1
|
Fusagawa H, Youn A, Wilkerson E, Pandya N, Feeley BT. The Effects of Microplastics on Musculoskeletal Disorder; A Narrative Review. Curr Rev Musculoskelet Med 2025; 18:39-47. [PMID: 39572502 PMCID: PMC11775366 DOI: 10.1007/s12178-024-09932-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2024] [Indexed: 01/29/2025]
Abstract
PURPOSE OF REVIEW The physical health impacts of microplastics have received increasing attention in recent years. However, limited data impedes a full understanding of the internal exposure to microplastics, especially concerning the musculoskeletal system. The purpose of this review is to summarize the recent literature regarding the effects of microplastics on the musculoskeletal system. RECENT FINDINGS Microplastics have been shown to cause abnormal endochondral ossification and disrupt the normal function of pre-osteoblasts, osteocyte-like cells, and pre-osteoclasts through gene mutations, endoplasmic reticulum stress induction, and reduced autophagosome formation in bone growth areas. Although there are few reports on their effects on muscle, it has been noted that microplastics inhibit energy and lipid metabolism, decrease type I muscle fiber density, impair muscle angiogenesis, cause muscle atrophy, and increase lipid deposition. Only a few recent studies have shown that microplastics interfere with the normal function of bone growth-related cells and reduce muscle mass and quality. This review underscores the need for further research into other parts of the musculoskeletal system and studies using human tissues at the disease level.
Collapse
Affiliation(s)
- Hiroyori Fusagawa
- Department of Orthopaedic Surgery, University of California-San Francisco, 1500 Owens Street, San Francisco, CA, 94158, USA.
| | - Alex Youn
- School of Medicine, University of California-San Francisco, 505 Parnassus Ave MU 320W, San Francisco, CA, 94143, USA
| | - Elyse Wilkerson
- Department of Biomedical Engineering, College of Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
- Department of Chemical Engineering, College of Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Nirav Pandya
- Department of Orthopaedic Surgery, University of California-San Francisco, 1500 Owens Street, San Francisco, CA, 94158, USA
| | - Brian T Feeley
- Department of Orthopaedic Surgery, University of California-San Francisco, 1500 Owens Street, San Francisco, CA, 94158, USA
| |
Collapse
|
2
|
Hu JQ, Wang CC, Ma RX, Qi SQ, Fu W, Zhong J, Cao C, Zhang XL, Liu GH, Gao YD. Co-exposure to polyethylene microplastics and house dust mites aggravates airway epithelial barrier dysfunction and airway inflammation via CXCL1 signaling pathway in a mouse model. Int Immunopharmacol 2025; 146:113921. [PMID: 39732106 DOI: 10.1016/j.intimp.2024.113921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/21/2024] [Accepted: 12/18/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND Environmental pollutants have been found to contribute to the development and acute exacerbation of asthma. Microplastics (MPs) have received widespread attention as an emerging global pollutant. Airborne MPs can cause various adverse health effects. Due to their hydrophobicity, MPs can act as a carrier for other pollutants, pathogens, and allergens. This carrier effect of MPs may adsorb allergens and thus make the body exposed to MPs and a large number of allergens simultaneously. We hypothesized that co-exposure to inhaled MPs and aeroallergens may promote the development of airway inflammation of asthma by disrupting the airway epithelial barrier. METHODS The effects of co-exposure to Polyethylene microplastics (PE-MPs) and allergens on allergic airway inflammation and airway epithelial barrier were examined in a mouse model of asthma. The mice were divided into four groups: (i) Control group, treated only with PBS; (ii) MP group, exposed to PE-MPs and PBS; (iii) HDM group, mice were sensitized and challenged with HDM, and intranasally treated with PBS; (iv) HDM + MP group, mice were sensitized and challenged with HDM, and intranasally treated with PE-MPs. Histology and ELISA assays were used to evaluate the severity of airway inflammation. FITC-dextran permeability assay, immunofluorescence assay, and RT-PCR were used to evaluate the airway epithelial barrier function and the expression of relevant molecules. Transcriptomics analysis with lung tissue sequencing was conducted to identify possible pathways responsible for the effects of PE-MPs. RESULTS Co-exposure of mice to PE-MPs and HDM induced a higher degree of inflammatory cell infiltration, bronchial goblet cell hyperplasia, collagen deposition, allergen sensitization, and Th2 immune bias than exposure to HDM alone. Co-exposure to PE-MPs and HDM aggravated oxidative stress injury in the lung and the production of cytokine IL-33 in the BALF. In addition, co-exposure of mice to PE-MPs and HDM resulted in a more pronounced decrease in the expression of relevant molecules of the airway epithelial barrier and more significant increase in the permeability of airway epithelia. Lung tissue transcriptomics analysis revealed that PE-MPs exposure was associated with CXCL1 signaling and neutrophil activation. CONCLUSION Co-exposure to MPs and HDM may promote airway inflammation and airway epithelial barrier disruption and induce immune responses characterized by CXCL1 signaling and neutrophilic inflammation.
Collapse
Affiliation(s)
- Jia-Qian Hu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Chang-Chang Wang
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ru-Xue Ma
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shi-Quan Qi
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Fu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jian Zhong
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Can Cao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiao-Lian Zhang
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Guang-Hui Liu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Ya-Dong Gao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Allergy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
3
|
Qiu X, Li L, Qiu Q, Lan T, Du L, Feng X, Song X. Medical exposure to micro(nano)plastics: An exposure pathway with potentially significant harm to human health that should not be overlooked. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177743. [PMID: 39612708 DOI: 10.1016/j.scitotenv.2024.177743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/29/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
Micro(nano)plastics (MNPs) are an emerging type of contaminants that are widely present in the environments that people live in. MNPs can enter the human body in a variety of pathways, but the three main ones are through dietary intake, air inhalation, and skin contact. However, it has been discovered that medical plastics used in medical activities also pose potential risks to MNPs exposure as exposure pathways are continuously refined and clarified. Unfortunately, there is currently insufficient study on the exposure of medical plastics and MNPs, and exposure risks and potential health problems are frequently overlooked. This study aimed to close this research gap by searching the databases of China National Knowledge Infrastructure (CNKI), PubMed, and Web of Science for relevant literature. It then filtered out publications that contained information relevant to keywords such as micro(nano)plastics, medical plastics, exposure pathways, and human health in order to do analysis and summary. We discovered that medical plastics are a high-risk source of direct MNPs exposure to the human body, and this exposure could pose a potential harm to human health. Because of the potential harm to human health, this work presents the medical exposure of MNPs for the first time and calls for more research and attention on this vital area.
Collapse
Affiliation(s)
- Xihong Qiu
- Department of Rheumatology, Immunology and Hematology, Chengdu Eighth People's Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu 610083, China
| | - Lingfan Li
- Department of Thyroid and Breast Surgery, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Qiqi Qiu
- Nursing school, Southwest Medical University, Luzhou 646000, China
| | - Tianxiang Lan
- Intensive Care Unit, Chengdu Eighth People's Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu 610083, China
| | - Lixia Du
- Department of Gastroenterology, Chengdu BOE Hospital, Chengdu 610219, China
| | - Xiaoqian Feng
- Department of Pediatric Respiratory Medicine, Chongqing University Three Gorges Hospital, Chongqing 404010, China
| | - Xuan Song
- Center of Reproductive Medicine, Chengdu BOE Hospital, Chengdu 610219, China.
| |
Collapse
|
4
|
Özgen Alpaydin A, Uçan ES, Köktürk M, Atamanalp M, Kalyoncu Ç, Yiğit S, Uçar A, Şimşek GÖ, Tertemiz KC, Karaçam V, Ulukuş EÇ, Gürel D, Alak G. Microplastics, as a risk factor in the development of interstitial lung disease- a preliminary study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125054. [PMID: 39368622 DOI: 10.1016/j.envpol.2024.125054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/15/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
Microplastic (MPs) pollution is a global concern that affects all living organisms, yet research on MP-related disorders in humans, including incidence and symptoms, remains limited. In this study, the presence, composition, and characterization of MPs in bronchoalveolar lavage (BAL), which reflects lung tissue, and blood were examined. Fiberoptic bronchoscopy was performed to collect BAL samples from patients suspected of having interstitial lung disease (ILD) as well as from a control group. MPs were identified and measured using μ-Raman techniques. In BAL samples, the most common MPs color observed was grey/white, with sizes ranging from 4.19 to 792.00 μm. The particle shapes and polymer types identified included polyamide (PA), polyester (PET), polyvinyl chloride (PVC), and polyurethanes (PU). For blood samples, MPs were predominantly grey/white and blue, with sizes ranging from 13.14 to 20. 29 μm. The identified polymers in blood samples included polyamide (PA) and polyethylene (PE). MPs were detected in 10 out of 18 patients (55%) suspected of having ILD, with most of these patients presenting with the fibrotic type of the disease. In the control group, two patients whose BAL samples were positive for MPs were found to have chronic lung disease. This study is the first to explore the relationship between interstitial lung disease (ILD) and microplastics (MPs), revealing a tendency for the presence of MPs in the bronchoalveolar lavage (BAL) of ILD patients, particularly those with a fibrotic phenotype. Further research is needed to determine the cumulative effects of MPs on human health, especially concerning the respiratory system, which is highly exposed to environmental pollutants.
Collapse
Affiliation(s)
- Aylin Özgen Alpaydin
- Dokuz Eylül University Faculty of Medicine, Department of Pulmonary Diseases, Izmir, Turkey.
| | - Eyüp Sabri Uçan
- Dokuz Eylül University Faculty of Medicine, Department of Pulmonary Diseases, Izmir, Turkey
| | - Mine Köktürk
- Igdir University, Department of Organic Agriculture Management, Faculty of Applied Sciences, Igdir, Turkey; Research Laboratory Application and Research Center (ALUM), Igdir University, Igdir, Turkey
| | - Muhammed Atamanalp
- Ataturk University Department of Aquaculture, Faculty of Fisheries, Erzurum, Turkey
| | - Çisem Kalyoncu
- Dokuz Eylül University Faculty of Medicine, Department of Pulmonary Diseases, Izmir, Turkey
| | - Salih Yiğit
- Dokuz Eylül University Faculty of Medicine, Department of Pulmonary Diseases, Izmir, Turkey
| | - Arzu Uçar
- Ataturk University Department of Aquaculture, Faculty of Fisheries, Erzurum, Turkey
| | - Gökçen Ömeroğlu Şimşek
- Dokuz Eylül University Faculty of Medicine, Department of Pulmonary Diseases, Izmir, Turkey
| | - Kemal Can Tertemiz
- Dokuz Eylül University Faculty of Medicine, Department of Pulmonary Diseases, Izmir, Turkey
| | - Volkan Karaçam
- Dokuz Eylül University Faculty of Medicine, Department of Thoracic Surgery, Izmir, Turkey
| | | | - Duygu Gürel
- Memorial Healthcare Group, Department of Pathology, Izmir, Turkey
| | - Gonca Alak
- Ataturk University Department of Seafood Processing, Faculty of Fisheries, Erzurum, Turkey.
| |
Collapse
|
5
|
Pan B, Pan B, Lu Y, Cai K, Zhu X, Huang L, Xiang L, Cai QY, Feng NX, Mo CH. Polystyrene microplastics facilitate the chemical journey of phthalates through vegetable and aggravate phytotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135770. [PMID: 39276743 DOI: 10.1016/j.jhazmat.2024.135770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Polystyrene microplastics (PS) and dibutyl phthalate (DBP) are emerging pollutants widely coexisting in agroecosystems. However, the efficacies of PS as carriers for DBP and their interactive mechanisms on crop safety remain scarce. Here, this study investigated the combined exposure effects and the interacting mechanisms of PS laden with DBP on choy sum (Brassica parachinensis L.). Results showed that PS could efficiently adsorb and carry DBP, with a maximum carrying capacity of 9.91 %, facilitating the chemical translocation of DBP in choy sum and exacerbating phytotoxicity. Due to the changes in the properties of PS, DBP loading aggravated the phytotoxicity of choy sum, exhibiting synergistically toxic effects compared with individual exposure. The Trojan-horse-complexes formed by PS+DBP severely delayed the seed germination process and altered spatial growth patterns, causing disruptions in oxidative stress, osmoregulation, photosynthetic function, and elemental reservoirs of choy sum. Combined pollutants enhanced the uptake and translocation of both PS and DBP by 8.90-31.94 % and 136.81-139.37 %, respectively; while the accumulation processes for PS were more complex than for DBP. Visualization indicated that PS was intensively sequestered in roots with a strong fluorescent signal after loading DBP. This study comprehensively investigated the efficacies of PS carrying DBP on phytotoxicity, bioavailability, and their interactive mechanisms, providing significant evidence for food safety assessment of emerging contaminant interactions.
Collapse
Affiliation(s)
- Bogui Pan
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Boyou Pan
- Department of Mathematics, College of Information Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Yiyuan Lu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Kunzheng Cai
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Tropical Agricultural Environment in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Xiaoqiong Zhu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Li Huang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Nai-Xian Feng
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Ce-Hui Mo
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
6
|
Han W, Liu X, Wang Y, Zhang S, Huang C, Yang Q. The interaction between sludge and microplastics during thermal hydrolysis of sludge. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135816. [PMID: 39265395 DOI: 10.1016/j.jhazmat.2024.135816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/14/2024]
Abstract
In municipal wastewater treatment plants (WWTPs), large number of microplastics (MPs) accumulated in wastewater migrated into sludge. Thermal hydrolysis of sludge (THS) was one of the most promising processes for promoting changes in molecular structure of MPs. The physicochemical properties and degradative pathways of polyethylene (PE) and polyethylene terephthalate (PET) in THS under different temperatures were studied in this paper. It was found that there was a mutual promotion relationship between sludge degradation and MPs aging. The presence of PE and PET MPs not only increased organics and nitrogen concentrations of sludge filtrate, but also enhanced the transformation of organics like proteins. Sludge accelerated the aging of PE and PET MPs. The friability of PE and PET MPs was increased with more surface fragmentation and breakage under the temperature of 120 ℃-180 ℃. Moreover, PE and PET MPs occurred thermal oxidation and reduction reactions with significant chemical structure changes at 160 °C and 140 °C, respectively. Pristine PE and PET had multiple carbon and oxygen active sites. During THS reaction, not only PE and PET reacted hydrolysis/decomposition to produce short-chain hydroxyl-terminated compounds, but also hydrothermal shear broke the polymer molecules and formed carboxyl-terminated and olefin-terminated low-carbon chains. This study provided some promising sign for in situ microplastic removal during sludge treatments.
Collapse
Affiliation(s)
- Weipeng Han
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Xiuhong Liu
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Yaxin Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Shiyong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Chenduo Huang
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Qing Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
7
|
Gou Z, Wu H, Li S, Liu Z, Zhang Y. Airborne micro- and nanoplastics: emerging causes of respiratory diseases. Part Fibre Toxicol 2024; 21:50. [PMID: 39633457 PMCID: PMC11616207 DOI: 10.1186/s12989-024-00613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Airborne micro- and nanoplastics (AMNPs) are ubiquitously present in human living environments and pose significant threats to respiratory health. Currently, much research has been conducted on the relationship between micro- and nanoplastics (MNPs) and cardiovascular and gastrointestinal diseases, yet there is a clear lack of understanding regarding the link between AMNPs and respiratory diseases. Therefore, it is imperative to explore the relationship between the two. Recent extensive studies by numerous scholars on the characteristics of AMNPs and their relationship with respiratory diseases have robustly demonstrated that AMNPs from various sources significantly influence the onset and progression of respiratory conditions. Thus, investigating the intrinsic mechanisms involved and finding necessary preventive and therapeutic measures are crucial. In this review, we primarily describe the fundamental characteristics of AMNPs, their impact on the respiratory system, and the intrinsic toxic mechanisms that facilitate disease development. It is hoped that this article will provide new insights for further research and contribute to the advancement of human health.
Collapse
Affiliation(s)
- Zixuan Gou
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| | - Haonan Wu
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| | - Shanyu Li
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| | - Ziyu Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China.
| | - Ying Zhang
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China.
- Clinical Research Center for Child Health, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
8
|
Kim KS, Min HJ. Measurement of Microplastic Release After the Use of Polypropylene Nasal Irrigation Bottles. Clin Exp Otorhinolaryngol 2024; 17:310-316. [PMID: 39251379 PMCID: PMC11626093 DOI: 10.21053/ceo.2024.00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024] Open
Abstract
OBJECTIVES Microplastics originating from plastic materials may pose risks to human health. This study investigated the presence of microplastics in nasal irrigation fluids collected from reused bottles, focusing on the duration of bottle usage. METHODS Readily available nasal irrigation bottles made of polypropylene were purchased. Unused bottles served as controls. Test samples were prepared to simulate 1-, 3-, and 6-month reuse. Nasal irrigation fluid samples (n=12) were collected from each set of bottles: three from the new control bottles and nine from the bottles simulating 1-, 3-, and 6-month reuse. Raman spectroscopy was used to detect microplastics in the nasal irrigation samples, and the results were compared based on the duration of bottle use. RESULTS An average of 33.00±20.42 microplastic particles per 300 mL was detected in the nasal irrigation fluid from the control bottles. In comparison, bottles used for 1, 3, and 6 months contained averages of 68.66±30.07, 261.66±20.59, and 204.33±52.16 microplastic particles per 300 mL, respectively. The majority of these particles ranged in size from 10 to 100 μm and were primarily fragment-shaped. Polypropylene was identified as the predominant type of microplastic, suggesting it was directly released from the irrigation bottles. CONCLUSION We detected microplastics in nasal irrigation fluids, which likely originated from the repeated use of nasal irrigation bottles. The quantity of microplastics was significantly higher in samples from bottles simulating 3 months of use compared to the control samples. Therefore, we recommend the development of guidelines to regulate the duration of nasal irrigation bottle usage to reduce microplastic infiltration into the body via the sinonasal cavity.
Collapse
Affiliation(s)
- Kyung Soo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, Korea
| | - Hyun Jin Min
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Xia Q, Wei Y, Hu LJ, Zeng FM, Chen YW, Xu D, Sun Y, Zhao LW, Li YF, Pang GH, Peng W, He M. Inhalation of Microplastics Induces Inflammatory Injuries in Multiple Murine Organs via the Toll-like Receptor Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18603-18618. [PMID: 39389766 DOI: 10.1021/acs.est.4c06637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Previous studies have detected microplastics (MPs) in human biological samples, such as lungs, alveolar lavage fluid, and thrombus. However, whether MPs induce health effects after inhalation are unclear. In this study, fluorescent polystyrene microplastics (PS-MPs) were found in the thymus, spleen, testes, liver, kidneys, and brain on day 1 or day 3 after one intratracheal instillation. Furthermore, mice showed inflammation in multiple organs, manifested as obvious infiltration of neutrophils and macrophages, increased Toll-like receptors (TLRs), myeloid differentiation primary response protein 88 (MyD88) and nuclear factor-κB (NF-κB), as well as proinflammatory cytokines (tumor necrosis factor (TNF)-α and interleukin (IL)-1β) in the lungs, thymus, spleen, liver, and kidneys after four intratracheal instillations of PS-MPs at once every 2 weeks. Hepatic and renal function indexes were also increased. Subsequently, the inflammatory response in multiple murine organs was significantly alleviated by TLR2 and TLR4 inhibitors. Unexpectedly, we did not find any elevated secretion of monocyte chemotactic protein (MCP)-1 or TNF-α by RAW264.7 macrophages in vitro. Thus, PS-MPs induced inflammatory injuries in multiple murine organs via the TLRs/MyD88/NF-κB pathway in vivo, but not macrophages in vitro. These results may provide theoretical support for healthy protection against PS-MPs and their environmental risk assessment.
Collapse
Affiliation(s)
- Qing Xia
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Yuan Wei
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Long-Ji Hu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Fan-Mei Zeng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Yu-Wei Chen
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Dan Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Yuan Sun
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Lu-Wei Zhao
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Yi-Fei Li
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Guan-Hua Pang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Wen Peng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
| | - Miao He
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, P. R. China
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Shenyang 110122, P. R. China
- Ministry of Education, China, Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Shenyang 110122, P. R. China
| |
Collapse
|
10
|
Wang H, Gao Z, Zhu Q, Wang C, Cao Y, Chen L, Liu J, Zhu J. Overview of the environmental risks of microplastics and their controlled degradation from the perspective of free radicals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124227. [PMID: 38797348 DOI: 10.1016/j.envpol.2024.124227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Owing to the significant environmental threat posed by microplastics (MPs) of varying properties, MPs research has garnered considerable attention in current academic discourse. Addressing MPs in river-lake water systems, existing studies have seldom systematically revealed the role of free radicals in the aging/degradation process of MPs. Hence, this review aims to first analyze the pollution distribution and environmental risks of MPs in river-lake water systems and to elaborate the crucial role of free radicals in them. After that, the study delves into the advancements in free radical-mediated degradation techniques for MPs, emphasizing the significance of both the generation and elimination of free radicals. Furthermore, a novel approach is proposed to precisely govern the controlled generation of free radicals for MPs' degradation by interfacial modification of the material structure. Hopefully, it will shed valuable insights for the effective control and reduction of MPs in river-lake water systems.
Collapse
Affiliation(s)
- Hailong Wang
- Key Laboratory of Comprehensive Treatment and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zhimin Gao
- Key Laboratory of Comprehensive Treatment and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Qiuzi Zhu
- Key Laboratory of Comprehensive Treatment and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Cunshi Wang
- Key Laboratory of Comprehensive Treatment and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yanyan Cao
- Key Laboratory of Comprehensive Treatment and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Liang Chen
- Jiangsu Qinhuai River Water Conservancy Project Management Office, Nanjing, 210029, China
| | - Jianlong Liu
- Jiangsu Qinhuai River Water Conservancy Project Management Office, Nanjing, 210029, China
| | - Jianzhong Zhu
- Key Laboratory of Comprehensive Treatment and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
11
|
Zheng H, Guo H. Analytical methods, source, concentration, and human risks of microplastics: a review. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 0:reveh-2024-0066. [PMID: 39012799 DOI: 10.1515/reveh-2024-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024]
Abstract
Microplastics (MPs) as an atmospheric pollutant are currently receiving widespread attention. Although atmospheric MPs have been extensively studied, due to different research methods, systematic comparisons of atmospheric MPs are still needed. This review critically reviewed the analytical methods, research status and potential human exposure. In this review, the detection principles, advantages and limitations of different visual and chemical analysis methods are reported, and the potential risks of MPs to the human are also introduced. Based on future research about the human risks, emphasized the importance of establishing standardized research methods.
Collapse
Affiliation(s)
- Han Zheng
- Department of Environmental Engineering, 74616 Xiamen University of Technology , Xiamen, China
| | - Huibin Guo
- Department of Environmental Engineering, 74616 Xiamen University of Technology , Xiamen, China
| |
Collapse
|
12
|
Zhu L, Wu Z, Dong J, Zhao S, Zhu J, Wang W, Ma F, An L. Unveiling Small-Sized Plastic Particles Hidden behind Large-Sized Ones in Human Excretion and Their Potential Sources. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11901-11911. [PMID: 38920334 DOI: 10.1021/acs.est.3c11054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Health risks of microplastic exposure have drawn growing global concerns due to the widespread distribution of microplastics in the environment. However, more evidence is needed to understand the exposure characteristics of microplastics owing to the limitation of current spectrum technologies, especially the missing information on small-sized particles. In the present study, laser direct infrared spectroscopy and thermal desorption-gas chromatography-mass spectrometry combined pyrolysis using a tubular furnace (TD-GC/MS) were employed to comprehensively detect the presence of plastic particles down to 0.22 μm in human excreted samples. The results showed that polyethylene (PE), polyvinyl chloride, PE terephthalate (PET), and polypropylene dominated large-sized (>20 μm) and small-sized plastic plastics (0.22-20 μm) in feces and urine. Moreover, fragments accounted for 60.71 and 60.37% in feces and urine, respectively, representing the most pervasive shape in excretion. Surprisingly, the concentration of small-sized particles was significantly higher than that of large-sized microplastics, accounting for 56.54 and 50.07% in feces (345.58 μg/g) and urine (6.49 μg/mL). Significant positive correlations were observed between the level of plastic particles in feces and the use of plastic containers and the consumption of aquatic products (Spearman correlation analysis, p < 0.01), suggesting the potential sources for plastic particles in humans. Furthermore, it is estimated that feces was the primary excretory pathway, consisting of 94.0% of total excreted microplastics daily. This study provides novel evidence regarding small-sized plastic particles, which are predominant fractions in human excretion, increasing the knowledge of the potential hazards of omnipresent microplastics to human exposure.
Collapse
Affiliation(s)
- Long Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Zhixin Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jiao Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shaoyan Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jingying Zhu
- Wuxi Center for Disease Control and Prevention, Wuxi 214023, China
| | - Weiping Wang
- Weifang Eco-environmental Monitoring Center of Shandong Province, Weifang 261061, China
| | - Fujun Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lihui An
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
13
|
Wu Y, Li Z, Deng Y, Bian B, Xie L, Lu X, Tian J, Zhang Y, Wang L. Mangrove mud clam as an effective sentinel species for monitoring changes in coastal microplastic pollution. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134617. [PMID: 38749247 DOI: 10.1016/j.jhazmat.2024.134617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/06/2024] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
The worldwide mangrove shorelines are experiencing considerable contamination from microplastics (MPs). Finding an effective sentinel species in the mangrove ecosystem is crucial for early warning of ecological and human health risks posed by coastal microplastic pollution. This study collected 186 specimens of the widely distributed mangrove clam (Geloina expansa, Solander, 1786) from 18 stations along the Leizhou Peninsula, the largest mangrove coast in Southern China. This study discovered that mangrove mud clams accumulated a relatively high abundance of MPs (2.96 [1.61 - 6.03] items·g-1) in their soft tissue, wet weight, as compared to previously reported levels in bivalves. MPs abundance is significantly (p < 0.05 or 0.0001) influenced by coastal urban development, aquaculture, and shell size. Furthermore, the aggregated MPs exhibit a significantly high polymer risk index (Level III, H = 353.83). The estimated annual intake risk (EAI) from resident consumption, as calculated via a specific questionnaire survey, was at a moderate level (990 - 2475, items·g -1·Capita -1). However, the EAI based on suggested nutritional standards is very high, reaching 113,990 (79,298 - 148,681), items·g -1·Capita -1. We recommend utilizing the mangrove mud clam as sentinel species for the monitoring of MPs pollution changing across global coastlines.
Collapse
Affiliation(s)
- Yinglin Wu
- Western Guangdong Provincial Engineering Technology Research Center of Seafood Resource Sustainable Utilization, Lingnan Normal University, Zhanjiang 524048, Guangdong, People's Republic of China; School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China.
| | - Zitong Li
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| | - Yanxia Deng
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| | - Bingbing Bian
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| | - Ling Xie
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| | - Xianye Lu
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| | - Jingqiu Tian
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| | - Ying Zhang
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| | - Liyun Wang
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| |
Collapse
|
14
|
Liu H, Li H, Chen T, Yu F, Lin Q, Zhao H, Jin L, Peng R. Research Progress on Micro(nano)plastic-Induced Programmed Cell Death Associated with Disease Risks. TOXICS 2024; 12:493. [PMID: 39058145 PMCID: PMC11281249 DOI: 10.3390/toxics12070493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Due to their robust migration capabilities, slow degradation, and propensity for adsorbing environmental pollutants, micro(nano)plastics (MNPs) are pervasive across diverse ecosystems. They infiltrate various organisms within different food chains through multiple pathways including inhalation and dermal contact, and pose a significant environmental challenge in the 21st century. Research indicates that MNPs pose health threats to a broad range of organisms, including humans. Currently, extensive detection data and studies using experimental animals and in vitro cell culture indicate that MNPs can trigger various forms of programmed cell death (PCD) and can induce various diseases. This review provides a comprehensive and systematic analysis of different MNP-induced PCD processes, including pyroptosis, ferroptosis, autophagy, necroptosis, and apoptosis, based on recent research findings and focuses on elucidating the links between PCD and diseases. Additionally, targeted therapeutic interventions for these diseases are described. This review provides original insights into the opportunities and challenges posed by current research findings. This review evaluates ways to mitigate various diseases resulting from cell death patterns. Moreover, this paper enhances the understanding of the biohazards associated with MNPs by providing a systematic reference for subsequent toxicological research and health risk mitigation efforts.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (H.L.); (H.L.); (T.C.); (F.Y.); (Q.L.); (H.Z.); (L.J.)
| |
Collapse
|
15
|
Ma W, He J, Han L, Ma C, Cai Y, Guo X, Yang Z. Hydrophilic Fraction of Dissolved Organic Matter Largely Facilitated Microplastics Photoaging: Insights from Redox Properties and Reactive Oxygen Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11625-11636. [PMID: 38848335 DOI: 10.1021/acs.est.3c11111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Dissolved organic matter (DOM) exists widely in natural water, which inevitably influences microplastic (MP) photoaging. Nevertheless, the impacts of DOM fractions with diverse molecular structures on MP photoaging remain to be elucidated. This study explored the photoaging mechanisms of polylactic acid (PLA)-MPs and polystyrene (PS)-MPs in the presence of DOM and its subfractions (hydrophobic acid (HPOA), hydrophobic neutral (HPON), and hydrophilic (HPI)). Across DOM fractions, HPI exhibited the highest electron accepting capacity (23 μmol e- (mg C)-1) due to its abundant tannin-like species (36.8%) with carboxylic groups, which facilitated more reactive oxygen species generation (particularly hydroxyl radical), leading to the strongest photoaging rate of two MPs by HPI. However, the sequences of bond cleavage during photoaging of each MPs were not clearly shifted as revealed by two-dimensional infrared correlation spectra. Inconspicuous effects on the extent of PS- and PLA-MPs photoaging were observed for HPOA and HPON, respectively. This was mainly ascribed to the occurrence of inhibitory mechanisms (e.g., light-shielding and quenching effect) counteracting the reactive oxygen species-promoting effects. The findings identified the HPI fraction of DOM for promoting PS- and PLA-MPs photoaging rate and first constructed a link among DOM molecular structures, redox properties, and effects on MP photoaging.
Collapse
Affiliation(s)
- Weiwei Ma
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiehong He
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Lanfang Han
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Chuanxin Ma
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanpeng Cai
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoyu Guo
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
| | - Zhifeng Yang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
16
|
Bishop CR, Yan K, Nguyen W, Rawle DJ, Tang B, Larcher T, Suhrbier A. Microplastics dysregulate innate immunity in the SARS-CoV-2 infected lung. Front Immunol 2024; 15:1382655. [PMID: 38803494 PMCID: PMC11128561 DOI: 10.3389/fimmu.2024.1382655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Global microplastic (MP) pollution is now well recognized, with humans and animals consuming and inhaling MPs on a daily basis, with a growing body of concern surrounding the potential impacts on human health. Methods Using a mouse model of mild COVID-19, we describe herein the effects of azide-free 1 μm polystyrene MP beads, co-delivered into lungs with a SARS-CoV-2 omicron BA.5 inoculum. The effect of MPs on the host response to SARS-CoV-2 infection was analysed using histopathology and RNA-Seq at 2 and 6 days post-infection (dpi). Results Although infection reduced clearance of MPs from the lung, virus titres and viral RNA levels were not significantly affected by MPs, and overt MP-associated clinical or histopathological changes were not observed. However, RNA-Seq of infected lungs revealed that MP exposure suppressed innate immune responses at 2 dpi and increased pro-inflammatory signatures at 6 dpi. The cytokine profile at 6 dpi showed a significant correlation with the 'cytokine release syndrome' signature observed in some COVID-19 patients. Discussion The findings are consistent with the recent finding that MPs can inhibit phagocytosis of apoptotic cells via binding of Tim4. They also add to a growing body of literature suggesting that MPs can dysregulate inflammatory processes in specific disease settings.
Collapse
Affiliation(s)
- Cameron R. Bishop
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kexin Yan
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Wilson Nguyen
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Daniel J. Rawle
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Bing Tang
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Thibaut Larcher
- Institut National de Recherche Agronomique, Unité Mixte de Recherche, Oniris, Nantes, France
| | - Andreas Suhrbier
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Australian Infectious Disease Research Centre, Global Virus Network (GVN) Center of Excellence, Brisbane, QLD, Australia
| |
Collapse
|
17
|
Borgatta M, Breider F. Inhalation of Microplastics-A Toxicological Complexity. TOXICS 2024; 12:358. [PMID: 38787137 PMCID: PMC11125820 DOI: 10.3390/toxics12050358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Humans are chronically exposed to airborne microplastics (MPs) by inhalation. Various types of polymer particles have been detected in lung samples, which could pose a threat to human health. Inhalation toxicological studies are crucial for assessing the effects of airborne MPs and for exposure-reduction measures. This communication paper addresses important health concerns related to MPs, taking into consideration three levels of complexity, i.e., the particles themselves, the additives present in the plastics, and the exogenous substances adsorbed onto them. This approach aims to obtain a comprehensive toxicological profile of deposited MPs in the lungs, encompassing local and systemic effects. The physicochemical characteristics of MPs may play a pivotal role in lung toxicity. Although evidence suggests toxic effects of MPs in animal and cell models, no established causal link with pulmonary or systemic diseases in humans has been established. The transfer of MPs and associated chemicals from the lungs into the bloodstream and/or pulmonary circulation remains to be confirmed in humans. Understanding the toxicity of MPs requires a multidisciplinary investigation using a One Health approach.
Collapse
Affiliation(s)
- Myriam Borgatta
- Center for Primary Care and Public Health (Unisanté-Lausanne), University of Lausanne, 1015 Lausanne, Switzerland
| | - Florian Breider
- Central Environmental Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland;
| |
Collapse
|
18
|
Zhong Y, Yang Y, Zhang L, Ma D, Wen K, Cai J, Cai Z, Wang C, Chai X, Zhong J, Liang B, Huang Y, Xian H, Li Z, Yang X, Chen D, Zhang G, Huang Z. Revealing new insights: Two-center evidence of microplastics in human vitreous humor and their implications for ocular health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171109. [PMID: 38387563 DOI: 10.1016/j.scitotenv.2024.171109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/07/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
Microplastics (MPs), an emerging environmental contaminant, have raised growing health apprehension due to their detection in various human biospecimens. Despite extensive research into their prevalence in the environment and the human body, the ramifications of their existence within the enclosed confines of the human eye remain largely unexplored. Herein, we assembled a cohort of 49 patients with four ocular diseases (macular hole, macular epiretinal membrane, retinopathy and rhegmatogenous retinal detachment) from two medical centers. After processing the samples with an optimized method, we utilized Laser Direct Infrared (LD-IR) spectroscopy and Pyrolysis Gas Chromatography/Mass Spectrometry (Py-GC/MS) to analyze 49 vitreous samples, evaluating the characteristics of MPs within the internal environment of the human eye. Our results showed that LD-IR scanned a total of 8543 particles in the composite sample from 49 individual vitreous humor samples, identifying 1745 as plastic particles, predominantly below 50 μm. Concurrently, Py-GC/MS analysis of the 49 individual samples corroborated these findings, with nylon 66 exhibiting the highest content, followed by polyvinyl chloride, and detection of polystyrene. Notably, correlations were observed between MP levels and key ocular health parameters, particularly intraocular pressure and the presence of aqueous humor opacities. Intriguingly, individuals afflicted with retinopathy demonstrated heightened ocular health risks associated with MPs. In summary, this research provides significant insights into infiltration of MP pollutants within the human eye, shedding light on their potential implications for ocular health and advocating for further exploration of this emerging health risk.
Collapse
Affiliation(s)
- Yizhou Zhong
- Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuhang Yang
- Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China
| | - Linan Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China
| | - Dahui Ma
- Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China
| | - Kailiang Wen
- Meizhou city Meijiang district Shenmei Eye Hospital, Meizhou 514031, China
| | - Jiachun Cai
- Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China
| | - Zhanmou Cai
- Meizhou city Meijiang district Shenmei Eye Hospital, Meizhou 514031, China
| | - Cui Wang
- Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China
| | - Xiaoyan Chai
- Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China
| | - Jingwen Zhong
- Meizhou city Meijiang district Shenmei Eye Hospital, Meizhou 514031, China
| | - Boxuan Liang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuji Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hongyi Xian
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhiming Li
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xingfen Yang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Da Chen
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Guoming Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China.
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
19
|
Vasse GF, Melgert BN. Microplastic and plastic pollution: impact on respiratory disease and health. Eur Respir Rev 2024; 33:230226. [PMID: 39009408 PMCID: PMC11262622 DOI: 10.1183/16000617.0226-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/28/2024] [Indexed: 07/17/2024] Open
Abstract
Throughout their lifecycle, from production to use and upon disposal, plastics release chemicals and particles known as micro- and nanoplastics (MNPs) that can accumulate in the environment. MNPs have been detected in different locations of the human body, including in our lungs. This is likely a consequence of MNP exposure through the air we breathe. Yet, we still lack a comprehensive understanding of the impact that MNP exposure may have on respiratory disease and health. In this review, we have collated the current body of evidence on the implications of MNP inhalation on human lung health from in vitro, in vivo and occupational exposure studies. We focused on interactions between MNP pollution and different specific lung-resident cells and respiratory diseases. We conclude that it is evident that MNPs possess the capacity to affect lung tissue in disease and health. Yet, it remains unclear to which extent this occurs upon exposure to ambient levels of MNPs, emphasising the need for a more comprehensive evaluation of environmental MNP exposure levels in everyday life.
Collapse
Affiliation(s)
- Gwenda F Vasse
- Groningen Research Institute for Pharmacy, Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Barbro N Melgert
- Groningen Research Institute for Pharmacy, Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
20
|
Xu L, Bai X, Li K, Zhang G, Zhang M, Hu M, Huang Y. Human Exposure to Ambient Atmospheric Microplastics in a Megacity: Spatiotemporal Variation and Associated Microorganism-Related Health Risk. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3702-3713. [PMID: 38356452 DOI: 10.1021/acs.est.3c09271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Microplastics are found in various human tissues and are considered harmful, raising concerns about human exposure to microplastics in the environment. Existing research has analyzed indoor and occupational scenarios, but long-term monitoring of ambient atmospheric microplastics (AMPs), especially in highly polluted urban regions, needs to be further investigated. This study estimated human environmental exposure to AMPs by considering inhalation, dust ingestion, and dermal exposure in three urban functional zones within a megacity. The annual exposure quantity was 7.37 × 104 items for children and 1.06 × 105 items for adults, comparable with the human microplastic consumption from food and water. Significant spatiotemporal differences were observed in the characteristics of AMPs that humans were exposed to, with wind speed and rainfall frequency mainly driving these changes. The annual human AMP exposure quantity in urban green land spaces, which were recognized as relatively low polluted zones, was comparable with that in public service zones and residential zones. Notably, significant positive correlations between the AMP characteristics and the pathogenicity of the airborne bacterial community were discovered. AMP size and immune-mediated disease risks brought by atmospheric microbes showed the most significant relationship, where Sphingomonas might act as the potential key mediator.
Collapse
Affiliation(s)
- Libo Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinyi Bai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Kang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Guangbao Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Mengjun Zhang
- Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China
- PKU-HKUST Shenzhen-Hongkong Institution, Shenzhen, Guangdong 518057, China
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China
| |
Collapse
|
21
|
Chen Y, Wang J, Niu T. Clinical and diagnostic values of metagenomic next-generation sequencing for infection in hematology patients: a systematic review and meta-analysis. BMC Infect Dis 2024; 24:167. [PMID: 38326763 PMCID: PMC10848439 DOI: 10.1186/s12879-024-09073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
OBJECTIVES This meta-analysis focused on systematically assessing the clinical value of mNGS for infection in hematology patients. METHODS We searched for studies that assessed the clinical value of mNGS for infection in hematology patients published in Embase, PubMed, Cochrane Library, Web of Science, and CNKI from inception to August 30, 2023. We compared the detection positive rate of pathogen for mNGS and conventional microbiological tests (CMTs). The diagnostic metrics, antibiotic adjustment rate and treatment effective rate were combined. RESULTS Twenty-two studies with 2325 patients were included. The positive rate of mNGS was higher than that of CMT (blood: 71.64% vs. 24.82%, P < 0.001; BALF: 89.86% vs. 20.78%, P < 0.001; mixed specimens: 82.02% vs. 28.12%, P < 0.001). The pooled sensitivity and specificity were 87% (95%CI: 81-91%) and 59% (95%CI: 43-72%), respectively. The reference standard/neutropenia and research type/reference standard may be sources of heterogeneity in sensitivity and specificity, respectively. The pooled antibiotic adjustment rate according to mNGS was 49.6% (95% CI: 41.8-57.4%), and the pooled effective rate was 80.9% (95% CI: 62.4-99.3%). CONCLUSION mNGS has high positive detection rates in hematology patients. mNGS can guide clinical antibiotic adjustments and improve prognosis, especially in China.
Collapse
Affiliation(s)
- Yuhui Chen
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinjin Wang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
22
|
Li P, Liu J. Micro(nano)plastics in the Human Body: Sources, Occurrences, Fates, and Health Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38315819 DOI: 10.1021/acs.est.3c08902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The increasing global attention on micro(nano)plastics (MNPs) is a result of their ubiquity in the water, air, soil, and biosphere, exposing humans to MNPs on a daily basis and threatening human health. However, crucial data on MNPs in the human body, including the sources, occurrences, behaviors, and health risks, are limited, which greatly impedes any systematic assessment of their impact on the human body. To further understand the effects of MNPs on the human body, we must identify existing knowledge gaps that need to be immediately addressed and provide potential solutions to these issues. Herein, we examined the current literature on the sources, occurrences, and behaviors of MNPs in the human body as well as their potential health risks. Furthermore, we identified key knowledge gaps that must be resolved to comprehensively assess the effects of MNPs on human health. Additionally, we addressed that the complexity of MNPs and the lack of efficient analytical methods are the main barriers impeding current investigations on MNPs in the human body, necessitating the development of a standard and unified analytical method. Finally, we highlighted the need for interdisciplinary studies from environmental, biological, medical, chemical, computer, and material scientists to fill these knowledge gaps and drive further research. Considering the inevitability and daily occurrence of human exposure to MNPs, more studies are urgently required to enhance our understanding of their potential negative effects on human health.
Collapse
Affiliation(s)
- Penghui Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jingfu Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
23
|
Jiang J, Ren H, Wang X, Liu B. Pollution characteristics and potential health effects of airborne microplastics and culturable microorganisms during urban haze in Harbin, China. BIORESOURCE TECHNOLOGY 2024; 393:130132. [PMID: 38040302 DOI: 10.1016/j.biortech.2023.130132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
In this study, active sampling technology was used to collect microplastics (MPs) and microorganisms simultaneously on haze days in Harbin, China. Airborne MPs concentrations in Junior high school (162.4 ± 44.6 particles/m3) with high vehicular and pedestrian traffic was higher than those in University (63.2 ± 21.8 particles/m3) and Park (12.8 ± 5.5 particles/m3). More airborne MPs were detected in the night samples than in the morning and noon samples. The majority (69.06 %) of airborne MPs measured less than 100 μm, with fibers (69.4 %) being the predominant form. Polyesters and polyethylene were the dominant polymers. In addition, airborne MPs concentrations were positively correlated with microorganisms and PM10 concentrations, and the health hazards associated with microorganisms and MPs exposure via inhalation far exceeded those associated with skin contact, which can serve as a theoretical foundation for considering MPs as indicators of air quality in the future.
Collapse
Affiliation(s)
- Jiahui Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Huanghe Road 73, Harbin 150090, China
| | - Hongyu Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Huanghe Road 73, Harbin 150090, China
| | - Xiaowei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Huanghe Road 73, Harbin 150090, China
| | - Bingfeng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Huanghe Road 73, Harbin 150090, China.
| |
Collapse
|
24
|
La Porta E, Exacoustos O, Lugani F, Angeletti A, Chiarenza DS, Bigatti C, Spinelli S, Kajana X, Garbarino A, Bruschi M, Candiano G, Caridi G, Mancianti N, Calatroni M, Verzola D, Esposito P, Viazzi F, Verrina E, Ghiggeri GM. Microplastics and Kidneys: An Update on the Evidence for Deposition of Plastic Microparticles in Human Organs, Tissues and Fluids and Renal Toxicity Concern. Int J Mol Sci 2023; 24:14391. [PMID: 37762695 PMCID: PMC10531672 DOI: 10.3390/ijms241814391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/17/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Plastic pollution became a main challenge for human beings as demonstrated by the increasing dispersion of plastic waste into the environment. Microplastics (MPs) have become ubiquitous and humans are exposed daily to inhalation or ingestion of plastic microparticles. Recent studies performed using mainly spectroscopy or spectrometry-based techniques have shown astounding evidence for the presence of MPs in human tissues, organs and fluids. The placenta, meconium, breast milk, lung, intestine, liver, heart and cardiovascular system, blood, urine and cerebrovascular liquid are afflicted by MPs' presence and deposition. On the whole, obtained data underline a great heterogeneity among different tissue and organs of the polymers characterized and the microparticles' dimension, even if most of them seem to be below 50-100 µm. Evidence for the possible contribution of MPs in human diseases is still limited and this field of study in medicine is in an initial state. However, increasing studies on their toxicity in vitro and in vivo suggest worrying effects on human cells mainly mediated by oxidative stress, inflammation and fibrosis. Nephrological studies are insufficient and evidence for the presence of MPs in human kidneys is still lacking, but the little evidence present in the literature has demonstrated histological and functional alteration of kidneys in animal models and cytotoxicity through apoptosis, autophagy, oxidative stress and inflammation in kidney cells. Overall, the manuscript we report in this review recommends urgent further study to analyze potential correlations between kidney disease and MPs' exposure in human.
Collapse
Affiliation(s)
- Edoardo La Porta
- UO Nephrology Dialysis and Transplant, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (E.L.P.); (O.E.); (F.L.); (A.A.); (D.S.C.); (C.B.); (E.V.)
- UOSD Dialysis IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (G.C.); (G.C.)
| | - Ottavia Exacoustos
- UO Nephrology Dialysis and Transplant, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (E.L.P.); (O.E.); (F.L.); (A.A.); (D.S.C.); (C.B.); (E.V.)
| | - Francesca Lugani
- UO Nephrology Dialysis and Transplant, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (E.L.P.); (O.E.); (F.L.); (A.A.); (D.S.C.); (C.B.); (E.V.)
| | - Andrea Angeletti
- UO Nephrology Dialysis and Transplant, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (E.L.P.); (O.E.); (F.L.); (A.A.); (D.S.C.); (C.B.); (E.V.)
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.S.); (X.K.); (A.G.); (M.B.)
| | - Decimo Silvio Chiarenza
- UO Nephrology Dialysis and Transplant, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (E.L.P.); (O.E.); (F.L.); (A.A.); (D.S.C.); (C.B.); (E.V.)
| | - Carolina Bigatti
- UO Nephrology Dialysis and Transplant, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (E.L.P.); (O.E.); (F.L.); (A.A.); (D.S.C.); (C.B.); (E.V.)
| | - Sonia Spinelli
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.S.); (X.K.); (A.G.); (M.B.)
| | - Xhuliana Kajana
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.S.); (X.K.); (A.G.); (M.B.)
| | - Andrea Garbarino
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.S.); (X.K.); (A.G.); (M.B.)
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.S.); (X.K.); (A.G.); (M.B.)
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | - Giovanni Candiano
- UOSD Dialysis IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (G.C.); (G.C.)
| | - Gianluca Caridi
- UOSD Dialysis IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (G.C.); (G.C.)
| | - Nicoletta Mancianti
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency-Urgency and Transplantation, University Hospital of Siena, 53100 Siena, Italy;
| | - Marta Calatroni
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
- Nephrology and Dialysis Division, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Daniela Verzola
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (D.V.); (P.E.); (F.V.)
| | - Pasquale Esposito
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (D.V.); (P.E.); (F.V.)
- Division of Nephrology, Dialysis and Transplantation IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Francesca Viazzi
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (D.V.); (P.E.); (F.V.)
- Division of Nephrology, Dialysis and Transplantation IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Enrico Verrina
- UO Nephrology Dialysis and Transplant, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (E.L.P.); (O.E.); (F.L.); (A.A.); (D.S.C.); (C.B.); (E.V.)
- UOSD Dialysis IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (G.C.); (G.C.)
| | - Gian Marco Ghiggeri
- UO Nephrology Dialysis and Transplant, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (E.L.P.); (O.E.); (F.L.); (A.A.); (D.S.C.); (C.B.); (E.V.)
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.S.); (X.K.); (A.G.); (M.B.)
| |
Collapse
|