1
|
Shi F, Xing Y, Niu Y, Cheng L, Xu Y, Li X, Ren L, Zong S, Tao J. Unveiling winter survival strategies: physiological and metabolic responses to cold stress of Monochamus saltuarius larvae during overwintering. PEST MANAGEMENT SCIENCE 2024; 80:5656-5671. [PMID: 38979967 DOI: 10.1002/ps.8282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/18/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Monochamus saltuarius is a destructive trunk-borer of pine forest and an effective dispersal vector for pinewood nematode (PWN), a causative agent of pine wilt disease (PWD), which leads to major ecological disasters. Cold winter temperatures determine insect survival and distribution. However, little is known about the cold tolerance and potential physiological mechanisms of M. saltuarius. RESULTS We demonstrated that dead Pinus koraiensis trunks do not provide larvae with insulation. The M. saltuarius larvae are freeze-tolerant species. Unlike most other freeze-tolerant insects, they can actively freeze extracellular fluid at higher subzero temperatures by increasing their supercooling points. The main energy sources for larvae overwintering are glycogen and the mid-late switch to lipid. The water balance showed a decrease in free and an increase in bound water of small magnitude. Cold stress promoted lipid peroxidation, thus activating the antioxidant system to prevent cold-induced oxidative damage. We found eight main pathways linked to cold stress and 39 important metabolites, ten of which are cryoprotectants, including maltose, UDP-glucose, d-fructose 6P, galactinol, dulcitol, inositol, sorbitol, l-methionine, sarcosine, and d-proline. The M. saltuarius larvae engage in a dual respiration process involving both anaerobic and aerobic pathways when their bodily fluids freeze. Cysteine and methionine metabolism, as well as alanine, aspartate, and glutamate metabolism, are the most important pathways linked to antioxidation and energy production. CONCLUSIONS The implications of our findings may help strengthen and supplement the management strategies for monitoring, quarantine, and control of this pest, thereby contributing to controlling the further spread of PWD. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fengming Shi
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Yu Xing
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Yiming Niu
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Ling Cheng
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Yabei Xu
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Xinyu Li
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Lili Ren
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Shixiang Zong
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| |
Collapse
|
2
|
Lin Y, Shi X, Qiu X, Jiang X, Liu J, Zhong P, Ge Y, Tseng CH, Zhang JJ, Zhu T, Araujo JA, Zhu Y. Reduction in polycyclic aromatic hydrocarbon exposure in Beijing following China's clean air actions. Sci Bull (Beijing) 2024; 69:3283-3290. [PMID: 39181785 DOI: 10.1016/j.scib.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) in the Chinese population was among the highest globally and associated with various adverse effects. This study examines the impact of China's two-phase clean air initiatives, namely the Air Pollution Prevention and Control Action Plan (APPCAP) in 2013-2017 and the Blue-Sky Defense War (BSDW) in 2018-2020, on PAH levels and human exposures in Beijing. To evaluate the effects of APPCAP, we measured 16 PAHs in 287 PM2.5 samples collected in Beijing and 9 PAH metabolites in 358 urine samples obtained from 54 individuals who traveled from Los Angeles to Beijing between 2014 and 2018. The concentration of PM2.5-bound benzo[a]pyrene equivalents (BaPeq) decreased by 88.5% in 2014-2018 due to reduced traffic, coal, and biomass emissions. PAH metabolite concentrations in travelers' urine decreased by 52.3% in Beijing, correlated with changes in PM2.5 and NO2 levels. In contrast, no significant changes were observed in Los Angeles. To evaluate BSDW's effects, we collected 123 additional PM2.5 samples for PAH measurements in 2019-2021. We observed sustained reductions in BaPeq concentrations attributable to reductions in coal and biomass emissions during the BSDW phase, but those from traffic sources remained unchanged. After accounting for meteorological factors, China's two-phase clean air initiatives jointly reduced Beijing's PM2.5-bound BaPeq concentrations by 96.6% from 2014 to 2021. These findings provide compelling evidence for the effectiveness of China's clean air actions in mitigating population exposure to PAHs in Beijing.
Collapse
Affiliation(s)
- Yan Lin
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China; Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles 90095, USA; Nicholas School of the Environment and Global Health Institute, Duke University, Durham 27708-0187, USA
| | - Xiaodi Shi
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Xinghua Qiu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China.
| | - Xing Jiang
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jinming Liu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Peiwen Zhong
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Yihui Ge
- Nicholas School of the Environment and Global Health Institute, Duke University, Durham 27708-0187, USA
| | - Chi-Hong Tseng
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles 90095, USA
| | - Junfeng Jim Zhang
- Nicholas School of the Environment and Global Health Institute, Duke University, Durham 27708-0187, USA
| | - Tong Zhu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jesus A Araujo
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles 90095, USA; Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles 90095, USA
| | - Yifang Zhu
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles 90095, USA.
| |
Collapse
|
3
|
Wang Y, Xu J, Yang L, Zhang N, Zhang L, Han B. The Effect of Urinary Polycyclic Aromatic Hydrocarbon Metabolites on Lipid Profiles: Does Oxidative Stress Play a Crucial Mediation Role? TOXICS 2024; 12:748. [PMID: 39453168 PMCID: PMC11511148 DOI: 10.3390/toxics12100748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/28/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Urinary polycyclic aromatic hydrocarbon (PAH) metabolites are associated with oxidative stress; however, epidemiological studies have not reported the impacts of these urinary PAH metabolites on blood lipid levels. This study investigated the relationship between urinary PAH metabolites, urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), and blood lipid profiles. A total of 109 elderly volunteers were recruited with complete datasets for analysis. Blood and morning urine samples were collected in the winter of 2011. The PAH metabolites, creatinine, and 8-OHdG levels in urine samples were analyzed using Gas Chromatography-Mass Spectrometry, spectrophotometry, and an ELISA kit, respectively. The blood lipid profiles were analyzed using an automatic biochemical analyzer. The relationship between lipid profiles and 8-OHdG was assessed using a two-independent sample nonparametric test, categorized by gender, smoking, and alcohol consumption status. After normalizing the concentration values, a general linear regression model was employed to examine the correlations between PAH metabolites, 8-OHdG, and lipid profiles. A mediation model was developed to investigate the mediating effect of 8-OHdG on the relationship between PAH metabolites and lipid profiles. The median of eight PAH metabolite concentrations in urine samples ranged from 1 to 10 μmol/mol creatinine (Cr). Significant differences in lipid profiles were observed across genders. However, no significant differences were found in smoking or alcohol consumption status for both genders. Linear regression analysis revealed that an increase in the logarithmic concentration of 2-hydroxynaphthalene (2-OHNap), 9-hydroxyfluorene (9-OHFlu), 3-hydroxyfluorene (3-OHFlu), 2-hydroxyfluorene (2-OHFlu), 1-hydroxypyrene (1-OHPyr), and 6-hydroxychrysene (6-OHChr) was associated with an increase in urinary 8-OHdG levels, after adjusting for BMI and age. Specifically, 1-hydroxynaphthalene (1-OHNap) and 1-OHPyr correlated negatively with apolipoprotein A1 (Apo A1). Conversely, 1-OHPyr was positively correlated with low-density lipoprotein cholesterol (LDL-C). In addition, b,c-dihydroxyphenanthrene (2-OHBcPhe) was positively associated with apolipoprotein B (Apo B). Notably, 8-OHdG did not exhibit a significant correlation with lipid profiles. The mediating effect of 8-OHdG on the relationship between hydroxylated PAHs and lipid profiles was not statistically significant. However, the indirect effects of hydroxylated PAHs on blood lipids were statistically substantial, specifically for 1-OHNap to Apo A1 (-0.025, 95% CI: -0.041, -0.009), 1-OHPyr to LDL-C (0.107, 95% CI: 0.011, 0.203), and 2-OHBcPhe to Apo B (0.070, 95% CI: 0.005, 0.135). This study suggests that an increase in urinary PAH metabolites may elevate the levels of urinary 8-OHdG and influence blood lipid profiles. However, no direct relationship was found between 8-OHdG and lipid profiles. The mediation analysis indicated that the effects of PAH metabolites on lipid changes may operate through pathways other than oxidative stress.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; (Y.W.); (L.Y.)
| | - Jia Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (J.X.); (N.Z.)
| | - Liujie Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; (Y.W.); (L.Y.)
| | - Nan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (J.X.); (N.Z.)
| | - Liwen Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; (Y.W.); (L.Y.)
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (J.X.); (N.Z.)
| |
Collapse
|
4
|
Wang X, Lin Y, Ge Y, Craig E, Liu X, Miller RK, Thurston SW, Brunner J, Barrett ES, O'Connor TG, Rich DQ, Zhang JJ. Systemic oxidative stress levels during the course of pregnancy: Associations with exposure to air pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124463. [PMID: 38942277 PMCID: PMC11418402 DOI: 10.1016/j.envpol.2024.124463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Increased systemic oxidative stress, implicated in adverse pregnancy outcomes for both mothers and fetuses, has been associated with gestational exposure to air pollutants such as polycyclic aromatic hydrocarbons (PAHs), fine particulate matter (PM2.5), and nitrogen dioxide (NO2). However, it is unclear whether exposure to pollutants at levels below the current air quality standards can increase oxidative stress in pregnant women. In a cohort of 305 pregnant persons residing in western New York, we examined the association between exposure to PM2.5, NO2, and PAHs (measured as urinary 1-hydroxypyrene) and urinary biomarkers of oxidative stress (malondialdehyde [MDA] and 8-hydroxy-2'-deoxyguanosine [8-OHdG]) measured in each trimester. After controlling for gestational stage, maternal age, lifestyles, and socioeconomic factors, each interquartile range (IQR) increase in 1-hydroxypyrene concentration (65.8 pg/ml) was associated with a 7.73% (95%CI: 3.18%,12.3%) higher in MDA levels throughout the pregnancy and in the first and second trimester. An IQR increase in PM2.5 concentration (3.20 μg/m3) was associated with increased MDA levels in the first trimester (8.19%, 95%CI: 0.28%,16.1%), but not the 2nd (-7.99%, 95% CI: 13.8%, -2.23%) or 3rd trimester (-2.81%, 95% CI: 10.0%, 4.38%). The average cumulative PM2.5 exposures in the 3-7 days before urine collection were associated with increased 8-OHdG levels during the second trimester, with the largest difference (22.6%; 95% CI: 3.46%, 41.7%) observed in relation to a one IQR increase in PM2.5 concentration in the previous 7 days. In contrast, neither oxidative stress biomarker was associated with NO2 exposure. Observed in pregnant women exposed to low-level air pollution, these findings expanded previously reported associations between systemic oxidative stress and high-level PM2.5 and PAH concentrations. Further, the first and second trimesters may be a susceptible window during pregnancy for oxidative stress responses to air pollution exposure.
Collapse
Affiliation(s)
- Xiangtian Wang
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Yan Lin
- Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Yihui Ge
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Emily Craig
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Xiaodong Liu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Richard K Miller
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Psychology, University of Rochester, Rochester, NY, USA; Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Sally W Thurston
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jessica Brunner
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Emily S Barrett
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Environmental and Occupational Health Sciences Institute, Piscataway, NY, USA
| | - Thomas G O'Connor
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Psychology, University of Rochester, Rochester, NY, USA
| | - David Q Rich
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Junfeng Jim Zhang
- Nicholas School of the Environment, Duke University, Durham, NC, USA; Duke Global Health Institute, Duke University, Durham, NC, USA.
| |
Collapse
|
5
|
Lin Y, Craig E, Liu X, Ge Y, Brunner J, Wang X, Yang Z, Hopke PK, Miller RK, Barrett ES, Thurston SW, Murphy SK, O'Connor TG, Rich DQ, Zhang JJ. Urinary 1-hydroxypyrene in pregnant women in a Northeastern U.S. city: socioeconomic disparity and contributions from air pollution sources. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:407-415. [PMID: 37161057 PMCID: PMC11478045 DOI: 10.1038/s41370-023-00555-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
BACKGROUND Maternal exposure to polycyclic aromatic hydrocarbons (PAHs), ubiquitous constituents of air pollution, has been associated with adverse birth outcomes. Yet it remains unclear whether and how socioeconomic status (SES) affects gestational PAH exposure. OBJECTIVE To examine whether there are socioeconomic disparities in PAHs exposure among pregnant women from Rochester, NY, and if so, to what extent disproportionate proximity to air pollution sources, measured by residential distance to transportation-related sources, contributed to the exposure disparity. METHODS We measured 1-hydroxypyrene concentrations in 726 urine samples collected from 305 pregnant women up to three samples throughout pregnancy. Residential distances to transportation-related sources were calculated based on participants' home addresses. We used linear mixed-effects models with random intercepts of participants to examine associations between 1-hydroxypyrene, SES indicators, and distance to transportation-related sources. We used structural equation modelling to assess to what extent distance to transportation-related sources contributes to the socioeconomic disparity in 1-hydroxypyrene concentrations. RESULTS Reduced household income and maternal education level were both significant SES predictors of 1-hydroxypyrene concentrations, after the adjustment for other maternal demographic characteristics. Each interquartile range (IQR) increases in residential proximity to the airport (from 14.3 to 6.0 km), the railroad yard (from 22.3 to 6.0 km), and annual average daily traffic within 300 m (from 3796 to 99,933 vehicles/year) were associated with 15.0% (95%CI: 7.0-22.2%), 15.4% (95%CI: 6.5-23.5%), and 13.6% (95%CI: 4.7-23.3%) increases in 1-hydroxypyrene concentrations, respectively. Proximity to these sources jointly explained 10% (95%CI: 1.6-18.4%) of the 1-hydroxypyrene concentration change associated with decreases in SES as a latent variable defined by both household income and education level. IMPACT STATEMENT Our findings suggest that efforts to address disproportionate residential proximity to transportation-related sources may reduce the socioeconomic disparity in PAH exposure.
Collapse
Affiliation(s)
- Yan Lin
- Nicholas School of the Environment & Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Emily Craig
- Nicholas School of the Environment & Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Xiaodong Liu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yihui Ge
- Nicholas School of the Environment & Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Jessica Brunner
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Xiangtian Wang
- Nicholas School of the Environment & Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Zhenchun Yang
- Nicholas School of the Environment & Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
- Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, USA
| | - Richard K Miller
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Clinical Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Emily S Barrett
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
- Department of Epidemiology and Biostatistics, Environmental and Occupational Health Sciences Institute, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Sally W Thurston
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Thomas G O'Connor
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
- Department of Psychology, University of Rochester, Rochester, NY, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - David Q Rich
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Junfeng Jim Zhang
- Nicholas School of the Environment & Duke Global Health Institute, Duke University, Durham, NC, USA.
| |
Collapse
|
6
|
Zheng C, Wong MH, Man YB, Cheng Z. Effects of sodium selenite, yeast selenium, and nano-selenium on toxicity, growth, and selenium bioaccumulation in Lucilia sericata maggots. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20510-20520. [PMID: 38374507 DOI: 10.1007/s11356-024-32505-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
In this study, we investigated the effects of different types of selenium (Se) (sodium selenite [SS], yeast selenium [YS], and nano-selenium [NS]) on the toxicity, growth, Se accumulation, and transformation of Lucilia sericata maggots (LSMs). We found that the 50% lethal concentration of LSMs exposed to SS was 2.18 and 1.96 times that of YS and NS, respectively. LSM growth was significantly promoted at exposure concentrations of 10-50 mg kg-1 in group SS and 10-30 mg kg-1 in group YS, whereas NS inhibited LSMs growth at all concentrations (p < 0.05). Total Se content in LSMs, conversion efficiency to organic and other forms of Se, and bioaccumulation factor of Se were the highest in the SS group when exposed to 50 mg kg-1 (81.6 mg kg-1, 94.6%, and 1.63, respectively). Transcriptomic results revealed that LSMs significantly upregulated the amino acid (alanine, aspartate, glutamic, and tyrosine) and tricarboxylic acid cycle signaling pathways (p < 0.05) on exposure to Se, resulting in a significant increase in LSMs biomass and quality. In conclusion, our study indicates that LSMs exhibit good tolerance to SS and can convert it into bioorganic or other forms of Se.
Collapse
Affiliation(s)
- Chao Zheng
- College of Environment, Sichuan Agricultural University, Chengdu, China
| | - Ming Hung Wong
- Consortium On Health, Environment, Education, and Research (CHEER), and Department of Science and Environment Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Yu Bon Man
- Consortium On Health, Environment, Education, and Research (CHEER), and Department of Science and Environment Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Zhang Cheng
- College of Environment, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
7
|
Zhang H, Liu R, Yang L, Cheng H, Wang S, Zhang B, Shao J, Ma S, Norbäck D, Zhang X, An T. Exposure to polycyclic aromatic hydrocarbons (PAHs) in outdoor air and respiratory health, inflammation and oxidative stress biomarkers: A panel study in healthy young adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165582. [PMID: 37467979 DOI: 10.1016/j.scitotenv.2023.165582] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/08/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) can be associated with different types of health effects. However, the systemic changes of health effects between fluctuations of PAHs exposure have not been established. In this study, urinary hydroxylated PAHs (OH-PAHs) and 12 biomarkers were determined among 36 students from the urban to the suburb in Taiyuan in 2019. The concentration of Σ12OH-PAHs in urban areas (28.2 and 21.4 μg/g Cr) was significantly higher than that in suburban area (16.8 μg/g Cr). The regression showed that hydroxy-phenanthrene (OH-Phe, 1/2/3/4/9-OH-Phe) was significantly positively correlated with lung function (PEF25 and PEF50), 8-hydroxydeoxyguanosine (8-OHdG), interleukin-8 (IL-8), and fractional exhaled nitric oxide (FeNO). Moreover, there were negative associations of 2-hydroxyfluorene (2-OH-Flu) with FVC and FEV1. 1 unit increase of 1-hydroxypyrene (1-OH-Pyr) was negatively associated with 18.8% FVC, 17.3% FEV1, and 26.4% PEF25 in the suburban location, respectively. During urban2, each unit change of 2-OH-Flu was associated with 10.9% FVC and 10.5% FEV1 decrease, which were higher than those in suburban location. 8-OHdG decreased by 32.0% with each unit increase in 3-hydroxyfluorene (3-OH-Flu) during urban2 (p < 0.05), while 1.9% in the suburban location. During the suburban period, the increase in OH-Phe was correlated with the decrease in malondialdehyde (MDA). The respiratory damage caused by PAHs in the urban disappeared after backing to the urban from the suburban area. Notably, despite the total significant liner mixed regression association of FeNO with multiple OH-PAHs, the association of FeNO with OH-PAHs was not significant during different periods except for 2-OH-Flu. Our findings suggested that short-term exposure to different concentrations of PAHs might cause changes in health effects and called for further research to investigate possible alterations between health effects and PAH exposure.
Collapse
Affiliation(s)
- Huilin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Ranran Liu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan 250062, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Liu Yang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Hong Cheng
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Shengchun Wang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Bin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Jiyuan Shao
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Shengtao Ma
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Dan Norbäck
- Department of Medical Sciences, Uppsala University, Uppsala SE-751, Sweden
| | - Xin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
| | - Taicheng An
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
8
|
Vilcassim R, Thurston GD. Gaps and future directions in research on health effects of air pollution. EBioMedicine 2023; 93:104668. [PMID: 37357089 PMCID: PMC10363432 DOI: 10.1016/j.ebiom.2023.104668] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/03/2023] [Accepted: 06/06/2023] [Indexed: 06/27/2023] Open
Abstract
Despite progress in many countries, air pollution, and especially fine particulate matter air pollution (PM2.5) remains a global health threat: over 6 million premature cardiovascular and respiratory deaths/yr. have been attributed to household and outdoor air pollution. In this viewpoint, we identify present gaps in air pollution monitoring and regulation, and how they could be strengthened in future mitigation policies to more optimally reduce health impacts. We conclude that there is a need to move beyond simply regulating PM2.5 particulate matter mass concentrations at central site stations. A greater emphasis is needed on: new portable and affordable technologies to measure personal exposures to particle mass; the consideration of a submicron (PM1) mass air quality standard; and further evaluations of effects by particle composition and source. We emphasize the need to enable further studies on exposure-health relationships in underserved populations that are disproportionately impacted by air pollution, but not sufficiently represented in current studies.
Collapse
Affiliation(s)
- Ruzmyn Vilcassim
- Department of Environmental Health Sciences, The University of Alabama at Birmingham, School of Public Health, USA.
| | - George D Thurston
- Departments of Medicine and Population Health, New York University School of Medicine, USA
| |
Collapse
|
9
|
Xu X, Ma J, Li W, You Y, Jiang Q, Long P, Liu K, Mo T, Jiang J, Wang W, Lei Y, Diao T, Ruan S, Wang X, Guo H, Chen W, Wu T. Polycyclic aromatic hydrocarbons exposure and plasma lncRNA signature: A profile and functional analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162932. [PMID: 36934921 DOI: 10.1016/j.scitotenv.2023.162932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 05/06/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants that pose detrimental effects on human health, and the exploration of the associations of PAHs exposure with long non-coding RNA (lncRNA) may provide novel clues to the underlying mechanisms. In the present study, we detected 10 urinary PAHs metabolites by GC-MS and plasma lncRNAs levels by Human LncRNA Array v4 among 230 participants from two panels (160 in the Shiyan panel and 70 in the Wuhan-Zhuhai panel). We applied linear regression models to assess the associations between PAHs metabolites and lncRNAs separately in each panel and combined the results using fixed-effect meta-analysis. To explore the potential origin of PAHs-related lncRNAs in plasma, we estimated their tissue-specificity and associations between lncRNAs levels in plasma and leukocytes. Leukocytes mRNA sequencing data and RNA binding proteins were utilized to explore implicated pathways of identified lncRNAs. We found that urinary 1-hydroxyphenanthrene (1-OH-Phe) was inversely associated with 8 lncRNAs and positively associated with 1 lncRNA, as well as 9-hydroxyphenanthrene (9-OH-Phe) was inversely associated with 11 lncRNAs (FDR < 0.1). Tissue specificity analysis using Genome Tissue Expression database suggested that several identified lncRNAs might specifically express in organs targeted by PAHs exposure (lung, liver, heart, kidney, and brain). Besides, plasma levels of 1-OH-Phe related ENSG00000260616 and 9-OH-Phe related STARD4-AS1 were inversely associated with their intra-leukocytes levels (P value < 0.05). Notably, STARD4-AS1 was positively associated with the expression levels of its neighboring protein-coding gene (CAMK4 and STARD4) in leukocytes and were involved in pathways related to cellular response to DNA damage, which we further confirmed using DNA damage biomarker, 8-hydroxydeoxyguanosine. Functional analysis also revealed vital pathways related to cytokine-mediated signaling and glucose homeostasis. Our findings provided novel insights into plausible biological mechanisms underlying the adverse effects of PAHs exposure.
Collapse
Affiliation(s)
- Xuedan Xu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jixuan Ma
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wending Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yutong You
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qin Jiang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pinpin Long
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kang Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Tingting Mo
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Jiang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanshou Lei
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tingyue Diao
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuping Ruan
- Health Management Center, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan 442008, China
| | - Xiaozheng Wang
- Health Management Center, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan 442008, China
| | - Huan Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
10
|
He F, Qi T, Guo S, Wang H, Zhang Z, Liu R, Zong W. Mechanistic insights into pyridine exposure induced toxicity in model Eisenia fetida species: Evidence from whole-animal, cellular, and molecular-based perspectives. CHEMOSPHERE 2023:139139. [PMID: 37285977 DOI: 10.1016/j.chemosphere.2023.139139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/29/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
Pyridine and its derivatives are widely used in many applications and inevitably cause extreme scenarios of serious soil contamination, which pose a threat to soil organisms. Still, the eco-toxicological effects and underlying mechanisms of pyridine-caused toxicity toward soil fauna have not been well established. Thus, earthworms (Eisenia fetida), coelomocytes, and oxidative stress-related proteins were selected as targeted receptors to probe the ecotoxicity mechanism of extreme pyridine soil exposure targeted to earthworms by using a combination of in vivo animal experiments, cell-based in vitro tests, in vitro functional and conformational analyses, and in silico analyses. The results showed that pyridine caused severe toxicity to E. fetida at extreme environmental concentrations. Exposure of pyridine induced excessive ROS formation in earthworms, causing oxidative stress and various deleterious effects, including lipid damage, DNA injury, histopathological change, and decreased defense capacity. Also, pyridine destroyed the cell membrane of earthworm coelomic cells and triggered a significant cytotoxicity. Importantly, the intracellular ROS (e.g., O2-, H2O2, and OH·-) was release-activated, which eventually inducing oxidative stress effects (lipid peroxidation, inhibited defense capacity, and genotoxicity) through the ROS-mediated mitochondrial pathway. Moreover, the antioxidant defence mechanisms in coelomocytes responded quickly to reduce ROS-mediated oxidative injury. It was conformed that the abnormal expression of targeted genes associated with oxidative stress in coelomic cells was activated after pyridine exposure. Particularly, we found that the normal conformation (particle sizes, intrinsic fluorescence, and polypeptide backbone structure) of CAT/SOD was destroyed by the direct binding of pyridine. Furthermore, pyridine bound easily to the active center of CAT, but preferentially to the junction cavity of two subunits of SOD, which is considered to be a reason for impaired protein function in cells and in vitro. Based on these evidences, the ecotoxicity mechanisms of pyridine toward soil fauna are elucidated based on multi-level evaluation.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Tianyu Qi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Shuqi Guo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Hao Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Zhuo Zhang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China.
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong, 250014, PR China
| |
Collapse
|
11
|
Hou J, Huang C, Zhu B, Liu W, Zhu QQ, Wang L, Li T, Yuan CJ, Lai SY, Wu DS, Zhu FQ, Zhang JF, Huang J, Gao EW, Huang YD, Nie LL, Lu SY, Yang XF, Zhou L, Ye F, Yuan J, Liu JJ. Effect modification by aging on the associations of nicotine exposure with cognitive impairment among Chinese elderly. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:9530-9542. [PMID: 36057059 DOI: 10.1007/s11356-022-22392-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Active and passive exposure to tobacco smoke may increase risk of cognitive decline. However, effects of enhanced the aging process on the association of urinary nicotine metabolites with cognitive impairment remain unclear. In this study, 6657 Chinese older adults completed the physical examinations and cognitive tests. We measured urinary nicotine metabolite levels, mitochondrial DNA copy number (mtDNA-CN), and relative telomere length (RTL) and analyzed effects of urinary nicotine metabolites and their interaction with mtDNA-CN or RTL on cognitive impairment by generalized linear models and qg-computation, respectively. Each 1-unit increase in urinary 3-OHCot, 3-OHCotGluc, CotGluc, or NicGluc levels corresponded to a 1.05-, 1.09-, 1.04-, and 0.90-fold increased risk of cognitive impairment. Each 1-quantile increment in the mixture level of 8 nicotine metabolites corresponded to an increment of 1.40- and 1.34-fold risk of cognitive impairment in individuals with longer RTL or low mtDNA-CN. Urinary 3-OHCotGluc and RTL or mtDNA-CN exhibited an additive effect on cognitive impairment in addition to the mixture of 8 nicotine metabolites and mtDNA-CN. The findings suggested that aging process may increase the risk of tobacco-related cognitive impairment.
Collapse
Affiliation(s)
- Jian Hou
- Key Laboratory of Environment & Health (Huazhong University of Science and Technology), Ministry of Education, State Environmental Protection Key Laboratory of Environment and Health (Wuhan) and State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, China
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Chao Huang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Bo Zhu
- Shenzhen Luohu District Center for Disease Control and Prevention, Shenzhen, 518020, Guangdong, China
| | - Wei Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Qing-Qing Zhu
- Key Laboratory of Environment & Health (Huazhong University of Science and Technology), Ministry of Education, State Environmental Protection Key Laboratory of Environment and Health (Wuhan) and State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, China
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Lu Wang
- Key Laboratory of Environment & Health (Huazhong University of Science and Technology), Ministry of Education, State Environmental Protection Key Laboratory of Environment and Health (Wuhan) and State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, China
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Tian Li
- Key Laboratory of Environment & Health (Huazhong University of Science and Technology), Ministry of Education, State Environmental Protection Key Laboratory of Environment and Health (Wuhan) and State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, China
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Chun-Jie Yuan
- Key Laboratory of Environment & Health (Huazhong University of Science and Technology), Ministry of Education, State Environmental Protection Key Laboratory of Environment and Health (Wuhan) and State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, China
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Shao-Yang Lai
- Shenzhen Luohu District Center for Disease Control and Prevention, Shenzhen, 518020, Guangdong, China
| | - De-Sheng Wu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Fei-Qi Zhu
- Cognitive Impairment Ward of Neurology Department, the Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, 518020, Guangdong, China
| | - Jia-Fei Zhang
- Key Laboratory of Environment & Health (Huazhong University of Science and Technology), Ministry of Education, State Environmental Protection Key Laboratory of Environment and Health (Wuhan) and State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, China
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Jia Huang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Er-Wei Gao
- Key Laboratory of Environment & Health (Huazhong University of Science and Technology), Ministry of Education, State Environmental Protection Key Laboratory of Environment and Health (Wuhan) and State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, China
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Yi-Dan Huang
- Key Laboratory of Environment & Health (Huazhong University of Science and Technology), Ministry of Education, State Environmental Protection Key Laboratory of Environment and Health (Wuhan) and State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, China
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Lu-Lin Nie
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Shao-You Lu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Xi-Fei Yang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Li Zhou
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Fang Ye
- Key Laboratory of Environment & Health (Huazhong University of Science and Technology), Ministry of Education, State Environmental Protection Key Laboratory of Environment and Health (Wuhan) and State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, China
| | - Jing Yuan
- Key Laboratory of Environment & Health (Huazhong University of Science and Technology), Ministry of Education, State Environmental Protection Key Laboratory of Environment and Health (Wuhan) and State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, China.
| | - Jian-Jun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
12
|
Passive smoking and urinary oxidative biomarkers: A pilot study of healthy travelers from Los Angeles to Beijing. Int J Hyg Environ Health 2022; 246:114048. [PMID: 36308780 DOI: 10.1016/j.ijheh.2022.114048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/31/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022]
Abstract
There is a great heterogeneity in smoking prevalence and tobacco control policy across different countries. However, it is unknown whether this heterogeneity could cause increased passive smoking and adverse health effects among international travelers. In this pilot study, we collected 190 urine samples from 26 Los Angeles residents before (LA-before), during (Beijing), and after (LA-after) a 10-week visit to Beijing to measure biomarkers of passive smoking (cotinine), exposure to polycyclic aromatic hydrocarbons (OH-PAHs), and oxidative stress (malondialdehyde, 8-isoprostane, and uric acid). The geometric mean concentrations of urinary cotinine were 0.14, 1.52, and 0.22 μg/g creatinine in LA-before, Beijing, and LA-after, respectively. Likewise, OH-PAH levels were significantly higher in Beijing as compared to LA-before or LA-after, in association with the urinary cotinine levels. One-fold increase in urinary cotinine levels was associated with 10.1% (95% CI: 5.53-14.8%), 8.75% (95% CI: 2.33-15.6%), and 25.4% (95%CI: 13.1-39.1%) increases in urinary levels of malondialdehyde, 8-isoprotane, and uric acid, respectively. OH-PAHs mediated 9.1-23.3% of the pro-oxidative effects associated with passive smoking. Taken together, our findings indicate that traveling to a city with higher smoking prevalence may increase passive smoking exposure, in association with pro-oxidative effects partially mediated by PAHs.
Collapse
|
13
|
Tabatabaei Z, Shamsedini N, Mohammadpour A, Baghapour MA, Hoseini M. Exposure assessment of children living in homes with hookah smoking parents to polycyclic aromatic hydrocarbons: urinary level, exposure predictors, and risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68667-68679. [PMID: 35543784 PMCID: PMC9091547 DOI: 10.1007/s11356-022-20589-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Children are extremely liable to indoor air pollutants as their physiology and a few metabolic pathways are different from those of adults. The present cross-sectional study aimed to assess exposure of children living with parents who use hookah tobacco smoke to polycyclic aromatic hydrocarbons (PAHs) using a biomonitoring approach. The study was conducted on 25 children (7-13 years of age) exposed to hookah smoke at home and 25 unexposed age-matched children. Urinary levels of five metabolites of PAHs were quantified via headspace gas chromatography-mass spectrometry (GC-MS). Urinary malondialdehyde (MDA) was measured, as well. Information regarding the sociodemographic and lifestyle conditions was collected through interviews using managed questionnaires. The urinary 1-OH-NaP and 9-OH-Phe concentrations were respectively 1.7- and 4.6-folds higher in the case samples compared to the control group (p < 0.05). In addition, urinary MDA levels were 1.4 times higher in the exposed children than in the unexposed group, but the difference was not statistically significant (p > 0.05). Increasing the consumption of grilled and meat food in the diet increased the participants' urinary 2-OH-Flu and 1-OH-Pyr levels, respectively. Moreover, sleeping in the living room instead of the bedroom at night was a significant predictor of high 1-OH-NaP and 2-OH-NaP concentrations in the children's urine. Overall, the findings confirmed that children living in their homes with hookah-smoking parents were significantly exposed to naphthalene and phenanthrene. Hence, implementing protective measures is critical to reduce the exposure of this group of children.
Collapse
Affiliation(s)
- Zeynab Tabatabaei
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Shamsedini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Fars Water and Wastewater Company, Shiraz, Iran
| | - Amin Mohammadpour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Baghapour
- Research Center for Health Sciences, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hoseini
- Research Center for Health Sciences, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
14
|
Lin Y, Lu X, Qiu X, Yin F, Faull KF, Tseng CH, Zhang JJ, Fiehn O, Zhu T, Araujo JA, Zhu Y. Arachidonic acid metabolism and inflammatory biomarkers associated with exposure to polycyclic aromatic hydrocarbons. ENVIRONMENTAL RESEARCH 2022; 212:113498. [PMID: 35613629 DOI: 10.1016/j.envres.2022.113498] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/11/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) has been associated with systemic inflammation, yet what mechanisms regulate PAHs' inflammatory effects are less understood. This study evaluated the change of arachidonic acid (ARA) metabolites and inflammatory biomarkers in response to increased exposure to PAHs among 26 non-smoking healthy travelers from Los Angeles to Beijing. Traveling from Los Angeles to Beijing significantly increased urinary metabolites of dibenzofuran (800%), fluorene (568%), phenanthrene (277%), and pyrene (176%), accompanied with increased C-reactive protein, fibrinogen, IL-8, and IL-10, and decreased MCP-1, sCD40L, and sCD62P levels in the blood. Meanwhile, the travel increased the levels of ARA lipoxygenase metabolites that were positively associated with a panel of pro-inflammatory biomarkers. Concentrations of cytochrome P450 metabolite were also increased in Beijing and were negatively associated with sCD62P levels. In contrast, concentrations of ARA cyclooxygenase metabolites were decreased in Beijing and were negatively associated with anti-inflammatory IL-10 levels. Changes in both inflammatory biomarkers and ARA metabolites were reversed 4-7 weeks after participants returned to Los Angeles and were associated with urinary PAH metabolites, but not with other exposures such as secondhand smoke, stress, or diet. These results suggested possible roles of ARA metabolic alteration in PAHs-associated inflammatory effects.
Collapse
Affiliation(s)
- Yan Lin
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Xinchen Lu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing 100871, PR China.
| | - Fen Yin
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kym F Faull
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry & Behavioral Sciences, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Chi-Hong Tseng
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Junfeng Jim Zhang
- Global Health Institute, Nicholas School of the Environment, Duke University, Durham, NC 27705, USA
| | - Oliver Fiehn
- NIH-West Coast Metabolomics Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Tong Zhu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Jesus A Araujo
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA; Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Yifang Zhu
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
15
|
Deng X, Chen B, Luo Q, Zao X, Liu H, Li Y. Hulless barley polyphenol extract inhibits adipogenesis in 3T3-L1 cells and obesity related-enzymes. Front Nutr 2022; 9:933068. [PMID: 35990339 PMCID: PMC9389463 DOI: 10.3389/fnut.2022.933068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
Obesity is characterized by excessive lipid accumulation, hypertrophy, and hyperplasia of adipose cells. Hulless barley (Hordeum vulgare L. var. nudum Hook. f.) is the principal crop grown in the Qinghai-Tibet plateau. Polyphenols, the major bioactive compound in hulless barley, possess antioxidant, anti-inflammatory, and antibacterial properties. However, the anti-obesity effect of hulless barley polyphenol (HBP) extract has not been explored. Therefore, the current study assessed the impact of HBP extract on preventing obesity. For this purpose, we evaluated the inhibitory effect of HBP extract against obesity-related enzymes. Moreover, we investigated the effect of HBP extract on adipocyte differentiation and adipogenesis through 3T3-L1 adipocytes. Our results demonstrated that HBP extract could inhibit α-amylase, α-glucosidase (α-GLU), and lipase in a dose-dependent manner. In addition, HBP extract inhibited the differentiation of 3T3-L1 preadipocytes by arresting the cell cycle at the G0/G1 phase. Furthermore, the extract suppressed the expression of adipogenic transcription factors such as peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), regulating fatty acid synthase (FAS), fatty acid-binding protein 4 (FABP4), and adipose triglyceride lipase (ATGL). It was also observed that HBP extract alleviated intracellular lipid accumulation by attenuating oxidative stress. These findings specify that HBP extract could inhibit obesity-related enzymes, adipocyte differentiation, and adipogenesis. Therefore, it is potentially beneficial in preventing obesity.
Collapse
Affiliation(s)
- Xianfeng Deng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Bi Chen
- School of Life and Health Science, Kaili University, Kaili, China
| | - Qin Luo
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xingru Zao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Haizhe Liu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yongqiang Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
16
|
Urinary Malondialdehyde (MDA) Concentrations in the General Population—A Systematic Literature Review and Meta-Analysis. TOXICS 2022; 10:toxics10040160. [PMID: 35448421 PMCID: PMC9024833 DOI: 10.3390/toxics10040160] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 12/15/2022]
Abstract
Oxidative stress has been associated with various inflammation-related human diseases. It is defined as an imbalance between the production and elimination of reactive oxygen species (ROS). ROS can oxidize proteins, lipids, and DNA, and some of these oxidized products are excreted in urine, such as malondialdehyde (MDA), which is considered a biomarker for oxidative damage of lipids. To interpret changes of this biomarker as a measure of oxidative species overproduction in humans, a background range for urinary MDA concentration in the general population is needed. We sought to establish urinary MDA concentration ranges for healthy adult populations based on reported values in the available scientific literature. We conducted a systematic review and meta-analysis using the standardized protocol registered in PROSPERO (CRD42020146623). EMBASE, PubMed, Web of Science, and Cochrane library databases were searched from journal inception up to October 2020. We included 35 studies (divided into 47 subgroups for the quantitative analysis). Only studies that measured creatinine-corrected urinary MDA with high-performance liquid chromatography (HPLC) with mass spectrometry (MS), fluorescence detection, or UV photometry were included. The geometric mean (GM) of urinary MDA concentration was 0.10 mg/g creatinine and 95% percentile confidence interval (CI) 0.07–0.12. Age, geographical location but not sex, and smoking status had a significant effect on urinary MDA concentrations. There was a significant increasing trend of urinary MDA concentrations with age. These urinary MDA values should be considered preliminary, as they are based on mostly moderate to some low-quality evidence studies. Although urinary MDA can reliably reflect excessive oxidative stress in a population, the influence of physiological parameters that affect its meaning needs to be addressed as well as harmonizing the chemical analytical methods.
Collapse
|
17
|
Rafiee A, Delgado-Saborit JM, Sly PD, Amiri H, Hoseini M. Exploring urinary biomarkers to assess oxidative DNA damage resulting from BTEX exposure in street children. ENVIRONMENTAL RESEARCH 2022; 203:111725. [PMID: 34302825 DOI: 10.1016/j.envres.2021.111725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 05/12/2023]
Abstract
Children are highly susceptible to environmental contaminants as their physiology and some metabolic pathways differ from adults. The present cross-sectional study aimed to assess whether exposure to benzene, toluene, ethylbenzene, o,p-xylene, and m-xylene (BTEX) affects oxidative DNA damage in street children using a biomonitoring approach. Thirty-five boys (7-13 years of age), exposed by working at a busy intersection, and 25 unexposed boys of similar age and living in the neighborhood near the busy intersection were recruited. Urinary un-metabolized BTEX levels were quantified by a headspace gas chromatography-mass spectrometry (GC-MS). Urinary malonaldehyde (MDA) was measured with spectrophotometry. Sociodemographic and lifestyle conditions information was collected by interviews using administered questionnaires. Exposed subjects provided urine before (BE) and after work exposure (AE), while unexposed boys gave a single morning sample. Urinary BTEX concentrations in BE samples were similar to unexposed. Concentrations in AE samples were 2.36-fold higher than observed in BE samples (p < 0.05) and higher than those in the unexposed group (p < 0.05). In addition, urinary MDA levels in AE samples were 3.2 and 3.07-times higher than in BE samples and in the unexposed group (p < 0.05). Environmental tobacco smoke (ETS) increased urinary BTEX and MDA levels in both groups. Our findings confirm that street children working at busy intersections are significantly exposed to BTEX, which is associated with oxidative stress. Implementing protective measures is crucial to reduce exposure and to improve health outcomes in this group.
Collapse
Affiliation(s)
- Ata Rafiee
- Department of Medicine, University of Alberta, Edmonton, AB, Canada.
| | - Juana Maria Delgado-Saborit
- Universitat Jaume I, Perinatal Epidemiology, Environmental Health and Clinical Research, School of Medicine, Castellon, Spain; ISGlobal Barcelona Institute for Global Health, Barcelona Biomedical Research Park, Barcelona, Spain; Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, United Kingdom; Division of Environmental Health & Risk Management, School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Center, The University of Queensland, South Brisbane, Australia
| | - Hoda Amiri
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hoseini
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
18
|
Lin Y, Wang X, Lenz L, Ndiaye O, Qin J, Wang X, Huang H, Jeuland MA, Zhang J. Dried Blood Spot Biomarkers of Oxidative Stress and Inflammation Associated with Blood Pressure in Rural Senegalese Women with Incident Hypertension. Antioxidants (Basel) 2021; 10:antiox10122026. [PMID: 34943129 PMCID: PMC8698702 DOI: 10.3390/antiox10122026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Blood biomarkers of oxidative stress and inflammation have been associated with increased risk of hypertension development; yet their application in sub-Saharan Africa has been limited due to the lack of blood collection facilities. In this study, we evaluated the usefulness of dried blood spots (DBS), a more feasible alternative to venous blood, in rural sub-Saharan residents. We recruited 342 women with incident hypertension from rural Senegal, and measured C-reactive protein (CRP) and malondialdehyde (MDA) in DBS and concurrent blood pressure (BP) at baseline and 1-year follow-up. Associations of DBS biomarkers with current levels of and 1-year changes in BP were examined after adjusting for demographic, medical, and socioeconomic covariates. DBS concentrations of MDA were significantly associated with concurrent systolic BP (SBP) (p < 0.05), while DBS baseline concentrations of CRP were associated with longitudinal changes in SBP between baseline and follow-up. Compared to participants with baseline CRP < 1 mg/L, those with CRP of 1–3 mg/L and 3–10 mg/L had 2.11 mmHg (95%CI: −2.79 to 7.02 mmHg) and 4.68 mmHg (95%CI: 0.01 to 9.36 mmHg) increases in SBP at follow-up, respectively. The results support the use of DBS biomarkers for hypertension prevention and control, especially in settings with limited clinical resources.
Collapse
Affiliation(s)
- Yan Lin
- Nicholas School of the Environment & Duke Global Health Institute, Duke University, Durham, NC 27705, USA; (Y.L.); (X.W.); (J.Q.); (X.W.); (H.H.)
| | - Xiangtian Wang
- Nicholas School of the Environment & Duke Global Health Institute, Duke University, Durham, NC 27705, USA; (Y.L.); (X.W.); (J.Q.); (X.W.); (H.H.)
| | - Luciane Lenz
- RWI Leibniz Institute for Economic Research, 10115 Berlin, Germany; (L.L.); (M.A.J.)
| | - Ousmane Ndiaye
- Centre de Recherche pour le Développement Economique et Social (CRDES), Université Gaston-Berger, Saint-Louis, P.O. Box 234, Senegal;
| | - Jian Qin
- Nicholas School of the Environment & Duke Global Health Institute, Duke University, Durham, NC 27705, USA; (Y.L.); (X.W.); (J.Q.); (X.W.); (H.H.)
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Xiaoli Wang
- Nicholas School of the Environment & Duke Global Health Institute, Duke University, Durham, NC 27705, USA; (Y.L.); (X.W.); (J.Q.); (X.W.); (H.H.)
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300387, China
| | - Hui Huang
- Nicholas School of the Environment & Duke Global Health Institute, Duke University, Durham, NC 27705, USA; (Y.L.); (X.W.); (J.Q.); (X.W.); (H.H.)
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Marc A. Jeuland
- RWI Leibniz Institute for Economic Research, 10115 Berlin, Germany; (L.L.); (M.A.J.)
- Sanford School of Public Policy and Duke Global Health Institute, Duke University, Durham, NC 27705, USA
| | - Junfeng Zhang
- Nicholas School of the Environment & Duke Global Health Institute, Duke University, Durham, NC 27705, USA; (Y.L.); (X.W.); (J.Q.); (X.W.); (H.H.)
- Correspondence:
| |
Collapse
|
19
|
Slama T, Nouet J, Chassefière E, Trigui El Menif N, Lahbib Y. Monitoring of coastal pollution using shell alterations in the false limpet Siphonaria pectinata. MARINE POLLUTION BULLETIN 2021; 173:113063. [PMID: 34717221 DOI: 10.1016/j.marpolbul.2021.113063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Lipid peroxidation level (LPO), shell biometry, shape, elemental content, and microstructure were studied in three populations of Siphonaria pectinata in the complex lagoon-channel of Bizerte across a coastal pollution gradient (northern Tunisia). LPO was found in higher concentrations in harbour populations, and shells had centred apex and were flattened. Shells were also thicker, particularly in the inner layer, with many fibrous inter-beds formed. Difference in crystallization pattern was observed in numerous shells from all three populations, being more common in harbours. From the control station to the contaminated stations, shell elemental changes were observed, with a decrease in Ca, P, Sr, and S and an increase in Cl, Cd, Cu, Fe, and K. All of these findings suggested that shell alterations could be used as a good biomarker for coastal contamination.
Collapse
Affiliation(s)
- Tasnime Slama
- Université de Carthage, Faculté des Sciences de Bizerte, LR01ES14, Laboratoire de Biosurveillance de l'Environnement, 7021 Zarzouna, Tunisie
| | - Julius Nouet
- Université Paris-Saclay, CNRS, GEOPS, 91405, Orsay, France
| | | | - Najoua Trigui El Menif
- Université de Carthage, Faculté des Sciences de Bizerte, LR01ES14, Laboratoire de Biosurveillance de l'Environnement, 7021 Zarzouna, Tunisie
| | - Youssef Lahbib
- Université de Carthage, Faculté des Sciences de Bizerte, LR01ES14, Laboratoire de Biosurveillance de l'Environnement, 7021 Zarzouna, Tunisie; Université de Tunis, Institut Supérieur des Métiers du Patrimoine de Tunis, Tunisie.
| |
Collapse
|
20
|
Zhu H, Martinez-Moral MP, Kannan K. Variability in urinary biomarkers of human exposure to polycyclic aromatic hydrocarbons and its association with oxidative stress. ENVIRONMENT INTERNATIONAL 2021; 156:106720. [PMID: 34166875 PMCID: PMC8380707 DOI: 10.1016/j.envint.2021.106720] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/13/2021] [Accepted: 06/11/2021] [Indexed: 05/04/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants. Urinary concentrations of mono-hydroxylated metabolites of PAHs (OH-PAHs) have been used as biomarkers of these chemicals' exposure in humans. Little is known, however, with regard to intra- and inter-individual variability in OH-PAH concentrations and their association with oxidative stress. We conducted a longitudinal study of measurement of urinary concentrations of 15 OH-PAHs and 7 oxidative stress biomarkers (OSBs) of DNA damage [8-hydroxy-2'-deoxyguanosine (8-OHdG)], lipid [malondialdehyde (MDA) and F2-isoprostanes (PGF2α)] and protein [o,o'-dityrosine (diY)] peroxidation in 19 individuals for 44 consecutive days. Metabolites of naphthalene (OHNap), fluorene (OHFlu), phenanthrene (OHPhe), and pyrene (OHPyr) were found in >70% of 515 urine samples analyzed, at sum concentrations (∑OH-PAH) measured in the range of 0.46-60 ng/mL. After adjusting for creatinine, OHNap and ∑OH-PAH concentrations exhibited moderate predictability, with intra-class correlation coefficients (ICCs) ranging from 0.359 to 0.760. However, ICC values were low (0.001-0.494) for OHFlu, OHPhe, and OHPyr, which suggested poor predictability for these PAH metabolites. Linear mixed-effects analysis revealed that an unit increase in ∑OH-PAH concentration corresponded to 4.5%, 5.3%, 20%, and 21% increase in respective urinary 8-OHdG, MDA, PGF2α, and diY concentrations, suggesting an association with oxidative damage to DNA, lipids, and proteins. The daily intakes of PAHs, calculated from urinary concentrations of OH-PAHs, were 10- to 100-fold below the current reference doses. This study provides valuable information to design sampling strategies in biomonitoring studies and in assigning exposure classifications of PAHs in epidemiologic studies.
Collapse
Affiliation(s)
- Hongkai Zhu
- Department of Pediatrics and Department of Environmental Medicine, New York University, School of Medicine, New York, NY 10016, United States
| | - Maria-Pilar Martinez-Moral
- Department of Pediatrics and Department of Environmental Medicine, New York University, School of Medicine, New York, NY 10016, United States
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University, School of Medicine, New York, NY 10016, United States.
| |
Collapse
|
21
|
Zhu K, Browne RW, Blair RH, Bonner MR, Tian M, Niu Z, Deng F, Farhat Z, Mu L. Changes in arachidonic acid (AA)- and linoleic acid (LA)-derived hydroxy metabolites and their interplay with inflammatory biomarkers in response to drastic changes in air pollution exposure. ENVIRONMENTAL RESEARCH 2021; 200:111401. [PMID: 34089746 PMCID: PMC11483949 DOI: 10.1016/j.envres.2021.111401] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/20/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Untargeted metabolomics analyses have indicated that fatty acids and their hydroxy derivatives may be important metabolites in the mechanism through which air pollution potentiates diseases. This study aimed to use targeted analysis to investigate how metabolites in arachidonic acid (AA) and linoleic acid (LA) pathways respond to short-term changes in air pollution exposure. We further explored how they might interact with markers of antioxidant enzymes and systemic inflammation. METHODS This study included a subset of participants (n = 53) from the Beijing Olympics Air Pollution (BoaP) study in which blood samples were collected before, during, and after the Beijing Olympics. Hydroxy fatty acids were measured by liquid chromatography/mass spectrometry (LC/MS). Native total fatty acids were measured as fatty acid methyl esters (FAMEs) using gas chromatography. A set of chemokines were measured by ELISA-based chemiluminescent assay and antioxidant enzyme activities were analyzed by kinetic enzyme assays. Changes in levels of metabolites over the three time points were examined using linear mixed-effects models, adjusting for age, sex, body mass index (BMI), and smoking status. Pearson correlation and repeated measures correlation coefficients were calculated to explore the relationships of metabolites with levels of serum chemokines and antioxidant enzymes. RESULTS 12-hydroxyeicosatetraenoic acid (12-HETE) decreased by 50.5% (95% CI: -66.5, -34.5; p < 0.0001) when air pollution dropped during the Olympics and increased by 119.4% (95% CI: 36.4, 202.3; p < 0.0001) when air pollution returned to high levels after the Olympics. In contrast, 13-hydroxyoctadecadienoic acid (13-HODE) elevated significantly (p = 0.023) during the Olympics and decreased nonsignificantly after the games (p = 0.104). Interleukin 8 (IL-8) correlated with 12-HETE (r = 0.399, BH-adjusted p = 0.004) and 13-HODE (r = 0.342, BH-adjusted p = 0.014) over the three points; it presented a positive and moderate correlation with 12-HETE during the Olympics (r = 0.583, BH-adjusted p = 0.002) and with 13-HODE before the Olympics (r = 0.543, BH-adjusted p = 0.008). CONCLUSION AA- and LA-derived hydroxy metabolites are associated with air pollution and might interact with systemic inflammation in response to air pollution exposure.
Collapse
Affiliation(s)
- Kexin Zhu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Richard W Browne
- Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Rachael Hageman Blair
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Matthew R Bonner
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Mingmei Tian
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Zhongzheng Niu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Furong Deng
- Department of Occupational and Environmental Health, School of Public Health, Peking University, Beijing, China
| | - Zeinab Farhat
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Lina Mu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| |
Collapse
|
22
|
Yang Z, Lin Y, Wang S, Liu X, Cullinan P, Chung KF, Zhang J. Urinary Amino-Polycyclic Aromatic Hydrocarbons in Urban Residents: Finding a Biomarker for Residential Exposure to Diesel Traffic. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10569-10577. [PMID: 34264064 DOI: 10.1021/acs.est.1c01549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Despite substantial evidence of marked exposure to and ill-health effects from diesel exhaust (DE) emissions among occupational population (e.g., miners, truck drivers, and taxi drivers), it is less understood to what extent non-occupational population was exposed to DE among various combustion sources, largely due to the lack of biomarkers that would indicate specific exposure to DE. We evaluated whether urinary amino-polycyclic aromatic hydrocarbons (APAHs), such as major metabolites of DE-specific nitrated PAHs, can be used as DE exposure biomarkers in residential settings. We measured five urinary APAHs in 177 urine samples from 98 UK residents, 89 (91%) of them were London residents, and estimated their residential proximity to various traffic indicators (e.g., the road type, road length, traffic flow, and traffic volume). Participants living within 100 m of major roads exhibited increased levels of all five APAHs, among which 2-amino-fluorene (2-AFLU) reached statistical significance (p < 0.05). We estimated that a 10 m increase in the length of nearby major roads (<100 m) was associated with a 4.4% (95% CI of 1.1 to 7.6%) increase in 2-AFLU levels. Levels of 2-AFLU were significantly associated with the traffic flow of nearby buses and heavy-duty vehicles but not motorbikes, taxis, or coaches. We did not observe a significant association between distance to major roads or the sum of the major road length within 100 m with the other four biomarker concentrations. These results suggest the use of urinary 2-AFLU as a biomarker of DE exposure in urban residents.
Collapse
Affiliation(s)
- Zhenchun Yang
- Global Health Research Center, Duke Kunshan University, Kunshan, Jiangsu Province 215316, China
| | - Yan Lin
- Nicholas School of the Environment and Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| | - Stella Wang
- Nicholas School of the Environment and Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| | - Xing Liu
- Nicholas School of the Environment and Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| | - Paul Cullinan
- National Heart & Lung Institute, Imperial College London, London SW7 2AZ, U.K
| | - Kian Fan Chung
- National Heart & Lung Institute, Imperial College London, London SW7 2AZ, U.K
| | - Junfeng Zhang
- Global Health Research Center, Duke Kunshan University, Kunshan, Jiangsu Province 215316, China
- Nicholas School of the Environment and Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
23
|
Liu J, Chen X, Qiu X, Zhang H, Lu X, Li H, Chen W, Zhang L, Que C, Zhu T. Association between exposure to polycyclic aromatic hydrocarbons and lipid peroxidation in patients with chronic obstructive pulmonary disease. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146660. [PMID: 34030292 DOI: 10.1016/j.scitotenv.2021.146660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are toxic airborne pollutants and may cause adverse effects at high level of oxidative stress. Here we hypothesized that individuals with impaired lung function are susceptible to PAHs associated oxidative damage. Hence, we carried out a panel study and conducted four follow-up visits on 40 chronic obstructive pulmonary disease (COPD) patients and 75 healthy controls. Hydroxylated PAHs (OH-PAHs) and malonaldehyde (MDA) were measured in urine as exposure and oxidative stress markers, respectively, which showed significant association in all participants. Quantitatively, a 1-fold increase in OH-PAHs was associated with a 4.1-15.1% elevation of MDA. The association between OH-PAHs and MDA levels became stronger in participants with impaired lung function. For 1% decrease of FEV1/FVC, the increase of MDA associated with a 1-fold increase in OH-PAHs was up to 0.49%, suggesting an increased susceptibility to PAH-induced oxidative damage in individuals with worse lung function. This study observed that impaired lung function modified the association between PAH exposure and oxidative damage, which might accelerate the aggravation of COPD, and therefore highlighted the necessity of protection measures to decrease the additional adverse effects of air pollution exposure. CAPSULE: Individuals with worse lung function may be more susceptible to PAH-induced lipid peroxidation.
Collapse
Affiliation(s)
- Jinming Liu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Xi Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, PR China.
| | - Hanxiyue Zhang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Xinchen Lu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Haonan Li
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Wu Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Lina Zhang
- Shichahai Community Health Center, Xicheng District, Beijing 100035, PR China
| | - Chengli Que
- Peking University First Hospital, Peking University, Beijing 100034, PR China
| | - Tong Zhu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, PR China
| |
Collapse
|
24
|
Cheng S, Zhang H, Wang P, Zou K, Duan X, Wang S, Yang Y, Shi L, Wang W. Benchmark dose analysis for PAHs hydroxyl metabolites in urine based on mitochondrial damage of peripheral blood leucocytes in coke oven workers in China. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103675. [PMID: 34033865 DOI: 10.1016/j.etap.2021.103675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVES The aim was to explore the dose-response relationship between occupational polycyclic aromatic hydrocarbons (PAHs) exposure and mitochondrial damage in coke oven plants workers. METHODS 544 workers and 238 healthy people were recruited. The ultra-high performance liquid chromatography was used to determine the level of 1-hydroxypyrene, 1-hydroxynaphthalene, 2-hydroxynaphthalene and 3-hydroxyphenanthrene. The real-time fluorescence quantitative polymerase chain reaction was used to determine the mitochondrial DNA copy number (mtDNAcn). The benchmark dose software was used to analyze the benchmark dose. RESULTS The mtDNAcn in the exposure group was lower than that in the control group. The concentrations of 1-hydroxypyrene, 1-hydroxynaphthalene, 2-hydroxynaphthalene and 3-hydroxyphenanthrene in the exposure group were higher than those in the control group. There is a dose-response relationship between 1-hydroxypyrene, 3-hydroxyphenanthrene and mitochondrial DNA damage. The benchmark dose lower confidence limit (BMDL) of 1-hydroxypyrene were 0.045, 0.004, and 0.058 pg/μg creatinine in the total, male, and female population, respectively. The BMDL of 3-hydroxyphenanthrene were 5.142, 6.099, and 2.807 pg/μg creatinine in the total, male, and female population, respectively. CONCLUSIONS The BMDL of 1-hydroxypyrene and 3-hydroxyphenanthrene initially explored can provide a reference to establish occupational exposure biological limits.
Collapse
Affiliation(s)
- Shuai Cheng
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Hui Zhang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Pengpeng Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Kaili Zou
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoran Duan
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Sihua Wang
- Henan Provincial Institute of Occupational Health, Zhengzhou, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Liuhua Shi
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Wei Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, China; The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, China.
| |
Collapse
|
25
|
Chen Q, Wang F, Yang H, Wang X, Zhang A, Ling X, Li L, Zou P, Sun L, Huang L, Chen H, Ao L, Liu J, Cao J, Zhou N. Exposure to fine particulate matter-bound polycyclic aromatic hydrocarbons, male semen quality, and reproductive hormones: The MARCHS study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116883. [PMID: 33794416 DOI: 10.1016/j.envpol.2021.116883] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/19/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Exposure to outdoor fine particulate matter (PM2.5)-bound polycyclic aromatic hydrocarbons (PAHs) is linked to reproductive dysfunction. However, it is unclear which component of PAHs is responsible for the adverse outcomes. In the Male Reproductive Health in Chongqing College Students (MARHCS) cohort study, we measured the exposure levels of 16 PAHs by collecting air PM2.5 particles and assessed eight PAHs metabolites from four parent PAHs, including naphthalene, fluorene, phenanthrene, and pyrene in urine samples. We investigated compositional profiles and variation characteristics for 16 PAHs in PM2.5, and then assessed the association between PAHs exposure and semen routine parameters, sperm chromatin structure, and serum hormone levels in 1452 samples. The results showed that naphthalene (95% CI: -17.989, -8.101), chrysene (95% CI: -64.894, -47.575), benzo[a]anthracene (95% CI: -63.227, -45.936) and all the high molecular weight (HMW) PAHs in PM2.5 were negatively associated with sperm normal morphology. Most of the low molecular weight (LMW) PAHs, such as acenaphthylene, fluorene, phenanthrene, fluoranthene, pyrene, chrysene, benzo[a]anthracene, ∑LMW PAHs and ∑16 PAHs, were correlated with increased sperm motility (all corrected P < 0.05). On the other hand, sperm normal morphology was all negatively associated with urinary metabolites of ∑OH-Nap (95% CI: -5.611, -0.536), ∑OH-Phe (95% CI: -5.741, -0.957), and ∑OH-PAHs (95% CI: -5.274, -0.361). Urinary concentrations of ∑OH-PAHs were found to be negatively associated with sperm high DNA stainability (HDS) (P = 0.023), while ∑OH-Phe were negatively associated with serum testosterone level and sperm HDS (P = 0.004). Spearman correlation analysis showed that except for the urinary OH-Nap metabolites, the rest of the urinary OH-PAHs metabolites were negatively correlated with their parent PAHs in air. The results of this study suggest that various PAHs' components may affect reproductive parameters differently. Inhalation of PAHs in air, especially HMW PAHs, may be a potential risk factor for male reproductive health.
Collapse
Affiliation(s)
- Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Furong Wang
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Huan Yang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaogang Wang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Aihua Zhang
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xi Ling
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lianbing Li
- Key Laboratory of Birth Defects and Reproductive Health of the National Health and Family Planning Commission, Chongqing, China
| | - Peng Zou
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lei Sun
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Linping Huang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hongqiang Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lin Ao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jinyi Liu
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jia Cao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Niya Zhou
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
26
|
Chen D, Liu R, Lin Q, Ma S, Li G, Yu Y, Zhang C, An T. Volatile organic compounds in an e-waste dismantling region: From spatial-seasonal variation to human health impact. CHEMOSPHERE 2021; 275:130022. [PMID: 33647682 DOI: 10.1016/j.chemosphere.2021.130022] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
The dismantling of electrical and electronic waste (e-waste) can release various Volatile organic compounds (VOCs), impacting the surrounding ambient environment. We investigated the spatio-temporal characteristics and health risks of the ambient VOCs emitted in a typical e-waste dismantling region by conducting multi-site sampling campaigns in four seasons. The pollution of benzene, toluene, ethylbenzene, and xylenes (BTEX) in the e-waste dismantling park has relation to e-waste dismantling by seasonal trend analysis. The highest concentrations of most VOCs occurred in winter and autumn, while the lowest levels were observed in summer and spring. The spatial distribution map revealed the e-waste dismantling park to be a hotspot of BTEX, 1,2-dichloropropane (1,2-DCP), and 1,2-dichloroethane (1,2-DCA), while two major residential areas were also the hotspots of BTEX. The e-waste emission source contributed 20.14% to the total VOCs in the e-waste dismantling park, while it was absent in the major residential and rural areas. The cancer risk assessment showed that six VOCs exceeded 1.0 × 10-6 in the e-waste dismantling park, while only three or four compounds exceeded this risk in other areas. The noncancer risks of all compounds were below the safety threshold. This study supplements the existing knowledge on VOC pollution from e-waste dismantling and expands the research scope of chemical pollution caused by e-waste.
Collapse
Affiliation(s)
- Daijin Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ranran Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qinhao Lin
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chaosheng Zhang
- GIS Centre, Ryan Institute and School of Geography and Archaeology, National University of Ireland, Galway, Ireland
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
27
|
Vilcassim MJR, Callahan AE, Zierold KM. Travelling to polluted cities: a systematic review on the harm of air pollution on international travellers' health. J Travel Med 2021; 28:6210993. [PMID: 33823002 DOI: 10.1093/jtm/taab055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 01/22/2023]
Abstract
RATIONALE FOR REVIEW In 2019, approximately, 1.4 billion people travelled internationally. Many individuals travel to megacities where air pollution concentrations can vary significantly. Short-term exposure to air pollutants can cause morbidity and mortality related to cardiovascular and respiratory disease, with the literature clearly reporting a strong association between short-term exposure to particulate matter ≤2.5 μm and ozone with adverse health outcomes in resident populations. However, limited research has been conducted on the health impacts of short-term exposure to air pollution in individuals who travel internationally. The objective of this systematic review was to review the evidence for the respiratory and cardiovascular health impacts from exposure to air pollution during international travel to polluted cities in adults aged ≥18 years old. KEY FINDINGS We searched PubMed, Scopus and EMBASE for studies related to air pollution and the health impacts on international travellers. Of the initially identified 115 articles that fit the search criteria, 6 articles were selected for the final review. All six studies found indications of adverse health impacts of air pollution exposure on international travellers, with most of the changes being reversible upon return to their home country/city. However, none of these studies contained large populations nor investigated vulnerable populations, such as children, elderly or those with pre-existing conditions. CONCLUSIONS More research is warranted to clearly understand the impacts of air pollution related changes on travellers' health, especially on vulnerable groups who may be at higher risk of adverse impacts during travel to polluted cities.
Collapse
Affiliation(s)
- M J Ruzmyn Vilcassim
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amy E Callahan
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kristina M Zierold
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
28
|
Lu X, Lin Y, Qiu X, Liu J, Zhu T, Araujo JA, Zhang J, Zhu Y. Metabolomic Changes after Subacute Exposure to Polycyclic Aromatic Hydrocarbons: A Natural Experiment among Healthy Travelers from Los Angeles to Beijing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5097-5105. [PMID: 33683876 DOI: 10.1021/acs.est.0c07627] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Emerging epidemiological evidence has associated exposure to polycyclic aromatic hydrocarbons (PAHs) with chronic diseases including cardiometabolic diseases and neurodegeneration. However, little information is available about their subacute effects, which may accumulate over years and contribute to chronic disease development. To fill this knowledge gap, we designed a natural experiment among 26 healthy young adults who were exposed to elevated PAHs for 10 weeks after traveling from Los Angeles to Beijing in 2014 and 2015. Serum was collected before, during, and after the trip for metabolomics analysis. We identified 50 metabolites that significantly changed 6-8 weeks after the travel to Beijing (FDR < 5%). The network analysis revealed two main independent modules. Module 1 was allocated to oxidative homeostasis-related response and module 2 to delayed enzymatic deinduction response. Remarkably, the module 1 metabolites were recovered 4-7 weeks after participants' return, while the module 2 metabolites were not. Urinary hydroxylated PAHs were significantly associated with metabolites from both modules, while PAH carboxylic acids, likely metabolites of alkylated PAHs, were only associated with antioxidation-related metabolites. These results suggested differential subacute effects of unsubstituted and alkylated PAHs. Further studies are warranted to elucidate the role of the reversibility of metabolite changes in adverse health effects of PAHs.
Collapse
Affiliation(s)
- Xinchen Lu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, P. R. China
| | - Yan Lin
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, California 90095, United States
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California 90095, United States
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, P. R. China
| | - Jinming Liu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, P. R. China
| | - Tong Zhu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, P. R. China
| | - Jesus A Araujo
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, California 90095, United States
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California 90095, United States
| | - Junfeng Zhang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, P. R. China
- Nicholas School of the Environment and Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| | - Yifang Zhu
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
29
|
Lin Y, Gao X, Qiu X, Liu J, Tseng CH, Zhang JJ, Araujo JA, Zhu Y. Urinary carboxylic acid metabolites as possible novel biomarkers of exposures to alkylated polycyclic aromatic hydrocarbons. ENVIRONMENT INTERNATIONAL 2021; 147:106325. [PMID: 33340988 DOI: 10.1016/j.envint.2020.106325] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/31/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Previous studies have found that alkylated polycyclic aromatic hydrocarbons (alkyl-PAHs) were more abundant in petrogenic sources (e.g., crude oil and its refined products) than pyrogenic sources of incomplete combustion. While urinary hydroxylated metabolites of unsubstituted PAHs have been widely used as biomarkers of PAHs exposures, little information is available as to the occurrence of alkyl-PAH metabolites. In this study, we have detected carboxylic acid metabolites of alkyl-naphthalene (2-NAPCA) and alkyl-phenanthrene (2-PHECA) in 314 urine samples repeatedly collected from 45 Los Angeles residents before, during, and after they spent ten weeks in Beijing in summers of 2014-2017. We found that traveling from Los Angeles to Beijing led to 348% (95% CI: 243 to 485%) and 209% (95% CI: 149 to 282%) increases in 2-NAPCA and 2-PHECA concentrations, respectively, which returned to baseline levels after participants came back to Los Angeles. The concentration ratio between 2-PHECA and hydroxy-phenanthrenes was significantly (p < 0.05) lower in Beijing (median: 0.40, IQR: 0.27-0.53) than in Los Angeles (median: 0.51, IQR: 0.32-0.77), where more than 5,000 active gas and oil wells were located. From 2014 to 2017, the concentration ratio of 2-PHECA to hydroxy-phenanthrenes increased by 28.7 (95%CI: 12.3 to 47.6) %/yr in Los Angeles and 18.6 (95%CI: 7.9 to 30.3) %/yr in Beijing, likely resulted from both cities' efforts to reduce pyrogenic emissions (e.g. vehicle exhaust). These results provided indirect evidence supporting the use of 2-PHECA to hydroxy-phenanthrene ratio as an index to reflect the relative exposure contributions from petrogenic and pyrogenic sources. While our study suggested that urinary PAHCAs may be novel biomarkers of exposure to alkyl-PAHs, future studies with external exposure characterization are warranted to further validate these biomarkers.
Collapse
Affiliation(s)
- Yan Lin
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Xueyao Gao
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, PR China.
| | - Jinming Liu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Chi-Hong Tseng
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Junfeng Jim Zhang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, PR China; Nicholas School of the Environment and Global Health Institute, Duke University, Durham, NC, United States
| | - Jesus A Araujo
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, United States; Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Yifang Zhu
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, United States.
| |
Collapse
|
30
|
Lin Y, Qiu X, Liu J, Tseng CH, Allard P, Araujo JA, Zhu Y. Different temporal trends of exposure to Bisphenol A among international travelers between Los Angeles and Beijing. ENVIRONMENT INTERNATIONAL 2020; 141:105758. [PMID: 32402980 PMCID: PMC7283011 DOI: 10.1016/j.envint.2020.105758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 05/19/2023]
Abstract
Recent studies suggested a significant downward trend in population's exposure to bisphenol A (BPA) in the United States. However, the temporal trend of BPA exposure remains unclear in China - a populous country with substantial industrial activities but less efforts made to phase out BPA in consumer products. In addition, it is unclear to what extent a visit from the United States to China could affect human exposure to BPA. In this natural experiment, we measured the concentration of total BPA in 418 urine samples repeatedly collected from 55 Los Angeles residents before, during, and after they spent 10 weeks in Beijing from 2012 to 2017. We found that traveling from Los Angeles to Beijing led to a 2.91-fold (95% CI: 2.43 to 3.50) increase in urinary BPA levels, which fully returned to baseline after study participants came back to Los Angeles. From 2012 to 2017, urinary BPA concentrations decreased in Los Angeles by 25.5% per year (95% CI: -30.8% to -19.8%; p < 0.001) but did not change in Beijing (p = 0.24). Consequently, the concentration ratio of urinary BPA between Beijing and Los Angeles increased from 1.23 (95% CI: 0.82 to 1.85) in 2012 to 4.05 (95% CI: 2.75 to 5.97) in 2017. These results indicate that BPA exposures may increase among international travelers to China. Additional efforts are needed to reduce population's exposure to BPA in China.
Collapse
Affiliation(s)
- Yan Lin
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, PR China.
| | - Jinming Liu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Chi-Hong Tseng
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Patrick Allard
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Jesus A Araujo
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, United States; Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Yifang Zhu
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, United States.
| |
Collapse
|
31
|
Zhang H, Han Y, Qiu X, Wang Y, Li W, Liu J, Chen X, Li R, Xu F, Chen W, Yang Q, Fang Y, Fan Y, Wang J, Zhang H, Zhu T. Association of internal exposure to polycyclic aromatic hydrocarbons with inflammation and oxidative stress in prediabetic and healthy individuals. CHEMOSPHERE 2020; 253:126748. [PMID: 32464779 DOI: 10.1016/j.chemosphere.2020.126748] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are key air pollutants that may contribute to the risk of numerous diseases by inducing inflammation and oxidative stress. Individuals with metabolic disorders may be more susceptible to PAH-induced inflammation and oxidative stress. To test this hypothesis, we designed a panel study involving 60 patients with pre-type 2 diabetes (pre-T2D) and 60 reference participants, and conducted up to seven repeated clinical examinations. Urinary metabolites of PAHs (i.e., OH-PAHs), measured as indicators of total PAH exposure, showed significant associations with markers of respiratory and systemic inflammation, including exhaled nitric oxide, interleukin (IL)-6 in exhaled breath condensate, and blood IL-2 and IL-8 levels and leucocyte count. The most significant effect was on urinary malondiadehyde (MDA), a marker of lipid peroxidation; a onefold increase of OH-PAHs was associated with 9.2-46.0% elevation in MDA in pre-T2D participants and 9.8-31.2% increase in healthy references. Pre-T2D participants showed greater increase in MDA, suggesting that metabolic disorder enhanced the oxidative damage induced by PAH exposure. This study revealed the association between PAH exposure and markers of inflammation and oxidative stress, and the enhanced responses of pre-T2D patients suggested that individuals with metabolic disorders were more susceptible to the adverse health effects of PAH exposure.
Collapse
Affiliation(s)
- Hanxiyue Zhang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Yiqun Han
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China; Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China.
| | - Yanwen Wang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Weiju Li
- Peking University Hospital, Peking University, Beijing, 100871, PR China
| | - Jinming Liu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Xi Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Ran Li
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Fanfan Xu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Wu Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Qiaoyun Yang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Yanhua Fang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Yunfei Fan
- Peking University Hospital, Peking University, Beijing, 100871, PR China
| | - Junxia Wang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Hongyin Zhang
- Peking University Hospital, Peking University, Beijing, 100871, PR China
| | - Tong Zhu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| |
Collapse
|
32
|
Zhao X, Yang A, Fu Y, Zhang B, Li X, Pan B, Li Q, Dong J, Nie J, Yang J. Reduction of mitochondrial DNA copy number in peripheral blood is related to polycyclic aromatic hydrocarbons exposure in coke oven workers: Bayesian kernel machine regression. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114026. [PMID: 32006885 DOI: 10.1016/j.envpol.2020.114026] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/04/2020] [Accepted: 01/19/2020] [Indexed: 06/10/2023]
Abstract
Although association between polycyclic aromatic hydrocarbons (PAHs) exposure and mitochondrial DNA copy number (mtDNAcn) was researched by traditional linear model extensively, most of these studies analyzed independent effect of each PAHs metabolite and adjust for the confounding other metabolites concomitantly, without considering others interactions. As a complex organic pollutant, a reasonable statistical method is needed to study toxic effects of PAHs. Therefore, we aimed to conduct a novel statistical approach, Bayesian Kernel Machine Regression (BKMR), to explore the effect of PAHs exposure on mtDNAcn among coke oven workers. In this cross-sectional study, the concentrations urinary of PAHs metabolites were measured using high performance liquid chromatography mass spectrometry (HPLC-MS). The mtDNAcn was measured using real-time quantitative polymerase chain reaction (RT-PCR) in peripheral blood of 696 Chinese coke oven workers. The relationship of urinary of PAHs metabolites and mtDNAcn were evaluated by BKMR model. And the results showed a significant negative effect of PAHs metabolites on mtDNAcn when PAHs metabolites concentrations were all above 35th percentile compared to the median and the statistically significant negative single-exposure effect of 2-OHNAP and 2-OHPHE on mtDNAcn when all of the other PAHs are fixed at a particular threshold (25th, 50th, 75th percentile). The changes in log 2-OHNAP and 2-OHPHE from the 25th to the 75th percentile when other PAHs metabolites were at the 50th percentile were associated with change in mtDNAcn of -0.082 (-0.021, -0.124) and -0.048 (-0.021, -0.090) respectively. And evidence of a linear effect of urinary 2-OHNAP and 2-OHPHE were found. Finally, our findings suggested that PAHs cumulative exposures and particularly single-exposure of 2-OHNAP and 2-OHPHE might compromise mitochondrial function by decreasing mtDNAcn in Chinese coke oven workers.
Collapse
Affiliation(s)
- Xinyu Zhao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Aimin Yang
- Hong Kong Institutes of Diabetes and Obesity, The Chinese University of Hong Kong, Taiyuan, 030001, Shanxi, China
| | - Ye Fu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Bin Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xuejing Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Baolong Pan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; General Hospital of Taiyuan Iron & Steel (Group) Co., Ltd, Taiyuan, 030001, Shanxi, China
| | - Qiang Li
- Center of Occupational Disease Prevention, Xishan Coal Electricity (Group) Co., Ltd, Taiyuan, 030001, Shanxi, China
| | - Jun Dong
- Center of Occupational Disease Prevention, Xishan Coal Electricity (Group) Co., Ltd, Taiyuan, 030001, Shanxi, China
| | - Jisheng Nie
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jin Yang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
33
|
Thai PK, Banks APW, Toms LML, Choi PM, Wang X, Hobson P, Mueller JF. Analysis of urinary metabolites of polycyclic aromatic hydrocarbons and cotinine in pooled urine samples to determine the exposure to PAHs in an Australian population. ENVIRONMENTAL RESEARCH 2020; 182:109048. [PMID: 31865166 DOI: 10.1016/j.envres.2019.109048] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 05/25/2023]
Abstract
Our previous biomonitoring study of hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) in a population in Australia found high levels of 1-naphthol, a metabolite of both naphthalene and carbaryl, in some adult samples. Here, we conducted a follow-up study to collect and analyse pooled urine samples, stratified by age and sex, from 2014 to 2017 using a GC-MS method. Geometric mean concentrations of 1-hydroxypyrene, the most common biomarker of PAH exposure, were 100 and 120 ng/L urine in 2014-2015 and 2016-2017, respectively. The concentrations of most OH-PAHs in this study except 1-naphthol are in line with those reported by biomonitoring programs in the US and Canada. In general, concentrations of OH-PAHs are lower in samples from small children (0-4 years) and school-aged children (5-14 years) compared with samples from the older age groups, except for some cases in the recent monitoring period. The concentrations of 1-naphthol in some adult samples of both sexes are very high, which is consistent with our previous findings. Such high concentrations of 1-naphthol together with the high 1-naphthol/2-naphthol ratio suggest potential exposure to the insecticide carbaryl in this population but other exposure sources and different rates of naphthalene metabolism should also be investigated.
Collapse
Affiliation(s)
- Phong K Thai
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia.
| | - Andrew P W Banks
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Leisa-Maree L Toms
- School of Public Health and Social Work and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Phil M Choi
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Xianyu Wang
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Peter Hobson
- Sullivan Nicolaides Pathology, Taringa, QLD, Australia
| | - Jochen F Mueller
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| |
Collapse
|
34
|
Abstract
Background:
Exposure to air pollution increases cardiovascular morbidity and mortality. Preventing chronic cardiovascular diseases caused by air pollution relies on detecting the early effects of pollutants on the risk of cardiovascular disease development, which is limited by the lack of sensitive biomarkers. We have previously identified promising biomarkers in experimental animals but comparable evidence in humans is lacking.
Methods:
Air pollution is substantially worse in Beijing than in Los Angeles. We collected urine and blood samples from 26 nonsmoking, healthy adult residents of Los Angeles (mean age, 23.8 years; 14 women) before, during, and after spending 10 weeks in Beijing during the summers of 2014 and 2015. We assessed a panel of circulating biomarkers indicative of lipid peroxidation and inflammation. Personal exposure to polycyclic aromatic hydrocarbons (PAHs), a group of combustion-originated air pollutants, was assessed by urinary PAH metabolite levels.
Results:
Urinary concentrations of 4 PAH metabolites were 176% (95% CI, 103% to 276%) to 800% (95% CI, 509% to 1780%) greater in Beijing than in Los Angeles. Concentrations of 6 lipid peroxidation biomarkers were also increased in Beijing, among which 5-, 12-, and 15-hydroxyeicosatetraenoic acid and 9- and 13-hydroxyoctadecadienoic acid levels reached statistical significance (false discovery rate <5%), but not 8-isoprostane (20.8%; 95% CI, −5.0% to 53.6%). The antioxidative activities of paraoxonase (−9.8%; 95% CI, −14.0% to −5.3%) and arylesterase (−14.5%; 95% CI, −22.3% to −5.8%) were lower and proinflammatory C-reactive protein (101%; 95% CI, 3.3% to 291%) and fibrinogen (48.3%; 95% CI, 4.9% to 110%) concentrations were higher in Beijing. Changes in all these biomarkers were reversed, at least partially, after study participants returned to Los Angeles. Changes in most outcomes were associated with urinary PAH metabolites (
P
<0.05).
Conclusions:
Traveling from a less-polluted to a more-polluted city induces systemic pro-oxidative and proinflammatory effects. Changes in the levels of 5-, 12-, and 15-hydroxyeicosatetraenoic acid and 9- and 13-hydroxyoctadecadienoic acid as well as paraoxonase and arylesterase activities in the blood, in association with exposures to PAH metabolites, might have important implications in preventive medicine as indicators of increased cardiovascular risk caused by air pollution exposure.
Collapse
|
35
|
Determination of Ten Kinds of Monohydroxylated Polycyclic Aromatic Hydrocarbons in Human Urine by Supported Liquid Extraction Followed by Liquid Chromatography-Tandem Mass Spectrometry. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61165-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
36
|
Gouveia N, Oliveira CRM, Martins CP, Maranho LA, Seabra Pereira CD, de Orte MR, Harayashiki CAY, Almeida SM, Castro IB. Can shell alterations in limpets be used as alternative biomarkers of coastal contamination? CHEMOSPHERE 2019; 224:9-19. [PMID: 30802781 DOI: 10.1016/j.chemosphere.2019.02.122] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
The present study evaluated the association among traditional biochemical biomarkers with biometric, morphometric, and elemental composition of Lottia subrugosa (patelliform gastropod) shells from three multi-impacted coastal areas in Brazil. The study was carried out in Todos os Santos Bay (TSB), Santos/São Vicente Estuarine System (SESS) and Paranaguá Estuarine Complex (CEP), using three sampling sites to seek contamination gradients in each area. Results showed that all biomarkers evaluated responded to environmental contamination, regardless the presence (SESS and CEP) or absence (TSB) of a gradient of contamination. The responses found using biometric and morphometric parameters were consistent with the traditional biomarkers of exposure and effects (lipid peroxidation and DNA damage). Indeed, changes in elemental composition of L. subrugosa shells suggest that exposure to contaminated environments is probably responsible for the alterations detected. Despite the simplicity and lower cost of biometric and morphometric analyzes, these parameters are influenced by natural environmental conditions from which biases may arise. Therefore, these tools should be evaluated through experimental studies before it can be used in future assessments. However, the findings from the present study were observed in three aquatic systems distributed over a wide range of latitudes, which indicates that gastropod shells reflect effects resulting from environmental contamination.
Collapse
Affiliation(s)
- Nayara Gouveia
- Departamento de Ciências Do Mar, Universidade Federal de São Paulo (UNIFESP), Rua Carvalho de Mendonça 144, CEP, 11070-100, Santos, Brazil
| | - Carolina R M Oliveira
- Departamento de Ciências Do Mar, Universidade Federal de São Paulo (UNIFESP), Rua Carvalho de Mendonça 144, CEP, 11070-100, Santos, Brazil
| | - Camila P Martins
- Departamento de Ciências Do Mar, Universidade Federal de São Paulo (UNIFESP), Rua Carvalho de Mendonça 144, CEP, 11070-100, Santos, Brazil
| | - Luciane A Maranho
- Departamento de Ciências Do Mar, Universidade Federal de São Paulo (UNIFESP), Rua Carvalho de Mendonça 144, CEP, 11070-100, Santos, Brazil
| | - Camilo Dias Seabra Pereira
- Departamento de Ciências Do Mar, Universidade Federal de São Paulo (UNIFESP), Rua Carvalho de Mendonça 144, CEP, 11070-100, Santos, Brazil
| | - Manoela R de Orte
- Departamento de Ciências Do Mar, Universidade Federal de São Paulo (UNIFESP), Rua Carvalho de Mendonça 144, CEP, 11070-100, Santos, Brazil
| | - Cyntia A Y Harayashiki
- Departamento de Ciências Do Mar, Universidade Federal de São Paulo (UNIFESP), Rua Carvalho de Mendonça 144, CEP, 11070-100, Santos, Brazil
| | - Sérgio M Almeida
- Departamento de Biologia, Universidade Católica de Pernambuco, R. Do Príncipe 526, CEP, 50050-900, Recife, Brazil
| | - Italo B Castro
- Departamento de Ciências Do Mar, Universidade Federal de São Paulo (UNIFESP), Rua Carvalho de Mendonça 144, CEP, 11070-100, Santos, Brazil.
| |
Collapse
|
37
|
Chen L, Luo K, Etzel R, Zhang X, Tian Y, Zhang J. Co-exposure to environmental endocrine disruptors in the US population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:7665-7676. [PMID: 30666576 DOI: 10.1007/s11356-018-04105-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
Exposure to environmental endocrine disruptors (EEDs) has been linked to adverse health outcomes. The vast majority of studies examined one class of EEDs at a time but humans often are exposed to multiple EEDs at the same time. It is, therefore, important to know the co-exposure status of multiple EEDs in an individual, to preclude and control for potential confounding effects posed by co-exposed EEDs. This study examined the concentrations of seven classes of EEDs in the US population utilizing the data from the National Health and Nutrition Examination Survey (NHANES), 2009-2014 survey cycles. We applied linear correlation and cluster analysis to characterize the correlation profile and cluster patterns of these EEDs. We found that EEDs with a similar structure are often highly correlated. Among between-class correlations, mercury and perfluoroalkyl substances (PFAS) and cadmium and polycyclic aromatic hydrocarbons (PAHs) were two significantly correlated EEDs. In epidemiologic studies, measurement and control for co-exposure to pollutants, especially those with similar biological effects, are critical when attempting to make causal inferences. Appropriate statistical methods to handle within- and between-class correlations are needed.
Collapse
Affiliation(s)
- Lin Chen
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Kai Luo
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Ruth Etzel
- Milkin Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Xiaoyu Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ying Tian
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
38
|
Huo X, Wu Y, Xu L, Zeng X, Qin Q, Xu X. Maternal urinary metabolites of PAHs and its association with adverse birth outcomes in an intensive e-waste recycling area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:453-461. [PMID: 30458375 DOI: 10.1016/j.envpol.2018.10.098] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 02/05/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are well-known carcinogenic and endocrine disrupting chemicals that have been concerned over the past few decades. We aimed to determine the hydroxylated PAH (OHPAH) metabolite concentrations in maternal urine collected from the e-waste-contaminated area of Guiyu and the reference area of Haojiang, China, and to evaluate their health effects on birth outcomes. The median ƩOHPAH concentration was 6.87 μg/g creatinine from Guiyu, and 3.90 μg/g creatinine from Haojiang. 2-OHNap and 1-OHPyr were the predominant metabolites. Residence in Guiyu and recycling in houses were associated with elevated 2-OHNap and 1-OHPyr. Standardized mean difference revealed that compared to low PAH metabolite levels in the first quartile, high PAH metabolite levels in the fourth quartile especially for 1-OHPyr, ƩOHPAHs and sometimes hydroxylphenanthrene compounds, presented a reduced size in birth outcomes (overall SMD: -0.09; 95% CI: -0.15, -0.03), including head circumference, BMI and Apgar 1 score, and increased size in height. After adjusting for confounders in regression models, an interquartile increase in ΣOHPAHs was associated with a decrease of 234.56 g in weight (95% CI: -452.00, -17.13), 1.72 cm in head circumference (95% CI: -2.96, -0.48), 1.06 kg/m2 in BMI (95% CI: -1.82, -0.31) and 0.42 in Apgar 1 score (95% CI: -0.66, -0.18), respectively. These findings suggest high exposure to PAHs during pregnancy in e-waste areas, posing a potential threat to neonatal development, which likely can be attributed to direct e-waste recycling activities. Ongoing studies should be continued to monitor human exposure and health, in particular for vulnerable individuals in e-waste-polluted areas.
Collapse
Affiliation(s)
- Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Yousheng Wu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, China
| | - Long Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, China
| | - Xiang Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Qilin Qin
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
39
|
Gao P, da Silva E, Hou L, Denslow ND, Xiang P, Ma LQ. Human exposure to polycyclic aromatic hydrocarbons: Metabolomics perspective. ENVIRONMENT INTERNATIONAL 2018; 119:466-477. [PMID: 30032012 DOI: 10.1016/j.envint.2018.07.017] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are organic contaminants exhibiting carcinogenic toxicity. They are widespread in the environment, especially in urban areas. Humans are exposed to PAHs via inhalation, ingestion and dermal contact. Though much research has investigated their toxicity, little is known regarding the metabolic responses in humans after exposing to PAHs. However, those studies are important since PAHs become carcinogenic after metabolic activation by humans as indirect-acting carcinogens. As such, it is important to study their metabolism in humans based on metabolomics analysis. The goal of metabolomics study is to obtain a comprehensive view of metabolic reactions in humans after exposing to PAHs to better control the underlying metabolisms and reduce their genotoxicity. This article reviewed the biomarkers, analytical techniques including nuclear magnetic resonance and mass spectrometry, big data multivariate statistical analysis, and animal models that have been utilized to better understand the biological effects of PAHs, PAH-derivatives, and their metabolites and biotransformation products on humans.
Collapse
Affiliation(s)
- Peng Gao
- Research Center for Soil Contamination and Environment Remediation, Southwest Forestry University, Kunming 650224, China; Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611, United States
| | - Evandro da Silva
- Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611, United States
| | - Lei Hou
- Research Center for Soil Contamination and Environment Remediation, Southwest Forestry University, Kunming 650224, China
| | - Nancy D Denslow
- Department of Physiological Sciences, and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, United States
| | - Ping Xiang
- Research Center for Soil Contamination and Environment Remediation, Southwest Forestry University, Kunming 650224, China.
| | - Lena Q Ma
- Research Center for Soil Contamination and Environment Remediation, Southwest Forestry University, Kunming 650224, China; Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
40
|
Dobraca D, Lum R, Sjödin A, Calafat AM, Laurent CA, Kushi LH, Windham GC. Urinary biomarkers of polycyclic aromatic hydrocarbons in pre- and peri-pubertal girls in Northern California: Predictors of exposure and temporal variability. ENVIRONMENTAL RESEARCH 2018; 165:46-54. [PMID: 29665464 PMCID: PMC5999561 DOI: 10.1016/j.envres.2017.11.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/16/2017] [Accepted: 11/03/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs), a class of chemicals produced as combustion by-products, have been associated with endocrine disruption. To understand exposure in children, who have been less studied than adults, we examined PAH metabolite concentrations by demographic characteristics, potential sources of exposure, and variability over time, in a cohort study of pre- and peri-pubertal girls in Northern California. METHODS Urinary concentrations of ten PAH metabolites and cotinine were quantified in 431 girls age 6-8 years at baseline. Characteristics obtained from parental interview, physical exam, and linked traffic data were examined as predictors of PAH metabolite concentrations using multivariable linear regression. A subset of girls (n = 100) had repeat measures of PAH metabolites in the second and fourth years of the study. We calculated the intraclass correlation coefficient (ICC), Spearman correlation coefficients, and how well the quartile ranking by a single measurement represented the four-year average PAH biomarker concentration. RESULTS Eight PAH metabolites were detected in ≥ 95% of the girls. The most consistent predictors of PAH biomarker concentrations were cotinine concentration, grilled food consumption, and region of residence, with some variation by demographics and season. After adjustment, select PAH metabolite concentrations were higher for Hispanic and Asian girls, and lower among black girls; 2-naphthol concentrations were higher in girls from lower income households. Other than 1-naphthol, there was modest reproducibility over time (ICCs between 0.18 and 0.49) and the concentration from a single spot sample was able to reliably rank exposure into quartiles consistent with the multi-year average. CONCLUSIONS These results confirm diet and environmental tobacco smoke exposure as the main sources of PAHs. Controlling for these sources, differences in concentrations still existed by race for specific PAH metabolites and by income for 2-naphthol. The modest temporal variability implies adequate exposure assignment using concentrations from a single sample to define a multi-year exposure timeframe for epidemiologic exposure-response studies.
Collapse
Affiliation(s)
- Dina Dobraca
- Environmental Health Investigations Branch, California Department of Public Health, Richmond, CA, USA.
| | | | - Andreas Sjödin
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Cecile A Laurent
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Lawrence H Kushi
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Gayle C Windham
- Environmental Health Investigations Branch, California Department of Public Health, Richmond, CA, USA
| |
Collapse
|
41
|
Sun K, Habteselassie MY, Liu J, Li S, Gao Y. Subcellular distribution and biotransformation of phenanthrene in pakchoi after inoculation with endophytic Pseudomonas sp. as probed using HRMS coupled with isotope-labeling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:858-867. [PMID: 29150254 DOI: 10.1016/j.envpol.2017.11.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/13/2017] [Accepted: 11/09/2017] [Indexed: 06/07/2023]
Abstract
Contamination of food-crops with polycyclic aromatic hydrocarbons (PAHs) poses a grave concern to food safety, especially when PAHs are internalized. We have demonstrated in our previous study that inoculation of crop with a phenanthrene-degrading endophytic Pseudomonas sp. Ph6-gfp could overcome this problem. Here, the subcellular distribution and biotransformation mechanism of phenanthrene in pakchoi (Brassica chinensis L.) seedlings with inoculation of Ph6-gfp were further investigated both in vitro and in vivo. The possible biotransformation products of phenanthrene were identified by high-resolution mass spectrometry (HRMS) coupled with 13C2-phenanthrene labeling. Results indicated that Ph6-gfp colonized pakchoi interior and reduced the content of phenanthrene in different cell compartments. Notably, the inoculation hindered the subcellular distribution of phenanthrene from intercellular space to subcellular fractions (i.e., cell wall, cell membrane, cell solution, and cell organelles), likely resulting from the interception and biodegradation of phenanthrene by the bacterium between the cell wall and intercellular space. Additionally, the conjugation reactions of phenanthrene-metabolites and endogenous plant compounds were enhanced as a result of the inoculation. We propose that endophytic degradation, plant metabolism, and conjugation reaction are the three possible biotransformation mechanisms that could account for the changes in phenanthrene inside the plant cell compartments. This is the first observation of endophytic bacteria (EB)-enhanced biotransformation and conjugation of phenanthrene in pakchoi at the subcellular level, which drive novel insights in regulating food-crop contamination with endophytes in PAH-contaminated matrices.
Collapse
Affiliation(s)
- Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China; Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mussie Y Habteselassie
- Department of Crop and Soil Sciences, University of Georgia Griffin Campus, 1109 Experiment Street, Griffin, GA 30223, United States
| | - Juan Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shunyao Li
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
42
|
Lintelmann J, Wu X, Kuhn E, Ritter S, Schmidt C, Zimmermann R. Detection of monohydroxylated polycyclic aromatic hydrocarbons in urine and particulate matter using LC separations coupled with integrated SPE and fluorescence detection or coupled with high-resolution time-of-flight mass spectrometry. Biomed Chromatogr 2018; 32:e4183. [DOI: 10.1002/bmc.4183] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/10/2017] [Accepted: 12/15/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Jutta Lintelmann
- Joint Mass Spectrometry Centre, Cooperation Group ‘Comprehensive Molecular Analytics’; Helmholtz Zentrum München GmbH; Neuherberg Germany
| | - Xiao Wu
- Joint Mass Spectrometry Centre, Cooperation Group ‘Comprehensive Molecular Analytics’; Helmholtz Zentrum München GmbH; Neuherberg Germany
| | - Evelyn Kuhn
- Joint Mass Spectrometry Centre, Cooperation Group ‘Comprehensive Molecular Analytics’; Helmholtz Zentrum München GmbH; Neuherberg Germany
| | - Sebastian Ritter
- Joint Mass Spectrometry Centre, Cooperation Group ‘Comprehensive Molecular Analytics’; Helmholtz Zentrum München GmbH; Neuherberg Germany
| | - Claudia Schmidt
- Institute of Epidemiology II; Helmholtz Zentrum München GmbH; Neuherberg Germany
| | - Ralf Zimmermann
- Joint Mass Spectrometry Centre, Cooperation Group ‘Comprehensive Molecular Analytics’; Helmholtz Zentrum München GmbH; Neuherberg Germany
- Joint Mass Spectrometry Centre, Institute of Chemistry, Chair of Analytical Chemistry; University of Rostock; Rostock Germany
| |
Collapse
|
43
|
Zhan X, Zhu M, Shen Y, Yue L, Li J, Gardea-Torresdey JL, Xu G. Apoplastic and symplastic uptake of phenanthrene in wheat roots. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:331-339. [PMID: 29096306 DOI: 10.1016/j.envpol.2017.10.056] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/02/2017] [Accepted: 10/12/2017] [Indexed: 06/07/2023]
Abstract
The contamination of agricultural crops by polycyclic aromatic hydrocarbons (PAHs) has drawn considerable attention due to their carcinogenicity, mutagenicity, and toxicity. However, the uptake process of PAHs in plant roots has not been clearly understood. In this work, we first study the radial uptake of phenanthrene in hydroculture wheat roots by vacuum-infiltration-centrifugation method. The concentration-dependent kinetics of apoplastic and symplastic uptake at phenanthrene concentrations of 0-6.72 μM for 4 h can be described with the Langmuir and Michaelis-Menten equations, respectively; whereas, their time-dependent kinetics at 5.60 μM phenanthrene for 36 h follow the Elovich equation. The apoplastic and symplastic uptake increases with temperature of 15-35 °C. The apparent Arrhenius activation energies for apoplastic and symplastic uptake are 77.5 and 9.39 KJ mol-1, respectively. The symplastic uptake accounts for over 55% of total phenanthrene uptake, suggesting that symplast is the dominant pathway for wheat root phenanthrene uptake. Larger volume of symplast in roots and lower activation energy lead to the greater contribution of symplast to total uptake of phenanthrene. Our results provide not only novel insights into the mechanisms on the uptake of PAHs by plant roots, but also the help to optimize strategies for crop safety and phytoremediation of PAH-contaminated soil/water.
Collapse
Affiliation(s)
- Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China.
| | - Mandang Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Yu Shen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Le Yue
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Jinfeng Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Jorge L Gardea-Torresdey
- Chemistry Department, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States
| | - Guohua Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| |
Collapse
|
44
|
Yu N, Shu S, Lin Y, She J, Ip HSS, Qiu X, Zhu Y. High efficiency cabin air filter in vehicles reduces drivers' roadway particulate matter exposures and associated lipid peroxidation. PLoS One 2017; 12:e0188498. [PMID: 29176859 PMCID: PMC5703570 DOI: 10.1371/journal.pone.0188498] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 11/07/2017] [Indexed: 01/12/2023] Open
Abstract
Commuters who spend long hours on roads are exposed to high levels of traffic related air pollutants (TRAPs). Despite some well-known multiple adverse effects of TRAPs on human health, limited studies have focused on mitigation strategies to reduce these effects. In this study, we measured fine particulate matter (PM2.5) and ultrafine particle (UFP) concentrations inside and outside 17 taxis simultaneously while they were driven on roadways. The drivers’ urinary monohydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and malondialdehyde (MDA) concentrations just before and right after the driving tests were also determined. Data were collected under three driving conditions (i.e. no mitigation (NM), window closed (WC), and window closed plus using high efficiency cabin air filters (WC+HECA)) for each taxi and driver. The results show that, compared to NM, the WC+HECA reduced in-cabin PM2.5 and UFP concentrations, by 37% and 47% respectively (p < 0.05), whereas the reductions on PAH exposures were insignificant. Although nonsignificant, a reduction of 17% was also observed in the drivers’ urinary MDA under WC+HECA. The MDA concentrations were found to be significantly associated with the in-cabin PM2.5 and UFP concentrations, suggesting the reduction of the drivers’ lipid peroxidation can be at least partially attributed to the PM2.5 and UFP reduction by WC+HECA. Overall, these results suggest HECA filters have potential to reduce particle levels inside taxis and protect drivers’ health.
Collapse
Affiliation(s)
- Nu Yu
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, United States
| | - Shi Shu
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, United States
| | - Yan Lin
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, United States
| | - Jianwen She
- California Department of Public Health, 850 Marina Bay Parkway, Richmond, California, United States
| | - Ho Sai Simon Ip
- California Department of Public Health, 850 Marina Bay Parkway, Richmond, California, United States
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing, People’s Republic of China
| | - Yifang Zhu
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, United States
- * E-mail:
| |
Collapse
|
45
|
Polycyclic aromatic hydrocarbons and female reproductive health: A scoping review. Reprod Toxicol 2017; 73:61-74. [DOI: 10.1016/j.reprotox.2017.07.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022]
|
46
|
Yang P, Wang YX, Sun L, Chen YJ, Liu C, Huang LL, Lu WQ, Zeng Q. Urinary metabolites of polycyclic aromatic hydrocarbons, sperm DNA damage and spermatozoa apoptosis. JOURNAL OF HAZARDOUS MATERIALS 2017; 329:241-248. [PMID: 28178639 DOI: 10.1016/j.jhazmat.2017.01.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 01/24/2017] [Accepted: 01/30/2017] [Indexed: 06/06/2023]
Abstract
Inconsistent results between polycyclic aromatic hydrocarbons (PAHs) exposure and adverse male reproductive health have been reported in humans. To assess whether PAH exposure is associated with declined sperm function. Ten monohydroxylated PAHs (OH-PAHs) metabolites were analyzed in repeated urine samples from an infertility clinic. We used multivariable linear models to estimate the associations of urinary OH-PAH metabolites with sperm DNA damage (n=405) and spermatozoa apoptosis (n=366). The shapes of dose-dependent associations of exposure measurements with outcomes were further evaluated by restricted cubic splines. Multiple comparisons were adjusted by false discovery rate (FDR). We found that urinary 9-hydroxyfluorene (9-OHFlu) was associated with increased tail length and comet length (p for trend=0.05 and 0.01, respectively), and that urinary 9-hydroxyphenanthrene (9-OHPh) was associated with decreased percentage of Annexin V-/PI- spermatozoa (p for trend=0.04). Also, suggestive associations of urinary 9-OHPh and ∑OHFlu with increased comet length, and urinary 9-OHFlu and 2-OHPh with decreased percentage of Annexin V-/PI- spermatozoa were observed (all p for trends <0.10). Further, these dose-dependent associations were confirmed in restricted cubic splines. Our results suggest that environmental exposure to fluorene and phenanthrene are associated with declined sperm function.
Collapse
Affiliation(s)
- Pan Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yi-Xin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Li Sun
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ying-Jun Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Li-Li Huang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
47
|
Wu X, Lintelmann J, Klingbeil S, Li J, Wang H, Kuhn E, Ritter S, Zimmermann R. Determination of air pollution-related biomarkers of exposure in urine of travellers between Germany and China using liquid chromatographic and liquid chromatographic-mass spectrometric methods: a pilot study. Biomarkers 2017; 22:525-536. [DOI: 10.1080/1354750x.2017.1306753] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xiao Wu
- Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum Muenchen – German Research Centre for Environmental Health GmbH, Neuherberg, Germany
- HICE – Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health: Aerosol and Health, Neuherberg, Germany
- Department of Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Jutta Lintelmann
- Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum Muenchen – German Research Centre for Environmental Health GmbH, Neuherberg, Germany
- HICE – Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health: Aerosol and Health, Neuherberg, Germany
| | - Sophie Klingbeil
- Department of Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Jie Li
- Department of Environmental Health, Shandong University, Jinan, China
| | - Hao Wang
- Department of Emergency, Qilu Hospital of Shandong University, Jinan, China
| | - Evelyn Kuhn
- Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum Muenchen – German Research Centre for Environmental Health GmbH, Neuherberg, Germany
| | - Sebastian Ritter
- Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum Muenchen – German Research Centre for Environmental Health GmbH, Neuherberg, Germany
| | - Ralf Zimmermann
- Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum Muenchen – German Research Centre for Environmental Health GmbH, Neuherberg, Germany
- HICE – Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health: Aerosol and Health, Neuherberg, Germany
- Department of Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| |
Collapse
|
48
|
Wang L, Hu W, Xia Y, Wang X. Associations between urinary polycyclic aromatic hydrocarbon metabolites and serum testosterone in U.S. adult males: National Health and nutrition examination survey 2011-2012. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:7607-7616. [PMID: 28120225 DOI: 10.1007/s11356-017-8407-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 01/05/2017] [Indexed: 04/16/2023]
Abstract
Effects of environmental chemicals on human reproductive health and sex hormone levels have been reported for several years, but compared to other environmental chemicals, such as heavy metals, PCBs, triclosan, Phthalate, the links between polycyclic aromatic hydrocarbons (PAHs) and sex hormone levels have not been studied widely. Therefore, our purpose of research was to study the associations between urinary PAH metabolites and serum total testosterone (T) levels among men. The data was obtained from the independent cross-section wave (2011-2012) of the National Health and Nutrition Examination Survey (NHANES), including demographic, socioeconomic, dietary, health-related questions, examinations and laboratory test. All analyses were performed by R software (version 3.2.3), including one-way analysis of variance, multivariable linear regression, stratified analysis and heterogeneity test. Of 1102 American adults aged 20 and above included in the statistical analysis, we found that urinary 3-hydroxyfluorene and 2-hydroxyfluorene were significantly positively associated with serum T levels (β = 40.62, 95%CI = 21.78-59.46, P = 2.56 × 10-5; β = 35.17, 95%CI = 13.18-57.15, P = 1.75 × 10-3, respectively). The associations between urinary PAH metabolites and serum T levels signified a major public health problem over the world. Prospective work is needed to investigate the potential long-term health consequences of these findings.
Collapse
Affiliation(s)
- Lingling Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Weiyue Hu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
49
|
Yang P, Wang YX, Chen YJ, Sun L, Li J, Liu C, Huang Z, Lu WQ, Zeng Q. Urinary Polycyclic Aromatic Hydrocarbon Metabolites and Human Semen Quality in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:958-967. [PMID: 27966341 DOI: 10.1021/acs.est.6b04810] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Toxicological studies have demonstrated that polycyclic aromatic hydrocarbons (PAHs) exposure impairs male reproductive health. However, the epidemiological evidence is limited and discordant. Our goal was to investigate the relationship between PAH exposures and human semen quality. We analyzed 12 urinary metabolites of PAHs from 933 men who sought semen quality analysis in an infertility clinic in Wuhan, China. Associations with semen quality were assessed using a multivariable linear regression. Restricted cubic splines were used to explore the dose-response relationships between urinary metabolites of PAHs and semen quality. We observed inverse associations between urinary 1-hydroxynaphthalene (1-OHNa) and sperm count, sperm concentration, and percentage of normal morphology (all p for trends <0.05) as well as between urinary ∑OHNa (sum of 1-OHNa and 2-OHNa) and sperm concentration (p for trend =0.04). Additionally, we found inverse associations between urinary 9-hydroxyphenanthrene (9-OHPh) and semen volume and sperm straight-line velocity (both p for trends <0.05) as well as between urinary ∑OHPh (sum of 1-, 2-, 3-, 4-, and 9-OHPh) and sperm count (p for trend =0.04). These dose-response relationships were further confirmed in the curves of the restricted cubic splines. Our data suggest that exposure to naphthalene and phenanthrene is related to decreased semen quality. Our results contribute to the growing body of evidence regarding the widespread exposure to PAHs and the detriment to male reproductive function.
Collapse
Affiliation(s)
- Pan Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei PR China
| | - Yi-Xin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei PR China
| | - Ying-Jun Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei PR China
| | - Li Sun
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei PR China
| | - Jin Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei PR China
| | - Zhen Huang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei PR China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei PR China
| |
Collapse
|
50
|
Lu SY, Li YX, Zhang JQ, Zhang T, Liu GH, Huang MZ, Li X, Ruan JJ, Kannan K, Qiu RL. Associations between polycyclic aromatic hydrocarbon (PAH) exposure and oxidative stress in people living near e-waste recycling facilities in China. ENVIRONMENT INTERNATIONAL 2016; 94:161-169. [PMID: 27258657 DOI: 10.1016/j.envint.2016.05.021] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 06/05/2023]
Abstract
Emission of polycyclic aromatic hydrocarbons (PAHs) from e-waste recycling activities in China is known. However, little is known on the association between PAH exposure and oxidative damage to DNA and lipid content in people living near e-waste dismantling sites. In this study, ten hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and two biomarkers [8-hydroxy-2'-deoxyguanosine (8-OHdG) and malondialdehyde (MDA)] of oxidative stress were investigated in urine samples collected from people living in and around e-waste dismantling facilities, and in reference population from rural and urban areas in China. The urinary levels of ∑10OH-PAHs determined in e-waste recycling area (GM: 25.4μg/g Cre) were significantly higher (p<0.05) than those found in both rural (11.7μg/g Cre) and urban (10.9μg/g Cre) reference areas. The occupationally exposed e-waste workers (36.6μg/g Cre) showed significantly higher (p<0.01) urinary Σ10OH-PAHs concentrations than non-occupationally exposed people (23.2μg/g Cre) living in the e-waste recycling site. The differences in urinary Σ10OH-PAHs levels between smokers (23.4μg/g Cre) and non-smokers (24.7μg/g Cre) were not significant (p>0.05) in e-waste dismantling sites, while these differences were significant (p<0.05) in rural and urban reference areas; this indicated that smoking is not associated with elevated levels of PAH exposure in e-waste dismantling site. Furthermore, we found that urinary concentrations of Σ10OH-PAHs and individual OH-PAHs were significantly associated with elevated 8-OHdG, in samples collected from e-waste dismantling site; the levels of urinary 1-hydroxypyrene (1-PYR) (r=0.284, p<0.01) was significantly positively associated with MDA. Our results indicate that the exposure to PAHs at the e-waste dismantling site may have an effect on oxidative damage to DNA among selected participants, but this needs to be validated in large studies.
Collapse
Affiliation(s)
- Shao-You Lu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, PR China
| | - Yan-Xi Li
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jian-Qing Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, PR China
| | - Tao Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Gui-Hua Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, PR China
| | - Ming-Zhi Huang
- School of Geography and Planning, Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xiao Li
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Ju-Jun Ruan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12201, USA
| | - Rong-Liang Qiu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|