1
|
Wang R, Wang Y, Dong Y, Wu CC, Li J, Tian L, Bao LJ, Zeng EY. Uptake of Typical Hydrophobic Organic Contaminants in Vegetables: Evidence From Passive Samplers. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2338-2349. [PMID: 39171942 DOI: 10.1002/etc.5978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024]
Abstract
Quantifying the root uptake of hydrophobic organic contaminants (HOCs) by plants remains challenging due to the lack of data on the freely available fractions of HOCs in soil porewater. We therefore hypothesized that a passive sampler could act as a useful tool to evaluate the root uptake potential and pathways of HOCs by plants in soil. We tested this hypothesis by exploring the uptake of polybrominated diphenyl ethers (PBDEs) and organophosphate esters (OPEs) by carrot and lettuce with the codeployment of passive samplers in a contaminated soil system. The results showed that the amounts of PBDEs enriched in carrot and lettuce were positively correlated with those in a passive sampler (r2 = 0.46-0.88). No concentration correlation was observed for OPEs between lettuce and passive samplers, due to possible degradation of OPEs in lettuce. The root-to-porewater ratios of PBDEs and OPEs, respectively, were 6.2 to 11 and 0.05 to 0.88 L g-1 for carrot, and 8.8 to 130 and less than reporting limits to 1.2 L g-1 for lettuce. The ratios were negatively correlated with log KOW values for carrot, but increased with increasing log KOW values over a range of 1.97 to 6.80, and then decreased with log KOW values greater than 6.80 for lettuce. This finding indicated that passive transport and partition were the accumulation pathways of PBDEs and OPEs in carrot and lettuce, respectively. Overall, passive samplers performed adequately in assessing the available fractions of persistent HOCs in plants, and can serve as a viable tool for exploring the pathways for plant root uptake of HOCs. Environ Toxicol Chem 2024;43:2338-2349. © 2024 SETAC.
Collapse
Affiliation(s)
- Rong Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
| | - Yu Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
| | - Ying Dong
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
| | - Chen-Chou Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
| | - Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety and Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Lian-Jun Bao
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
- Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Eddy Y Zeng
- Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), School of Environment and Energy, South China University of Technology, Guangzhou, China
| |
Collapse
|
2
|
Li Y, Wang X, Yu W, Cen X, Li Y, Zhang X, Xu M, Zhang D, Lu P, Bai H. Predicting bioavailable barium transfer in soil-bok choy systems: A study induced by shale gas extraction in Chongqing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177196. [PMID: 39490393 DOI: 10.1016/j.scitotenv.2024.177196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Barium (Ba) is a significant contaminant from shale gas extraction and is also used in various other industries. However, there has been very limited attention paid to Ba. Elucidating the Ba in soil-crop system are of great significance for both human health risk assessment and pollution control. In this study, the bioavailability of Ba in soils was studied by using various characterization methods. Then the major factors dominating the transfer of Ba in soil-bok choy system and a suitable predicted model was derived. The results showed that Ba was mainly accumulated in the roots (transfer factor < 0.3). The relationships between Ba in shoots and the bioavailability of Ba characterizing with different methods increased in the order of CH3COOH (R2 = 0.81) < ethylenediamine tetraacetic acid (R2 = 0.87) < pore water (R2 = 0.89) < diffusive gradients in thin film (R2 = 0.90) < CaCl2 (R2 = 0.91). The major soil properties affecting Ba in shoots were pH (r = -0.32, P > 0.05), cation exchange capacity (r = -0.43, P < 0.01) and labile Al (r = 0.38, P < 0.05). Bioavailability of Ba can preferably model the Ba transfer in soil-bok choy system. The best reliable model was LogBa[shoot] = 0.591LogBa[soil-Pore water] + 1.749 (R2 = 0.963, P < 0.001). This model without measuring soil physicochemical properties, making it easier and more convenient to use in practice. Overall, these results highlight the role of metal bioavailability in predicting their transfer in soil-plant systems.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xiaoyu Wang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Weihan Yu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xingmin Cen
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yutong Li
- Chongqing Academy of Eco-environmental Science, Chongqing 401147, China
| | - Xin Zhang
- The Key Laboratory of GIS Application and Research, Chongqing Normal University, Chongqing 401331, China
| | - Min Xu
- Department of Environmental Science, College of Sichuan Agricultural University, Chengdu 611130, China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| | - Hongcheng Bai
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| |
Collapse
|
3
|
Wang Y, Gao F, Xu Y, Rodgers TFM, Tan F. Field study on the uptake pathways and their contributions to the accumulation of organophosphate esters, phthalates, and polycyclic aromatic hydrocarbons in upland rice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174205. [PMID: 38909796 DOI: 10.1016/j.scitotenv.2024.174205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Plant uptake of organic contaminants generally occurs through either root, gas-phase foliar, or particle-phase foliar uptake. Understanding these pathways is essential for food-system practitioners to reduce human exposures, and to clean contaminated-sites with phytoremediation. Herein, we conducted a field-based experiment using an improved specific exposure chamber to elucidate the uptake pathways of organophosphate esters, phthalates, and polycyclic aromatic compounds, and quantitatively assessed their contributions to organic contaminant accumulations in field-grown rice. For most target compounds, all three uptake pathways (root, foliar gas, and foliar particle uptakes) contributed substantially to the overall contaminant burden in rice. Compounds with lower octanol-water partition coefficients (Kow) were more readily translocated from roots to leaves, and compounds with higher octanol-air partition coefficients (Koa) tended to enter rice leaves mostly through particle deposition. Most compounds were mostly stored in the inner leaves (55.3-98.2 %), whereas the relatively volatile compounds were more readily absorbed by the waxy layer and then transferred to the inner leaves. Air particle desorption was a key process regulating foliar uptake of low-volatility compounds. The results can help us to better understand and predict the environmental fate of those contaminants, and develop more effective management strategies for reducing their human exposure through food ingestion.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Fei Gao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yue Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Timothy F M Rodgers
- Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
4
|
Pérez-Lucas G, Navarro S. How Pharmaceutical Residues Occur, Behave, and Affect the Soil Environment. J Xenobiot 2024; 14:1343-1377. [PMID: 39449417 PMCID: PMC11503385 DOI: 10.3390/jox14040076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Many pharmaceuticals (PhMs), compounds for the treatment or prevention of diseases in humans and animals, have been identified as pollutants of emerging concern (PECs) due to their wide environmental distribution and potential adverse impact on nontarget organisms and populations. They are often found at significant levels in soils due to the continuous release of effluent and sludge from wastewater treatment plants (WWTPs), the release of which occurs much faster than the removal of PhMs. Although they are generally present at low environmental concentrations, conventional wastewater treatment cannot successfully remove PhMs from influent streams or biosolids. In addition, the soil application of animal manure can result in the pollution of soil, surface water, and groundwater with PhMs through surface runoff and leaching. In arid and semiarid regions, irrigation with reclaimed wastewater and the soil application of biosolids are usual agricultural practices, resulting in the distribution of a wide number of PhMs in agricultural soils. The ability to accurately study the fate of PhMs in soils is critical for careful risk evaluation associated with wastewater reuse or biosolid return to the environment. The behavior and fate of PhMs in soils are determined by a number of processes, including adsorption/desorption (accumulation) to soil colloids, biotic (biodegradation) and abiotic (chemical and photochemical degradation) degradation, and transfer (movement) through the soil profile. The sorption/desorption of PhMs in soils is the main determinant of the amount of organic chemicals taken up by plant roots. The magnitude of this process depends on several factors, such as crop type, the physicochemical properties of the compound, environmental properties, and soil-plant characteristics. PhMs are assumed to be readily bioavailable in soil solutions for uptake by plants, and such solutions act as carriers to transport PhMs into plants. Determining microbial responses under exposure conditions can assist in elucidating the impact of PhMs on soil microbial activity and community size. For all of the above reasons, soil remediation is critical when soil pollutants threaten the environment.
Collapse
Affiliation(s)
| | - Simón Navarro
- Department of Agricultural Chemistry, Geology and Pedology, School of Chemistry, University of Murcia, Campus Universitario de Espinardo, E-30100 Murcia, Spain;
| |
Collapse
|
5
|
Fučík J, Jašek V, Hamplová M, Navrkalová J, Zlámalová Gargošová H, Mravcová L. Assessing Lettuce Exposure to a Multi-Pharmaceutical Mixture in Soil: Insights from LC-ESI-TQ Analysis and the Impact of Biochar on Pharmaceutical Bioavailability. ACS OMEGA 2024; 9:39065-39081. [PMID: 39310173 PMCID: PMC11411693 DOI: 10.1021/acsomega.4c05831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
Agricultural practices introduce pharmaceutical (PhAC) residues into the terrestrial environment, potentially endangering agricultural crops and human health. This study aimed to evaluate various aspects related to the presence of pharmaceuticals in the lettuce-soil system, including bioconcentration factors (BCFs), translocation factors (TFs), ecotoxicological effects, the influence of biochar on the PhAC bioavailability, persistence in soil, and associated environmental and health risks. Lettuce (Lactuca sativa L.) was exposed to a mixture of 25 PhACs in two scenarios: initially contaminated soil (ranging from 0 to 10,000 ng·g-1) and soil irrigated with contaminated water (ranging from 0 to 1000 μg·L-1) over a 28-day period. The findings revealed a diverse range of BCFs (0.068-3.7) and TFs (0.032-0.58), indicating the uptake and translocation potential of pharmaceuticals by lettuce. Significant ecotoxicological effects on L. sativa, including weight change and increased mortality, were observed (p < 0.05). Interestingly, biochar did not significantly affect PhAC uptake by L. sativa (p > 0.05), while it significantly influenced the soil degradation kinetics of 12 PhACs (p < 0.05). Additionally, the estimated daily intake of PhACs through the consumption of L. sativa suggested negligible health risks, although concerns arose regarding the potential health risks if other vegetable sources were similarly contaminated with trace residues. Furthermore, this study evaluated the environmental risk associated with the emergence of antimicrobial resistance (AMR) in soil, as medium to high. In conclusion, these findings highlight the multifaceted challenges posed by pharmaceutical contamination in agricultural environments and emphasize the importance of proactive measures to mitigate the associated risks to both environmental and human health.
Collapse
Affiliation(s)
- Jan Fučík
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Vojtěch Jašek
- Institute
of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Marie Hamplová
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Jitka Navrkalová
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Helena Zlámalová Gargošová
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Ludmila Mravcová
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| |
Collapse
|
6
|
Zhang H, Ouyang W, Lin C, Wang L, Guo Z, Pei J, Zhang S, He M, Liu X. Anthropogenic activities drive the distribution and ecological risk of antibiotics in a highly urbanized river basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173596. [PMID: 38810736 DOI: 10.1016/j.scitotenv.2024.173596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Although antibiotics are widely detected in river water, their quantitative relationships with influencing factors in rivers remain largely unexplored. Here, 15 widely used antibiotics were comprehensively analyzed in the Dongjiang River of the Pearl River system. The total antibiotic concentration in river water ranged from 13.84 to 475.04 ng/L, with fluoroquinolones increasing from 11 % in the upstream to 38 % in the downstream. The total antibiotic concentration was high downstream and significantly correlated with the spatial distribution of population density, animal production, and land-use type. The total risk quotient of antibiotics for algae was higher than that for crustaceans and fish. Based on the optimized risk quotient method, amoxicillin, ofloxacin, and norfloxacin were identified as priority antibiotics. The key predictors of antibiotic levels were screened through Mantel test, correlation analysis, and multiple regression models. Water physicochemical parameters significantly impacted antibiotics and could be used as easy-to-measure surrogates associated with elevated antibiotics. Cropland negatively affected fluoroquinolones and sulfonamides, whereas urban land exerted positive impacts on fluoroquinolones, β-lactam, and sulfonamides. In the main stream, population, animal production, urbanization status, and economic development had key effects on the distribution of florfenicol, norfloxacin, ofloxacin, and sulfadiazine.
Collapse
Affiliation(s)
- He Zhang
- Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong Provincial Key Laboratory of Wastewater Information Analysis and Early Warning, Beijing Normal University, Zhuhai 519087, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong Provincial Key Laboratory of Wastewater Information Analysis and Early Warning, Beijing Normal University, Zhuhai 519087, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Lei Wang
- Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong Provincial Key Laboratory of Wastewater Information Analysis and Early Warning, Beijing Normal University, Zhuhai 519087, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zewei Guo
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jietong Pei
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shangwei Zhang
- Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong Provincial Key Laboratory of Wastewater Information Analysis and Early Warning, Beijing Normal University, Zhuhai 519087, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
7
|
Kaw HY, Yu J, Ma X, Yang Q, Zhu L, Wang W. The significance of environmentally bioavailable antimicrobials in driving antimicrobial resistance in soils. ENVIRONMENT INTERNATIONAL 2024; 190:108830. [PMID: 38943926 DOI: 10.1016/j.envint.2024.108830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/16/2024] [Accepted: 06/17/2024] [Indexed: 07/01/2024]
Abstract
Antimicrobial resistance (AMR) stands as an escalating public health crisis fueled by antimicrobial residues in the environment, particularly in soil, which acts as a reservoir for antimicrobial resistance genes (ARGs). Merely quantifying the total extractable concentration of antimicrobials, instead of bioavailable fractions, may substantially underestimate their minimal selection concentration for propagating ARGs. To shed light on the role of bioavailability in ARG abundance within soil, a systematic bioavailability assessment method was established for accurately quantifying the partitioning of multi-class antimicrobials in representative Chinese soils. Microcosm studies unveiled that antimicrobials persisting in the bioavailable fraction could potentially prolong their selection pressure duration to trigger AMR. Notably, the co-occurrence of pesticide or steroid hormone influenced the development trends of ARG subtypes, with fluoroquinolone resistance genes (RGs) being particularly susceptible. Partial least squares path model (PLS-PM) analysis uncovered potentially distinct induction mechanisms of antimicrobials: observable results suggested that extractable residual concentration may exert a direct selection pressure on the development of ARGs, while bioavailable concentration could potentially play a stepwise role in affecting the abundance of mobile genetic elements and initiating ARG dissemination. Such unprecedented scrutinization of the interplay between bioavailable antimicrobials in soils and ARG abundance provides valuable insights into strategizing regulatory policy or guidelines for soil remediation.
Collapse
Affiliation(s)
- Han Yeong Kaw
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China
| | - Jing Yu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China
| | - Xuejing Ma
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China
| | - Qi Yang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China
| | - Wei Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
8
|
Li Z, Chen J, Xu L, Zhang P, Ni H, Zhao W, Fang Z, Liu H. Quinolone Antibiotics Inhibit the Rice Photosynthesis by Targeting Photosystem II Center Protein: Generational Differences and Mechanistic Insights. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11280-11291. [PMID: 38898567 DOI: 10.1021/acs.est.4c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Soil antibiotic pollution profoundly influences plant growth and photosynthetic performance, yet the main disturbed processes and the underlying mechanisms remain elusive. This study explored the photosynthetic toxicity of quinolone antibiotics across three generations on rice plants and clarified the mechanisms through experimental and computational studies. Marked variations across antibiotic generations were noted in their impact on rice photosynthesis with the level of inhibition intensifying from the second to the fourth generation. Omics analyses consistently targeted the light reaction phase of photosynthesis as the primary process impacted, emphasizing the particular vulnerability of photosystem II (PS II) to the antibiotic stress, as manifested by significant interruptions in the photon-mediated electron transport and O2 production. PS II center D2 protein (psbD) was identified as the primary target of the tested antibiotics, with the fourth-generation quinolones displaying the highest binding affinity to psbD. A predictive machine learning method was constructed to pinpoint antibiotic substructures that conferred enhanced affinity. As antibiotic generations evolve, the positive contribution of the carbonyl and carboxyl groups on the 4-quinolone core ring in the affinity interaction gradually intensified. This research illuminates the photosynthetic toxicities of antibiotics across generations, offering insights for the risk assessment of antibiotics and highlighting their potential threats to carbon fixation of agroecosystems.
Collapse
Affiliation(s)
- Zhiheng Li
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang Province 310018, China
| | - Jie Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Linglin Xu
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang Province 310018, China
| | - Ping Zhang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang Province 310018, China
| | - Haohua Ni
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang Province 310018, China
| | - Wenlu Zhao
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang Province 310018, China
| | - Zhiguo Fang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang Province 310018, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang Province 310018, China
| |
Collapse
|
9
|
Liu Z, Zhang F, Gao S, Zhang L, Fu Q, Cui S. Neonicotinoid insecticides in paddy fields: Dissipation dynamics, migration, and dietary risk. CHEMOSPHERE 2024; 359:142371. [PMID: 38768784 DOI: 10.1016/j.chemosphere.2024.142371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/20/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
Neonicotinoid insecticides (NNIs) have caused widespread contamination of multiple environmental media and posed a serious threat to ecosystem health by accidently injuring non-target species. This study collected samples of water, soil, and rice plant tissues in a water-soil-plant system of paddy fields after spaying imidacloprid (IMI), thiamethoxam (THM), and clothianidin (CLO) to analyze their distribution characteristics and migration procedures and to assess related dietary risks of rice consumption. In the paddy water, the concentrations of NNIs showed a dynamic change of increasing and then decreasing during about a month period, and the initial deposition of NNIs showed a trend of CLO (3.08 μg/L) > THM (2.74 μg/L) > IMI (0.97 μg/L). In paddy soil, the concentrations of the three NNIs ranged from 0.57 to 68.3 ng/g, with the highest residual concentration at 2 h after application, and the concentration trend was opposite to that in paddy water. The initial deposition amounts of IMI, THM, and CLO in the root system were 5.19, 3.02, and 5.24 μg/g, respectively, showing a gradual decrease over time. In the plant, the initial deposition amounts were 19.3, 9.36, and 52.6 μg/g for IMI, THM, and CLO, respectively, exhibiting concentration trends similar to those in the roots. Except for IMI in soil, the dissipation of the NNIs conformed to the first-order kinetic equation in paddy water, soil, and plant. The results of bioconcentration factors (BCFs) and translocation factor (TF) indicated that NNIs can be bi-directionally transported in plants through leaf absorption and root uptake. The risk of NNIs intake through rice consumption was low for all age groups, with a slightly higher risk of exposure in males than in females.
Collapse
Affiliation(s)
- Zhikun Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; School of Advanced Agricultural Sciences, Weifang University, Weifang, Shandong, 261061, China
| | - Fuxiang Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Shang Gao
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada
| | - Qiang Fu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| |
Collapse
|
10
|
Wu X, Sun F, Cao S, Wang Q, Wang L, Wang S, He Y, Kolvenbach BA, Corvini PFX, Ji R. Maize ( Zea mays L.) Plants Alter the Fate and Accumulate Nonextractable Residues of Sulfamethoxazole in Farmland Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9292-9302. [PMID: 38752544 DOI: 10.1021/acs.est.3c08954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The fate of sulfonamide antibiotics in farmlands is crucial for food and ecological safety, yet it remains unclear. We used [phenyl-U-14C]-labeled sulfamethoxazole (14C-SMX) to quantitatively investigate the fate of SMX in a soil-maize system for 60 days, based on a six-pool fate model. Formation of nonextractable residues (NERs) was the predominant fate for SMX in unplanted soil, accompanied by minor mineralization. Notably, maize plants significantly increased SMX dissipation (kinetic constant kd = 0.30 day-1 vs 0.17 day-1), while substantially reducing the NER formation (92% vs 58% of initially applied SMX) and accumulating SMX (40%, mostly bound to roots). Significant NERs (maximal 29-42%) were formed via physicochemical entrapment (determined using silylation), which could partially be released and taken up by maize plants. The NERs consisted of a considerable amount of SMX formed via entrapment (1-8%) and alkali-hydrolyzable covalent bonds (2-12%, possibly amide linkage). Six and 10 transformation products were quantified in soil extracts and NERs, respectively, including products of hydroxyl substitution, deamination, and N-acylation, among which N-lactylated SMX was found for the first time. Our findings reveal the composition and instability of SMX-derived NERs in the soil-plant system and underscore the need to study the long-term impacts of reversible NERs.
Collapse
Affiliation(s)
- Xuan Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Feifei Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Siqi Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Qilin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Lianhong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Songfeng Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, Jiangsu, China
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Boris Alexander Kolvenbach
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz CH-4132, Switzerland
| | - Philippe Francois-Xavier Corvini
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz CH-4132, Switzerland
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| |
Collapse
|
11
|
Richardson SD, Manasfi T. Water Analysis: Emerging Contaminants and Current Issues. Anal Chem 2024; 96:8184-8219. [PMID: 38700487 DOI: 10.1021/acs.analchem.4c01423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Affiliation(s)
- Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, JM Palms Center for GSR, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Tarek Manasfi
- Eawag, Environmental Chemistry, Uberlandstrasse 133, Dubendorf 8600, Switzerland
| |
Collapse
|
12
|
Chang J, Gao K, Li R, Dong F, Zheng Y, Zhang Q, Li Y. Comparative uptake, translocation and metabolism of phenamacril in crops under hydroponic and soil cultivation conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171670. [PMID: 38485020 DOI: 10.1016/j.scitotenv.2024.171670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Many studies investigate the plant uptake and metabolism of xenobiotics by hydroponic experiments, however, plants grown in different conditions (hydroponic vs. soil) may result in different behaviors. To explore the potential differences, a comparative study on the uptake, translocation and metabolism of the fungicide phenamacril in crops (wheat/rice) under hydroponic and soil cultivation conditions was conducted. During 7-14 days of exposure, the translocation factors (TFs) of phenamacril were greatly overestimated in hydroponic-wheat (3.6-5.2) than those in soil-wheat systems (1.1-2.0), with up to 3.3 times of difference between the two cultivation systems, implying it should be cautious to extrapolate the results obtained from hydroponic to field conditions. M-144 was formed in soil pore water (19.1-29.9 μg/L) in soil-wheat systems but not in the hydroponic solution in hydroponics; M-232 was only formed in wheat shoots (89.7-103.0 μg/kg) under soil cultivation conditions, however, it was detected in hydroponic solution (20.1-21.2 μg/L), wheat roots (146.8-166.0 μg/kg), and shoots (239.2-348.1 μg/kg) under hydroponic conditions. The root concentration factors (RCFs) and TFs of phenamacril in rice were up to 2.4 and 3.6 times higher than that in wheat for 28 days of the hydroponic exposure, respectively. These results highlighted that cultivation conditions and plant species could influence the fate of pesticides in crops, which should be considered to better assess the potential accumulation and transformation of pesticides in crops.
Collapse
Affiliation(s)
- Jinhe Chang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Kang Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Runan Li
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, XinXiang 453500, China.
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongquan Zheng
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Qingming Zhang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuanbo Li
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, XinXiang 453500, China
| |
Collapse
|
13
|
Dong Q, Xiao C, Cheng W, Yu H, Liu J, Liu G, Liu Y, Guo Y, Liang Y, Shi J, Yin Y, Cai Y, Jiang G. Revealing the Sources of Cadmium in Rice Plants under Pot and Field Conditions from Its Isotopic Fractionation. ACS ENVIRONMENTAL AU 2024; 4:162-172. [PMID: 38765061 PMCID: PMC11100327 DOI: 10.1021/acsenvironau.3c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 05/21/2024]
Abstract
The highly excessive uptake of cadmium (Cd) by rice plants is well known, but the transfer pathway and mechanism of Cd in the paddy system remain poorly understood. Herein, pot experiments and field investigation were systematically carried out for the first time to assess the phytoavailability of Cd and fingerprint its transfer pathway in the paddy system under different treatments (slaked lime and biochar amendments), with the aid of a pioneering Cd isotopic technique. Results unveiled that no obvious differences were displayed in the δ114/110Cd of Ca(NO3)2-extractable and acid-soluble fractions among different treatments in pot experiments, while the δ114/110Cd of the water-soluble fraction varied considerably from -0.88 to -0.27%, similar to those observed in whole rice plant [Δ114/110Cdplant-water ≈ 0 (-0.06 to -0.03%)]. It indicates that the water-soluble fraction is likely the main source of phytoavailable Cd, which further contributes to its bioaccumulation in paddy systems. However, Δ114/110Cdplant-water found in field conditions (-0.39 ± 0.05%) was quite different from those observed in pot experiments, mostly owing to additional contribution derived from atmospheric deposition. All these findings demonstrate that the precise Cd isotopic compositions can provide robust and reliable evidence to reveal different transfer pathways of Cd and its phytoavailability in paddy systems.
Collapse
Affiliation(s)
- Qiang Dong
- Laboratory
of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- BNU-HKUST
Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Cailing Xiao
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Wenhan Cheng
- School
of
Resource & Environment, Anhui Agricultural
University, Hefei 230036, China
| | - Huimin Yu
- CAS
Key Laboratory of Crust-Mantle Materials and Environments, School
of Earth and Space Sciences, University
of Science and Technology of China, Hefei 230026, China
| | - Juan Liu
- School
of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Guangliang Liu
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United States
| | - Yanwei Liu
- Laboratory
of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Yingying Guo
- Laboratory
of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Yong Liang
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jianbo Shi
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Yongguang Yin
- Laboratory
of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
- School
of Environment, Hangzhou Institute for Advanced
Study, UCAS, Hangzhou 310024, China
| | - Yong Cai
- Laboratory
of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United States
| | - Guibin Jiang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| |
Collapse
|
14
|
Mininni AN, Pietrafesa A, Calabritto M, Di Biase R, Brunetti G, De Mastro F, Murgolo S, De Ceglie C, Salerno C, Dichio B. Uptake and translocation of pharmaceutically active compounds by olive tree ( Olea europaea L.) irrigated with treated municipal wastewater. FRONTIERS IN PLANT SCIENCE 2024; 15:1382595. [PMID: 38756964 PMCID: PMC11096453 DOI: 10.3389/fpls.2024.1382595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024]
Abstract
Introduction The use of treated municipal wastewater (TWW) represents a relevant opportunity for irrigation of agricultural crops in semi-arid regions to counter the increasing water scarcity. Pharmaceutically active compounds (PhACs) are often detected in treated wastewater, posing a risk to humans and the environment. PhACs can accumulate in soils and translocate into different plant tissues, reaching, in some cases, edible organs and entering the food chain. Methods This study evaluated the uptake and translocation processes of 10 PhACs by olive trees irrigated with TWW, investigating their accumulation in different plant organs. The experiment was conducted in southern Italy, in 2-year-old plants irrigated with three different types of water: freshwater (FW), TWW spiked with 10 PhACs at a concentration of 200 µg L-1 (1× TWW), and at a triple dose (3× TWW), from July to October 2021. The concentration of PhACs in soil and plant organs was assessed, collecting samples of root, stem, shoot, leaf, fruit, and kernel at 0 (T0), 50 (T1), and 107 (T2) days of irrigation. PhACs extraction from soil and plant organs was carried out using the QuEChERS method, and their concentrations were determined by high-resolution mass spectrometry coupled with liquid chromatography. Results Results of uptake factors (UF) showed a different behavior between compounds according to their physicochemical properties, highlighting PhACs accumulation and translocation in different plant organs (also edible part) in 1× TWW and 3× TWW compared to FW. Two PhACs, carbamazepine and fluconazole, showed interactions with the soil-plant system, translocating also in the aerial part of the plant, with a translocation factor (TF) greater than 1, which indicates high root-to-leaf translocation. Discussion Findings highlight that only few PhACs among the selected compounds can be uptaken by woody plants and accumulated in edible parts at low concentration. No effects of PhACs exposure on plant growth have been detected. Despite the attention to be paid to the few compounds that translocate into edible organs, these results are promising for adapting wastewater irrigation in crops. Increasing knowledge about PhACs behavior in woody plants can be important for developing optimized wastewater irrigation and soil management strategies to reduce PhACs accumulation and translocation in plants.
Collapse
Affiliation(s)
- Alba N. Mininni
- Department of European and Mediterranean Cultures, Environment, and Cultural Heritage (DICEM), University of Basilicata, Matera, Italy
| | - Angela Pietrafesa
- Department of European and Mediterranean Cultures, Environment, and Cultural Heritage (DICEM), University of Basilicata, Matera, Italy
| | - Maria Calabritto
- Department of European and Mediterranean Cultures, Environment, and Cultural Heritage (DICEM), University of Basilicata, Matera, Italy
| | - Roberto Di Biase
- Department of European and Mediterranean Cultures, Environment, and Cultural Heritage (DICEM), University of Basilicata, Matera, Italy
| | - Gennaro Brunetti
- Department of Soil, Plant, and Food Science, University of Bari, Bari, Italy
| | - Francesco De Mastro
- Department of Soil, Plant, and Food Science, University of Bari, Bari, Italy
| | - Sapia Murgolo
- Department of Bari, Istituto di Ricerca Sulle Acque, CNR, Bari, Italy
| | | | - Carlo Salerno
- Department of Bari, Istituto di Ricerca Sulle Acque, CNR, Bari, Italy
| | - Bartolomeo Dichio
- Department of European and Mediterranean Cultures, Environment, and Cultural Heritage (DICEM), University of Basilicata, Matera, Italy
| |
Collapse
|
15
|
Szabó L, Vancsik A, Bauer L, Jakab G, Király C, Hatvani IG, Kondor AC, Szalai Z. Effects of root-derived organic acids on sorption of pharmaceutically active compounds in sandy topsoil. CHEMOSPHERE 2024; 355:141759. [PMID: 38531500 DOI: 10.1016/j.chemosphere.2024.141759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
The presence and fate of pharmaceutically active compounds (PhACs) in agricultural fields are rarely investigated. The present study highlights that root-derived low-molecular-weight organic acids (LMWOAs) affect the mobility of PhACs in cultivated humic Arenosol. Sorption experiments are conducted using three PhACs characterised by different physicochemical properties: carbamazepine (CBZ), 17α-ethinylestradiol (EE2), and diclofenac-sodium (DFC). The results suggest that the adsorption of EE2 is more intense than the other two PhACs, whereas DFC and CBZ are primarily dominated by desorption. LMWOAs mainly provide additional low-energy adsorption sites for the PhACs, and slight pH changes do not significantly affect the sorption mechanism. During competitive adsorption, the high-energy sites of the adsorbents are initially occupied by EE2 owing to its high adsorption energy (∼15 kJ/mol). The new low-energy binding sites enhance the adsorption of DFC (from 8.5 % to 72.0 %) and CBZ (from 31.0 % to 70.0 %) during multicomponent adsorption. LMWOAs not only affect adsorption by modifying the pH but also provide additional binding sites that allow the PhACs to remain in the root environment for a longer period. As the concentration of LMWOAs temporarily changes, so does the availability of PhACs in the root zone. Environmental changes in the humic horizon enhance the mobility of the adsorbed PhACs, which renders them continuously available for uptake by plants, thus increasing the possibility of PhACs entering the human food chain.
Collapse
Affiliation(s)
- Lili Szabó
- Geographical Institute, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest H-1112, Hungary; HUN-REN CSFK, MTA Centre of Excellence, Budapest, Konkoly Thege Miklós út 15-17, H-1121, Hungary; Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest H-1117, Hungary
| | - Anna Vancsik
- Geographical Institute, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest H-1112, Hungary; HUN-REN CSFK, MTA Centre of Excellence, Budapest, Konkoly Thege Miklós út 15-17, H-1121, Hungary; Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest H-1117, Hungary.
| | - László Bauer
- Geographical Institute, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest H-1112, Hungary; HUN-REN CSFK, MTA Centre of Excellence, Budapest, Konkoly Thege Miklós út 15-17, H-1121, Hungary; Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest H-1117, Hungary
| | - Gergely Jakab
- Geographical Institute, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest H-1112, Hungary; HUN-REN CSFK, MTA Centre of Excellence, Budapest, Konkoly Thege Miklós út 15-17, H-1121, Hungary; Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest H-1117, Hungary
| | - Csilla Király
- Geographical Institute, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest H-1112, Hungary; HUN-REN CSFK, MTA Centre of Excellence, Budapest, Konkoly Thege Miklós út 15-17, H-1121, Hungary
| | - István Gábor Hatvani
- HUN-REN CSFK, MTA Centre of Excellence, Budapest, Konkoly Thege Miklós út 15-17, H-1121, Hungary; Institute for Geological and Geochemical Research, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest H-1112, Hungary
| | - Attila Csaba Kondor
- Geographical Institute, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest H-1112, Hungary; HUN-REN CSFK, MTA Centre of Excellence, Budapest, Konkoly Thege Miklós út 15-17, H-1121, Hungary
| | - Zoltán Szalai
- Geographical Institute, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest H-1112, Hungary; HUN-REN CSFK, MTA Centre of Excellence, Budapest, Konkoly Thege Miklós út 15-17, H-1121, Hungary; Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest H-1117, Hungary
| |
Collapse
|
16
|
Li D, Zhang H, Chang F, Duan L, Zhang Y. Environmental arsenic (As) and its potential relationship with endemic disease in southwestern China. J Environ Sci (China) 2024; 139:46-59. [PMID: 38105068 DOI: 10.1016/j.jes.2023.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 12/19/2023]
Abstract
Many cases of an unknown disease exhibiting the clinical features of limb gangrene, blisters, ulceration, and exfoliation have been reported in Daping village (DV) in southwestern China. However, the pathogenesis is unknown and has puzzled doctors for many years. A preliminary study on heavy metals and symptoms indicated that arsenic might pose the greatest threat to the health of local residents. Here, to explore the sources of and factors influencing arsenic enrichment in DV, whose residents exhibit signs of arsenic poisoning, the As contents in soil, water, and plants were systematically measured. The results indicated high As contents in plant and soil samples obtained from the area, and the source of As may be linked to the weathering of black shale rock. Ingestion of soil and consumption of plants were the two main As exposure pathways among children and adults, respectively, and children exhibited a higher health risk than adults. We presume and emphasize that when extreme drought events occur, humans might face unusual risks resulting from exposure to toxic elements and the direct consumption of highly polluted water. Our study provides a new perspective and sheds light on the environmental geochemistry and health links of this disease.
Collapse
Affiliation(s)
- Donglin Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; Southwest United Graduate School, Kunming 650500, China.
| | - Fengqin Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China.
| | - Lizeng Duan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Yang Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| |
Collapse
|
17
|
Dong X, Chu Y, Tong Z, Sun M, Meng D, Yi X, Gao T, Wang M, Duan J. Mechanisms of adsorption and functionalization of biochar for pesticides: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116019. [PMID: 38295734 DOI: 10.1016/j.ecoenv.2024.116019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Agricultural production relies heavily on pesticides. However, factors like inefficient application, pesticide resistance, and environmental conditions reduce their effective utilization in agriculture. Subsequently, pesticides transfer into the soil, adversely affecting its physicochemical properties, microbial populations, and enzyme activities. Different pesticides interacting can lead to combined toxicity, posing risks to non-target organisms, biodiversity, and organism-environment interactions. Pesticide exposure may cause both acute and chronic effects on human health. Biochar, with its high specific surface area and porosity, offers numerous adsorption sites. Its stability, eco-friendliness, and superior adsorption capabilities render it an excellent choice. As a versatile material, biochar finds use in agriculture, environmental management, industry, energy, and medicine. Added to soil, biochar helps absorb or degrade pesticides in contaminated areas, enhancing soil microbial activity. Current research primarily focuses on biochar produced via direct pyrolysis for pesticide adsorption. Studies on functionalized biochar for this purpose are relatively scarce. This review examines biochar's pesticide absorption properties, its characteristics, formation mechanisms, environmental impact, and delves into adsorption mechanisms, functionalization methods, and their prospects and limitations.
Collapse
Affiliation(s)
- Xu Dong
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Yue Chu
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Zhou Tong
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Mingna Sun
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Dandan Meng
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Xiaotong Yi
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Tongchun Gao
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jinsheng Duan
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China.
| |
Collapse
|
18
|
Chen Y, Yan Z, Zhang Y, Zhu P, Jiang R, Wang M, Wang Y, Lu G. Co-exposure of microplastics and sulfamethoxazole propagated antibiotic resistance genes in sediments by regulating the microbial carbon metabolism. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132951. [PMID: 37951174 DOI: 10.1016/j.jhazmat.2023.132951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/14/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
The concerns on the carriers of microplastics (MPs) on co-existing pollutants in aquatic environments are sharply rising in recent years. However, little is known about their interactions on the colonization of microbiota, especially for the spread of pathogens and antibiotic resistance genes (ARGs). Therefore, this study aimed to investigate the influences on the propagation of ARGs in sediments by the co-exposure of different MPs and sulfamethoxazole (SMX). The results showed that the presence of MPs significantly enhanced the contents of total organic carbon, while having no effects on the removal of SMX in sediments. Exposure to SMX and MPs obviously activated the microbial carbon utilization capacities based on the BIOLOG method. The propagation of ARGs in sediments was activated by SMX, which was further promoted by the presence of polylactic acid (PLA) MPs, but significantly lowered by the co-exposed polyethylene (PE) MPs. This apparent difference may be attributed to the distinct influence on the antibiotic efflux pumps of two MPs. Moreover, the propagation of ARGs may be also dominated by microbial carbon metabolism in sediments, especially through regulating the carbon sources of carboxylic acids, carbohydrates, and amino acids. This study provides new insights into the carrier effects of MPs in sediments.
Collapse
Affiliation(s)
- Yufang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Yan Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Peiyuan Zhu
- College of Environment, Hohai University, Nanjing 210098, China
| | - Runren Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Min Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yonghua Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
19
|
Xiong Y, Shi Q, Li J, Sy ND, Schlenk D, Gan J. Methylation and Demethylation of Emerging Contaminants in Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1998-2006. [PMID: 38240245 DOI: 10.1021/acs.est.3c03171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Many contaminants of emerging concern (CECs) have reactive functional groups and may readily undergo biotransformations, such as methylation and demethylation. These transformations have been reported to occur during human metabolism and wastewater treatment, leading to the propagation of CECs. When treated wastewater and biosolids are used in agriculture, CECs and their transformation products (TPs) are introduced into soil-plant systems. However, little is known about whether transformation cycles, such as methylation and demethylation, take place in higher plants and hence affect the fate of CECs in terrestrial ecosystems. In this study, we explored the interconversion between four common CECs (acetaminophen, diazepam, methylparaben, and naproxen) and their methylated or demethylated TPs in Arabidopsis thaliana cells and whole wheat seedlings. The methylation-demethylation cycle occurred in both plant models with demethylation generally taking place at a greater degree than methylation. The transformation rate of demethylation or methylation was dependent on the bond strength of R-CH3, with demethylation of methylparaben or methylation of acetaminophen being more pronounced. Although not explored in this study, these interconversions may exert influences on the behavior and biological activity of CECs, particularly in terrestrial ecosystems. The study findings demonstrated the prevalence of transformation cycles between CECs and their methylated or demethylated TPs in higher plants, contributing to a more complete understanding of risks of CECs in the human-wastewater-soil-plant continuum.
Collapse
Affiliation(s)
- Yaxin Xiong
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Qingyang Shi
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Jun Li
- School of the Earth Sciences and Resources, Chinese University of Geosciences, Beijing 100083, China
| | - Nathan Darlucio Sy
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| |
Collapse
|
20
|
Che J, Xu C, Song X, Ding X, Ali M, Chen H. Bioaccumulation of PFASs in cabbage collected near a landfill site in China: Laboratory and field investigations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167578. [PMID: 37797761 DOI: 10.1016/j.scitotenv.2023.167578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Previous studies found that the bioaccumulation of PFASs in vegetables poses potential risks to the health of residents in local areas near landfills in China. Therefore, our study investigated the uptake of perfluoroalkyl and polyfluoroalkyl substances (PFASs) and their accumulation and distribution in cabbage roots, stems, and leaves under both field and laboratory hydroponic conditions. It was found that the sum of concentration of 15 PFASs (designated as Σ15PFASs) in roots, stems, and leaves ranged from 24.8 to 365 ng/g, 49.2 to 204 ng/g, 11.9 to 115 ng/g, respectively, in the order of roots > stems > leaves, which were generally higher than the range in soil samples (6.07-63.91 ng/g). The dominant compounds in cabbage were PFBA and PFDA in field and hydroponic samples, respectively. The hydroponic experimental results revealed that the sum concentration of 10 PFASs (designated as Σ10PFASs) was the highest in roots, and PFDA was the dominant compound in different cabbage fractions. Bioconcentration factors of short-chain PFBA, PFPeA, and PFBS in hydroponics followed the trend of leaves > stems > roots, indicating that they were readily transported from roots to stems, and then to leaves, with the majority stored in leaves at abundance levels of 53 %, 71 %, and 60 %, respectively. Additionally, the much higher concentration factor for 6:2 FTS in leaves suggested a higher potential health risk than PFOS in terms of dietary consumption of cabbage leaves.
Collapse
Affiliation(s)
- Jilu Che
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Chang Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Sichuan Tianshengyuan Environmental Services Co., Ltd., Chengdu 610000, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoyan Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Mukhtiar Ali
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
21
|
Dai H, Wang C, Yu W, Han J. Tracing COVID-19 drugs in the environment: Are we focusing on the right environmental compartment? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122732. [PMID: 37838316 DOI: 10.1016/j.envpol.2023.122732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/19/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic led to over 770 million confirmed cases, straining public healthcare systems and necessitating extensive and prolonged use of synthetic chemical drugs around the globe for medical treatment and symptom relief. Concerns have arisen regarding the massive release of active pharmaceutical ingredients (APIs) and their metabolites into the environment, particularly through domestic sewage. While discussions surrounding this issue have primarily centered on their discharge into aquatic environments, particularly through treated effluent from municipal wastewater treatment plants (WWTPs), one often overlooked aspect is the terrestrial environment as a significant receptor of pharmaceutical-laden waste. This occurs through the disposal of sewage sludge, for instance, by applying biosolids to land or non-compliant disposal of sewage sludge, in addition to the routine disposal of expired and unused medications in municipal solid wastes. In this article, we surveyed sixteen approved pharmaceuticals for treating COVID-19 and bacterial co-infections, along with their primary metabolites. For this, we delved into their physiochemical properties, ecological toxicities, environmental persistence, and fate within municipal WWTPs. Emphasis was given on lipophilic substances with log Kow >3.0, which are more likely to be found in sewage sludge at significant factions (25.2%-75.0%) of their inputs in raw sewage and subsequently enter the terrestrial environment through land application of biosolids, e.g., 43% in the United States and as high as 96% in Ireland or non-compliant practices of sewage sludge disposal in developing communities, such as open dumping and land application without prior anaerobic digestion. The available evidence underscores the importance of adequately treating and disposing of sewage sludge before its final disposal or land application in an epidemic or pandemic scenario, as mismanaged sewage sludge could be a significant vector for releasing pharmaceutical compounds and their metabolites into the terrestrial environment.
Collapse
Affiliation(s)
- Han Dai
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China; Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Chaoqi Wang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Wangyang Yu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jie Han
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
22
|
Wei L, Liu J, Hou X, Chen W, Feng Y, Kong W, Tang Y, Zhong C, Zhang S, Wang T, Zhao G, Jiao S, Jiang G. Rice Seedlings and Microorganisms Mediate Biotransformation of Se in CdSe/ZnS Quantum Dots to Volatile Alkyl Selenides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20261-20271. [PMID: 37992251 DOI: 10.1021/acs.est.3c07094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Quantum dots (QDs) are widely applied and inevitably released into the environment. The biotransformation of Se in typical CdSe/ZnS QDs coated with glutathione (CdSe/ZnS-GSH) to volatile alkyl selenides and the fate of alkyl selenides in the hydroponically grown rice system were investigated herein. After a 10-day exposure to CdSe/ZnS-GSH (100 nmol L-1), seven alkyl selenides, dimethyl selenide (DMSe), dimethyl diselenide (DMDSe), methyl selenol (MSeH), ethylmethyl selenide (EMSe), ethylmethyl diselenide (EMDSe), dimethyl selenenyl sulfide (DMSeS), and ethylmethyl selenenyl sulfide (EMSeS), were detected in the exposure system using the suspect screening strategy. CdSe/ZnS-GSH was first biotransformed to DMSe and DMDSe by plant and microorganisms. The generated DMSe was volatilized to the gas phase, adsorbed and absorbed by leaves and stems, downward transported, and released into the hydroponic solution, whereas DMDSe tended to be adsorbed/absorbed by roots and upward transported to stems. The airborne DMSe and DMDSe also partitioned from the gas phase to the hydroponic solution. DMSe and DMDSe in the exposure system were further transformed to DMSeS, EMSeS, EMSe, EMDSe, and MSeH. This study gives a comprehensive understanding on the behaviors of Se in CdSe/ZnS-GSH in a rice plant system and provides new insights into the environmental fate of CdSe/ZnS QDs.
Collapse
Affiliation(s)
- Linfeng Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Xingwang Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weifang Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Yue Feng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Wenqian Kong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinyin Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanji Zhong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyan Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ganghui Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Suning Jiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
23
|
Tian W, Zhang M, Zong D, Li W, Li X, Wang Z, Zhang Y, Niu Y, Xiang P. Are high-risk heavy metal(loid)s contaminated vegetables detrimental to human health? A study of incorporating bioaccessibility and toxicity into accurate health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165514. [PMID: 37451464 DOI: 10.1016/j.scitotenv.2023.165514] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Heavy metal(loid)s in the environment threaten food safety and human health. Health risk assessment of vegetables based on total or bioaccessible heavy metal(loid)s was widely used but can overestimate their risks, so exploring accurate methods is urgent for food safety evaluation and management. In this study, a total of 224 frequently consumed vegetables and their corresponding grown soils were collected from Yunnan, Southwest China. The total contents and bioaccessibilities of heavy metal(loid)s in vegetables were measured, their health risks were evaluated using the non-carcinogenic and carcinogenic risk models provided by USEPA. Besides, the gastrotoxicity of high-risk vegetables was also evaluated using a human cell model. Results showed that 6.25-43.8 % of Cr, Cd, and Pb contents in Zea mays L., Coriandrum sativum L., or Allium sativum L. exceeded the maximum permissible level of China, which were not consistent with those in corresponding soils. The bioaccessibility of Cr, Cd, As, Pb, Cu, Zn, Ni, and Mn in vegetables in the gastric phase was 0.41-93.8 %. Health risks based on bioaccessibility were remarkably decreased compared with total heavy metal(loid)s, but the unacceptable carcinogenic risk (CR > 10-4) was found even considering the bioaccessibility. Interestingly, gastric digesta of high-risk vegetables did not trigger adverse effects on human gastric mucosa epithelial cells, indicating existing health risk assessment model should be adjusted by toxic data to accurately reflect its hazards. Taken together, both bioaccessibility and toxicity of heavy metal(loid)s in vegetables should be considered in accurate health risk assessment and food safety-related policy-making and management.
Collapse
Affiliation(s)
- Wen Tian
- Yunnan Provincial Innovative Research Team of Environmental Pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Mengyan Zhang
- Yunnan Provincial Innovative Research Team of Environmental Pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Dapeng Zong
- Yunnan Provincial Innovative Research Team of Environmental Pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Weiyu Li
- Yunnan Provincial Innovative Research Team of Environmental Pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China; Guangdong Key Laboratory of Contaminated Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou 510000, China
| | - Xiaoying Li
- Yunnan Provincial Innovative Research Team of Environmental Pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Zhenxing Wang
- College of Life Sciences, Southwest Forestry University, Kunming 650224, China
| | - Yunxin Zhang
- Precious Metal Testing Co. LTD of Yunnan Gold Mining Group, Kunming 650215, China
| | - Youya Niu
- School of Basic Medical Sciences, Hunan University of Medicine, Huaihua 418000, China.
| | - Ping Xiang
- Yunnan Provincial Innovative Research Team of Environmental Pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
24
|
Huang Z, Hu LX, Yang JB, Liu YS, He LY, Zhao JL, Ying GG. Comprehensive discovery and migration evaluation of antimicrobial drugs and their transformation products in a swine farm by target, suspect, and nontarget screening. ENVIRONMENT INTERNATIONAL 2023; 181:108304. [PMID: 37931561 DOI: 10.1016/j.envint.2023.108304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
Swine farms contaminated the surrounding environment through manure application and biogas slurry irrigation, hence causing the wide residual of multiple antimicrobial drugs (ADs) and their transformation products (TPs). This study performed target, suspect, and nontarget screening methods to comprehensively investigate the pollution profiles of ADs in a typical swine farm, and characterize the potential transformed pathway of TPs and distinguish specific reactions of different catalog of ADs. Samples of fresh feces, compost, biogas slurry, topsoil, column soil, groundwater and plants were analyzed using the database containing 98 target analytes, 679 suspected parent ADs, and ∼ 107 TPs. In total, 29 ADs were quantitively detected, and tetracyclines (TCs) were mostly frequently detected ADs with the concentrations up to 4251 ng/g in topsoil. Soil column investigation revealed that doxycycline (DOX) and tetracycline (TC) in soil could migrate to depths of approximately 1 m in soil. Suspect screening identified 75 parent ADs, with 10 being reported for the first time in environmental media. Semi-quantification of ADs revealed that one of the less-concerned ADs, clinafloxacin, was detected to exceed 5000 ng/L in biogas slurry, suggesting that significant attentions should be paid to these less-concerned ADs. Moreover, 314 TPs was identified, and most of them were found to undergo microbial/enzymatic metabolism pathways. Overall, our study displays a comprehensive overview of ADs and their TPs in swine farming environments, and provides an inventory of crucial list that worthy of concern. The results emphasize the need to quantify the levels and distribution of previously overlooked ADs and their TPs in livestock farms.
Collapse
Affiliation(s)
- Zheng Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Jiong-Bin Yang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| |
Collapse
|
25
|
He Q, Yan Z, Qian S, Xiong T, Grieger KD, Wang X, Liu C, Zhi Y. Phytoextraction of per- and polyfluoroalkyl substances (PFAS) by weeds: Effect of PFAS physicochemical properties and plant physiological traits. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131492. [PMID: 37121031 DOI: 10.1016/j.jhazmat.2023.131492] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/31/2023] [Accepted: 04/23/2023] [Indexed: 05/19/2023]
Abstract
Phytoextraction is a promising technology that uses plants to remediate contaminated soil. However, its feasibility for per- and polyfluoroalkyl substances (PFAS) and the impact of PFAS properties and plant traits on phytoextraction efficacy remains unknown. In this study, we conducted greenhouse experiment and evaluated the potential of weeds for phytoextraction of PFAS from soil and assessed the effects of PFAS properties and plant traits on PFAS uptake via systematic correlation analyses and electron probe microanalyzer with energy dispersive spectroscopy (FE-EPMA-EDS) imaging. The results showed that 1) phytoextraction can remove 0.04%- 41.4%wt of PFAS from soil, with extracted PFAS primarily stored in plant shoots; 2) Weeds preferentially extracted short-chain PFAS over long-chain homologues from soil. 3) PFAS molecular size and hydrophilicity determined plant uptake behavior, while plant morphological traits, particularly root protein and lipid content, influenced PFAS accumulation and translocation. Although plants with thin roots and small leaf areas exhibited greater PFAS uptake and storage ability, the impact of PFAS physicochemical properties was more significant. 4) Finally, short-chain PFAS were transported quickly upwards in the plant, while uptake of long-chain PFOS was restricted.
Collapse
Affiliation(s)
- Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Zheng Yan
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Shenhua Qian
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Tiantian Xiong
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Khara D Grieger
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA; North Carolina Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27606, USA
| | - Xiaoming Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Caihong Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yue Zhi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
26
|
Zhang Y, Zhang D, He Y, Wang Z, Song P, Wang R. Construction of hexagonal spindle-shaped Fe-MOFs induced by cationic copolymer and its application for effective wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80279-80292. [PMID: 37296248 DOI: 10.1007/s11356-023-28121-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
The environment and human health are in danger due to the long-term enrichment and buildup of organic pesticides, dyes, and harmful microbes in wastewater. The development of functional materials that are efficient for treating wastewater remains a significant problem. Eco-friendly hexagonal spindle-shaped Fe-MOFs (Hs-FeMOFs) were created in this study under the influence of cationic copolymer (PMSt). The mechanism of crystal growth and development of its unique morphology were described after looking into impact factors for the ideal circumstances and being characterized by XRD, TEM, XPS, and other techniques. It revealed that Hs-FeMOFs possess an enormous supply of adsorption active sites, a strong electropositivity, and the nanometer tip. Then, typical organic pollutants, such as herbicides and mixed dyes, as well as biological pollutants bacteria, were chosen to assess its efficacy in wastewater treatment. It was discovered that the pendimethalin could be quickly removed in wastewater and the removal rate reached 100% within 10 min. In separation of mixed dyes, the retention rate of malachite green (MG) reached 92.3% in 5 min and with a minimum inhibitory concentration of 0.8 mg/mL and demonstrated strong activity due to the presence of cationic copolymers. In actual water matrix, Hs-FeMOF could also play excellent adsorption and antibacterial activity. In summary, a novel, environmentally friendly MOF material with good activity was successfully created by cationic copolymer induction. It offers a fresh approach to develop functional materials in wastewater treatment.
Collapse
Affiliation(s)
- Yaping Zhang
- Key Lab. Eco-Functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Duoxin Zhang
- Key Lab. Eco-Functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Yufeng He
- Key Lab. Eco-Functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Zeyuan Wang
- School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA
| | - Pengfei Song
- Key Lab. Eco-Functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Rongmin Wang
- Key Lab. Eco-Functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|
27
|
Pan B, Wang W, Liu B, Cai K, Tian J, Cai Y. Significant difference in the efficacies of silicon application regimes on cadmium species and environmental risks in rice rhizosphere. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121521. [PMID: 36997144 DOI: 10.1016/j.envpol.2023.121521] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/19/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Silicon (Si) is commonly applied as base-fertilizer or foliar-topdressing to palliate the uptake-translocation-accumulation of cadmium (Cd) in rice through Si-Cd antagonism. However, little is known about the fate of Cd in rice rhizosphere soil and its eco-environmental effects under different Si treatments. Here, systematic works had been carried out to elucidate the Cd species, soil properties, and environmental risks in rice rhizosphere driven by different Si soil-fertilization regimes including CK (without Si-addition), TSi (added before transplanting stage), JSi (added at jointing stage), and TJSi (split into two equal parts, added half before transplanting and another half at jointing stage). Results showed that TJSi outperformed the rest of fertilization regimes. The solid-phase-Cd concentrations treated with TSi, TJSi and JSi were increased by 4.18%, 5.73% and 3.41%, respectively, when compared to CK. The labile Cd (F1+F2) proportion of TJSi was reduced by 16.30%, 9.30% and 6.78%, respectively, when compared to CK, TSi, and JSi. Simultaneously, the liquid-phase-Cd concentration was appreciably suppressed by TJSi throughout the rice lifecycle, while TSi mainly abated Cd dissociation during the vegetative period, and JSi attenuated it during the grain-filling stage. The mobility factor of Cd treated with TJSi was the lowest, which was significantly lower than that of TSi (9.30%) and JSi (6.78%), respectively. Similarly, the oral exposure risk of TJSi was reduced by 4.43% and 32.53%; and the food-chain exposure risk of TJSi was decreased by 13.03% and 42.78%. Additionally, TJSi was the most effective in promoting enzyme activities and nutrient content in rhizosphere soil. Overall, TJSi is more positive and sustainable than TSi and JSi in reconstructing Cd-contaminated rhizosphere environments and abating the environmental risks of Cd. Agronomic practices in Cd-contaminated paddy soils can be informed by applying Si-fertilizer separately before transplanting and at jointing stage to achieve soil welfare and food security.
Collapse
Affiliation(s)
- Bogui Pan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Tropical Agricultural Environment in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China.
| | - Wei Wang
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Bingquan Liu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Tropical Agricultural Environment in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
| | - Kunzheng Cai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Tropical Agricultural Environment in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
| | - Jihui Tian
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Tropical Agricultural Environment in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
| | - Yixia Cai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Tropical Agricultural Environment in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China.
| |
Collapse
|
28
|
Xiong Y, Shi Q, Sy ND, Dennis NM, Schlenk D, Gan J. Influence of methylation and demethylation on plant uptake of emerging contaminants. ENVIRONMENT INTERNATIONAL 2022; 170:107612. [PMID: 36347118 PMCID: PMC9988749 DOI: 10.1016/j.envint.2022.107612] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Contaminants of emerging concern (CECs) as well as their transformation products (TPs) are often found in treated wastewater and biosolids, raising concerns about their environmental risks. Small changes in chemical structure, such as the addition or loss of a methyl group, as the result of methylation or demethylation reaction, may significantly alter a chemical's physicochemical properties. In this study, we evaluated the difference in accumulation and translocation between four CECs and their respective methylated or demethylated derivatives in plant models. Suspended Arabidopsis thaliana cell culture and wheat seedlings were cultivated in nutrient solutions containing individual compounds at 1 mg/L. The methylated counterparts were generally more hydrophobic and showed comparative or greater accumulation in both plant models. For example, after 1 h incubation, methylparaben was found in A. thaliana cells at levels two orders of magnitude greater than demethylated methylparaben. In contrast, the demethylated counterparts, especially those with the addition of a hydroxyl group after demethylation, showed decreased plant uptake and limited translocation. For example, acetaminophen and demethylated naproxen were not detected in the shoots of wheat seedlings after hydroponic exposure. Results from this study suggest that common transformations such as methylation and demethylation may affect the environmental fate of CECs, and should be considered to obtain a more comprehensive understanding of risks of CECs in the environment.
Collapse
Affiliation(s)
- Yaxin Xiong
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Qingyang Shi
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Nathan D Sy
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Nicole M Dennis
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
29
|
Kaw HY, Yu J, Ma X, Yeo BG, Zhu L, Wang W. Environmental bioavailability: a potentially overlooked element in triggering antimicrobial resistance. Sci Bull (Beijing) 2022; 67:2269-2271. [PMID: 36546214 DOI: 10.1016/j.scib.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Han Yeong Kaw
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Jing Yu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Xuejing Ma
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Bee Geok Yeo
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, Fuchu 183-8509, Japan
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Wei Wang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|