1
|
Tang H, Yuan K, Chu F, Zhang X, Li Q, Chen Q, Feng H, Pan Y. On-Line Analysis of Cigarette Smoke Based on Microwave Plasma Torch Mass Spectrometry. ChemistryOpen 2024; 13:e202400013. [PMID: 38873881 PMCID: PMC11467726 DOI: 10.1002/open.202400013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/06/2024] [Indexed: 06/15/2024] Open
Abstract
Cigarette smoke contains a large number of chemicals, including both flavor components and harmful substances. The mainstream smoke (MSS) generated by smoking is directly inhaled by individuals, making it crucial to establish an effective method for smoke detection and analysis. One promising technique for analyzing smoke is MPT-MS (Microwave plasma torch mass spectrometry). This approach offers several advantages in accurately detecting the composition of cigarette smoke. By combining MPT-MS with a smoke pumping device, we can achieve real-time online detection of smoke components. We successfully detected 22 flavor compounds present in the smoke. These compounds contribute to the distinct taste of cigarettes. Moreover, we identified 2 polycyclic aromatic hydrocarbons (PAHs) in the smoke. PAHs are known carcinogens and are of great concern in terms of their potential health risks. The successful detection and identification of flavor compounds and PAHs using our method confirm the online detection capability of MPT-MS. This approach provides an efficient and reliable means for analyzing the complex composition of cigarette smoke. By utilizing MPT-MS, we can gain valuable insights into the chemical composition of cigarette smoke and can inform the development of strategies and policies aimed at reducing the harmful effects of smoking and protecting public health.
Collapse
Affiliation(s)
- He Tang
- China Tobacco Zhejiang Industrial Co. Ltd.HangzhouZhejiang310008China
- Department of ChemistryZhejiang UniversityHangzhouZhejiang310027China
| | - Kailong Yuan
- China Tobacco Zhejiang Industrial Co. Ltd.HangzhouZhejiang310008China
| | - Fengjian Chu
- Department of ChemistryZhejiang UniversityHangzhouZhejiang310027China
| | - Xiaobing Zhang
- China Tobacco Zhejiang Industrial Co. Ltd.HangzhouZhejiang310008China
| | - Qi Li
- China Tobacco Zhejiang Industrial Co. Ltd.HangzhouZhejiang310008China
| | - Qi Chen
- Department of ChemistryZhejiang UniversityHangzhouZhejiang310027China
| | - Hongru Feng
- Department of ChemistryZhejiang UniversityHangzhouZhejiang310027China
| | - Yuanjiang Pan
- Department of ChemistryZhejiang UniversityHangzhouZhejiang310027China
| |
Collapse
|
2
|
Gao B, Ma S, Zhao W, Tian M, Huang Y, Chen L, Zhang Z, Zhong Z. Calculated cancer risks for polycyclic aromatic hydrocarbon mixtures in mainstream smoke of cigarettes sold in China. Regul Toxicol Pharmacol 2023; 142:105427. [PMID: 37290570 DOI: 10.1016/j.yrtph.2023.105427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
China is the world's largest consumer of cigarettes. However, the potential cancer risk posed by polycyclic aromatic hydrocarbons (PAHs) in mainstream cigarette smoke, especially species other than benzo[a]pyrene (BaP) remains unclear. In this study, we collected yield data on multiple PAH species from a variety of cigarettes in the China market and calculated their smoking-related incremental lifetime cancer risk (ILCR) values. The computed ILCRs of the total PAHs (ILCRΣPAHs) for ≥95% of the brands were one order of magnitude higher than the acceptable level. ILCRBaP accounted for only 5.0%-37.7% of ILCRΣPAHs among brands, indicating that using single analyte BaP to represent ΣPAHs would significantly underestimate ILCRΣPAHs. No clear trend of changes in ILCRΣPAHs was found for Chinese cigarettes over multiple years, suggesting that smoking cessation is still the best option to minimize the cancer risk of PAHs. The comparison study showed that rarely reported PAHs from Chinese cigarettes can contribute over half of ILCRΣPAHs for several American cigarettes, highlighting the imperativeness to improve the diversity of analytes for Chinese cigarettes. Adults would need to inhale the air-borne PAHs with a BaP equivalent concentration of at least 53.1 ng/m3 to reach the ILCR value comparable to that obtained from smoking.
Collapse
Affiliation(s)
- Bo Gao
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou, 510535, China.
| | - Shexia Ma
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou, 510535, China
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou, 510535, China
| | - Mi Tian
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Yumei Huang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Laiguo Chen
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou, 510535, China
| | - Zhou Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Zhiqiang Zhong
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou, 510535, China
| |
Collapse
|
3
|
Guo W, Yu JZ, Chan W. Face Mask as a Versatile Sampling Device for the Assessment of Personal Exposure to 54 Toxic Compounds in Environmental Tobacco Smoke. Chem Res Toxicol 2023. [PMID: 37406339 DOI: 10.1021/acs.chemrestox.3c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Exposure to environmental tobacco smoke (ETS), which contains hundreds of toxic compounds, significantly increases the risk of developing many human diseases, including lung cancer. The most common method of assessing personal exposure to ETS-borne toxicants is by sampling sidestream smoke generated by a smoking machine through a sorbent tube or filter, followed by solvent extraction and instrumental analysis. However, the ETS sampled may not truly represent the ETS in the ambient environment, due to complicating factors from the smoke released by the burning end of the cigarette and from the absorption of the chemicals in the respiratory tract of the smoker. In this study, we developed and validated an alternative air sampling method involving breathing through a face mask to simultaneously determine personal exposure to 54 ETS-borne compounds, including polycyclic aromatic hydrocarbons, aromatic amines, alkaloids, and phenolic compounds in real smoking scenarios. The newly developed method was used to evaluate the risk associated with exposure to ETS released from conventional cigarettes (CCs) and that from novel tobacco products such as e-cigarettes (ECs) and heated tobacco products (HTPs), with the observation of cancer risk associated with exposure to ETS released from CCs significantly higher than that from ECs and HTPs. It is anticipated that this method offers a convenient and sensitive way to collect samples for assessing the health impacts of ETS exposure.
Collapse
|
4
|
Zhang X, Leng S, Qiu M, Ding Y, Zhao L, Ma N, Sun Y, Zheng Z, Wang S, Li Y, Guo X. Chemical fingerprints and implicated cancer risks of Polycyclic aromatic hydrocarbons (PAHs) from fine particulate matter deposited in human lungs. ENVIRONMENT INTERNATIONAL 2023; 173:107845. [PMID: 36871324 DOI: 10.1016/j.envint.2023.107845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Exposure to fine particles (PM2.5) and associated PAHs are frequently linked with lung cancer, which makes the understanding of their occurrence and health risk in human lungs urgently important. Using the ultrasonic treatment and sequencing centrifugation (USC) extraction method coupled with gas chromatography-tandem mass spectrometry (GC - MS/MS) analysis, we revealed the molecular fingerprints of PM-accumulated PAHs in human lungs from a cohort of 68 patients with lung cancer in a typical air-polluted region, China. Sixteen priority PAHs can be grouped by concentrations as ∼ 1 × 104 ng/g (ANT/BkF/ACE/DBA/BgP/PHN/PYR), 2-5 × 103 ng/g (BaP/FLE/NaP/BbF), and ∼ 1 × 103 ng/g (IND/Acy/CHR/FLT/BaA). The sum concentration of 16 PAHs was approximately equaled to 13% of those in atmospheric PM2.5, suggesting significant pulmonary leaching of PAHs deposited in lungs. Low- and high-molecular weight PAHs accounted for ∼ 41.8% and ∼ 45.1% of the total PAHs, respectively, which indicated that atmospheric PM2.5, tobacco and cooking smoke were likely to be important sources of pulmonary PAHs. The evident increasing concentrations of NaP and FLE in pulmonary PM were significantly correlated with smoking history among smokers. The implicated carcinogenic potency of PM-accumulated PAHs among the participants aged 70-80 was 17 times that among participants aged 40-50 on the basis of BaP equivalent concentration (BaPeq) evaluation. The particulate enrichment factor (EFP), the PAH content in pulmonary PM relative to the bulk lung tissue, was equaled to 54 ∼ 835 and averaged at 436. The high value of EFP suggested that PAHs were essentially accumulated in pulmonary PM and exhibited a pattern of "hotspot" distribution in the lungs, which would likely increase the risk of monoclonal tumorigenesis. The chemical characteristics of PM-accumulated PAHs in human lungs together with their implicated lung cancer risks could provide significant information for understanding health effects of particulate pollution in the human body.
Collapse
Affiliation(s)
- Xiangyuan Zhang
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Siwen Leng
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People's Hospital, 11 Xizhimen South Street, Beijing 100044, China; Thoracic Oncology Institute, Peking University People's Hospital, Beijing 100044, China
| | - Yifan Ding
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Lin Zhao
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Na Ma
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Yue Sun
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Zijie Zheng
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Shaodong Wang
- Department of Thoracic Surgery, Peking University People's Hospital, 11 Xizhimen South Street, Beijing 100044, China; Thoracic Oncology Institute, Peking University People's Hospital, Beijing 100044, China.
| | - Yun Li
- Department of Thoracic Surgery, Peking University People's Hospital, 11 Xizhimen South Street, Beijing 100044, China; Thoracic Oncology Institute, Peking University People's Hospital, Beijing 100044, China
| | - Xuejun Guo
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China.
| |
Collapse
|
5
|
Yin F, Gao C, Song Z, Han Y, He Z, Zhang L, Su P, Feng D, Yang T, Fu J. Chemical signatures of polycyclic aromatic hydrocarbons in the emissions from in situ oil burns. MARINE POLLUTION BULLETIN 2022; 184:114194. [PMID: 36208553 DOI: 10.1016/j.marpolbul.2022.114194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
This study characterized the parent and alkylated polycyclic aromatic hydrocarbons (PAHs) in gaseous and particulate emissions from the in situ burning (ISB) of oils. The experimental results indicate that the burning of the heavy oil produced the most PAH emissions because of its longest burning time. In addition, the parent PAHs mainly exist in the particulate phase, while alkylated PAHs mostly accumulate in the gaseous phase. In particular, the diagnostic-ratios of PAHs with great stability in both gaseous and particulate emissions from ISB are identified by comparing the laboratory and field data. The presences of bell-, slope- and V-shaped distribution patterns of alkylated PAHs in the emissions precisely indicate their sources to be petrogenic and pyrogenic processes occurring during ISB. The formation of 2-methylanthracene during ISB is confirmed. The overall findings are expected to provide a prospective protocol to characterize PAH pollution from ISB emissions in case of oil spills.
Collapse
Affiliation(s)
- Fang Yin
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, PR China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai 201306, PR China
| | - Chen Gao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, PR China
| | - Zhibo Song
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, PR China
| | - Yuling Han
- WuXi Biologics (Shanghai) Co., Ltd., Fengxian District, Shanghai 201403, PR China.
| | - Zhiwei He
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, PR China
| | - Li Zhang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, PR China
| | - Penghao Su
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, PR China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai 201306, PR China
| | - Daolun Feng
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, PR China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai 201306, PR China
| | - Tao Yang
- East China Sea Environmental Monitoring Center, State Oceanic Administration, Shanghai 201206, PR China
| | - Jie Fu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
6
|
Chen YP, Zeng Y, Guan YF, Huang YQ, Liu Z, Xiang K, Sun YX, Chen SJ. Particle size-resolved emission characteristics of complex polycyclic aromatic hydrocarbon (PAH) mixtures from various combustion sources. ENVIRONMENTAL RESEARCH 2022; 214:113840. [PMID: 35810804 DOI: 10.1016/j.envres.2022.113840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/26/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Combustion of domestic solid fuels is a significant source of polycyclic aromatic hydrocarbons (PAHs). Some oxygenated PAHs (o-PAHs) and PAHs with molecular weight of 302 (MW302 PAHs) are more toxic than the traditional 16 priority PAHs, whereas their emissions were much less elucidated. This study characterized the size-dependent emissions of parent PAHs (p-PAHs), o-PAHs, and MW302 PAHs from various combustion sources. The estimated emission factors (eEFs) from biomass burning sources were highest for most of the PAHs (391-8928 μg/kg), much higher than that of anthracite coal combustion (43.0-145 μg/kg), both which were operated in an indoor stove. Cigarette smoking had a high eEF of o-PAHs (240 ng/g). MW302 PAHs were not found in the emissions of smoking, cooking, and vehicular exhausts. Particle-size distributions of PAHs were compound- and source-dependent, and the tendency to associate with smaller particles was observed especially in biomass burning and cigarette smoking sources. Furthermore, the inter-source differences in PAH eEFs were associated with their dominance in fine particles. PAH composition profiles also varied with the particle size, showing increasing contributions of large-molecule PAHs with decreasing sizes in most cases. The size distributions of p-PAHs are much more significantly dependent on their n-octanol/air partition coefficients and vapor pressures than those of o-PAHs, suggesting differences in mechanisms governing their distributions. Several molecular diagnostic ratios (MDRs), including two based on MW302 PAHs, specific to these combustion scenarios were identified. However, the MDRs within some sources are also strongly size-dependent, providing a new explanation for the uncertainty in their application for source identification of PAHs. This work also highlights the necessity for understanding the size-resolved atmospheric behaviors and fate of PAHs after their emission.
Collapse
Affiliation(s)
- Yu-Ping Chen
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China
| | - Yuan Zeng
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China
| | - Yu-Feng Guan
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China
| | - Yu-Qi Huang
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China
| | - Zheng Liu
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China
| | - Kai Xiang
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China
| | - Yu-Xin Sun
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China
| | - She-Jun Chen
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Sun Z, Guo W, Chan CK, Jin L, Griffith SM, Yu JZ, Chan W. Polyurethane Foam Face Masks as a Dosimeter for Quantifying Personal Exposure to Airborne Volatile and Semi-Volatile Organic Compounds. Chem Res Toxicol 2022; 35:1604-1613. [PMID: 35972223 DOI: 10.1021/acs.chemrestox.2c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Airborne volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) are commonly quantitated by collecting the analytes on solid sorbent tubes or passive air samplers, followed by solvent extraction and instrumental analysis, or by grab bag/canister measurements. We report herein a user-friendly sampling method by breathing through polyurethane foam (PUF) face masks to collect airborne VOCs and SVOCs for chemical analysis. Specifically, dibasic esters, phthalate esters, polycyclic aromatic hydrocarbons, linalool, and nicotine trapped on PUF masks were quantitated by gas chromatography-mass spectrometry analysis as model VOCs and SVOCs. Results showed that the amount of these model VOCs and SVOCs trapped on PUF masks is proportional to the exposure duration. After cross-validation by parallel sampling using XAD-2 packed sorbent tubes, the method was used to quantitate VOCs and SVOCs in a variety of indoor and outdoor environments with varying air concentrations of analytes, temperature, humidity, and wind speed. Because air pollution is considered a major cause of many human diseases and premature deaths and the developed PUF mask sampling method showed high trapping efficiencies for both VOCs and SVOCs, it is believed that the developed sampling method will find wide application in assessing air pollution-associated disease risks with possible extension to more classes of VOCs and SVOCs when coupled with suitable instrumental detection methods.
Collapse
Affiliation(s)
- Zhihan Sun
- Department of Chemistry and Division of Environment, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Wanlin Guo
- Department of Chemistry and Division of Environment, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Chi-Kong Chan
- Department of Chemistry and Division of Environment, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Long Jin
- Department of Chemistry and Division of Environment, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Stephen M Griffith
- Department of Atmospheric Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Jian Zhen Yu
- Department of Chemistry and Division of Environment, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Wan Chan
- Department of Chemistry and Division of Environment, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| |
Collapse
|
8
|
Li Y, Hecht SS. Carcinogenic components of tobacco and tobacco smoke: A 2022 update. Food Chem Toxicol 2022; 165:113179. [PMID: 35643228 PMCID: PMC9616535 DOI: 10.1016/j.fct.2022.113179] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 01/13/2023]
Abstract
Tobacco and tobacco smoke contain a complex mixture of over 9500 chemical compounds, many of which have been recognized as hazardous to human health by regulatory agencies. In 2012, the U.S. Food and Drug Administration established a list of harmful and potentially harmful constituents in unburned tobacco and tobacco smoke, 79 of which are considered as carcinogens. Over the past 10 years, with advancing analytical technology, significant amounts of new data have been published, increasing our understanding of levels of carcinogens in tobacco products. The International Agency for Research on Cancer (IARC) has released 35 monographs since 2012, with an increasing number of compounds in unburned tobacco and tobacco smoke classified as carcinogens. In this paper, we provide an updated list of IARC-classified carcinogens in unburned tobacco and tobacco mainstream smoke. A total of 83 carcinogens has been identified - 37 in unburned tobacco and 80 in tobacco smoke - with their occurrence levels reported since 2012. No clear decreasing trends were observed for any of these carcinogens in recent years. Surveillance of the levels of tobacco carcinogens as well as regulatory actions are needed to ensure control of their levels so that potential reduced risks of cancer and other diseases may be achieved.
Collapse
Affiliation(s)
- Yupeng Li
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA; Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
9
|
Characteristics of Environmentally Persistent Free Radicals in PM2.5 and the Influence of Air Pollutants in Shihezi, Northwestern China. TOXICS 2022; 10:toxics10070341. [PMID: 35878247 PMCID: PMC9321939 DOI: 10.3390/toxics10070341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/17/2022]
Abstract
Environmentally persistent free radicals (EPFRs) are a kind of hazardous substance that exist stably in the atmosphere for a long time. EPFRs combined with fine particulate matter (PM2.5) can enter the human respiratory tract through respiration, causing oxidative stress and DNA damage, and they are also closely related to lung cancer. In this study, the inhalation risk for EPFRs in PM2.5 and factors influencing this risk were assessed using the equivalent number of cigarette tar EPFRs. The daily inhalation exposure for EPFRs in PM2.5 was estimated to be equivalent to 0.66–8.40 cigarette tar EPFRs per day. The concentration level and species characteristics were investigated using electron paramagnetic resonance spectroscopy. The concentration of EPFRs in the study ranged from 1.353–4.653 × 1013 spins/g, and the types of EPFRs were mainly oxygen- or carbon-centered semiquinone-type radicals. Our study showed that there is a strong correlation between the concentrations of EPFRs and conventional pollutants, except for sulfur dioxide. The major factors influencing EPFR concentration in the atmosphere were temperature and wind speed; the higher the temperature and wind speed, the lower the concentration of EPFRs. The findings of this study provide an important basis for further research on the formation mechanism and health effects of EPFRs.
Collapse
|
10
|
Cecinato A, Bacaloni A, Romagnoli P, Perilli M, Balducci C. Indexes of tobacco smoke contribution to environmental particulates based on molecular fingerprints of alkanes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43048-43057. [PMID: 35092585 PMCID: PMC8799971 DOI: 10.1007/s11356-021-16617-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/15/2021] [Indexed: 06/14/2023]
Abstract
Tobacco smoke (TS) is the source of a number of toxicants affecting the atmosphere and poses a threat to smokers and the whole community. Chemical, physical, and toxicological features of smoking products (vapors as well as mainstream, side stream, and third-hand smoke) have been investigated extensively. Special attention is paid to organic compounds (individually or in combination giving rise to peculiar molecular fingerprints), potentially able to act as "chemical signature" of TS. In this regard, the percent distribution of long-chainnormal, iso, and anteiso alkanes was ascertained as typical of TS. Nevertheless, until now no indexes have been identified as suitable for assessing the global TS contribution to environmental pollution, e.g., the TS percentage in carbonaceous aerosol and in deposited dusts, the only exception consisting in the use of nicotelline as tracer. This paper describes the results of an extensive study aimed at chemically characterizing the nonpolar lipid fraction associated to suspended particulates (PMs) and deposition dusts (DDs) collected at indoor and outdoor locations. Based on the iso, anteiso, and normal C29-C34 alkane profile in the samples as well in tobacco smoke- and no-TS-related emissions (literature data), various parameters describing the distribution of compounds were investigated. Finally, a cumulative variable was identified as the tobacco smoke impact index (TS%) suitable for estimating the TS percentage occurring in the particulate matter. The TS% rates were plotted vs. the exceedance of normal C31 alkane with respect to the average of C29 and C33 homologs, which results higher in TS than in most other emissions, revealing a link in the case of suspended particulates but not of deposited dusts. According to back analysis carried out on all particulate matter sets, it was found that traces of TS affect even remote areas, while inside the smokers' homes the contributions of TS to PM could account for up to ~61% and ~10%, respectively, in PM and DD. This confirms the need of valuing the health risk posed by TS to humans, by means of tools easy to apply in extensive investigations.
Collapse
Affiliation(s)
- Angelo Cecinato
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), 00015, Monterotondo, RM, Italy.
- Dept. of Chemistry, University Roma-1 "Sapienza", Rome, Italy.
| | | | - Paola Romagnoli
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), 00015, Monterotondo, RM, Italy
| | - Mattia Perilli
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), 00015, Monterotondo, RM, Italy
| | - Catia Balducci
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), 00015, Monterotondo, RM, Italy
| |
Collapse
|
11
|
Soleimani F, Dobaradaran S, De-la-Torre GE, Schmidt TC, Saeedi R. Content of toxic components of cigarette, cigarette smoke vs cigarette butts: A comprehensive systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152667. [PMID: 34963586 DOI: 10.1016/j.scitotenv.2021.152667] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 05/05/2023]
Abstract
The commercially sold cigarettes contain more than 7000 chemicals, and their combustion produces potential toxicants in mainstream smoke (MS), sidestream smoke (SS), secondhand smoke (SHS), thirdhand smoke (THS), and discarded cigarette butts (CBs). We conducted a systematic review of published literature to compare the toxicants produced in each of these phases of tobacco combustion (MS, SS, and CBs). The initial search included 12,301 articles, but after screening and final restrictions considering the aims of this review, 159 published studies were selected for inclusion. Additionally, SHS and THS are briefly discussed here. Overall, polycyclic aromatic hydrocarbons (PAHs) and other aromatic hydrocarbons have been represented in more studies than other compounds. However, metals and nitrosamines were detected in higher concentrations than other components in SS. The concentrations of most PAHs and other aromatic hydrocarbons in MS and SS are higher compared to concentrations found in CBs. Also, the concentrations of all the studied carbonyl compounds, aldehydes and ketones in SS and MS were higher than in CBs. The mean levels of alcohols and phenols in SS were higher than those reported for both MS and CBs. Tobacco toxicants are inhaled by smokers and transmitted to the environment through SS, SHS, THS, and discarded CBs. However, further studies are necessary to assess adverse effects of toxicants found in CBs and THS not only on human health, but also on the environment and ecosystems. The results of this review provide updated information on the chemical contents of MS, SS, SHS, THS, and CBs. It adds to the growing understanding that smoking creates major health problems for smokers and passive smokers, but also that it generates environmental hazards with consequences to the ecosystems and human health through discarded CBs, SHS, and THS exposure.
Collapse
Affiliation(s)
- Farshid Soleimani
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universit¨atsstr. 5, Essen, Germany.
| | | | - Torsten C Schmidt
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universit¨atsstr. 5, Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, Essen 45141, Germany
| | - Reza Saeedi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health, Safety and Environment, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Tooker BC, Quinn K, Armstrong M, Bauer AK, Reisdorph N. Comparing the effects of an exposure to a polycyclic aromatic hydrocarbon mixture versus individual polycyclic aromatic hydrocarbons during monocyte to macrophage differentiation: Mixture exposure results in altered immune metrics. J Appl Toxicol 2021; 41:1568-1583. [PMID: 33559210 PMCID: PMC8349383 DOI: 10.1002/jat.4147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/13/2021] [Accepted: 01/24/2021] [Indexed: 11/08/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are generated by the incomplete combustion of carbon. Exposures correlate with systemic immune dysfunction and overall immune suppression. Real-world exposures to PAHs are almost always encountered as mixtures; however, research overwhelmingly centers on isolated exposures to a single PAH, benzo[a]pyrene (B[a]P). Here, a human monocyte line (U937) was exposed to B[a]P, benz[a]anthracene (B[a]A), or a mixture of six PAHs (6-MIX) to assess the differential toxicity on monocytes. Further, monocytes were exposed to PAHs with and without CYP1A1 inhibitors during macrophage differentiation to delineate PAH exposure and PAH metabolism-driven alterations to the immune response. U937 monocytes exposed to B[a]P, B[a]A, or 6-MIX had higher levels of cellular health and growth not observed following equimolar exposures to other individual PAHs. PAH exposures during differentiation did not alter monocyte-derived macrophage (MDM) numbers; however, B[a]A and 6-MIX exposures significantly altered M1/M2 polarization in a CYP1A1-dependent manner. U937-MDM adherence was differentially suppressed by all three PAH treatments with 6-MIX exposed U937-MDM having significantly more adhesion than U937-MDM exposed to either individual PAH. Finally, 6-MIX exposures during differentiation reduced U937-MDM endocytic function significantly less than B[a]A exposed cells. Exposure to a unique PAH mixture during U937-MDM differentiation resulted in mixture-specific alterations of pro-inflammatory markers compared to individual PAH exposures. While subtle, these differences highlight the probability that using a model PAH, B[a]P, may not accurately reflect the effects of PAH mixture exposures. Therefore, future studies should include various PAH mixtures that encompass probable real-world PAH exposures for the endpoints under investigation.
Collapse
Affiliation(s)
- Brian C. Tooker
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kevin Quinn
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Michael Armstrong
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Alison K. Bauer
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
13
|
Huang Q, Zhu Y, Wu F, Zhang Y. Parent and alkylated polycyclic aromatic hydrocarbons in surface sediments of mangrove wetlands across Taiwan Strait, China: Characteristics, sources and ecological risk assessment. CHEMOSPHERE 2021; 265:129168. [PMID: 33307504 DOI: 10.1016/j.chemosphere.2020.129168] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
The characteristics, distributions and sources of parent polycyclic aromatic hydrocarbons (PAHs) and alkyl-PAHs (A-PAHs) as well as their ecological risk were explored in six mangrove wetlands across the Taiwan Strait, China. A-PAHs fingerprinting information, combined with PAHs diagnostic ratios and a positive matrix factorization model, were used to identify the sources of PAHs in the mangrove wetland surface sediment samples. The results showed that the total concentration of the 36 PAHs in the sediment samples varied from 186.2 to 2469.2 ng⸱g-1. Furthermore, the total concentration of PAHs would be underestimated about 37.1%-80.6% when only the concentrations of 16 priority PAHs were examined in the sediment samples. Coal combustion (32.7%) and petroleum combustion (24.6%) were identified as important contributing sources in the Yunxiao, Fugong, and Quanzhou mangrove wetlands, whereas the main source was mainly petroleum combustion (49.1%) in the Guandu, Zhuwei and Waziwei mangrove wetlands. In addition, the guidelines for assessing the ecological risk of individual A-PAHs need to be developed due to lack of criteria for most individual A-PAHs.
Collapse
Affiliation(s)
- Qi Huang
- State Key Laboratory of Marine Environmental Science of China (Xiamen University), College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China
| | - Yaxian Zhu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Fang Wu
- State Key Laboratory of Marine Environmental Science of China (Xiamen University), College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China
| | - Yong Zhang
- State Key Laboratory of Marine Environmental Science of China (Xiamen University), College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China.
| |
Collapse
|
14
|
Li R, Tan H, Zhang L, Wang S, Wang Y, Yu K. The implications of water extractable organic matter (WEOM) on the sorption of typical parent, alkyl and N/O/S-containing polycyclic aromatic hydrocarbons (PAHs) by microplastics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 156:176-182. [PMID: 29550435 DOI: 10.1016/j.ecoenv.2018.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/28/2018] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
Microplastics sorption of persistent organic pollutants (POPs) was the core processes that cause negative effects to biota, and their influencing factors and related mechanisms are poorly understood. In this study, we explored the impacts of water extractable organic matter (WEOM), an important source of endogenous dissolved organic matter in mangrove sediment, on the sorption coefficients of typical parent, alkyl and N/O/S-containing polycyclic aromatic hydrocarbons (PAHs) by microplastics. The presence of L-WEOM (D) impeded the PAHs sorption as the coefficients (Kf) decreased to 10.17 (μg/kg)/(μg/L)n and to 8.39 (μg/kg)/(μg/L)n for fluorene (Flu) and 1-methyl-fluorene (1-M-Flu), respectively. The Kf exhibited good linear relationships with the aliphaticity of L-WEOM (p < 0.05) rather than the aromatic carbon/alkyl carbon content (p > 0.05). Under the presences of L-WEOM (D), (S) and (K), the lone pair electrons of N/O/S-containing PAHs was the dominant factor contributing to the obvious difference of the Kf values from the other groups. Moreover, the largest impact of L-WEOM (D) on the Flu sorption was in the case of PVC microplastics, while almost no effect was in the case of PS microplastics. The findings of our work may be helpful in improving our understanding of the role of WEOM on the sorption of PAHs to microplastics in the field mangrove sediment.
Collapse
Affiliation(s)
- Ruilong Li
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, PR China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, PR China
| | - Huadong Tan
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 361102, PR China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, Danzhou 571737, PR China
| | - Linlin Zhang
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, PR China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, PR China
| | - Shaopeng Wang
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, PR China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, PR China
| | - Yinghui Wang
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, PR China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, PR China.
| | - Kefu Yu
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, PR China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
15
|
Li R, Tan H, Zhu Y, Zhang Y. The retention and distribution of parent, alkylated, and N/O/S-containing polycyclic aromatic hydrocarbons on the epidermal tissue of mangrove seedlings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 226:135-142. [PMID: 28419920 DOI: 10.1016/j.envpol.2017.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 06/07/2023]
Abstract
The polycyclic aromatic hydrocarbons (PAHs) located on the epidermal tissues showed distinctive toxic effects to root, while the retention and distribution of PAHs on mangrove seedlings poorly understood. Our results confirmed that the partition coefficients (Kf) of the PAHs retained on the epidermal tissue of mangrove roots, such as Kandelia obovata, Avicennia marina and Aegiceras corniculatum, were much higher than the Poaceae plants roots, for example wheat and maize (Wild et al., 2005). Moreover, to the parent and alkyl PAHs, a well negative correlation was observed between the surface polarity of these three species of mangrove root and the Kf values (p < 0.05). To the N/O/S containing PAHs, these relationships were not obviously due to existing of the π-π, n-π interactions and hydrogen bonding between the N/O/S-containing PAHs and epidermal tissues. The PAHs retained on these three species of mangrove root epidermal tissues formed larger clusters than that of on Poaceae plants, such as wheat and maize (Wild et al., 2005) due to the limitation of the suberization of the root exodermis and endodermis. After exposure of 30 d, rhizo- and endophytic bacteria degraded parts of the N/O/S-containing PAHs to medium-lifetime fluorescence substances. To our knowledge, this is the first time to assess the retention of PAHs on the epidermal tissue of mangrove root, which will improve our understanding of the root uptake PAHs process.
Collapse
Affiliation(s)
- Ruilong Li
- State Key Laboratory of Marine Environmental Science of China (Xiamen University), Xiamen 361005, China
| | - Huadong Tan
- State Key Laboratory of Marine Environmental Science of China (Xiamen University), Xiamen 361005, China
| | - Yaxian Zhu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yong Zhang
- State Key Laboratory of Marine Environmental Science of China (Xiamen University), Xiamen 361005, China.
| |
Collapse
|