the amounts of metals migrated during the intestinal phase were not significant for most of the metals studied, diluting consequently the concentration of the metals at the end of the process. Reduction of the polymeric material size (from diameters of several mm (pellets) to 300-500 μm in average (milled)) leads to higher concentrations released during both digestion phases for most of the metals studied. Plastics collected on the Calabrian coast also show metal migration during digestion simulations, being significant for chromium, lead, cadmium and zinc. Particulates containing lead were also detected by single particle ICP-MS, which may correspond to solid deposits on plastic surfaces released during digestion simulations.
Collapse
Affiliation(s)
- Eduardo Bolea
- Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA), University of Zaragoza, Pedro Cerbuna, 12, 50009 Zaragoza, Spain.
| | - Luana S Brunetti
- Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA), University of Zaragoza, Pedro Cerbuna, 12, 50009 Zaragoza, Spain; Department of Biology, Ecology and Earth Sciences (DIBEST), University of Calabria, Pietro Bucci, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Isabel Abad-Alvaro
- Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA), University of Zaragoza, Pedro Cerbuna, 12, 50009 Zaragoza, Spain.
| | - Emilio Cellini
- Regional Agency for the Environment - Calabria (ARPACAL), Regional Marine Strategy Center (CRSM), Catanzaro, Italy.
| | - Silvestro A Ruffolo
- Department of Biology, Ecology and Earth Sciences (DIBEST), University of Calabria, Pietro Bucci, 87036 Arcavacata di Rende, Cosenza, Italy.
| | - Mauro F La Russa
- Department of Biology, Ecology and Earth Sciences (DIBEST), University of Calabria, Pietro Bucci, 87036 Arcavacata di Rende, Cosenza, Italy.
| | - Francisco Laborda
- Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA), University of Zaragoza, Pedro Cerbuna, 12, 50009 Zaragoza, Spain.
| |
Collapse
|
3
|
Kutralam-Muniasamy G, Shruti VC, Pérez-Guevara F, Garcia BDG. Unraveling microplastic behavior in simulated digestion: Methods, insights, and standardization. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138340. [PMID: 40273860 DOI: 10.1016/j.jhazmat.2025.138340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/09/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
Despite the rapid expansion of in vitro digestion studies on microplastics (MPs), the field remains fragmented due to inconsistent methodologies, varying analytical approaches, and a lack of standardized protocols. These discrepancies hinder cross-study comparisons, complicate risk assessments, and limit the applicability of in vitro models for understanding MP fate and pollutant interactions in the gastrointestinal environment. A comprehensive synthesis is needed to assess progress, identify research gaps, and establish a unified research direction. This review systematically evaluates 85 studies (2020-2024), consolidating key findings and methodological challenges. It examines disparities in digestion protocols, fluid compositions, and exposure conditions, assessing how factors such as pH, enzyme activity, residence time, and temperature shape MPs' behavior and physicochemical transformations. Key findings on bio-corona formation, structural modifications, contaminant bioaccessibility, and interactions with digestive enzymes are synthesized to provide a clearer picture of MP behavior during digestion. With the field remains dominated by studies on polystyrene and polyethylene MPs in human-based models, inconsistencies persist, highlighting the urgent need for standardized methodologies. By addressing these gaps, this review lays a critical foundation for improving reproducibility, advancing standardization efforts, and strengthening exposure assessments, ultimately enhancing our understanding of MP ingestion risks to human health.
Collapse
Affiliation(s)
- Gurusamy Kutralam-Muniasamy
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Ciudad de México 07360, Mexico; CIITEC - IPN. Centro de Investigación e Innovación Tecnológica, Cda. de Cecati s/n, Santa Catarina, Azcapotzalco, Ciudad de México 02250, Mexico.
| | - V C Shruti
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Ciudad de México 07360, Mexico.
| | - Fermín Pérez-Guevara
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Ciudad de México 07360, Mexico; Nanoscience & Nanotechnology Program, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Ciudad de México 07360, Mexico
| | - Berenice Dafne Garcia Garcia
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Ciudad de México 07360, Mexico
| |
Collapse
|
4
|
Masset T, Breider F, Renaud M, Müller J, Bergmann A, Vermeirssen E, Dudefoi W, Schirmer K, Ferrari BJD. Effects of tire particles on earthworm (Eisenia andrei) fitness and bioaccumulation of tire-related chemicals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125780. [PMID: 39894153 DOI: 10.1016/j.envpol.2025.125780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/16/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Tire and Road Wear Particles (TRWP) are produced during the wear of tire rubber on the road pavement and contain various chemicals originating from the road environment and from the rubber. Toxic effects of TRWP and their associated chemicals on soil organisms remain poorly characterized. In a series of laboratory experiments, this study investigated the bioaccumulation kinetics of several common tire-related chemicals in the earthworm species Eisenia andrei using Cryogenically Milled Tire Tread (CMTT), as a surrogate for environmental TRWP. Effects on survival, growth, reproductive output and behaviour were determined. Average biota-soil accumulation factors ranged from 0.8 to 4.7 indicating low to moderate bioaccumulation of the tire-related chemicals. Toxicokinetics showed both high uptake (0.0-13.2 days-1) and elimination rates (0.0-6.3 days-1) in E.andrei. Still, the uptake of tire-related chemicals in earthworms' tissues and ingestion of tire particles could lead to trophic transfer to preys feeding on earthworms and requires further investigated. No significant effects on survival and growth were recorded after exposure to 0.05 and 5% CMTT. In the reproduction test, a slight increase of the reproductive output with increasing CMTT concentration and a slight decrease of the weight of the juveniles were observed. Moreover, a strong and significant avoidance behaviour was observed for worms exposed to 5% CMTT. This work highlights that soil highly contaminated with tire particles can negatively impact habitat function due to changes in texture and/or chemical stressors, lead to uptake of tire-related additives by earthworms and that high concentrations can impact organism's fitness.
Collapse
Affiliation(s)
- Thibault Masset
- Ecole Polytechnique Fédérale de Lausanne - EPFL, Central Environmental Laboratory, IIE, ENAC, Station 2, CH-1015, Lausanne, Switzerland.
| | - Florian Breider
- Ecole Polytechnique Fédérale de Lausanne - EPFL, Central Environmental Laboratory, IIE, ENAC, Station 2, CH-1015, Lausanne, Switzerland
| | - Mathieu Renaud
- Ecotox Centre - EPFL ENAC IIE, GE, Station 2, CH-1015, Lausanne, Switzerland
| | - Jonas Müller
- Ecotox Centre - EPFL ENAC IIE, GE, Station 2, CH-1015, Lausanne, Switzerland
| | - Alan Bergmann
- Ecotox Centre, Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | | | - William Dudefoi
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, Department Environmental Toxicology, Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | - Kristin Schirmer
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, Department Environmental Toxicology, Überlandstrasse 133, 8600, Dübendorf, Switzerland; ETHZ, Institute of Biogeochemistry and Pollutant Dynamics, Zurich, 8092, Switzerland
| | - Benoit J D Ferrari
- Ecotox Centre - EPFL ENAC IIE, GE, Station 2, CH-1015, Lausanne, Switzerland; Ecotox Centre, Überlandstrasse 133, 8600, Dübendorf, Switzerland
| |
Collapse
|
5
|
Xu Q, Wu Z, Xu Z, Li G. Soil moisture-dependent tire wear particles aging processes shift soil microbial communities and elevated nitrous oxide emission on drylands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175948. [PMID: 39222808 DOI: 10.1016/j.scitotenv.2024.175948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Tire wear particles (TWPs) have been an emerging threat to the soil ecosystem, while impact of the TWPs aging on soil microbial communities remains poorly understood. This study investigated the dynamic responses of soil microbial communities to the TWPs aging under both wet and flooded conditions. We found that different soil moisture conditions resulted in distinct microbial community structures. Soil bacteria were more sensitive to wet conditions, while soil fungi were more sensitive to flooded conditions. The family Symbiobacteraceae was predominant in the TWP-sphere under both wet and flooded conditions after 60 days, followed by Brevibacillaceae. Notably, we observed that TWPs input significantly increased nitrous oxide (N2O) emission from dryland soil. Several taxa including Cyanobacteriales, Blastocatellaceae and Pyrinomonadaceae were identified as TWP-biomarkers in soils and potentially played significant roles in N2O emissions from drylands. Their responses to the TWPs input correlated closely with changes in the relative abundance of genes involved in ammonia oxidation (amoA/B), nitrite reduction (nirS/K) and N2O reduction (nosZ) in drylands. Our results demonstrate that soil moisture-dependent TWP aging influences N2O emission by altering both the associated microbial communities and the relevant genes.
Collapse
Affiliation(s)
- Qiao Xu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China
| | - Zhiyong Wu
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, People's Republic of China
| | - Zhihong Xu
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China.
| |
Collapse
|
6
|
Li E, Huang J, Yu H, Liu S, He W, Zhang W, Pang H, Zhang C. Photoaged tire wear particles hinder the transport of Pb(II) in urban soils under acid rain: Experimental and numerical investigations. WATER RESEARCH 2024; 266:122410. [PMID: 39260196 DOI: 10.1016/j.watres.2024.122410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Rapid urbanization brought lots of serious environmental contamination, including the accumulation of heavy metals, acid rain, and the emission of tire wear particles (TWPs), with detrimental effects for terrestrial ecosystems. Nevertheless, how naturally aged TWPs affect the mobilization of heavy metals in soils under acid rain is still unclear. Here, we investigate the adsorption and transport mechanisms of Pb(II) co-existing with acid rainwater in soil-TWP mixtures via batch experiments, column experiments and modeling. Results showed that photoaged TWP significantly prolonged the Pb(II) adsorption equilibrium time (1 to 16 h) and enhanced the Pb(II) adsorption capacity of soils. Soil column profiles confirmed that TWP effectively boosted the initial accumulation of lead in the topsoil and thus impeded the downward transport of lead. The retardation factor (R) estimated by the linear two-site sorption model (TSM) fitting the Pb(II) breakthrough curves gradually increased from 1.098 to 16.38 in soils with TWP (0-10 %). Comparative results of linear or nonlinear TSM suggested nonlinear sorption replacing linear sorption as the main Pb(II) sorption mechanism under 1 % and 10 % TWP. This research provides significant insights into the implications of TWP on the Pb(II) retention behaviors and highlights the severer potential remobilization risks of Pb(II) in urban soils under different acid rain environments.
Collapse
Affiliation(s)
- Enjie Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Hanbo Yu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Si Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wenjuan He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Haoliang Pang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chenyu Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
7
|
McMinn MH, Hu X, Poisson K, Berger P, Pimentel P, Zhang X, Ashara P, Greenfield EL, Eig J, Tian Z. Emerging investigator series: in-depth chemical profiling of tire and artificial turf crumb rubber: aging, transformation products, and transport pathways. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1703-1715. [PMID: 39176437 DOI: 10.1039/d4em00326h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Crumb rubber generated from end-of-life tires (ELTs) poses a threat to environmental and human health based on its widespread use. Of particular concern is the use of ELT crumb rubber as infill for artificial turf fields, as people are unknowingly exposed to complex mixtures of chemicals when playing on these fields. Additionally, there is concern regarding transport of rubber-related chemicals from artificial turf into the environment. However, existing knowledge does not fully elucidate the chemical profile, transformation products, and transport pathways of artificial turf crumb rubber across different ages. To address these knowledge gaps, we utilized a multi-faceted approach that consisted of targeted quantitation, chemical profiling, and suspect screening via ultra-high performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS). We collected and processed 3 tire and 11 artificial turf crumb rubber samples via solvent extraction, leaching, and a bioaccessibility-based extraction. Nineteen rubber-derived chemicals were quantified using parallel reaction monitoring and isotope dilution techniques. In solvent extracts, the most abundant analytes were 1,3-diphenylguanidine (0.18-1200 μg g-1), N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD, 0.16-720 μg g-1), 2-mercaptobenzothiazole (0.47-140 μg g-1), and benzothiazole (0.84-150 μg g-1). Chemical profiling assessed changes in sample diversity, abundance, polarity, and molecular mass. Suspect screening identified 81 compounds with different confidence levels (16 at level 1, 53 with level 2, 7 at level 3, and 5 at level 4). The formation rate of transformation products and clustering analysis results identified time-based trends in artificial turf field samples. We found that the first two years of aging may be critical for the potential environmental impact of artificial turf fields. Our analysis provides insight into the chemical complexity of artificial turf crumb rubber samples ranging from 0-14 years in age.
Collapse
Affiliation(s)
- Madison H McMinn
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA.
- Barnett Institute for Chemical and Biological Analysis, College of Science, Northeastern University, Boston, MA, USA
| | - Ximin Hu
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| | - Katherine Poisson
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA.
- Barnett Institute for Chemical and Biological Analysis, College of Science, Northeastern University, Boston, MA, USA
| | - Phillip Berger
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA.
- Barnett Institute for Chemical and Biological Analysis, College of Science, Northeastern University, Boston, MA, USA
| | - Paola Pimentel
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA.
| | - Xinwen Zhang
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA.
| | - Pranali Ashara
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA.
| | - Ella L Greenfield
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA.
| | - Jessica Eig
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA.
| | - Zhenyu Tian
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA.
- Barnett Institute for Chemical and Biological Analysis, College of Science, Northeastern University, Boston, MA, USA
| |
Collapse
|
8
|
Özgür ME, Ulu A, Sezer S, Köytepe S, Ateş B. Tire Rubber Based Microplastic Particles Cause Adverse on Quality Parameters of Rainbow Trout Sperm Cells. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:43. [PMID: 39306598 DOI: 10.1007/s00128-024-03951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024]
Abstract
In the present study, we aimed to determine the parameters of oxidative stress markers, motility and kinematics of rainbow trout (Oncorhynchus mykiss) sperm cells exposed to different doses (0.001, 0.01, 0.1, 1.0, and 10 mg/L, in vitro 4 h) of tire rubber based microplastic particles (TRMP-Ps) the leachates procedure of rubber pieces. First of all, TRMP-Ps were prepared by abrasion method in accordance with the literature. Structural and morphological features of TRMP-Ps were determined by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) methods, respectively. Energy dispersive X-ray (EDX) analysis technique was used to characterize the elemental composition of TRMP-Ps. Particle size of microplastic structures was measured hydrodynamically with dynamic light scattering analysis (DLS). After exposure, the effect of TRMP-Ps was defined by the observations of kinematics and antioxidant activities in sperm cells. Our findings showed that the straight line velocity, the curvilinear velocity, the angular path velocity, and the amplitude of lateral displacement of sperm cells decreased. Moreover, while the level of superoxide dismutase decreased dose-dependently against the toxicity of TRMP-Ps, no significant change was observed in the levels of malondialdehyde and total glutathione. The 4-h median effective concentrations (EC50) of TRMP-Ps based on mobility parameters of sperm ranged from 0.31 mg/L for reduced straight line velocity of sperm cells to 0.51 mg/L for reduced amplitude of lateral displacement of the spermatozoa head. Therefore, we concluded that TRMP-Ps can be a risk for the reproduction cycle of fish in aquatic environments.
Collapse
Affiliation(s)
- Mustafa Erkan Özgür
- Faculty of Agriculture, Department of Fishery Engineering, Malatya Turgut Özal University, Malatya, 44500, Turkey.
| | - Ahmet Ulu
- Science Faculty, Department of Chemistry, İnönü University, Malatya, 44280, Turkey.
| | - Selda Sezer
- Akçadağ Vocational High School, Department of Laboratory and Veterinary Health, Malatya Turgut Özal University, Malatya, 44600, Turkey
| | - Süleyman Köytepe
- Science Faculty, Department of Chemistry, İnönü University, Malatya, 44280, Turkey
| | - Burhan Ateş
- Science Faculty, Department of Chemistry, İnönü University, Malatya, 44280, Turkey
| |
Collapse
|
9
|
Li K, Hao W, Chen Z, Ye Z, Zhao T. Responses of colonization and development of periphytic biofilms to three typical tire wear particles with or without incubation-aging in migrating aqueous phases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173716. [PMID: 38851346 DOI: 10.1016/j.scitotenv.2024.173716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Understanding the behavior of tire wear particles (TWPs) and their impact on aquatic environments after aging is essential. This study explored the characteristics of TWPs generated using different methods (rolling friction, sliding friction, and cryogenic milling) and their transformation after exposure to environmental conditions mimicking runoff and sewage, focusing on their effects on river water and periphytic biofilms. Laboratory experiments indicate that at low exposure levels (0.1 mg/L), TWPs promoted biofilm growth, likely due to zinc release acting as a nutrient and the aggregation of particles serving as biofilm scaffolds. However, at higher concentrations (100 mg/L), TWPs inhibited biofilm development. This inhibition is linked to toxic byproducts like N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone and environmentally persistent free radicals, which reduce biofilm biomass, alter algal diversity, and decrease the production of essential biofilm components such as proteins and polysaccharides, consistent with the inhibitory behavior of TWPs on bis-(3'-5')-cyclic diguanosine monophosphate and quorum sensing signals, including acyl-homoserine lactone and autoinducer-2. Aging processes, particularly after simulated sewage treatment, further affect ecological impacts of TWPs, reducing the benefits observed at low concentrations and intensifying the negative effects at high concentrations. Contribution of here lies in systematically revealing the impact of TWPs on the development of aquatic biofilms, emphasizing the logical relationship between their aging characteristics, environmental behavior, and ecological risks. It assesses not only the release effects of typical additives and conventional size effects but also highlights the emerging photochemical toxicity (persistent free radicals), thus providing valuable insights into the aquatic ecological risk assessment of TWPs.
Collapse
Affiliation(s)
- Kun Li
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China.
| | - Wanqi Hao
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China
| | - Zhangle Chen
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China
| | - Zidong Ye
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China
| | - Tianyi Zhao
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China
| |
Collapse
|
10
|
Vega-Herrera A, Savva K, Lacoma P, Santos LHMLM, Hernández A, Marmelo I, Marques A, Llorca M, Farré M. Bioaccumulation and dietary bioaccessibility of microplastics composition and cocontaminants in Mediterranean mussels. CHEMOSPHERE 2024; 363:142934. [PMID: 39053781 DOI: 10.1016/j.chemosphere.2024.142934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
Microplastics (MPLs) are contaminants of emerging concern (CECs) ubiquitous in aquatic environments, which can be bioaccumulated along the food chain. In this study, the accumulation of polyethylene (PE), polystyrene (PS) and polyethylene terephthalate (PET) microplastics (MPLs) of sizes below 63 μm was assessed in Mediterranean mussels (Mytilus galloprovincialis spp). Moreover, the potential of mussels to uptake and bioaccumulate other organic contaminants, such as triclosan (TCS) and per- and polyfluoroalkyl substances (PFASs), was evaluated with and without the presence of MPLs. Then, the modulation of MPLs in the human bioaccessibility of co-contaminants was assessed by in vitro assays that simulated the human digestion process. Exposure experiments were carried out in 15 L marine microcosms. The bioaccumulation and bioaccessibility of PE, PS, PET, and co-contaminants were assessed by means of liquid chromatography -size exclusion chromatography-coupled to high-resolution mass spectrometry (LC(SEC)-HRMS). Our outcomes confirm that MPL bioaccumulation in filter-feeding organisms is a function of MPL chemical composition and particle sizes. Finally, despite the lower accumulation and bioaccumulation of PFASs in the presence of MPLs, the bioaccessibility assays revealed that PFASs bioaccessibility was favoured in the presence of MPLs. Since part of the bioaccumulated PFASs are adsorbed onto MPL surfaces by hydrophobic and electrostatic interactions, these interactions easily change with the pH during digestion, and the PFASs bioaccessibility increases.
Collapse
Affiliation(s)
- Albert Vega-Herrera
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, C. Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Katerina Savva
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, C. Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Pol Lacoma
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, C. Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Lúcia H M L M Santos
- Catalan Institute for Water Research (ICRA-CERCA), H(2)O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003, Girona, Spain; University of Girona, Girona, Spain
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Isa Marmelo
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Lisbon, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Porto, Portugal
| | - António Marques
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Lisbon, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Porto, Portugal
| | - Marta Llorca
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, C. Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Marinella Farré
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, C. Jordi Girona, 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
11
|
Bergmann AJ, Masset T, Breider F, Dudefoi W, Schirmer K, Ferrari BJD, Vermeirssen ELM. Estrogenic, Genotoxic, and Antibacterial Effects of Chemicals from Cryogenically Milled Tire Tread. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1962-1972. [PMID: 39031710 DOI: 10.1002/etc.5934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/07/2024] [Accepted: 05/22/2024] [Indexed: 07/22/2024]
Abstract
Tire and road wear particles (TRWP) contain complex mixtures of chemicals and release them to the environment, and potential toxic effects of these chemicals still need to be characterized. We used a standardized surrogate for TRWP, cryogenically milled tire tread (CMTT), to isolate and evaluate effects of tire-associated chemicals. We examined organic chemical mixtures extracted and leached from CMTT for the toxicity endpoints genotoxicity, estrogenicity, and inhibition of bacterial luminescence. The bioassays were performed after chromatographic separation on high-performance thin-layer chromatography (HPTLC) plates. Extracts of CMTT were active in all three HPTLC bioassays with two estrogenic zones, two genotoxic zones, and two zones inhibiting bacterial luminescence. Extracts of CMTT artificially aged with thermooxidation were equally bioactive in each HPTLC bioassay. Two types of aqueous leachates of unaged CMTT, simulating either digestion by fish or contact with sediment and water, contained estrogenic chemicals and inhibitors of bacterial luminescence with similar profiles to those of CMTT extracts. Of 11 tested tire-associated chemicals, two were estrogenic, three were genotoxic, and several inhibited bacterial luminescence. 1,3-Diphenylguanidine, transformation products of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine, and benzothiazoles were especially implicated through comparison to HPTLC retention factors in the CMTT samples. Other bioactive bands in CMTT samples did not correspond to any target chemicals. Tire particles clearly contain and can leach complex mixtures of toxic chemicals to the environment. Although some known chemicals contribute to estrogenic, genotoxic, and antibacterial hazards, unidentified toxic chemicals are still present and deserve further investigation. Overall, our study expands the understanding of potential adverse effects from tire particles and helps improve the link between those effects and the responsible chemicals. Environ Toxicol Chem 2024;43:1962-1972. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Alan J Bergmann
- Swiss Centre for Applied Ecotoxicology, Dübendorf, Switzerland
| | - T Masset
- Central Environmental Laboratory, Ecole Polytechnique Fédérale de Lausanne-EPFL, Lausanne, Switzerland
| | - F Breider
- Central Environmental Laboratory, Ecole Polytechnique Fédérale de Lausanne-EPFL, Lausanne, Switzerland
| | - W Dudefoi
- Department Environmental Toxicology, Eawag, Dübendorf, Switzerland
| | - K Schirmer
- Department Environmental Toxicology, Eawag, Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETHZ, Zürich, Switzerland
- Laboratory of Environmental Toxicology, Ecole Polytechnique Fédérale de Lausanne-EPFL, Lausanne, Switzerland
| | - B J D Ferrari
- Swiss Centre for Applied Ecotoxicology, Dübendorf, Switzerland
- Swiss Centre for Applied Ecotoxicology, Lausanne, Switzerland
| | | |
Collapse
|
12
|
Zhao T, Zhang Y, Song Q, Meng Q, Zhou S, Cong J. Tire and road wear particles in the aquatic organisms - A review of source, properties, exposure routes, and biological effects. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107010. [PMID: 38917645 DOI: 10.1016/j.aquatox.2024.107010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
With the continuous development of the modern social economy, rubber has been widely used in our daily life. Tire and road wear particles (TRWPs) are generated by friction between tires and the road surface during the processes of driving, acceleration, and braking. TRWPs can be divided into three main components according to their source: tire tread, brake wear, and road wear. Due to urban runoff, TRWPs flow with rainwater into the aquatic environment and influence the surrounding aquatic organisms. As an emerging contaminant, TRWPs with the characteristics of small particles and strong toxicity have been given more attention recently. Here, we summarized the existing knowledge of the physical and chemical properties of TRWPs, the pathways of TRWPs into the water body, and the exposure routes of TRWPs. Furthermore, we introduced the biological effects of TRWPs involved in size, concentration, and shape, as well as key toxic compounds involved in heavy metals, polycyclic aromatic hydrocarbons (PAHs), N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), and benzothiazole on aquatic organisms, and attempted to find the relevant factors influencing the toxic effects of TRWPs. In the context of existing policies that ignore pollution from TRWPs emissions in the aquatic environment, we also proposed measures to mitigate the impact of TRWPs in the future, as well as an outlook for TRWPs research.
Collapse
Affiliation(s)
- Tianyu Zhao
- College of Marine Science and biological engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao 266000, PR China
| | - Yun Zhang
- College of Marine Science and biological engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao 266000, PR China
| | - Qianqian Song
- College of Marine Science and biological engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao 266000, PR China
| | - Qingxuan Meng
- College of Marine Science and biological engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao 266000, PR China
| | - Siyu Zhou
- College of Marine Science and biological engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao 266000, PR China
| | - Jing Cong
- College of Marine Science and biological engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao 266000, PR China.
| |
Collapse
|
13
|
Wagner S, Funk CW, Müller K, Raithel DJ. The chemical composition and sources of road dust, and of tire and road wear particles-A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171694. [PMID: 38485005 DOI: 10.1016/j.scitotenv.2024.171694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/25/2024] [Accepted: 03/11/2024] [Indexed: 04/17/2024]
Abstract
To gain better understanding of how the transition to electric vehicles affects road dust (RD) composition, and potential health and environmental risks, it is crucial to analyze the chemical composition of RD and identify its sources. Sources of RD include wear of tire tread (TT), brake wear (BW) and road wear (RW). A relevant component of RD are tire and road wear particles (TRWPs). This literature review compiles data on the chemical bulk composition of RD sources, RD in Asia, Europe and North America and TRWP as a RD component. The focus is on elements such as Cd, Co, Cr, Cu, Ni, Pb, V, and Zn. Although the comparability of global RD data is limited due to differences in sampling and analytical methods, no significant differences in the composition from Asia, Europe, and North America were found for most of the investigated elements studied, except for Cd, Co, and V. Sources of RD were analyzed using elemental markers. On average TT, BW, and RW contributed 3 %, 1 %, and 96 %, respectively. The highest concentrations of TT (9 %) and BW (2 %) were observed in the particle size fraction of RD ≤ 10 μm. It is recommended that these results be verified using additional marker compounds. The chemical composition of TRWPs from different sources revealed that (i) TRWPs isolated from a tunnel dust sample are composed of 31 % TT, 6 % BW, and 62 % RW, and (ii) test material from tire test stands show a similar TT content but different chemical bulk composition likely because e.g., of missing BW. Therefore, TRWPs from test stands need to be chemically characterized prior to their use in hazard testing to validate their representativeness.
Collapse
Affiliation(s)
- Stephan Wagner
- Hochschule Fresenius, Institute for Analytical Research, Idstein, Germany; Hochschule für Angewandte Wissenschaften Hof, Germany.
| | | | - Kathrin Müller
- Hochschule Fresenius, Institute for Analytical Research, Idstein, Germany
| | | |
Collapse
|
14
|
Peng X, Yang T, Guo S, Zhou J, Chen G, Zhu Z, Tan J. Revealing chemical release from plastic debris in animals' digestive systems using nontarget and suspect screening and simulating digestive fluids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123793. [PMID: 38513944 DOI: 10.1016/j.envpol.2024.123793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
Plastic debris in the environment are not only pollutants but may also be important sources of a variety of contaminants. This work simulated kinetics and potential of chemical leaching from plastic debris in animals' digestive systems by incubating polyvinyl chloride (PVC) cord particles in artificial digestive fluids combined with nontarget and suspect screening based on UHPLC-Orbitrap HRMS. Impacts of particle size, aging, and digestive fluid were investigated to elucidate mechanisms of chemical leaching. Thousands of chemical features were screened in the leachates of PVC cord particles in the artificial digestive fluids, among which >60% were unknown. Bisphenol A (BPA) and bis(2-ethylhexyl) phthalate (DEHP) were the dominant identified CL1 compounds. Finer size and aging of the PVC particles and prolonged incubation time enhanced chemical release, resulting in greater numbers, higher levels, and more complexity in components of the released chemicals. The gastrointestinal fluid was more favorable for chemical leaching than the gastric fluid, with greater numbers and higher levels. Hundreds to thousands of chemical features were screened and filtered in the leachates of consumer plastic products, including food contact products (FCPs) in the artificial bird gastrointestinal fluid. In addition to BPA and DEHP, several novel bisphenol analogues were identified in the leachate of at least one FCP. The results revealed that once plastic debris are ingested by animals, hundreds to thousands of chemicals may be released into animals' digestive tracts in hours, posing potential synergistic risks of plastic debris and chemicals to plastic-ingesting animals. Future research should pay more attentions to identification, ecotoxicities, and environmental fate of vast amounts of unknown chemicals potentially released from plastics in order to gain full pictures of plastic pollution in the environment.
Collapse
Affiliation(s)
- Xianzhi Peng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Tao Yang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shang Guo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhou
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangshi Chen
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zewen Zhu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhua Tan
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, 510050, China
| |
Collapse
|
15
|
Li K, Hao W, Liu C, Chen Z, Ye Z. Ecotoxicity of tire wear particles to antioxidant enzyme system and metabolic functional activity of river biofilms: The strengthening role after incubation-aging in migrating water phases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169849. [PMID: 38185180 DOI: 10.1016/j.scitotenv.2023.169849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
Tire wear particles (TWPs) are commonly studied for their exudation toxicity, yet a critical knowledge gap exists regarding the source nature and migration of these particulate pollutants, hindering comprehensive environmental risk assessments. This study explores the pristine properties of three typical TWPs (rolling friction (R-TWPs), sliding friction (S-TWPs), and cryogenically milled tire treads (C-TWPs)) and their aging characteristics after incubation in runoff (primary aging) and sewage (further aging). Our investigation aims to unveil the intrinsic mechanisms of TWPs ecotoxicity towards freshwater biofilms. Results reveal that the generation modes significantly impact pristine physicochemical properties, including surface structure, particle size, and EPFR abundance. These factors, in turn, influence acute ecotoxicity, as evidenced by cell mortality, antioxidant enzyme activity responses, and metabolic changes in freshwater biofilms. The ecological toxicity ranking of pristine exposure groups is S-TWPs, R-TWPs, and C-TWPs, attributed to variations in surface properties and particle size. Following incubation and aging, especially in sewage, differences in physicochemical properties among TWPs types diminish. Alarmingly, ecotoxicity intensifies and becomes consistent across TWPs types, driven by the screening of small particles during water incubation aging and the formation of EPFRs on TWPs surfaces stimulated by photosensitive organic matter or groups. This study underscores the aquatic ecological risks associated with TWP surface properties, highlighting the significant influence of environmental aging conditions on these risks.
Collapse
Affiliation(s)
- Kun Li
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China.
| | - Wanqi Hao
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China
| | - Chi Liu
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China
| | - Zhangle Chen
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China
| | - Zidong Ye
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China
| |
Collapse
|
16
|
Zhou L, Masset T, Breider F. Adsorption of copper by naturally and artificially aged polystyrene microplastics and subsequent release in simulated gastrointestinal fluid. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:411-420. [PMID: 38250811 DOI: 10.1039/d3em00354j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Microplastics, especially aged microplastics can become vectors of metals from environment to organisms with potential negative effects on food chain. However, a few studies focused on the bioavailability of adsorbed metals and most studies related to aged microplastics used artificial method that cannot entirely reflect actual aging processes. In this study, virgin polystyrene was aged by ozone (PS-O3), solar simulator (PS-SS) and lake (PS-lake) to investigate adsorption of Cu by virgin, artificially and naturally aged microplastics and subsequent release in simulated gastrointestinal fluids (SGF). Characterization results show carbonyl was formed in PS-O3 and PS-SS, and the oxidation degree was PS-O3 > PS-SS > PS-lake. However, Cu adsorption capacity followed this order PS-lake (158 μg g-1) > PS-SS (117 μg g-1) > PS-O3 (65 μg g-1) > PS-virgin (0). PS-O3 showed highest Cu adsorption capacity at 0.5 h (71 μg g-1), but it dropped dramatically later (10 μg g-1, 120 h), because PS-O3 could break up and the adsorbed Cu released in solutions subsequently. For PS-lake, precipitation of metallic oxides contributes to the accumulation of Cu. The addition of dissolved organic matter (DOM) could occupy adsorption sites on PS and compete with Cu, but also can attach PS and adsorb Cu due to its rich functional groups. The simultaneous ingestion of microplastics with food suggested that adsorbed Cu is solubilized mostly from aged PS to SGF.
Collapse
Affiliation(s)
- Lu Zhou
- Ecole Polytechnique Fédérale de Lausanne - EPFL, Central Environmental Laboratory, IIE, ENAC, Station 2, CH-1015, Lausanne, Switzerland.
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Thibault Masset
- Ecole Polytechnique Fédérale de Lausanne - EPFL, Central Environmental Laboratory, IIE, ENAC, Station 2, CH-1015, Lausanne, Switzerland.
| | - Florian Breider
- Ecole Polytechnique Fédérale de Lausanne - EPFL, Central Environmental Laboratory, IIE, ENAC, Station 2, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
17
|
Dudefoi W, Ferrari BJD, Breider F, Masset T, Leger G, Vermeirssen E, Bergmann AJ, Schirmer K. Evaluation of tire tread particle toxicity to fish using rainbow trout cell lines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168933. [PMID: 38042189 DOI: 10.1016/j.scitotenv.2023.168933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
Tire and road wear particles (TRWP) resulting from tire abrasion while driving raise concerns due to their potential contribution to aquatic toxicity. Our study aimed to assess cryogenically milled tire tread (CMTT) particle toxicity, used as a proxy for TRWP, and associated chemicals to fish using two Rainbow Trout (Oncorhynchus mykiss) cell lines representing the gill (RTgill-W1) and the intestinal (RTgutGC) epithelium. CMTT toxicity was evaluated through several exposure pathways, including direct contact, leaching, and digestion, while also assessing the impact of particle aging. Following OECD TG249, cell viability was assessed after 24 h acute exposure using a multiple-endpoint assay indicative of cell metabolic activity, membrane integrity and lysosome integrity. In vitro EC50 values for the fish cell lines exceeded river TRWP concentrations (2.02 g/L and 4.65 g/L for RTgill-W1 and RTgutGC cell lines, respectively), and were similar to in vivo LC50 values estimated at 6 g/L. Although toxicity was mainly driven by the leaching of tire-associated chemicals, the presence of the particles contributed to the overall toxicity by inducing a continuous leaching, highlighting the importance of considering combined exposure scenarios. Aging and digestion conditions were also found to mediate CMTT toxicity. Thermooxidation resulted in a decreased chemical leaching and toxicity, while in vitro digestion under mimicked gastrointestinal conditions increased leaching and toxicity. Specific chemicals, especially Zn, 2-mercaptobenzothiazole, 1,3-diphenylguanidine, and N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) were identified as contributors to the overall toxicity. Although 6PPD-quinone was detected in CMTT digestate, cytotoxicity assays with RTgill-W1 and RTgutGC cell lines showed no toxicity up to 6 mg/L, supporting the notion of a specific mode of action of this chemical. This study provides insights into the toxicological mechanisms induced by tire particles and their associated chemicals and can help in the evaluation of potential risks to aquatic life associated with TRWP.
Collapse
Affiliation(s)
- W Dudefoi
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, Department Environmental Toxicology, Überlandstrasse 133, 8600 Dübendorf, Switzerland.
| | - B J D Ferrari
- Ecotox Centre - EPFL ENAC IIE, GE, Station 2, CH-1015 Lausanne, Switzerland; Ecotox Centre, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - F Breider
- EPFL, Central Environmental Laboratory, IIE, ENAC, Station 2, CH-1015 Lausanne, Switzerland
| | - T Masset
- EPFL, Central Environmental Laboratory, IIE, ENAC, Station 2, CH-1015 Lausanne, Switzerland
| | - G Leger
- EPFL, Central Environmental Laboratory, IIE, ENAC, Station 2, CH-1015 Lausanne, Switzerland
| | - E Vermeirssen
- Ecotox Centre, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - A J Bergmann
- Ecotox Centre, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - K Schirmer
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, Department Environmental Toxicology, Überlandstrasse 133, 8600 Dübendorf, Switzerland; EPFL, School of Architecture, Civil and Environmental Engineering, Lausanne 1015, Switzerland; ETHZ, Institute of Biogeochemistry and Pollutant Dynamics, Zurich 8092, Switzerland
| |
Collapse
|
18
|
Luo C, Xu R, Wu D, Zhang X, Cheng X, Wang H, Yin X, Xu J, Ma Q, Chen F. Sulfate radical-based advanced oxidation process effects on tire wear particles aging and ecotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167497. [PMID: 37778564 DOI: 10.1016/j.scitotenv.2023.167497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Tire wear particles (TWPs) are widely distributed in natural water and pose as major pollutants in aquatic environments. In this study, heat-activated persulfate (HPT) and ultraviolet-activated persulfate treatments (UPT) were employed to investigate the influence of sulfate radical (SO4-•)-based advanced oxidation process (SAOPs) on TWP physicochemical properties and to clarify their ecotoxic effects in laboratory-level studies. Results showed that the specific surface areas of TWPs increased after UPT but decreased after HPT. In terms of chemical properties, the increase of oxygen-containing functional groups on the surfaces of TWPs was more evident in UPT than that in HPT. The atrazine (ATZ) adsorption capacity of TWPs after HPT and UPT was increased compared with the untreated TWPs. Atrazine adsorbed by TWPs was easily resolved and released in artificial intestinal fluid (1.89-2.08 mg/g) and artificial gastric fluid (1.60-2.04 mg/g) conditions. Acute toxicity experiments of Photobacterium phosphoreum and SEM-EDS detection results suggested that various heavy metals (e.g., Zn2+, Cu2+) in the TWPs would be released into the water system in SAOPs. ATZ released from TWPs that adsorbed ATZ herbicide, rather than TWPs themselves, had a negative effect on aquatic plant growth (e.g., C. vulgaris). The leaching solution of oxidized TWPs (after HPT and UPT) showed a more significant inhibition effect on the zebrafish survival compared with that of untreated TWPs, which was possibly caused by the generation of oxidation byproducts such as N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone.
Collapse
Affiliation(s)
- Congwei Luo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, PR China
| | - Ruidi Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, PR China
| | - Xinyu Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China.
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Hongxiang Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Xinkun Yin
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Jingtao Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, PR China
| | - Qiao Ma
- National Engineering Lab of Coal-Fired Pollution Emission Reduction, School of Energy and Power Engineering, Shandong University, Jinan 250061, PR China
| | - Feiyong Chen
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, PR China.
| |
Collapse
|
19
|
Li K, Yu J, Kong D, Chen X, Peng Y, Wang L. Differential cytotoxicity to human cells in vitro of tire wear particles emitted from typical road friction patterns: The dominant role of environmental persistent free radicals. CHEMOSPHERE 2023; 343:140256. [PMID: 37742763 DOI: 10.1016/j.chemosphere.2023.140256] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 07/04/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Tire wear particles (TWPs) have been recognized as one of the major sources of microplastics (MPs), however, effects of initial properties and photochemical behavior of TWPs on cytotoxicity to human cells in vitro have not been reported. Therefore, here, three TWPs generated from typical wear of tires and pavements (i.e., rolling friction (R-TWPs) and sliding friction (S-TWPs)) and cryogenically milled tire tread (C-TWPs), respectively, and their photoaging counterparts were used to study the reasons for their differential cytotoxicity to 16HBE cells in vitro. Results showed in addition to changes of surface structure and morphology, different preparation methods could also induce formation of different concentration levels of environmental persistent free radicals (EPFRs) (from 1.24 to 3.06 × 1017 spins/g with g-factors ranging 2.00307-2.00310) on surfaces of TWPs, which contained 7.3%-65.8% of reactive EPFRs (r-EPFRs). Meanwhile, photoaging for 90 d could strengthen formation of EPFRs (from 4.03 to 4.61 × 1017 spins/g) with containing 74.7%-78.1% r-EPFRs on surfaces of TWPs and improve their g-factor indexes (ranging 2.00309-2.00313). At 100 μg mL-1 level, compared to C-TWPs, both R-TWPs and S-TWPs (whether photoaging or not) carried higher intensity EPFRs could significantly inhibit 16HBE cells proliferation activity, cause more cells oxidative stress and induce more cell apoptosis/necrosis and secretion of inflammatory factor (P < 0.05). However, regardless of how TWPs were prepared, photoaged or not, exposure at a concentration of 1 μg mL-1 appeared to be non-acute cytotoxic. Correlation analysis suggested dominant toxicity of TWPs was attributed to the formation of r-EPFRs on their surfaces, which could promote accumulation of excess reactive oxygen species in cells and the massive deposition of intracellular particles. This study provides direct evidence of TWPs cytotoxicity, and underlining the need for a better understanding of the influences of initial properties and photochemical characteristics on risk assessment of TWPs released into the environment.
Collapse
Affiliation(s)
- Kun Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Jianghua Yu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Deyue Kong
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xingyue Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yonghong Peng
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Liangliang Wang
- School of Applied Technology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|
20
|
Lokesh S, Arunthavabalan S, Hajj E, Hitti E, Yang Y. Investigation of 6PPD-Quinone in Rubberized Asphalt Concrete Mixtures. ACS ENVIRONMENTAL AU 2023; 3:336-341. [PMID: 38028740 PMCID: PMC10655589 DOI: 10.1021/acsenvironau.3c00023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 12/01/2023]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD)-quinone (6PPD-Q), a transformation byproduct of 6PPD used in tires as an antiozonant and antioxidant, was recently discovered as the chemical primarily responsible for the acute lethal toxicity of urban storm runoff to coho salmon. The asphalt concrete (AC) surface layer is the primary medium to contact 6PPD-Q immediately upon its release from tires, and the addition of recycled tire rubber (RTR) to the asphalt binder and mixture is a widely accepted practice in asphalt production. Therefore, it is urgent to understand the fate of 6PPD-Q at the asphalt concrete surface layer-water interface. This study analyzed the sorption and desorption of 6PPD-Q by compacted and crushed loose (loose particles, ∼5 mm) rubberized asphalt mixtures and their mobilization from compacted asphalt mixtures during simulated rainfall events. It should be noted that the crushed loose asphalt mixtures demonstrated the physicochemical properties of the asphalt materials, while the compacted asphalt mixtures represent in-service AC layers. Sorption of 6PPD-Q by crushed loose and compacted asphalt mixtures reached equilibrium within 12 days, with a sorption coefficient of 151.57-257.51 L/kg for compacted asphalt mixtures. Within 12 days, desorption of 6PPD-Q from crushed loose and compacted rubberized asphalt mixtures (20 g particles/L) to the double deionized (DDI) water and synthetic stormwater was 0.01-0.09 and 0.025-0.05 μg/L, respectively. Through the rainfall simulation experiments, 0.0015-0.0049 μg/L 6PPD-Q was detected in the runoff water, much lower than the lethal concentration (LC50) of 6PPD-Q of 0.095 μg/L and 308.67 μg/L for coho salmon and zebrafish larvae. Our results indicate that, while the release of 6PPD-Q from compacted rubberized asphalt mixtures is minor, the mixtures can serve as sorbents for tire-derived 6PPD-Q and retain this emerging contaminant.
Collapse
Affiliation(s)
- Srinidhi Lokesh
- Department
of Civil and Environmental Engineering, University of Nevada, Reno, 1644 N. Virginia Street, Reno, Nevada 89557, United States
| | - Siththarththan Arunthavabalan
- Department
of Civil and Environmental Engineering, University of Nevada, Reno, 1644 N. Virginia Street, Reno, Nevada 89557, United States
| | - Elie Hajj
- Department
of Civil and Environmental Engineering, University of Nevada, Reno, 1644 N. Virginia Street, Reno, Nevada 89557, United States
| | - Edgard Hitti
- Granite
Constructions Inc., Watsonville, California 95076, United States
| | - Yu Yang
- Department
of Civil and Environmental Engineering, University of Nevada, Reno, 1644 N. Virginia Street, Reno, Nevada 89557, United States
| |
Collapse
|
21
|
Zhang X, Shi J, Yuan P, Li T, Cao Z, Zou W. Differential developmental and proinflammatory responses of zebrafish embryo to repetitive exposure of biodigested polyamide and polystyrene microplastics. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132472. [PMID: 37683353 DOI: 10.1016/j.jhazmat.2023.132472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Microplastics (MPs) have attracted global concern and are at the forefront of current research on environmental pollution, whereas, little is known about the degradation of ingested MPs in the gastrointestinal environment and repetitive exposure-associated risk of egested MPs to organisms. The present study revealed that polyamide (PA) and polystyrene (PS) MPs exhibited remarkably differential biodegradations in the gastric and intestinal fluids of a model fish (Siniperca chuatsi). Significant disintegration of the skeleton structure, size reduction (from 27.62 to 9.17 µm), benzene ring scission, and subsequent biogenic corona coating and surface oxidation occurred during in vitro digestion, thus increasing the hydrophilicity and agglomeration of PS. Conversely, PA MPs exhibited high resistance to enzymolysis with slight surface erosions and protein adsorption. Relative to the pristine form, the bioaccumulation of digested PS elevated and the musculoskeletal deformity and mortality of juvenile zebrafish were obviously enhanced, but these changes were unobservable for PA. Lipopolysaccharide-triggered inflammation and apoptosis via Toll-like receptor signaling pathways and reduction of extracellular matrix secretions driven by oxidative stress contributed to the aggravated inhibitory effects of digested PS on larval development. These findings emphasize the necessity of concerning the biota digestion in MP risk assessments in natural waters.
Collapse
Affiliation(s)
- Xingli Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Jing Shi
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Peng Yuan
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Tengfei Li
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
22
|
Jiang JR, Chen ZF, Liao XL, Liu QY, Zhou JM, Ou SP, Cai Z. Identifying potential toxic organic substances in leachates from tire wear particles and their mechanisms of toxicity to Scenedesmus obliquus. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132022. [PMID: 37453356 DOI: 10.1016/j.jhazmat.2023.132022] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Tire wear particles (TWPs) are increasingly being found in the aquatic environment. However, there is limited information available on the environmental consequences of TWP constituents that may be release into water. In this study, TWP leachate samples were obtained by immersing TWPs in ultrapure water. Using high-resolution mass spectrometry and toxicity identification, we identified potentially toxic organic substances in the TWP leachates. Additionally, we investigated their toxicity and underlying mechanisms. Through our established workflow, we structurally identified 13 substances using reference standards. The median effective concentration (EC50) of TWP leachates on Scenedesmus obliquus growth was comparable to that of simulated TWP leachates prepared with consistent concentrations of the 13 identified substances, indicating their dominance in the toxicity of TWP leachates. Among these substances, cyclic amines (EC50: 1.04-3.65 mg/L) were found to be toxic to S. obliquus. We observed significant differential metabolites in TWP leachate-exposed S. obliquus, primarily associated with linoleic acid metabolism and purine metabolism. Oxidative stress was identified as a crucial factor in algal growth inhibition. Our findings shed light on the risk posed by TWP leachable substances to aquatic organisms.
Collapse
Affiliation(s)
- Jie-Ru Jiang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhi-Feng Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xiao-Liang Liao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Qian-Yi Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jia-Ming Zhou
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shi-Ping Ou
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zongwei Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China.
| |
Collapse
|
23
|
Li Y, Ye Z, Yu Y, Li Y, Jiang J, Wang L, Wang G, Zhang H, Li N, Xie X, Cheng X, Liu K, Liu M. A combined method for human health risk area identification of heavy metals in urban environments. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131067. [PMID: 36827727 DOI: 10.1016/j.jhazmat.2023.131067] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Multi-medium heavy metals pollution is a crucial pathway to destroy the urban environmental resources cycle. In this study, Nanjing of China, a typical mega city, was taken as the study area. Compared with other cities or countries, Cr, Cu and Zn in human nails and hair in the study area have higher concentration characteristics, while Cd and Pb have lower concentration characteristics. By combining the health risk status of heavy metals in soil and dustfall, the spatial clustering characteristics of heavy metals in soil dustfall and the concentration information of heavy metals in humans in the study area, a potential toxic risk area identification method based on soil-dustfall-human (SDB-HR) was established. Through Monte Carlo analysis, it's found that the risk of Zn and Cr in soil-dustfall to human health is relatively high, with the probability of carcinogenesis reaching 51.2 % and 50.2 %, respectively. By the proposed method, different levels of heavy metal risk areas in urban environments can be more reasonably and effectively identified, which will provide important technical and theoretical support for the precise management of heavy metals in urban environments.
Collapse
Affiliation(s)
- Yan Li
- Collaborative Innovation Center of Sustainable Forestry, College of forestry, Nanjing Forestry University, Nanjing, Jiangsu, China; Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security,Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Zi Ye
- Collaborative Innovation Center of Sustainable Forestry, College of forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Ye Yu
- Collaborative Innovation Center of Sustainable Forestry, College of forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Ye Li
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, China.
| | - Jiang Jiang
- Collaborative Innovation Center of Sustainable Forestry, College of forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Liangjie Wang
- Collaborative Innovation Center of Sustainable Forestry, College of forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Genmei Wang
- Collaborative Innovation Center of Sustainable Forestry, College of forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Huanchao Zhang
- Collaborative Innovation Center of Sustainable Forestry, College of forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Ning Li
- Collaborative Innovation Center of Sustainable Forestry, College of forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Xuefeng Xie
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security,Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Xinyu Cheng
- Collaborative Innovation Center of Sustainable Forestry, College of forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Ke Liu
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China; School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu, China
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
24
|
Vela L, Villacorta A, Venus T, Estrela-Lopis I, Pastor S, García-Rodriguez A, Rubio L, Marcos R, Hernández A. The potential effects of in vitro digestion on the physicochemical and biological characteristics of polystyrene nanoplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121656. [PMID: 37075918 DOI: 10.1016/j.envpol.2023.121656] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
The presence of plastic waste in our environment has continued growing and become an important environmental concern. Because of its degradation into micro- and nanoplastics (MNPLs), MNPLs are becoming environmental pollutants of special environmental/health concern. Since ingestion is one of the main exposure routes to MNPLs, the potential effects of digestion on the physicochemical/biological characteristics of polystyrene nanoplastics (PSNPLs) were determined. The results indicated a high tendency of digested PSNPLs to agglomerate and a differential presence of proteins on their surface. Interestingly, digested PSNPLs showed greater cell uptake than undigested PSNPLs in all three tested cell lines (TK6, Raji-B, and THP-1). Despite these differences in cell uptake, no differences in toxicity were observed except for high and assumed unrealistic exposures. When oxidative stress and genotoxicity induction were determined, the low effects observed after exposure to undigested PDNPLs were not observed in the digested ones. This indicated that the greater ability of digested PSNPLs to internalize was not accompanied by a greater hazard. This type of analysis should be performed with other MNPLs of varying sizes and chemical compositions.
Collapse
Affiliation(s)
- Lourdes Vela
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Spain; Facultad de Ciencias de La Salud, Eugenio Espejo. Universidad UTE, Avenida Occidental y Mariana de Jesús, Quito, Ecuador
| | - Aliro Villacorta
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Spain; Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile
| | - Tom Venus
- Institute of Medical Physics and Biophysics, University of Leipzig, 04107, Leipzig, Germany
| | - Irina Estrela-Lopis
- Institute of Medical Physics and Biophysics, University of Leipzig, 04107, Leipzig, Germany
| | - Susana Pastor
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Spain
| | - Alba García-Rodriguez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Spain
| | - Laura Rubio
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Spain; Nanobiology Laboratory, Department of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra, PUCMM, Santiago de Los Caballeros, Dominican Republic
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Spain.
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Spain
| |
Collapse
|
25
|
Wang Y, Yang H, He W, Sun P, Zhao W, Liu M. Exploring the Potential Hormonal Effects of Tire Polymers (TPs) on Different Species Based on a Theoretical Computational Approach. Polymers (Basel) 2023; 15:polym15071719. [PMID: 37050333 PMCID: PMC10097371 DOI: 10.3390/polym15071719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Tire polymers (TPs) are the most prevalent type of microplastics and are of great concern due to their potential environmental risks. This study aims to determine the toxicity of TPs with the help of molecular-dynamics simulations of their interactions with receptors and to highlight the differences in the toxicity characteristics of TPs in different environmental media (marine environment, freshwater environment, soil environment). For this purpose, five TPs—natural rubber, styrene–butadiene rubber (SBR), butadiene rubber, nitrile–butadiene rubber, and isobutylene–isoprene rubber—were analyzed. Molecular-dynamics calculations were conducted on their binding energies to neurotoxic, developmental, and reproductive receptors of various organisms to characterize the toxic effects of the five TPs. The organisms included freshwater species (freshwater nematodes, snails, shrimp, and freshwater fish), marine species (marine nematodes, mussels, crab, and marine fish), and soil species (soil nematodes, springtails, earthworms, and spiders). A multilevel empowerment method was used to determine the bio-toxicity of the TPs in various environmental media. A coupled-normalization method–principal-component analysis–factor-analysis weighting method—was used to calculate the weights of the TP toxicity (first level) categories. The results revealed that the TPs were the most biologically neurotoxic to three environmental media (20.79% and 10.57% higher compared with developmental and reproductive toxicity, respectively). Regarding the effects of TPs on organisms in various environmental media (second level), using a subjective empowerment approach, a gradual increase in toxicity was observed with increasing trophic levels due to the enrichment of TPs and the feeding behavior of organisms. TPs had the greatest influence in the freshwater-environment organisms according to the subjective empowerment approach employed to weight the three environmental media (third level). Therefore, using the minimum-value method coupled with the feature-aggregation method, the interval-deflation method coupled with the entropy-weighting method, and the standard-deviation normalization method, the three toxicity characteristics of SBR in three environmental media and four organisms were determined. SBR was found to have the greatest impact on the overall toxicity of the freshwater environment (12.38% and 9.33% higher than the marine and soil environments, respectively). The greatest contribution to neurotoxicity (26.01% and 15.95% higher than developmental and reproductive toxicity, respectively) and the greatest impact on snails and shrimp among organisms in the freshwater environment were observed. The causes of the heterogeneity of SBR’s toxicity were elucidated using amino-acid-residue analysis. SBR primarily interacted with toxic receptors through van der Waals, hydrophobic, π-π, and π-sigma interactions, and the more stable the binding, the more toxic the effect. The toxicity characteristics of TMPs to various organisms in different environments identified in this paper provide a theoretical basis for subsequent studies on the prevention and control of TMPs in the environment.
Collapse
|
26
|
Armada D, Martinez-Fernandez A, Celeiro M, Dagnac T, Llompart M. Assessment of the bioaccessibility of PAHs and other hazardous compounds present in recycled tire rubber employed in synthetic football fields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159485. [PMID: 36257444 DOI: 10.1016/j.scitotenv.2022.159485] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/07/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Recycled tire crumb rubber (RTCR) surfaces contain harmful and carcinogenic substances, which can be ingested by the users of these facilities, mainly athletes and children. In this work, the potential in-vitro oral bioaccessibility of eighteen polycyclic aromatic hydrocarbons (PAHs) from RTCR employed as infill in synthetic football fields was studied in human synthetic body fluids (saliva, gastric, duodenal and bile), prepared according the Unified Bioaccessibility Method. Solid-phase extraction (SPE) using commercial sorbents and a new green material based on cork (cork industry by-product) were used to isolate the bioaccessible PAHs before gas chromatography-tandem mass spectrometry analysis. The method was optimized and validated attending the analytical figures of merit. The feasibility of cork biosorbent for the extraction of the compounds was demonstrated, as well as the suitability of the UBM method to perform the digestion with good precision. The application to real samples collected from football fields demonstrated the presence of 17 of the 18 target PAHs in the biofluids. Most volatile PAHs such as NAP, ACY, ACE, FLU, PHN and ANC, achieved the highest bioaccessibility percentage levels. The carcinogenic B[a]P was detected in 75 % of the samples at concentrations up to 2.5 ng g-1 (bioaccessible fraction). Children exposure assessment was carried out to identify potential risk. Other hazardous and environmentally problematic compounds such as N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-quinone), recently related with the dead of coho salmon, and hexamethoxymethylmelamine (HMMM), among others, were also detected. This is the first study in which the bioaccesibility from real crumb rubber samples of 15 out of the 16 PAHs considered as priority pollutants by the United States Environmental Protection Agency (EPA) and the presence of 6PPD-quinone and HMMM in the bioaccessible fractions is reported.
Collapse
Affiliation(s)
- Daniel Armada
- CRETUS, Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Antia Martinez-Fernandez
- CRETUS, Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Maria Celeiro
- CRETUS, Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Thierry Dagnac
- Agronomic Research Centre (AGACAL-CIAM), Unit of Organic Contaminants, Apartado 10, E-15080 A Coruña, Spain
| | - Maria Llompart
- CRETUS, Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
27
|
Garrard SL, Spicer JI, Thompson RC. Tyre particle exposure affects the health of two key estuarine invertebrates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120244. [PMID: 36152711 DOI: 10.1016/j.envpol.2022.120244] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Tyre wear particles may be the largest source of microplastic to the natural environment, yet information on their biological impacts is inadequate. Two key estuarine invertebrates; the clam Scrobicularia plana and the ragworm Hediste diversicolor were exposed to 10% tyre particles in sediment for three days. Both species consumed the particles, although S. plana consumed 25x more than H. diversicolor (967 compared with 35 particles.g-1 wet weight, respectively). We then investigated the impact of 21 days exposure to different concentrations of tyre particles in estuarine sediments (0.2, 1, and 5% dry weight sediment) on aspects of the health of S. plana and H. diversicolor. Reductions in feeding and burial rates were observed for S. plana but not H. diversicolor, whilst both species showed a decrease in protein content in response to the greatest tyre particle concentration (5%), linked to an 18% decrease in energy reserves for H. diversicolor. Five percent tyre particle exposure led to an increase in total glutathione in the tissues of H. diversicolor, whilst lipid peroxidation decreased in the digestive glands of S. plana, possibly due to an increase in cell turnover. This study found that S. plana's health was impacted at lower concentrations than H. diversicolor, likely due to its consumption of large quantities of sediment. At the high exposure concentration (5%), the health of both invertebrates was impacted. This study did not separate the effects caused by the microplastic particles versus the effects of the chemical additives leaching from these particles, but our results do indicate that future studies should investigate effects in isolation and in combination, to determine the main drivers of toxicity.
Collapse
Affiliation(s)
- S L Garrard
- Marine Biology and Ecology Research Centre, School of Biological & Marine Science University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK; Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK.
| | - J I Spicer
- Marine Biology and Ecology Research Centre, School of Biological & Marine Science University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - R C Thompson
- Marine Biology and Ecology Research Centre, School of Biological & Marine Science University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| |
Collapse
|
28
|
Masset T, Ferrari BJD, Dudefoi W, Schirmer K, Bergmann A, Vermeirssen E, Grandjean D, Harris LC, Breider F. Bioaccessibility of Organic Compounds Associated with Tire Particles Using a Fish In Vitro Digestive Model: Solubilization Kinetics and Effects of Food Coingestion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15607-15616. [PMID: 36315940 PMCID: PMC9670851 DOI: 10.1021/acs.est.2c04291] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/03/2022] [Accepted: 10/24/2022] [Indexed: 05/31/2023]
Abstract
Tire and road wear particles (TRWP) account for an important part of the polymer particles released into the environment. There are scientific knowledge gaps as to the potential bioaccessibility of chemicals associated with TRWP to aquatic organisms. This study investigated the solubilization and bioaccessibility of seven of the most widely used tire-associated organic chemicals and four of their degradation products from cryogenically milled tire tread (CMTT) into fish digestive fluids using an in vitro digestion model based on Oncorhynchus mykiss. Our results showed that 0.06-44.1% of the selected compounds were rapidly solubilized into simulated gastric and intestinal fluids within a typical gut transit time for fish (3 h in gastric and 24 h in intestinal fluids). The environmentally realistic scenario of coingestion of CMTT and fish prey was explored using ground Gammarus pulex. Coingestion caused compound-specific changes in solubilization, either increasing or decreasing the compounds' bioaccessibility in simulated gut fluids compared to CMTT alone. Our results emphasize that tire-associated compounds become accessible in a digestive milieu and should be studied further with respect to their bioaccumulation and toxicological effects upon passage of intestinal epithelial cells.
Collapse
Affiliation(s)
- Thibault Masset
- Central Environmental
Laboratory, Institute of Environmental Engineering, ENAC, EPFL—Ecole Polytechnique Fédérale
de Lausanne, Station 2, CH-1015 Lausanne, Switzerland
| | - Benoit J. D. Ferrari
- Ecotox Centre—EPFL
ENAC IIE, GE, Station
2, CH-1015 Lausanne, Switzerland
- Ecotox Centre, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - William Dudefoi
- Department of Environmental Toxicology, Eawag—Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Kristin Schirmer
- Department of Environmental Toxicology, Eawag—Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
- Institute of Environmental Engineering,
ENAC, EPFL—Ecole Polytechnique Fédérale
de Lausanne, Station
2, CH-1015 Lausanne, Switzerland
- Institute of Biogeochemistry and Pollutant
Dynamics, ETHZ, CH-8092 Zurich, Switzerland
| | - Alan Bergmann
- Ecotox Centre, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | | | - Dominique Grandjean
- Central Environmental
Laboratory, Institute of Environmental Engineering, ENAC, EPFL—Ecole Polytechnique Fédérale
de Lausanne, Station 2, CH-1015 Lausanne, Switzerland
| | - Luke Christopher Harris
- Institute of Chemical Sciences and Engineering,
SB, EPFL—Ecole Polytechnique Fédérale
de Lausanne, Station
6, CH-1015 Lausanne, Switzerland
| | - Florian Breider
- Central Environmental
Laboratory, Institute of Environmental Engineering, ENAC, EPFL—Ecole Polytechnique Fédérale
de Lausanne, Station 2, CH-1015 Lausanne, Switzerland
| |
Collapse
|
29
|
Gao Q, Tao D, Qi Z, Liu Y, Guo J, Yu Y. Amidoxime functionalized PVDF-based chelating membranes enable synchronous elimination of heavy metals and organic contaminants from wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115643. [PMID: 35949092 DOI: 10.1016/j.jenvman.2022.115643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Aiming at the synchronous elimination of heavy metals and organic contaminants from wastewater, the amidoxime functionalized PVDF-based chelating membrane was fabricated in this study. The structure and morphology of the chelating membrane were characterized using infrared spectroscopy (FT-IR), nuclear magnetic resonance spectrometer (NMR) and scanning electron microscopy (SEM). The SEM results show that the chemical modification with amidoxime groups did not damage the structure of the PVDF-based membrane. The chelating membrane has a high removal efficiency for Cu2+ (77.33%) and Pb2+ (79.23%) owing to the chemisorption through coordination bonds. However, the chelating membrane exhibits a low removal efficiency for Cd2+ (29.88%) due to the physical adsorption. The chelating membrane has a high rejection efficiency of BSA (95.17%) and lysozyme (70.09%), which is attributed to the sieving effect and increased hydrophobicity. Furthermore, the membrane performance for simultaneously removing metals and proteins from simulated wastewater was examined. The interaction of metal ions with proteins (BSA and lysozyme) can enhance the ion removal efficiency of the chelated membrane, but decrease the protein rejection efficiency due to the destructive effect. The amidoxime functionalized PVDF-based chelating membrane has a high potential for application in wastewater treatment.
Collapse
Affiliation(s)
- Qiang Gao
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, China
| | - Dawei Tao
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, China
| | - Zhibin Qi
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, China
| | - Yuanfa Liu
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, China.
| | - Jing Guo
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, China
| | - Yue Yu
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
30
|
Zhang X, Zhao J, Gan T, Jin C, Li X, Cao Z, Jiang K, Zou W. Aging relieves the promotion effects of polyamide microplastics on parental transfer and developmental toxicity of TDCIPP to zebrafish offspring. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129409. [PMID: 35752050 DOI: 10.1016/j.jhazmat.2022.129409] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Understanding the role of microplastics (MPs) in the biological fate and toxicity of organic pollutants in food webs is vital for its risk assessment. However, contradictory results and the neglect of MP aging as a factor have led to a research gap, which needs to be filled. Our study discovered that polyamide (PA, a ubiquitous MP in water) MPs clearly facilitated bioaccumulation of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) in the F0 zebrafish gonads and parental transfer of TDCIPP to the F1 offspring. Rapid TDCIPP desorption in the gut and intestine barrier dysfunction triggered by MPs were the causes for the phenomenon. In contrast to the pristine forms, aged PA with higher hydrophilcity exhibited stronger binding and polar interactions with TDCIPP, and the intestine damage was neglectable, resulting in increased intestinal immobilization and prevented parental transfer of TDCIPP. Additionally, the aggravated body weight loss and decreased length of TDCIPP offspring were relieved after PA aging. The recovery of subintestinal venous plexus angiogenesis, yolk lipid utilization, and ATP synthesis were responsible for the mitigated transgenerational toxicity. Our results highlight the significance of aging on the role of MPs with respect to coexisting pollutants and have great implications for understanding MP-associated risks.
Collapse
Affiliation(s)
- Xingli Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China.
| | - Jingyi Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Tiantian Gan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Caixia Jin
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Xiaokang Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Kai Jiang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|