1
|
Yamakawa A, Luke W, Kelley P, Ren X, Iaukea-Lum M. Unraveling atmospheric mercury dynamics at Mauna Loa through the isotopic analysis of total gaseous mercury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116993. [PMID: 39260217 DOI: 10.1016/j.ecoenv.2024.116993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024]
Abstract
Our investigation seeks to uncover the intricate nature of mercury dynamics in the free troposphere through analysis of the isotopic composition of total gaseous elemental mercury (TGM) at the high altitude Mauna Loa Observatory (MLO, 3397 m) in Hawaii, USA. By focusing on this unique site, we aim to provide essential insights into the behavior and cycling of mercury, contributing valuable data to a deeper understanding of its global distribution and environmental impacts. Forty-eight hours of TGM sampling from January to September 2022 revealed significant variations in δ202Hg (-1.86 % to -0.32 %; mean = -1.17 ± 0.65 %, 2 SD, n = 34) and small variations in Δ199Hg (-0.27 % to 0.04 %; mean = -0.13 ± 0.14 %, 2 SD, n = 34) and Δ200Hg (-0.20 % to 0.06 %; mean = -0.05 ± 0.13 %, 2 SD, n = 34). During the sampling period, GEM was negatively correlated with gaseous oxidized mercury (GOM). However, the GOM/GEM ratio was not -1, suggesting that GEM oxidation and subsequent scavenging occurred previously. The δ202Hg isotopic compositions of TGM at MLO were different from those of reported values of high-altitude mountains; the δ202Hg of TGM at MLO was lower than the isotopic ratios that were obtained from other mountain regions. The unique atmospheric conditions at Mauna Loa, with (upslope winds during the day and downslope winds at night, likely result in the) possibly mixing of GEMs from terrestrial (and possibly oceanic GEM emission) sources with and tropospheric sources, influencing and affect the isotopic composition. During the late summer to early fall (September 14-28), negative correlations were found between relative humidity and GOM and between particle number concentrations and Δ199Hg, indicating the gas-to-particle partitioning of the atmospheric mercury during this period. This study will improve our understanding on mercury dynamics of marine origin and high altitudes and shed light on its complex interactions with environmental factors.
Collapse
Affiliation(s)
- Akane Yamakawa
- National Institute for Environmental Studies, 16-2 Tsukuba, Ibaraki 305-8506, Japan.
| | - Winston Luke
- NOAA/Air Resources Laboratory (ARL), Atmospheric Sciences Modeling Division (ASMD), 5830 University Research Ct., College Park, MD 20740, USA.
| | - Paul Kelley
- NOAA/Air Resources Laboratory (ARL), Atmospheric Sciences Modeling Division (ASMD), 5830 University Research Ct., College Park, MD 20740, USA.
| | - Xinrong Ren
- NOAA/Air Resources Laboratory (ARL), Atmospheric Sciences Modeling Division (ASMD), 5830 University Research Ct., College Park, MD 20740, USA.
| | - Michealene Iaukea-Lum
- Mauna Loa Observatory, CIRES/NOAA Global Monitoring Division, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
2
|
Yang YH, Kim MS, Park J, Kwon SY. Atmospheric mercury uptake and accumulation in forests dependent on climatic factors. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:519-529. [PMID: 38344926 DOI: 10.1039/d3em00454f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The environmental and climatic factors dictating atmospheric mercury (Hg) uptake by foliage and accumulation within the forest floor are evaluated across six mountain sites, South Korea, using Hg concentration and Hg stable isotope analyses. The isotope ratios of total gaseous Hg (TGM) at six mountains are explained by local anthropogenic Hg emission influence and partly by mountain elevation and wind speed. The extent to which TGM is taken up by foliage is not dependent on the site-specific TGM concentration, but by the local wind speed, which facilitates TGM passage through dense deciduous canopies in the Korean forests. This is depicted by the significant positive relationship between wind speed and foliage Hg concentration (r2 = 0.92, p < 0.05) and the magnitude of δ202Hg shift from TGM to foliage (r2 = 0.37, p > 0.05), associated with TGM uptake and oxidation by foliar tissues. The litter and topsoil Hg concentrations and isotope ratios reveal relationships with a wide range of factors, revealing lower Hg level and greater isotopic fractionation at sites with low elevation, high wind speed, and high mean warmest temperature. We attribute this phenomenon to active TGM re-emission from the forest floor at sites with high wind speed and high temperature, caused by turnover of labile organic matter and decomposition. In contrast to prior studies, we observe no significant effect of precipitation on forest Hg accumulation but precipitation appears to reduce foliage-level Hg uptake by scavenging atmospheric Hg species available for stomata uptake. The results of this study would enable better prediction of future atmospheric and forest Hg influence under climate change.
Collapse
Affiliation(s)
- Yo Han Yang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea.
| | - Min-Seob Kim
- Environmental Measurement & Analysis Center, National Institute of Environmental Research, 42 Hwangyong-Ro, Seo-Gu, Incheon 22689, South Korea
| | - Jaeseon Park
- Environmental Measurement & Analysis Center, National Institute of Environmental Research, 42 Hwangyong-Ro, Seo-Gu, Incheon 22689, South Korea
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea.
| |
Collapse
|
3
|
Li C, Jiskra M, Nilsson MB, Osterwalder S, Zhu W, Mauquoy D, Skyllberg U, Enrico M, Peng H, Song Y, Björn E, Bishop K. Mercury deposition and redox transformation processes in peatland constrained by mercury stable isotopes. Nat Commun 2023; 14:7389. [PMID: 37968321 PMCID: PMC10652010 DOI: 10.1038/s41467-023-43164-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 11/02/2023] [Indexed: 11/17/2023] Open
Abstract
Peatland vegetation takes up mercury (Hg) from the atmosphere, typically contributing to net production and export of neurotoxic methyl-Hg to downstream ecosystems. Chemical reduction processes can slow down methyl-Hg production by releasing Hg from peat back to the atmosphere. The extent of these processes remains, however, unclear. Here we present results from a comprehensive study covering concentrations and isotopic signatures of Hg in an open boreal peatland system to identify post-depositional Hg redox transformation processes. Isotope mass balances suggest photoreduction of HgII is the predominant process by which 30% of annually deposited Hg is emitted back to the atmosphere. Isotopic analyses indicate that above the water table, dark abiotic oxidation decreases peat soil gaseous Hg0 concentrations. Below the water table, supersaturation of gaseous Hg is likely created more by direct photoreduction of rainfall rather than by reduction and release of Hg from the peat soil. Identification and quantification of these light-driven and dark redox processes advance our understanding of the fate of Hg in peatlands, including the potential for mobilization and methylation of HgII.
Collapse
Affiliation(s)
- Chuxian Li
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden.
| | - Martin Jiskra
- Environmental Geosciences, University of Basel, Basel, Switzerland
| | - Mats B Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | - Wei Zhu
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Dmitri Mauquoy
- School Geosciences, University of Aberdeen, Scotland, UK
| | - Ulf Skyllberg
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Maxime Enrico
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, TotalEnergies, LFCR, IPREM, Pau, France
| | - Haijun Peng
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Yu Song
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Erik Björn
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
4
|
Jin X, Yan J, Ali MU, Li Q, Li P. Mercury Biogeochemical Cycle in Yanwuping Hg Mine and Source Apportionment by Hg Isotopes. TOXICS 2023; 11:toxics11050456. [PMID: 37235270 DOI: 10.3390/toxics11050456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
Although mercury (Hg) mining activities in the Wanshan area have ceased, mine wastes remain the primary source of Hg pollution in the local environment. To prevent and control Hg pollution, it is crucial to estimate the contribution of Hg contamination from mine wastes. This study aimed to investigate Hg pollution in the mine wastes, river water, air, and paddy fields around the Yanwuping Mine and to quantify the pollution sources using the Hg isotopes approach. The Hg contamination at the study site was still severe, and the total Hg concentrations in the mine wastes ranged from 1.60 to 358 mg/kg. The binary mixing model showed that, concerning the relative contributions of the mine wastes to the river water, dissolved Hg and particulate Hg were 48.6% and 90.5%, respectively. The mine wastes directly contributed 89.3% to the river water Hg contamination, which was the main Hg pollution source in the surface water. The ternary mixing model showed that the contribution was highest from the river water to paddy soil and that the mean contribution was 46.3%. In addition to mine wastes, paddy soil is also impacted by domestic sources, with a boundary of 5.5 km to the river source. This study demonstrated that Hg isotopes can be used as an effective tool for tracing environmental Hg contamination in typical Hg-polluted areas.
Collapse
Affiliation(s)
- Xingang Jin
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Junyao Yan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Muhammad Ubaid Ali
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qiuhua Li
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
5
|
Sun R, Cao F, Dai S, Shan B, Qi C, Xu Z, Li P, Liu Y, Zheng W, Chen J. Atmospheric Mercury Isotope Shifts in Response to Mercury Emissions from Underground Coal Fires. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37167064 DOI: 10.1021/acs.est.2c08637] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Pollutant emissions from coal fires have caused serious concerns in major coal-producing countries. Great efforts have been devoted to suppressing them in China, notably at the notorious Wuda Coalfield in Inner Mongolia. Recent surveys revealed that while fires in this coalfield have been nearly extinguished near the surface, they persist underground. However, the impacts of Hg volatilized from underground coal fires remain unclear. Here, we measured concentrations and isotope compositions of atmospheric Hg in both gaseous and particulate phases at an urban site near the Wuda Coalfield. The atmospheric Hg displayed strong seasonality in terms of both Hg concentrations (5-7-fold higher in fall than in winter) and isotope compositions. Combining characteristic isotope compositions of potential Hg sources and air mass trajectories, we conclude that underground coal fires were still emitting large amounts of Hg into the atmosphere that have been transported to the adjacent urban area in the prevailing downwind direction. The other local anthropogenic Hg emissions were only evident in the urban atmosphere when the arriving air masses did not pass directly through the coalfield. Our study demonstrates that atmospheric Hg isotope measurement is a useful tool for detecting concealed underground coal fires.
Collapse
Affiliation(s)
- Ruoyu Sun
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Fei Cao
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Shifeng Dai
- College of Geoscience and Survey Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Bing Shan
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Cuicui Qi
- Anhui Academy of Eco-environmental Science Research, Hefei 230071, China
| | - Zhanjie Xu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Pengfei Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yi Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Wang Zheng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Jiubin Chen
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Tate MT, Janssen SE, Lepak RF, Flucke L, Krabbenhoft DP. National-Scale Assessment of Total Gaseous Mercury Isotopes Across the United States. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2023; 128:1-15. [PMID: 37593527 PMCID: PMC10430761 DOI: 10.1029/2022jd038276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/01/2023] [Indexed: 08/19/2023]
Abstract
With the 2011 promulgation of the Mercury and Air Toxics Standards by the U.S. Environmental Protection Agency, and the successful negotiation by the United Nations Environment Program of the Minamata Convention, emissions of mercury (Hg) have declined in the United States. While the declines in atmospheric Hg concentrations in North America are encouraging, linking the declines to changing domestic and global source portfolios remains challenging. To address these research gaps, the U.S. Geological Survey initiated the first national-scale effort to establish a baseline of total gaseous mercury stable isotope values at 31 sites distributed across the United States. Results indicated that unique Hg sources, such as Hg evasion from an elemental Hg contaminated site or free tropospheric intrusions in high altitude sites, were distinguishable from background atmospheric values. Minor gradients were observed across the nation, with regions of heavy industrial activity demonstrating lower δ 202 Hg , but no consistent changes in other isotopes such as Δ 199 Hg and Δ 200 Hg were observed. Furthermore, δ 202 Hg was impacted by foliar uptake and senescence but trends varied between forested regions in the northeastern and midwestern United States. These data demonstrate regional emission sources and other environmental variables can impact total gaseous Hg (TGM) isotope values, highlighting the need to characterize atmospheric Hg isotopes over larger geographical areas to evaluate changes related to national and international Hg regulations.
Collapse
Affiliation(s)
- Michael T Tate
- Upper Midwest Water Science Center, U.S. Geological Survey, Madison, WI, USA
| | - Sarah E Janssen
- Upper Midwest Water Science Center, U.S. Geological Survey, Madison, WI, USA
| | - Ryan F Lepak
- Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency Office of Research and Development, Duluth, MN, USA
| | - Laura Flucke
- Upper Midwest Water Science Center, U.S. Geological Survey, Madison, WI, USA
- University of Wisconsin, Atmospheric and Oceanic Science, Madison, WI, USA
| | - David P Krabbenhoft
- Upper Midwest Water Science Center, U.S. Geological Survey, Madison, WI, USA
| |
Collapse
|
7
|
Duval B, Tessier E, Kortazar L, Fernandez LA, de Diego A, Amouroux D. Dynamics, distribution, and transformations of mercury species from pyrenean high-altitude lakes. ENVIRONMENTAL RESEARCH 2023; 216:114611. [PMID: 36283441 DOI: 10.1016/j.envres.2022.114611] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/03/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
While mercury (Hg) is a major concern in all aquatic environments because of its methylation and biomagnification pathways, very few studies consider Hg cycling in remote alpine lakes which are sensitive ecosystems. Nineteen high-altitude pristine lakes from Western/Central Pyrenees were investigated on both northern (France) and southern (Spain) slopes (1620-2600 m asl.). Subsurface water samples were collected in June 2017/2018/2019 and October 2017/2018 for Hg speciation analysis of inorganic mercury (iHg(II)), monomethylmercury (MMHg), and dissolved gaseous mercury (DGM) to investigate spatial and seasonal variations. In June 2018/2019 and October 2018, more comprehensive studies were performed in four lakes by taking water column depth profiles. Besides, in-situ incubation experiments using isotopically enriched Hg species (199iHg(II), 201MMHg) were conducted to investigate Hg transformation mechanisms in the water column. While iHg(II) (0.08-1.10 ng L-1 in filtered samples; 0.11-1.19 ng L-1 in unfiltered samples) did not show significant seasonal variations in the subsurface water samples, MMHg (<0.03-0.035 ng L-1 in filtered samples; <0.03-0.062 ng L-1 in unfiltered samples) was significantly higher in October 2018, mainly because of in-situ methylation. DGM (0.02-0.68 ng L-1) varies strongly and can exhibit higher levels in comparison with other pristine areas. Depth profiles and incubation experiments highlighted the importance of in-situ biotic methylation triggered by anoxic conditions in bottom waters. In-situ incubations confirm that significant methylation, demethylation and photoreduction extents are taking place in the water columns. Overall, drastic environmental changes occurring daily and seasonally in alpine lakes are providing conditions that can both promote Hg methylation (stratified anoxic waters) and MMHg photodemethylation (intense UV light). In addition, light induced photoreduction is a major pathway controlling significant gaseous Hg evasion. Global warming and potential eutrophication may thus have direct implications on Hg turnover and MMHg burden in those remote ecosystems.
Collapse
Affiliation(s)
- Bastien Duval
- Universite de Pau et des Pays de L'Adour / E2S UPPA, CNRS, Institut des Sciences Analytiques et de Physico-chimie pour L'Environnement et Les Materiaux, UMR5254, Helioparc, 64053 Pau, France; Kimika Analitikoa Saila, Euskal Herriko Unibertsitatea UPV/EHU, Sarriena Auzoa Z/g, 48940 Leioa (Basque Country).
| | - Emmanuel Tessier
- Universite de Pau et des Pays de L'Adour / E2S UPPA, CNRS, Institut des Sciences Analytiques et de Physico-chimie pour L'Environnement et Les Materiaux, UMR5254, Helioparc, 64053 Pau, France
| | - Leire Kortazar
- Kimika Analitikoa Saila, Euskal Herriko Unibertsitatea UPV/EHU, Sarriena Auzoa Z/g, 48940 Leioa (Basque Country)
| | - Luis Angel Fernandez
- Kimika Analitikoa Saila, Euskal Herriko Unibertsitatea UPV/EHU, Sarriena Auzoa Z/g, 48940 Leioa (Basque Country)
| | - Alberto de Diego
- Kimika Analitikoa Saila, Euskal Herriko Unibertsitatea UPV/EHU, Sarriena Auzoa Z/g, 48940 Leioa (Basque Country)
| | - David Amouroux
- Universite de Pau et des Pays de L'Adour / E2S UPPA, CNRS, Institut des Sciences Analytiques et de Physico-chimie pour L'Environnement et Les Materiaux, UMR5254, Helioparc, 64053 Pau, France.
| |
Collapse
|
8
|
Mercury isotopic evidence for the importance of particles as a source of mercury to marine organisms. Proc Natl Acad Sci U S A 2022; 119:e2208183119. [PMID: 36279440 PMCID: PMC9636975 DOI: 10.1073/pnas.2208183119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The origin of methylmercury in pelagic fish remains unclear, with many unanswered questions regarding the production and degradation of this neurotoxin in the water column. We used mercury (Hg) stable isotope ratios of marine particles and biota to elucidate the cycling of methylmercury prior to incorporation into the marine food web. The Hg isotopic composition of particles, zooplankton, and fish reveals preferential methylation of Hg within small (< 53 µm) marine particles in the upper 400 m of the North Pacific Ocean. Mass-dependent Hg isotope ratios (δ
202
Hg) recorded in small particles overlap with previously estimated δ
202
Hg values for methylmercury sources to Pacific and Atlantic Ocean food webs. Particulate compound specific isotope analysis of amino acids (CSIA-AA) yield δ
15
N values that indicate more-significant microbial decomposition in small particles compared to larger particles. CSIA-AA and Hg isotope data also suggest that large particles (> 53 µm) collected in the equatorial ocean are distinct from small particles and resemble fecal pellets. Additional evidence for Hg methylation within small particles is provided by a statistical mixing model of even mass–independent (Δ
200
Hg and Δ
204
Hg) isotope values, which demonstrates that Hg within near-surface marine organisms (0–150 m) originates from a combination of rainfall and marine particles. In contrast, in meso- and upper bathypelagic organisms (200–1,400 m), the majority of Hg originates from marine particles with little input from wet deposition. The occurrence of methylation within marine particles is supported further by a correlation between Δ
200
Hg and Δ
199
Hg values, demonstrating greater overlap in the Hg isotopic composition of marine organisms with marine particles than with total gaseous Hg or wet deposition.
Collapse
|
9
|
Song Z, Sun R, Zhang Y. Modeling mercury isotopic fractionation in the atmosphere. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119588. [PMID: 35688392 DOI: 10.1016/j.envpol.2022.119588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Mercury (Hg) stable isotope analysis has become a powerful tool to identify Hg sources and to understand its biogeochemical processes. However, it is challenging to link the observed Hg isotope fractionation to its global cycling. Here, we integrate source Hg isotope signatures and process-based Hg isotope fractionation into a three-dimensional isotope model based on the GEOS-Chem model platform. Our simulated isotope compositions of total gaseous Hg (TGM) are broadly comparable with available observations across global regions. The isotope compositions of global TGM, potentially distinguishable over different regions, are caused by the atmospheric mixture of anthropogenic, natural, and re-emitted Hg sources, superimposed with competing processes, notably gaseous Hg(0) dry deposition and Hg redox transformations. We find that Hg(0) dry deposition has a great impact on the isotope compositions of global TGM and drives the seasonal variation of δ202Hg in forest-covered regions. The atmospheric photo-reduction of Hg(Ⅱ) dominates over Hg(0) oxidation in driving the global Δ199Hg (and Δ201Hg) distribution patterns in TGM. We suggest that the magnitude of isotope fractionation associated with atmospheric aqueous-phase Hg(Ⅱ) reduction is likely close to aquatic Hg(Ⅱ) reduction. Our model provides a vital tool for coupling the global atmospheric Hg cycle and its isotope fractionation at various scales and advances our understanding of atmospheric Hg transfer and transformation mechanisms.
Collapse
Affiliation(s)
- Zhengcheng Song
- School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
| | - Ruoyu Sun
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 300072, Tianjin, China
| | - Yanxu Zhang
- School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
10
|
Yu B, Yang L, Liu H, Xiao C, Bu D, Zhang Q, Fu J, Zhang Q, Cong Z, Liang Y, Hu L, Yin Y, Shi J, Jiang G. Tracing the Transboundary Transport of Mercury to the Tibetan Plateau Using Atmospheric Mercury Isotopes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1568-1577. [PMID: 35001617 DOI: 10.1021/acs.est.1c05816] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Deposition of atmospheric mercury (Hg) is the most important Hg source on the high-altitude Himalayas and Tibetan Plateau. Herein, total gaseous Hg (TGM) at an urban and a forest site on the Tibetan Plateau was collected respectively from May 2017 to October 2018, and isotopic compositions were measured to clarify the influences of landforms and monsoons on the transboundary transport of atmospheric Hg to the Tibetan Plateau. The transboundary transported anthropogenic emissions mainly originated over Indo-Gangetic Plain and carried over the Himalayas by convective storms and mid-tropospheric circulation, contributing over 50% to the TGM at the Lhasa urban site, based on the binary mixing model of isotopes. In contrast, during the transport of TGM from South Asia with low altitude, the uptake by evergreen forest in Yarlung Zangbo Grand Canyon largely decreased the TGM level and shifted isotopic compositions in TGM at the Nyingchi forest site, which are located at the high-altitude end of the canyon. Our results provided direct evidence from Hg isotopes to reveal the distinct patterns of transboundary transport to the Tibetan Plateau shaped by landforms and climates, which is critical to fully understand the biogeochemical cycling of Hg in the high-altitude regions.
Collapse
Affiliation(s)
- Ben Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Research Center for Environmental Analysis and Measurement, Beijing 100029, China
| | - Lin Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hongwei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Cailing Xiao
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Duo Bu
- Science Faculty, Tibet University, Lhasa 850000, China
| | | | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Qianggong Zhang
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhiyuan Cong
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
11
|
Laffont L, Menges J, Goix S, Gentès S, Maury-Brachet R, Sonke JE, Legeay A, Gonzalez P, Rinaldo R, Maurice L. Hg concentrations and stable isotope variations in tropical fish species of a gold-mining-impacted watershed in French Guiana. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60609-60621. [PMID: 34159470 DOI: 10.1007/s11356-021-14858-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
The aim of the study was to determine if gold-mining activities could impact the mercury (Hg) concentrations and isotopic signatures in freshwater fish consumed by riparian people in French Guiana. Total Hg, MeHg concentrations, and Hg stable isotopes ratios were analyzed in fish muscles from different species belonging to three feeding patterns (herbivorous, periphytophagous, and piscivorous). We compared tributaries impacted by gold-mining activities (Camopi, CR) with a pristine area upstream (Trois-Sauts, TS), along the Oyapock River. We measured δ15N and δ 13C to examine whether Hg patterns are due to differences in trophic level. Differences in δ 15N and δ 13C values between both studied sites were only observed for periphytophagous fish, due to difference of CN baselines, with enriched values at TS. Total Hg concentrations and Hg stable isotope signatures showed that Hg accumulated in fish from both areas has undergone different biogeochemical processes. Δ199Hg variation in fish (-0.5 to 0.2‰) was higher than the ecosystem baseline defined by a Δ199Hg of -0.66‰ in sediments, and suggested limited aqueous photochemical MeHg degradation. Photochemistry-corrected δ202Hg in fish was 0.7‰ higher than the baseline, consistent with biophysical and chemical isotope fractionation in the aquatic environment. While THg concentrations in periphytophagous fish were higher in the gold-mining area, disturbed by inputs of suspended particles, than in TS, the ensemble of Hg isotope shifts in fish is affected by the difference of biotic (methylation/demethylation) and abiotic (photochemistry) processes between both areas and did therefore not allow to resolve the contribution of gold-mining-related liquid Hg(0) in fish tissues. Mercury isotopes of MeHg in fish and lower trophic level organisms can be complementary to light stable isotope tracers.
Collapse
Affiliation(s)
- Laure Laffont
- Geosciences Environnement Toulouse, CNRS/IRD/CNES/Université Toulouse III, 14 avenue Edouard Belin, 31400, Toulouse, France.
| | - Johanna Menges
- Section 4.6, Geomorphology, GFZ-German Research Centre for Geosciences, 14473, Potsdam, Germany
| | - Sylvaine Goix
- Geosciences Environnement Toulouse, CNRS/IRD/CNES/Université Toulouse III, 14 avenue Edouard Belin, 31400, Toulouse, France
- University Toulouse III, 14 avenue Edouard Belin, 31400, Toulouse, France
| | - Sophie Gentès
- EPOC, EPHE, Univ. Bordeaux, CNRS, 33120, Arcachon, France
| | | | - Jeroen E Sonke
- Geosciences Environnement Toulouse, CNRS/IRD/CNES/Université Toulouse III, 14 avenue Edouard Belin, 31400, Toulouse, France
| | - Alexia Legeay
- EPOC, EPHE, Univ. Bordeaux, CNRS, 33120, Arcachon, France
| | | | - Raphaëlle Rinaldo
- Parc Amazonien de Guyane, 1 rue Lederson, 97354, Remire-Montjoly, France
| | - Laurence Maurice
- Geosciences Environnement Toulouse, CNRS/IRD/CNES/Université Toulouse III, 14 avenue Edouard Belin, 31400, Toulouse, France.
| |
Collapse
|
12
|
Yamakawa A, Amouroux D, Tessier E, Bérail S, Fettig I, Barre JPG, Koschorreck J, Rüdel H, Donard OFX. Hg isotopic composition of one-year-old spruce shoots: Application to long-term Hg atmospheric monitoring in Germany. CHEMOSPHERE 2021; 279:130631. [PMID: 34134422 DOI: 10.1016/j.chemosphere.2021.130631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/05/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
The Hg isotopic composition of 1-year-old Norway spruce (Picea abies) shoots collected from Saarland cornurbation Warndt, Germany, since 1985 by the German Environmental Specimen Bank, were measured for a better understanding of the temporal trends of Hg sources. The isotopic data showed that Hg was mainly taken up as gaseous element mercury (GEM) and underwent oxidation in the spruce needles; this led to a significant decrease in the δ202Hg compared with the atmospheric Hg isotopic composition observed for deciduous leaves and epiphytic lichens. Observation of the odd mass-independent isotopic fractionation (MIF) indicated that Δ199Hg and Δ201Hg were close to but slightly lower than the actual values recorded from the atmospheric measurement of the GEM isotopic composition in non-contaminated sites in U.S. and Europe, whereas observation of the even-MIF indicated almost no differences for Δ200Hg. This confirmed that GEM is a major source of Hg accumulation in spruce shoots. Interestingly, the Hg isotopic composition in the spruce shoots did not change very significantly during the study period of >30 years, even as the Hg concentration decreased significantly. Even-MIF (Δ200Hg) and mass-dependent fractionation (MDF) (δ202Hg) of the Hg isotopes exhibited slight decrease with time, whereas odd-MIF did not show any clear trend. These results suggest a close link between the long-term evolution of GEM isotopic composition in the air and the isotopic composition of bioaccumulated Hg altered by mass-dependent fraction in the spruce shoots.
Collapse
Affiliation(s)
- Akane Yamakawa
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506, Japan.
| | - David Amouroux
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux. Technopôle Hélioparc, 2 Avenue Pierre Angot, 64053 Pau Cedex 09, France
| | - Emmanuel Tessier
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux. Technopôle Hélioparc, 2 Avenue Pierre Angot, 64053 Pau Cedex 09, France
| | - Sylvain Bérail
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux. Technopôle Hélioparc, 2 Avenue Pierre Angot, 64053 Pau Cedex 09, France
| | - Ina Fettig
- German Environment Agency (Umweltbundesamt), Corrensplatz 1, 14195, Berlin, Germany
| | - Julien P G Barre
- Advanced Isotopic Analysis, Technopôle Hélioparc Pau Pyrénées, 2 Avenue Pierre Angot, 64053 Pau Cedex 09, France
| | - Jan Koschorreck
- German Environment Agency (Umweltbundesamt), Corrensplatz 1, 14195, Berlin, Germany
| | - Heinz Rüdel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392, Schmallenberg, Germany
| | - Olivier F X Donard
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux. Technopôle Hélioparc, 2 Avenue Pierre Angot, 64053 Pau Cedex 09, France
| |
Collapse
|
13
|
Wang X, Yuan W, Lin CJ, Wu F, Feng X. Stable mercury isotopes stored in Masson Pinus tree rings as atmospheric mercury archives. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125678. [PMID: 33765566 DOI: 10.1016/j.jhazmat.2021.125678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/28/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
The accuracy of mercury (Hg) dendrochemistry has been questioned because significant knowledge gaps exist in understanding the Hg translocation and mobility in tree-ring. In this study, we evaluated Hg concentrations and isotopic profiles in the tree-ring at a Hg artisanal mining site and a control site with the documented local Hg production inventory. Results show that the Hg concentration accumulated in tree-ring fails to reconstruct the temporal trend of Hg production due to confounded tree physiological and environmental factors, specifically, the radial translocation and tree age effects occurring during the fast-growing period. The temporal profiles of δ202Hg exhibit pronounced tree-specific variabilities due to the complexity of Hg isotopic mass dependent fractionation during atmospheric Hg uptake and translocation in vegetation. The Hg odd-MIF (mass independent fractionation) profiles in tree-ring can reconstruct a decadal-scale temporal trend of the atmospheric Hg0 pollution level, and also be used as a tracer to distinguish the emission source shifts of atmospheric Hg0. However, the radial translocation would result in uncertainties at the higher resolution because of the mixing of odd-MIF signatures with active rings. Caution should be taken and additional supporting evidence collected from independent methods should be used for verifying the tree-ring records.
Collapse
Affiliation(s)
- Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; College of Resources and Environment, Southwest University, Chongqing 400715, China.
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont 77710, USA; Department of Civil and Environmental Engineering, Lamar University, Beaumont 77710, USA
| | - Fei Wu
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xian 710061, China.
| |
Collapse
|
14
|
Janssen SE, Hoffman JC, Lepak RF, Krabbenhoft DP, Walters D, Eagles-Smith CA, Peterson G, Ogorek JM, DeWild JF, Cotter A, Pearson M, Tate MT, Yeardley RB, Mills MA. Examining historical mercury sources in the Saint Louis River estuary: How legacy contamination influences biological mercury levels in Great Lakes coastal regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146284. [PMID: 33744580 PMCID: PMC9563104 DOI: 10.1016/j.scitotenv.2021.146284] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 05/12/2023]
Abstract
Industrial chemical contamination within coastal regions of the Great Lakes can pose serious risks to wetland habitat and offshore fisheries, often resulting in fish consumption advisories that directly affect human and wildlife health. Mercury (Hg) is a contaminant of concern in many of these highly urbanized and industrialized coastal regions, one of which is the Saint Louis River estuary (SLRE), the second largest tributary to Lake Superior. The SLRE has legacy Hg contamination that drives high Hg concentrations within sediments, but it is unclear whether legacy-derived Hg actively cycles within the food web. To understand the relative contributions of legacy versus contemporary Hg sources in coastal zones, Hg, carbon, and nitrogen stable isotope ratios were measured in sediments and food webs of SLRE and the Bad River, an estuarine reference site. Hg stable isotope values revealed that legacy contamination of Hg was widespread and heterogeneously distributed in sediments of SLRE, even in areas lacking industrial Hg sources. Similar isotope values were found in benthic invertebrates, riparian spiders, and prey fish from SLRE, confirming legacy Hg reaches the SLRE food web. Direct comparison of prey fish from SLRE and the Bad River confirmed that Hg isotope differences between the sites were not attributable to fractionation associated with rapid Hg bioaccumulation at estuarine mouths, but due to the presence of industrial Hg within SLRE. The Hg stable isotope values of game fish in both estuaries were dependent on fish migration and diet within the estuaries and extending into Lake Superior. These results indicate that Hg from legacy contamination is actively cycling within the SLRE food web and, through migration, this Hg also extends into Lake Superior via game fish. Understanding sources and the movement of Hg within the estuarine food web better informs restoration strategies for other impaired Great Lakes coastal zones.
Collapse
Affiliation(s)
- Sarah E Janssen
- U.S. Geological Survey Upper Midwest Water Science Center, 8505 Research Way, Middleton, WI 53562, USA.
| | - Joel C Hoffman
- U.S. Environmental Protection Agency Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Ryan F Lepak
- U.S. Environmental Protection Agency Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA; Environmental Chemistry and Technology Program, University of Wisconsin-Madison, 660 N. Park Street, Madison, WI 53706, USA
| | - David P Krabbenhoft
- U.S. Geological Survey Upper Midwest Water Science Center, 8505 Research Way, Middleton, WI 53562, USA
| | - David Walters
- U.S. Geological Survey Columbia Environmental Research Center, 4200 New Haven Rd, Columbia, MO 65201, USA
| | - Collin A Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200SW Jefferson Way, Corvallis, OR 97331, USA
| | - Greg Peterson
- U.S. Environmental Protection Agency Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Jacob M Ogorek
- U.S. Geological Survey Upper Midwest Water Science Center, 8505 Research Way, Middleton, WI 53562, USA
| | - John F DeWild
- U.S. Geological Survey Upper Midwest Water Science Center, 8505 Research Way, Middleton, WI 53562, USA
| | - Anne Cotter
- U.S. Environmental Protection Agency Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Mark Pearson
- U.S. Environmental Protection Agency Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Michael T Tate
- U.S. Geological Survey Upper Midwest Water Science Center, 8505 Research Way, Middleton, WI 53562, USA
| | - Roger B Yeardley
- U.S. Environmental Protection Agency Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, OH 45220, USA
| | - Marc A Mills
- U.S. Environmental Protection Agency Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, OH 45220, USA
| |
Collapse
|
15
|
Fu X, Jiskra M, Yang X, Marusczak N, Enrico M, Chmeleff J, Heimbürger-Boavida LE, Gheusi F, Sonke JE. Mass-Independent Fractionation of Even and Odd Mercury Isotopes during Atmospheric Mercury Redox Reactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10164-10174. [PMID: 34213316 DOI: 10.1021/acs.est.1c02568] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Mass-independent fractionation (MIF) of stable even mass number mercury (Hg) isotopes is observed in rainfall and gaseous elemental Hg0 globally and is used to quantify atmospheric Hg deposition pathways. The chemical reaction and underlying even-Hg MIF mechanism are unknown however and speculated to be caused by Hg photo-oxidation on aerosols at the tropopause. Here, we investigate the Hg isotope composition of free tropospheric Hg0 and oxidized HgII forms at the high-altitude Pic du Midi Observatory. We find that gaseous oxidized Hg has positive Δ199Hg, Δ201Hg, and Δ200Hg and negative Δ204Hg signatures, similar to rainfall Hg, and we document rainfall Hg Δ196Hg to be near zero. Cloud water and rainfall Hg show an enhanced odd-Hg MIF of 0.3‰ compared to gaseous oxidized HgII, potentially indicating the occurrence of in-cloud aqueous HgII photoreduction. Diurnal MIF observations of free tropospheric Hg0 show how net Hg0 oxidation in high-altitude air masses leads to opposite even- and odd-MIF in Hg0 and oxidized HgII. We speculate that even-Hg MIF takes place by a molecular magnetic isotope effect during HgII photoreduction on aerosols that involves magnetic halogen nuclei. A Δ200Hg mass balance suggests that global Hg deposition pathways in models are likely biased toward HgII deposition. We propose that Hg cycling models could accommodate the Hg-isotope constraints on emission and deposition fluxes.
Collapse
Affiliation(s)
- Xuewu Fu
- Géosciences Environnement Toulouse, CNRS/IRD/CNRS/Université de Toulouse, Toulouse 31000, France
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Martin Jiskra
- Géosciences Environnement Toulouse, CNRS/IRD/CNRS/Université de Toulouse, Toulouse 31000, France
- Environmental Geosciences, University of Basel, Basel 4001, Switzerland
| | - Xu Yang
- Géosciences Environnement Toulouse, CNRS/IRD/CNRS/Université de Toulouse, Toulouse 31000, France
| | - Nicolas Marusczak
- Géosciences Environnement Toulouse, CNRS/IRD/CNRS/Université de Toulouse, Toulouse 31000, France
| | - Maxime Enrico
- Géosciences Environnement Toulouse, CNRS/IRD/CNRS/Université de Toulouse, Toulouse 31000, France
| | - Jérôme Chmeleff
- Géosciences Environnement Toulouse, CNRS/IRD/CNRS/Université de Toulouse, Toulouse 31000, France
| | - Lars-Eric Heimbürger-Boavida
- Géosciences Environnement Toulouse, CNRS/IRD/CNRS/Université de Toulouse, Toulouse 31000, France
- Mediterranean Institute of Oceanography, Aix Marseille Université, CNRS/IRD, Université de Toulon, IRD, Marseille 13288, France
| | - François Gheusi
- Laboratoire d'Aérologie, CNRS/IRD/Université de Toulouse, Toulouse 31000, France
| | - Jeroen E Sonke
- Géosciences Environnement Toulouse, CNRS/IRD/CNRS/Université de Toulouse, Toulouse 31000, France
| |
Collapse
|
16
|
Yu B, Yang L, Liu H, Yang R, Fu J, Wang P, Li Y, Xiao C, Liang Y, Hu L, Zhang Q, Yin Y, Shi J, Jiang G. Katabatic Wind and Sea-Ice Dynamics Drive Isotopic Variations of Total Gaseous Mercury on the Antarctic Coast. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6449-6458. [PMID: 33856785 DOI: 10.1021/acs.est.0c07474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Clarifying the sources and fates of atmospheric mercury (Hg) in the Antarctic is crucial to understand the global Hg circulation and its impacts on the fragile ecosystem of the Antarctic. Herein, the annual variations in the isotopic compositions of total gaseous Hg (TGM), with 5-22 days of sampling duration for each sample, were presented for the first time to provide isotopic evidence of the sources and environmental processes of gaseous Hg around the Chinese Great Wall Station (GWS) in the western Antarctic. Different from the Arctic tundra and lower latitude areas in the northern hemisphere, positive δ202Hg (0.58 ± 0.21‰, mean ± 1SD) and negative Δ199Hg (-0.30 ± 0.10‰, mean ± 1SD) in TGM at the GWS indicated little impact from the vegetation-air exchange in the Antarctic. Correlations among TGM Δ199Hg, air temperature, and ozone concentrations suggested that enhanced katabatic wind that transported inland air masses to the continental margin elevated TGM Δ199Hg in the austral winter, while the surrounding marine surface emissions controlled by sea-ice dynamics lowered TGM Δ199Hg in the austral summer. The oxidation of Hg(0) might elevate Δ199Hg in TGM during atmospheric Hg depletion events but have little impact on the seasonal variations of atmospheric Hg isotopes. The presented atmospheric Hg isotopes were essential to identify the transport and transformation of atmospheric Hg and further understand Hg cycling in the Antarctic.
Collapse
Affiliation(s)
- Ben Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lin Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongwei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Pu Wang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Cailing Xiao
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Lu Z, Yuan W, Luo K, Wang X. Litterfall mercury reduction on a subtropical evergreen broadleaf forest floor revealed by multi-element isotopes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115867. [PMID: 33160734 DOI: 10.1016/j.envpol.2020.115867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Litterfall mercury (Hg) deposition is the dominant source of soil Hg in forests. Identifying reduction processes and tracking the fate of legacy Hg on forest floor are challenging tasks. Interplays between isotopes of carbon (C) and nitrogen (N) may shed some lights on Hg biogeochemical processes because their biogeochemical cycling closely links with organic matters. Isotope measurements at the evergreen broadleaf forest floor at Mt. Ailao (Mountain Ailao) display that δ202Hg and Δ199Hg both significantly correlate with δ13C and δ15N in soil profiles. Data analysis results show that microbial reduction is the dominant process for the distinct δ202Hg shift (up to ∼1.0‰) between Oi and 0-10 cm surface mineral soil, and dark abiotic organic matter reduction is the main cause for the Δ199Hg shift (∼-0.18‰). Higher N in foliage leads to greater Hg concentration, and Hg0 re-emission via microbial reduction on forest floor is likely linked to N release and immobilization on forest floor. We thus suggest that the enhanced N deposition in global forest ecosystems can potentially influence Hg uptake by vegetation and litter Hg sequestration on forest floor.
Collapse
Affiliation(s)
- Zhiyun Lu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Xishuangbanna, Yunnan, 666303, China; Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, Yunnan, 676200, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Kang Luo
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Xishuangbanna, Yunnan, 666303, China; Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, Yunnan, 676200, China
| | - Xun Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
18
|
Kurz AY, Blum JD, Gratz LE, Jaffe DA. Contrasting Controls on the Diel Isotopic Variation of Hg 0 at Two High Elevation Sites in the Western United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10502-10513. [PMID: 32786593 DOI: 10.1021/acs.est.0c01918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The atmosphere is a significant global reservoir for mercury (Hg) and its isotopic characterization is important to understand sources, distribution, and deposition of Hg to the Earth's surface. To better understand Hg isotope variability in the remote background atmosphere, we collected continuous 12-h Hg0 samples for 1 week from two high elevation sites, Camp Davis, Wyoming (valley), and Mount Bachelor, Oregon (mountaintop). The samples collected at Camp Davis displayed strong diel variation in δ202Hg values of Hg0, but not in Δ199Hg or Δ200Hg values. We attribute this pattern to nightly atmospheric inversions trapping Hg in the valley and the subsequent nighttime uptake of Hg by vegetation, which depletes Hg from the atmosphere. At Mount Bachelor, the samples displayed diel variation in both δ202Hg and Δ199Hg, but not Δ200Hg. We attribute this pattern to differences in the vertical distribution of Hg in the atmosphere as Mount Bachelor received free tropospheric air masses on certain nights during the sampling period. Near the end of the sampling period at Mount Bachelor, the observed diel pattern dissipated due to the influence of a nearby forest fire. The processes governing the Hg isotopic fractionation differ across sites depending on mixing, topography, and vegetation cover.
Collapse
Affiliation(s)
- Aaron Y Kurz
- Department of Earth and Environmental Sciences, University of Michigan, 1100 N University Avenue, Ann Arbor, Michigan 48109, United States
| | - Joel D Blum
- Department of Earth and Environmental Sciences, University of Michigan, 1100 N University Avenue, Ann Arbor, Michigan 48109, United States
| | - Lynne E Gratz
- Environmental Studies Program, Colorado College, Colorado Springs, Colorado 80903, United States
| | - Daniel A Jaffe
- School of Science, Technology, Engineering & Mathematics, University of Washington Bothell, Bothell, Washington 98011, United States
| |
Collapse
|
19
|
Szponar N, McLagan DS, Kaplan RJ, Mitchell CPJ, Wania F, Steffen A, Stupple GW, Monaci F, Bergquist BA. Isotopic Characterization of Atmospheric Gaseous Elemental Mercury by Passive Air Sampling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10533-10543. [PMID: 32786342 DOI: 10.1021/acs.est.0c02251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tracing emission sources and transformations of atmospheric mercury with Hg stable isotopes depends on the ability to collect amounts sufficient for reliable quantification. Commonly employed active sampling methods require power and long pumping times, which limits the ability to deploy in remote locations and at high spatial resolution and can lead to compromised traps. In order to overcome these limitations, we conducted field and laboratory experiments to assess the preservation of isotopic composition during sampling of gaseous elemental mercury (GEM) with a passive air sampler (PAS) that uses a sulfur-impregnated carbon sorbent and a diffusive barrier. Whereas no mass independent fractionation (MIF) was observed during sampling, the mass dependent fractionation (MDF, δ202Hg) of GEM taken up by the PAS was lower than that of actively pumped samples by 1.14 ± 0.24‰ (2SD). Because the MDF offset was consistent across field studies and laboratory experiments conducted at 5, 20, and 30 °C, the PAS can be used for reliable isotopic characterization of GEM (±0.3‰ for MDF, ±0.05‰ for MIF, 2SD). The MDF offset occurred more during the sorption of GEM rather than during diffusion. PAS field deployments confirm the ability to record differences in the isotopic composition of GEM (i) with distance from point sources and (ii) sampled at different background locations globally.
Collapse
Affiliation(s)
- Natalie Szponar
- Department of Earth Sciences, University of Toronto, M5S 2B1 Toronto, Canada
| | - David S McLagan
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, M1C 1A4 Toronto, Canada
| | - Robert J Kaplan
- Department of Earth Sciences, University of Toronto, M5S 2B1 Toronto, Canada
| | - Carl P J Mitchell
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, M1C 1A4 Toronto, Canada
| | - Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, M1C 1A4 Toronto, Canada
| | - Alexandra Steffen
- Air Quality Processes Research Section, Environment and Climate Change Canada, M3H 5T4 Toronto, Canada
| | - Geoff W Stupple
- Air Quality Processes Research Section, Environment and Climate Change Canada, M3H 5T4 Toronto, Canada
| | - Fabrizio Monaci
- Department of Life Sciences, University of Siena, via Mattioli 4, 53100 Siena, Italy
| | - Bridget A Bergquist
- Department of Earth Sciences, University of Toronto, M5S 2B1 Toronto, Canada
| |
Collapse
|
20
|
Lepak RF, Janssen SE, Engstrom DR, Krabbenhoft DP, Tate MT, Yin R, Fitzgerald WF, Nagorski SA, Hurley JP. Resolving Atmospheric Mercury Loading and Source Trends from Isotopic Records of Remote North American Lake Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9325-9333. [PMID: 32597170 PMCID: PMC7781044 DOI: 10.1021/acs.est.0c00579] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The strongest evidence for anthropogenic alterations to the global mercury (Hg) cycle comes from historical records of mercury deposition preserved in lake sediments. Hg isotopes have added a new dimension to these sedimentary archives, promising additional insights into Hg source apportionment and biogeochemical processing. Presently, most interpretations of historical changes are constrained to a small number of locally contaminated ecosystems. Here, we describe changes in natural Hg isotope records from a suite of dated sediment cores collected from various remote lakes of North America. In nearly all cases, the rise in industrial-use Hg is accompanied by an increase in δ202Hg and Δ199Hg values. These trends can be attributed to large-scale industrial emission of Hg into the atmosphere and are consistent with positive Δ199Hg values measured in modern-day precipitation and modeled increases in δ202Hg values from global emission inventories. Despite similar temporal trends among cores, the baseline isotopic values vary considerably among the different study regions, likely attributable to differences in the fractionation produced in situ as well as differing amounts of atmospherically delivered Hg. Differences among the study lakes in precipitation and watershed size provide an empirical framework for evaluating Hg isotopic signatures and global Hg cycling.
Collapse
Affiliation(s)
- Ryan F. Lepak
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, 660 N. Park Street, Madison, WI 53706, USA
- U.S. Geological Survey, Upper Midwest Water Science Center, USGS Mercury Research Laboratory, 8505 Research Way, Middleton, WI 53562, USA
- U.S. Environmental Protection Agency Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA
- corresponding author: Ryan Lepak, U.S. EPA Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA –
| | - Sarah E. Janssen
- U.S. Geological Survey, Upper Midwest Water Science Center, USGS Mercury Research Laboratory, 8505 Research Way, Middleton, WI 53562, USA
| | - Daniel R. Engstrom
- St. Croix Watershed Research Station, Science Museum of Minnesota, 16910 152nd St. N., Marine on St. Croix, MN 55047, USA
| | - David P. Krabbenhoft
- U.S. Geological Survey, Upper Midwest Water Science Center, USGS Mercury Research Laboratory, 8505 Research Way, Middleton, WI 53562, USA
| | - Michael T. Tate
- U.S. Geological Survey, Upper Midwest Water Science Center, USGS Mercury Research Laboratory, 8505 Research Way, Middleton, WI 53562, USA
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 99 Lincheng West Road, Guanshanhu District, Guiyang, Guizhou 550081, China
| | | | - Sonia A. Nagorski
- University of Alaska Southeast, Department of Natural Sciences, Juneau, AK 99801, USA
| | - James P. Hurley
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, 660 N. Park Street, Madison, WI 53706, USA
- University of Wisconsin Aquatic Sciences Center, 1975 Willow Dr., Madison, WI 53706, USA
| |
Collapse
|
21
|
Sommar J, Osterwalder S, Zhu W. Recent advances in understanding and measurement of Hg in the environment: Surface-atmosphere exchange of gaseous elemental mercury (Hg 0). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137648. [PMID: 32182462 DOI: 10.1016/j.scitotenv.2020.137648] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 05/26/2023]
Abstract
The atmosphere is the major transport pathway for distribution of mercury (Hg) globally. Gaseous elemental mercury (GEM, hereafter Hg0) is the predominant form in both anthropogenic and natural emissions. Evaluation of the efficacy of reductions in emissions set by the UN's Minamata Convention (UN-MC) is critically dependent on the knowledge of the dynamics of the global Hg cycle. Of these dynamics including e.g. red-ox reactions, methylation-demethylation and dry-wet deposition, poorly constrained atmosphere-surface Hg0 fluxes especially limit predictability of the timescales of its global biogeochemical cycle. This review focuses on Hg0 flux field observational studies, namely the theory, applications, strengths, and limitations of the various experimental methodologies applied to gauge the exchange flux and decipher active sub-processes. We present an in-depth review, a comprehensive literature synthesis, and methodological and instrumentation advances for terrestrial and marine Hg0 flux studies in recent years. In particular, we outline the theory of a wide range of measurement techniques and detail the operational protocols. Today, the most frequently used measurement techniques to determine the net Hg0 flux (>95% of the published flux data) are dynamic flux chambers for small-scale and micrometeorological approaches for large-scale measurements. Furthermore, top-down approaches based on Hg0 concentration measurements have been applied as tools to better constrain Hg emissions as an independent way to e.g. challenge emission inventories. This review is an up-dated, thoroughly revised edition of Sommar et al. 2013 (DOI: 10.1080/10643389.2012.671733). To the tabulation of >100 cited flux studies 1988-2009 given in the former publication, we have here listed corresponding studies published during the last decade with a few exceptions (2008-2019). During that decade, Hg stable isotope ratios of samples involved in atmosphere-terrestrial interaction is at hand and provide in combination with concentration and/or flux measurements novel constraints to quantitatively and qualitatively assess the bi-directional Hg0 flux. Recent efforts in the development of relaxed eddy accumulation and eddy covariance Hg0 flux methods bear the potential to facilitate long-term, ecosystem-scale flux measurements to reduce the prevailing large uncertainties in Hg0 flux estimates. Standardization of methods for Hg0 flux measurements is crucial to investigate how land-use change and how climate warming impact ecosystem-specific Hg0 sink-source characteristics and to validate frequently applied model parameterizations describing the regional and global scale Hg cycle.
Collapse
Affiliation(s)
- Jonas Sommar
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China.
| | - Stefan Osterwalder
- Institut des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France
| | - Wei Zhu
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
22
|
Eckley CS, Gilmour CC, Janssen S, Luxton TP, Randall PM, Whalin L, Austin C. The assessment and remediation of mercury contaminated sites: A review of current approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136031. [PMID: 31869604 PMCID: PMC6980986 DOI: 10.1016/j.scitotenv.2019.136031] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/07/2019] [Accepted: 12/07/2019] [Indexed: 04/13/2023]
Abstract
Remediation of mercury (Hg) contaminated sites has long relied on traditional approaches, such as removal and containment/capping. Here we review contemporary practices in the assessment and remediation of industrial-scale Hg contaminated sites and discuss recent advances. Significant improvements have been made in site assessment, including the use of XRF to rapidly identify the spatial extent of contamination, Hg stable isotope fractionation to identify sources and transformation processes, and solid-phase characterization (XAFS) to evaluate Hg forms. The understanding of Hg bioavailability for methylation has been improved by methods such as sequential chemical extractions and porewater measurements, including the use of diffuse gradient in thin-film (DGT) samplers. These approaches have shown varying success in identifying bioavailable Hg fractions and further study and field applications are needed. The downstream accumulation of methylmercury (MeHg) in biota is a concern at many contaminated sites. Identifying the variables limiting/controlling MeHg production-such as bioavailable inorganic Hg, organic carbon, and/or terminal electron acceptors (e.g. sulfate, iron) is critical. Mercury can be released from contaminated sites to the air and water, both of which are influenced by meteorological and hydrological conditions. Mercury mobilized from contaminated sites is predominantly bound to particles, highly correlated with total sediment solids (TSS), and elevated during stormflow. Remediation techniques to address Hg contamination can include the removal or containment of Hg contaminated materials, the application of amendments to reduce mobility and bioavailability, landscape/waterbody manipulations to reduce MeHg production, and food web manipulations through stocking or extirpation to reduce MeHg accumulated in desired species. These approaches often rely on knowledge of the Hg forms/speciation at the site, and utilize physical, chemical, thermal and biological methods to achieve remediation goals. Overall, the complexity of Hg cycling allows many different opportunities to reduce/mitigate impacts, which creates flexibility in determining suitable and logistically feasible remedies.
Collapse
Affiliation(s)
- Chris S Eckley
- U.S. Environmental Protection Agency, Region-10, 1200 6th Ave, Seattle, WA 98101, USA.
| | - Cynthia C Gilmour
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd., Edgewater, MD 21037-0028, USA.
| | - Sarah Janssen
- USGS Upper Midwest Water Science Center, 8505 Research Way, Middleton, WI 53562, USA.
| | - Todd P Luxton
- US Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | - Paul M Randall
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA.
| | - Lindsay Whalin
- San Francisco Bay Water Board, 1515 Clay St., Ste. 1400, Oakland, CA 94612, USA.
| | - Carrie Austin
- San Francisco Bay Water Board, 1515 Clay St., Ste. 1400, Oakland, CA 94612, USA.
| |
Collapse
|
23
|
Fu X, Zhang H, Liu C, Zhang H, Lin CJ, Feng X. Significant Seasonal Variations in Isotopic Composition of Atmospheric Total Gaseous Mercury at Forest Sites in China Caused by Vegetation and Mercury Sources. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13748-13756. [PMID: 31721564 DOI: 10.1021/acs.est.9b05016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, isotopic compositions of atmospheric total gaseous mercury (TGM) were measured in the Mt. Changbai (MCB) temperate deciduous forest and the Mt. Ailao (MAL) subtropical evergreen forest over a 1-year period. Higher δ202HgTGM values were observed under the forest canopy than above the forest canopy in the MCB forest. The vertical gradients in δ202HgTGM and Δ199HgTGM are positively correlated with the satellite-based normalized difference vegetation index (NDVI, representing the vegetation photosynthetic activity), suggesting that a strong vegetation activity (high NDVI) induces both mass-dependent and mass-independent fractionation of TGM isotopes. The observed δ202HgTGM and Δ199HgTGM showed seasonal variations. Mean δ202HgTGM and Δ199HgTGM in summer were 0.35-0.99‰ and 0.06-0.09‰ higher than those in other seasons in the MCB forest. In contrast, the highest seasonal δ202HgTGM in the MAL forest was observed in winter at 0.07-0.40‰ higher than the values found in other seasons. The variability of δ202HgTGM and Δ199HgTGM in MCB was attributed to vegetation activities, whereas the seasonal δ202HgTGM in the MAL forest was driven by the exposure of air masses to anthropogenic emissions. Using the data in this study and in the literature, we concluded that vegetation activity and anthropogenic Hg release are the main drivers for the spatial variations in TGM isotopic compositions in the northern hemisphere.
Collapse
Affiliation(s)
- Xuewu Fu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry , Chinese Academy of Sciences , Guiyang 550081 , China
- CAS Center for Excellence in Quaternary Science and Global Change , Xi'an , Shaanxi 710061 , China
| | - Hui Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry , Chinese Academy of Sciences , Guiyang 550081 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Chen Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry , Chinese Academy of Sciences , Guiyang 550081 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Hui Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry , Chinese Academy of Sciences , Guiyang 550081 , China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality , Lamar University , Beaumont , Texas 77710-0024 , United States
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry , Chinese Academy of Sciences , Guiyang 550081 , China
- CAS Center for Excellence in Quaternary Science and Global Change , Xi'an , Shaanxi 710061 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
24
|
Janssen SE, Riva-Murray K, DeWild JF, Ogorek JM, Tate MT, Van Metre PC, Krabbenhoft DP, Coles JF. Chemical and Physical Controls on Mercury Source Signatures in Stream Fish from the Northeastern United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10110-10119. [PMID: 31390861 DOI: 10.1021/acs.est.9b03394] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Streams in the northeastern U.S. receive mercury (Hg) in varying proportions from atmospheric deposition and legacy point sources, making it difficult to attribute shifts in fish concentrations directly back to changes in Hg source management. Mercury stable isotope tracers were utilized to relate sources of Hg to co-located fish and bed sediments from 23 streams across a forested to urban-industrial land-use gradient within this region. Mass-dependent isotopes (δ202Hg) in prey and game fish at forested sites were depleted (medians -0.95 and -0.83 ‰, respectively) in comparison to fish from urban-industrial settings (medians -0.26 and -0.38 ‰, respectively); the forested site group also had higher prey fish Hg concentrations. The separation of Hg isotope signatures in fish was strongly related to in-stream and watershed land-use indicator variables. Fish isotopes were strongly correlated with bed sediment isotopes, but the isotopic offset between the two matrices was variable due to differing ecosystem-specific drivers controlling the extent of MeHg formation. The multivariable approach of analyzing watershed characteristics and stream chemistry reveals that the Hg isotope composition in fish is linked to current and historic Hg sources in the northeastern U.S. and can be used to trace bioaccumulated Hg.
Collapse
Affiliation(s)
- Sarah E Janssen
- United States Geological Survey, Upper Midwest Water Science Center , Middleton , Wisconsin 53562 , United States
| | - Karen Riva-Murray
- United States Geological Survey, New York Water Science Center , Troy , New York 12180 , United States
| | - John F DeWild
- United States Geological Survey, Upper Midwest Water Science Center , Middleton , Wisconsin 53562 , United States
| | - Jacob M Ogorek
- United States Geological Survey, Upper Midwest Water Science Center , Middleton , Wisconsin 53562 , United States
| | - Michael T Tate
- United States Geological Survey, Upper Midwest Water Science Center , Middleton , Wisconsin 53562 , United States
| | - Peter C Van Metre
- United States Geological Survey, Texas Water Science Center Austin , Texas 78754 , United States
| | - David P Krabbenhoft
- United States Geological Survey, Upper Midwest Water Science Center , Middleton , Wisconsin 53562 , United States
| | - James F Coles
- United States Geological Survey, New England Water Science Center Northborough , Massachusetts 01532 , United States
| |
Collapse
|
25
|
Reinfelder JR, Janssen SE. Tracking legacy mercury in the Hackensack River estuary using mercury stable isotopes. JOURNAL OF HAZARDOUS MATERIALS 2019; 375:121-129. [PMID: 31054529 DOI: 10.1016/j.jhazmat.2019.04.074] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 04/05/2019] [Accepted: 04/21/2019] [Indexed: 05/24/2023]
Abstract
Spatial redistribution of legacy mercury (Hg) contamination in the Hackensack River estuary (New Jersey, USA) was evaluated using mercury stable isotopes. Total Hg varied from 0.06 to 3.8 μg g-1 in sediment from the tidal Hackensack River and from 15 to 154 μg g-1 near historically contaminated sites in upper Berry's Creek, a tributary of the Hackensack River. δ202Hg values for total Hg from Berry's Creek and Hackensack River estuaries varied over a fairly narrow range (-0.44‰ to -0.21‰), but were highest for sediment from upper Berry's Creek. Isotope mixing plots show that residual legacy mercury from upper Berry's Creek is partially diluted by a low concentration and low δ202Hg pool of mercury associated with low organic matter content sediments similar to those in Newark Bay. Based on an isotope mixing model, we estimate that upper Berry's Creek contributes 21%-82% of the mercury in sediments in the Hackensack River estuary and its tidal tributaries, including upstream marsh habitats far from the primary source. Our results show that mercury stable isotopes can be used to track the redistribution of mercury in tidal ecosystems and highlight the potentially large areas which may be affected by legacy mercury contamination in estuaries.
Collapse
Affiliation(s)
- John R Reinfelder
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901 United States.
| | - Sarah E Janssen
- United States Geological Survey, Upper Midwest Water Science Center, 8505 Research Way, Middleton, WI 53562 United States
| |
Collapse
|
26
|
Washburn SJ, Blum JD, Donovan PM, Singer MB. Isotopic evidence for mercury photoreduction and retention on particles in surface waters of Central California, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 674:451-461. [PMID: 31022536 DOI: 10.1016/j.scitotenv.2019.04.145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/27/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Cache Creek (Coast Range, California) and the Yuba River (Sierra Nevada Foothills, California) are two river systems affected by extensive mercury (Hg) contamination due to legacy sources of Hg related to mining. Stable Hg isotope techniques have proven useful for elucidating the complex cycling of Hg within aquatic ecosystems, and we applied these techniques to improve understanding of Hg and methylmercury (MeHg) transformations in these watersheds. Total mercury (THg) concentrations and Hg stable isotope ratios were measured in filtered surface waters and suspended particulate matter collected from 14 sites within the Cache Cr. and Yuba R. watersheds. Filtered surface waters from both watersheds exhibited values of ∆199Hg (0.37‰ to 0.71‰), consistently elevated above those observed in sediments (∆199Hg average = 0.07‰). Associated suspended particulates from these surface water samples displayed a much greater range of values for ∆199Hg (-0.61‰ to 0.70‰), although suspended particulates from the Yuba R. exhibited mostly negative ∆199Hg values (-0.61‰ to 0.10‰). The relationship between ∆199Hg and ∆201Hg in the filtered surface waters and associated suspended particulates was calculated using a bivariate York regression, yielding a slope of 1.57 ± 0.49 (±2SE) for the Yuba R. and 1.40 ± 0.27 (±2SE) for Cache Cr., both within error of the previously reported experimentally-derived slopes for MeHg- and inorganic Hg(II)-photoreduction. This provides isotopic evidence that Hg photoreduction is occurring within these surface waters to a significant degree, and suspended particulate phases are retaining the reduced product of Hg photoreduction, particularly within the Yuba R. The isotopic compositions of filtered surface waters are consistent with the isotopic signatures recorded in biota at low trophic positions within these watersheds, suggesting that the reservoir of Hg incorporated within the biota of these systems is similar to the filter-passing Hg fraction in surface waters.
Collapse
Affiliation(s)
- Spencer J Washburn
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Joel D Blum
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States
| | - Patrick M Donovan
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States
| | - Michael Bliss Singer
- School of Earth and Ocean Sciences, Cardiff University, Cardiff CF10 3AT, United Kingdom; Water Research Institute, Cardiff University, Cardiff CF10 3AX, United Kingdom; Earth Research Institute, University of California Santa Barbara, Santa Barbara, CA 91306, United States
| |
Collapse
|
27
|
Kurz AY, Blum JD, Washburn SJ, Baskaran M. Changes in the mercury isotopic composition of sediments from a remote alpine lake in Wyoming, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:973-982. [PMID: 30970464 DOI: 10.1016/j.scitotenv.2019.03.165] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Mercury (Hg) deposition from the atmosphere has increased dramatically since 1850 and Hg isotope records in lake sediments can be used to identify changes in the sources and cycling of Hg. We collected a sediment core from a remote lake (Lost Lake, Wyoming, USA) and measured vertical variation of Hg concentration and isotopic composition as well as 210Pb and 137Cs activities to establish a chronology. We also analyzed vegetation and soil samples from the watershed which has a small ratio of watershed area to lake surface area (2.06). The Hg flux remains constant from ~1350 to 1850 before increasing steadily to modern values that are approximately four times pre-1850 values. The modern Hg isotopic composition preserved in the sediments is distinct from the Hg isotopic composition of pre-1850 samples with both δ202Hg and Δ199Hg becoming progressively more positive through time, with shifts of +0.37‰ and +0.23‰ respectively. To explain temporal changes in δ202Hg, Δ199Hg, and Hg concentration in the core segments, we estimated a present-day atmospheric endmember based on precipitation and snow samples collected near Lost Lake. The observed change in Hg isotopic values through time cannot be explained solely by addition of anthropogenic Hg with the isotopic composition that has been estimated by others for global anthropogenic emissions. Instead, the isotope variation suggests that the relative importance of redox transformations, whether in the atmosphere, within the lake, or both, have changed since 1850.
Collapse
Affiliation(s)
- Aaron Y Kurz
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Joel D Blum
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States
| | - Spencer J Washburn
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States
| | - Mark Baskaran
- Department of Geology, Wayne State University, Detroit, MI 48201, United States
| |
Collapse
|
28
|
Yamakawa A, Takami A, Takeda Y, Kato S, Kajii Y. Emerging investigator series: investigation of mercury emission sources using Hg isotopic compositions of atmospheric mercury at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS), Japan. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:809-818. [PMID: 30942203 DOI: 10.1039/c8em00590g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study conducted mercury (Hg) isotopic analysis, which has been expected as a new indicator for understanding the behavior of atmospheric Hg. The dominant atmospheric Hg species, namely gaseous elemental mercury (GEM, Hg0), were collected at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) in Okinawa, Japan, for evaluating possible source(s) and transformation process(es) of Hg. The Hg isotopic compositions of GEM samples showed that the mass-dependent fractionation (MDF) of δ202Hg and the mass-independent fractionation (MIF) of Δ199Hg ranged from -2.15‰ to 0.79‰ and from -0.32‰ to 0.00‰, respectively. The results were classified into two groups: (1) negative δ202Hg and near-zero Δ199Hg in summer and (2) near-zero δ202Hg and negative Δ199Hg in the other season. According to the NOAA Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model, the dominant air masses traveled from East Asia during winter and South and East Asia during summer. However, the air masses also traveled from mainland Japan and rotated around Okinawa before reaching CHAAMS. In contrast, clear positive correlations between δ202Hg values and CO and PM2.5 concentrations were observed during summer. A small peak of Ox concentration was observed at three atmospheric monitoring stations, namely Nago, Naha, and Miyako Island during summer. Since Miyako Island is located ∼370 km southwest of CHAAMS, the main emission source of GEM transported to CHAAMS was not from mainland Okinawa but traveled from the southwest during summer.
Collapse
Affiliation(s)
- A Yamakawa
- Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan.
| | | | | | | | | |
Collapse
|
29
|
Sun R. Mercury Stable Isotope Fractionation During Coal Combustion in Coal-Fired Boilers: Reconciling Atmospheric Hg Isotope Observations with Hg Isotope Fractionation Theory. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 102:657-664. [PMID: 30603766 DOI: 10.1007/s00128-018-2531-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
Mercury (Hg) stable isotope is a useful tool to understand the transformation of atmospheric Hg. The observation on the enrichment of heavier isotopes in gaseous elemental Hg (GEM) relative to oxidized HgII species in atmosphere cannot be convincingly explained by isotope fractionation of Hg redox processes. This review shows that the large Hg isotope mass dependent fractionation (MDF) in coal-fired boilers is one of the underlying reasons. The reported Hg isotope data of feed coals and their combustion products are first summarized to give a general overview of how Hg isotopes fractionate before Hg discharge from coal-fired boilers. Then, predictive MDF models are discussed to simulate δ202Hg values of different Hg species in coal combustion flue gases. The discharged GEM is predicted to have the highest δ202Hg followed by gaseous HgII and particulate-bound HgII, which is in consistent with the observed MDF pattern of atmospheric Hg species.
Collapse
Affiliation(s)
- Ruoyu Sun
- Institute of Surface-Earth System Sciences, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
30
|
Jiskra M, Marusczak N, Leung KH, Hawkins L, Prestbo E, Sonke JE. Automated Stable Isotope Sampling of Gaseous Elemental Mercury (ISO-GEM): Insights into GEM Emissions from Building Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4346-4354. [PMID: 30900896 DOI: 10.1021/acs.est.8b06381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Atmospheric monitoring networks quantify gaseous elemental mercury (GEM) concentrations, but not isotopic compositions. Here, we present a new method for automated and quantitative stable isotope sampling of GEM (ISO-GEM) at the outlet of a commercial Hg analyzer. A programmable multivalve manifold selects Hg at the analyzer inlet and outlet based on specific criteria (location, time, GEM concentration, auxiliary threshold). Outlet Hg recovery was tested for gold traps, oxidizing acidic solution traps, and activated carbon traps. We illustrate the ISO-GEM method in an exploratory study on the effect of building walls on local GEM. We find that GEM concentrations directly at the building surface (wall inlet) are significantly enhanced (mean 3.8 ± 1.8 ng/m3) compared to 3 m from the building wall (free inlet) (mean 1.5 ± 0.4 ng/m3). GEM δ202Hg (-1.26‰ ± 0.41‰, 1 SD, n = 16) and Δ199Hg (-0.05‰ ± 0.10‰, 1 SD, n = 16) at the wall inlet were different from ambient GEM δ202Hg (0.76‰ ± 0.09‰, 1 SD, n = 16) and Δ199Hg (-0.21‰ ± 0.05‰, 1 SD, n = 16) at the free inlet. The isotopic fingerprint of GEM at the wall inlet suggests that GEM emission from the aluminum building surface affected local GEM concentration measurements. These results illustrate the versatility of the automated Hg isotope sampling.
Collapse
Affiliation(s)
- Martin Jiskra
- Observatoire Midi-Pyrénées, Laboratoire Géosciences Environnement Toulouse , CNRS/IRD/Université de Toulouse , 31400 Toulouse , France
- Environmental Geosciences , University of Basel , 4056 Basel , Switzerland
| | - Nicolas Marusczak
- Observatoire Midi-Pyrénées, Laboratoire Géosciences Environnement Toulouse , CNRS/IRD/Université de Toulouse , 31400 Toulouse , France
| | - Kin-Hung Leung
- Tekran Instruments Corp., M1P 2P4 Toronto , Ontario Canada
| | - Lucas Hawkins
- Tekran Instruments Corp., 98125 Seattle , Washington United States
| | - Eric Prestbo
- Tekran Instruments Corp., 98125 Seattle , Washington United States
| | - Jeroen E Sonke
- Observatoire Midi-Pyrénées, Laboratoire Géosciences Environnement Toulouse , CNRS/IRD/Université de Toulouse , 31400 Toulouse , France
| |
Collapse
|
31
|
Janssen S, Lepak R, Tate M, Ogorek J, DeWild J, Babiarz C, Hurley J, Krabbenhoft D. Rapid pre-concentration of mercury in solids and water for isotopic analysis. Anal Chim Acta 2019; 1054:95-103. [DOI: 10.1016/j.aca.2018.12.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/03/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022]
|
32
|
Dommergue A, Amato P, Tignat-Perrier R, Magand O, Thollot A, Joly M, Bouvier L, Sellegri K, Vogel T, Sonke JE, Jaffrezo JL, Andrade M, Moreno I, Labuschagne C, Martin L, Zhang Q, Larose C. Methods to Investigate the Global Atmospheric Microbiome. Front Microbiol 2019; 10:243. [PMID: 30967843 PMCID: PMC6394204 DOI: 10.3389/fmicb.2019.00243] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/29/2019] [Indexed: 11/13/2022] Open
Abstract
The interplay between microbes and atmospheric physical and chemical conditions is an open field of research that can only be fully addressed using multidisciplinary approaches. The lack of coordinated efforts to gather data at representative temporal and spatial scales limits aerobiology to help understand large scale patterns of global microbial biodiversity and its causal relationships with the environmental context. This paper presents the sampling strategy and analytical protocols developed in order to integrate different fields of research such as microbiology, -omics biology, atmospheric chemistry, physics and meteorology to characterize atmospheric microbial life. These include control of chemical and microbial contaminations from sampling to analysis and identification of experimental procedures for characterizing airborne microbial biodiversity and its functioning from the atmospheric samples collected at remote sites from low cell density environments. We used high-volume sampling strategy to address both chemical and microbial composition of the atmosphere, because it can help overcome low aerosol and microbial cell concentrations. To account for contaminations, exposed and unexposed control filters were processed along with the samples. We present a method that allows for the extraction of chemical and biological data from the same quartz filters. We tested different sampling times, extraction kits and methods to optimize DNA yield from filters. Based on our results, we recommend supplementary sterilization steps to reduce filter contamination induced by handling and transport. These include manipulation under laminar flow hoods and UV sterilization. In terms of DNA extraction, we recommend a vortex step and a heating step to reduce binding to the quartz fibers of the filters. These steps have led to a 10-fold increase in DNA yield, allowing for downstream omics analysis of air samples. Based on our results, our method can be integrated into pre-existing long-term monitoring field protocols for the atmosphere both in terms of atmospheric chemistry and biology. We recommend using standardized air volumes and to develop standard operating protocols for field users to better control the operational quality.
Collapse
Affiliation(s)
- Aurelien Dommergue
- Institut des Géosciences de l’Environnement, Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France
| | - Pierre Amato
- Institut de Chimie de Clermont-Ferrand, UMR6096 CNRS–Université Clermont Auvergne-Sigma, Clermont-Ferrand, France
| | - Romie Tignat-Perrier
- Institut des Géosciences de l’Environnement, Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France
- CNRS UMR 5005, Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Ecully, France
| | - Olivier Magand
- Institut des Géosciences de l’Environnement, Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France
| | - Alban Thollot
- Institut des Géosciences de l’Environnement, Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France
- CNRS UMR 5005, Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Ecully, France
| | - Muriel Joly
- Institut de Chimie de Clermont-Ferrand, UMR6096 CNRS–Université Clermont Auvergne-Sigma, Clermont-Ferrand, France
| | - Laetitia Bouvier
- Laboratory for Meteorological Physics (LaMP), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Karine Sellegri
- Laboratory for Meteorological Physics (LaMP), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Timothy Vogel
- CNRS UMR 5005, Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Ecully, France
| | - Jeroen E. Sonke
- Géosciences Environnement Toulouse, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Université de Toulouse, Toulouse, France
| | - Jean-Luc Jaffrezo
- Institut des Géosciences de l’Environnement, Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France
| | - Marcos Andrade
- Laboratory for Atmospheric Physics, Institute for Physics Research, Universidad Mayor de San Andrés, La Paz, Bolivia
- Department of Atmospheric and Oceanic Sciences, University of Maryland, College Park, MD, United States
| | - Isabel Moreno
- Laboratory for Atmospheric Physics, Institute for Physics Research, Universidad Mayor de San Andrés, La Paz, Bolivia
| | | | - Lynwill Martin
- South African Weather Service, Stellenbosch, South Africa
| | - Qianggong Zhang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Catherine Larose
- CNRS UMR 5005, Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Ecully, France
| |
Collapse
|
33
|
Fu X, Zhang H, Feng X, Tan Q, Ming L, Liu C, Zhang L. Domestic and Transboundary Sources of Atmospheric Particulate Bound Mercury in Remote Areas of China: Evidence from Mercury Isotopes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1947-1957. [PMID: 30685968 DOI: 10.1021/acs.est.8b06736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Isotopic composition of atmospheric particulate bound mercury (PBM) was obtained at four remote sites in different geographical regions of China for three to 12 month periods. Mean (±1σ) Δ199HgPBM was the highest at the site in southwestern China (0.66 ± 0.32‰), followed by the site in northeastern China (0.36 ± 0.34‰), the site in the marine boundary layer of East China Sea (0.35 ± 0.33‰), and was the lowest at the site in northwestern China (0.27 ± 0.22‰). Δ199HgPBM was relatively higher in cold than warm season at the sites in northwestern and southwestern China, whereas the opposite was found at the site in northeastern China. We propose that the seasonal variations of Δ199HgPBM were influenced by the exposure of air masses to regional (e.g., anthropogenic and dust related) and long-range (e.g., anthropogenic and oceanic) sources in the preceding several days, with the former characterized by lower Δ199HgPBM and the latter characterized by more positive Δ199HgPBM due to sufficient atmospheric transformations. Modeling results from Potential Source Contribution Function suggested that domestic anthropogenic emission was the major contributor to PBM pollution at the sites in northeastern and eastern China, whereas long-range transboundary transport of PBM from South Asia played a more important role at the sites in southwestern and northwestern China.
Collapse
Affiliation(s)
- Xuewu Fu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry , Chinese Academy of Sciences , 99 Lincheng West Road , Guiyang , 550081 , China
| | - Hui Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry , Chinese Academy of Sciences , 99 Lincheng West Road , Guiyang , 550081 , China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry , Chinese Academy of Sciences , 99 Lincheng West Road , Guiyang , 550081 , China
| | - Qingyou Tan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry , Chinese Academy of Sciences , 99 Lincheng West Road , Guiyang , 550081 , China
| | - Lili Ming
- Department of Civil and Environmental Engineering , The Hong Kong Polytechnic University , HungHom , Kowloon , Hong Kong
| | - Chen Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry , Chinese Academy of Sciences , 99 Lincheng West Road , Guiyang , 550081 , China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch , Environment and Climate Change Canada , Burlington , Ontario L7S 1A1 , Canada
| |
Collapse
|
34
|
Barre JPG, Deletraz G, Sola-Larrañaga C, Santamaria JM, Bérail S, Donard OFX, Amouroux D. Multi-element isotopic signature (C, N, Pb, Hg) in epiphytic lichens to discriminate atmospheric contamination as a function of land-use characteristics (Pyrénées-Atlantiques, SW France). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:961-971. [PMID: 30248603 DOI: 10.1016/j.envpol.2018.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/31/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Abstract
Multi-elemental isotopic approach associated with a land-use characteristic sampling strategy may be relevant for conducting biomonitoring studies to determine the spatial extent of atmospheric contamination sources. In this work, we investigated how the combined isotopic signatures in epiphytic lichens of two major metallic pollutants, lead (206Pb/207Pb) and mercury (δ202Hg, Δ199Hg), together with the isotopic composition of nitrogen and carbon (δ15N, δ13C), can be used to better constrain atmospheric contamination inputs. To this end, an intensive and integrated sampling strategy based on land-use characteristics (Geographic information system, GIS) over a meso-scale area (Pyrénées-Atlantiques, SW France) was applied to more than 90 sampling stations. To depict potential relationships between such multi-elemental isotopic fingerprint and land-use characteristics, multivariate analysis was carried out. Combined Pb and Hg isotopic signatures resolved spatially the contribution of background atmospheric inputs from long range transport, from local legacy contamination (i.e. Pb) or actual industrial inputs (i.e. Pb and Hg from steel industry). Application of clustering multivariate analysis to all studied isotopes provided a new assessment of the region in accordance with the land-use characteristics and anthropogenic pressures.
Collapse
Affiliation(s)
- Julien P G Barre
- CNRS, Univ Pau & Pays Adour, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Materiaux, UMR5254, 64000, PAU, France.
| | - Gaëlle Deletraz
- CNRS, Univ Pau & Pays Adour, Univ. Bordeaux, Univ. Bordeaux Montaigne, ENSAPBx, Passages, Umr 5319, 64000, PAU, France
| | - Cristina Sola-Larrañaga
- CNRS, Univ Pau & Pays Adour, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Materiaux, UMR5254, 64000, PAU, France; Department of Chemistry and Soil Science, University of Navarra, Pamplona, Navarra, Spain
| | | | - Sylvain Bérail
- CNRS, Univ Pau & Pays Adour, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Materiaux, UMR5254, 64000, PAU, France
| | - Olivier F X Donard
- CNRS, Univ Pau & Pays Adour, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Materiaux, UMR5254, 64000, PAU, France
| | - David Amouroux
- CNRS, Univ Pau & Pays Adour, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Materiaux, UMR5254, 64000, PAU, France
| |
Collapse
|
35
|
Guédron S, Amouroux D, Tessier E, Grimaldi C, Barre J, Berail S, Perrot V, Grimaldi M. Mercury Isotopic Fractionation during Pedogenesis in a Tropical Forest Soil Catena (French Guiana): Deciphering the Impact of Historical Gold Mining. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11573-11582. [PMID: 30222337 DOI: 10.1021/acs.est.8b02186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We used natural mercury (Hg) stable isotopes to investigate the Hg cycle in a rainforest soil catena (French Guiana) partially gold-mined during the early 1950s. Litterfall showed homogeneous Δ199Hg values [-0.18 ± 0.05‰, i.e., a modern gaseous elemental Hg (GEM) isotopic signature]. After litter decomposition, Hg bound to organic matter (OM) is mixed with Hg from pristine (-0.55 ± 0.22‰) or gold-mined (-0.09 ± 0.16‰) mineral materials. Negative Δ199Hg values in deep pristine mineral horizons (-0.60 ± 0.16‰) suggest the transfer of Hg bound to dissolved OM depleted in odd isotopes due to mass-independent fractionation during Hg abiotic reduction. Perennial palm tree leaves collected above gold-mined and pristine soil recorded contrasting Δ199Hg signatures likely resulting from GEM re-emission processes from soils and leaf surfaces. Upslope, soil δ202Hg signatures showed a negative shift (ε ∼ -1‰) with depth attributed to mass-dependent fractionation during Hg sorption and complexation onto iron oxides and dissolved OM. Downslope, higher δ202Hg values in soils resulted from hydromorphy [lower humification, greater Hg(II) reduction, etc.]. The unique Hg isotopic signatures of Amazonian soils probably result in multistep fractionation processes during pedogenesis (millions of years) and in a potentially different Hg isotopic signature of preanthropogenic background GEM.
Collapse
Affiliation(s)
- S Guédron
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble , France
| | - D Amouroux
- CNRS/Univ. Pau & Pays Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux-IPREM, UMR5254, 64000 Pau , France
| | - E Tessier
- CNRS/Univ. Pau & Pays Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux-IPREM, UMR5254, 64000 Pau , France
| | - C Grimaldi
- UMR SAS, INRA, Agrocampus Ouest, 35000 Rennes , France
| | - J Barre
- CNRS/Univ. Pau & Pays Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux-IPREM, UMR5254, 64000 Pau , France
| | - S Berail
- CNRS/Univ. Pau & Pays Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux-IPREM, UMR5254, 64000 Pau , France
| | - V Perrot
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble , France
| | - M Grimaldi
- Sorbonne Universities, Science Faculty, Paris 06, IRD, CNRS, INRA, UPEC, Univ Paris Diderot, Institute of Ecology and Environmental Sciences, iEES Paris, 75005 Paris , France
- Institut de Recherche pour le Développement, Centre IRD de Cayenne, 97323 Cayenne cedex, France
| |
Collapse
|
36
|
Jiskra M, Wiederhold JG, Skyllberg U, Kronberg RM, Kretzschmar R. Source tracing of natural organic matter bound mercury in boreal forest runoff with mercury stable isotopes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:1235-1248. [PMID: 28825440 DOI: 10.1039/c7em00245a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Terrestrial runoff represents a major source of mercury (Hg) to aquatic ecosystems. In boreal forest catchments, such as the one in northern Sweden studied here, mercury bound to natural organic matter (NOM) represents a large fraction of mercury in the runoff. We present a method to measure Hg stable isotope signatures of colloidal Hg, mainly complexed by high molecular weight or colloidal natural organic matter (NOM) in natural waters based on pre-enrichment by ultrafiltration, followed by freeze-drying and combustion. We report that Hg associated with high molecular weight NOM in the boreal forest runoff has very similar Hg isotope signatures as compared to the organic soil horizons of the catchment area. The mass-independent fractionation (MIF) signatures (Δ199Hg and Δ200Hg) measured in soils and runoff were in agreement with typical values reported for atmospheric gaseous elemental mercury (Hg0) and distinctly different from reported Hg isotope signatures in precipitation. We therefore suggest that most Hg in the boreal terrestrial ecosystem originated from the deposition of Hg0 through foliar uptake rather than precipitation. Using a mixing model we calculated the contribution of soil horizons to the Hg in the runoff. At moderate to high flow runoff conditions, that prevailed during sampling, the uppermost part of the organic horizon (Oe/He) contributed 50-70% of the Hg in the runoff, while the underlying more humified organic Oa/Ha and the mineral soil horizons displayed a lower mobility of Hg. The good agreement of the Hg isotope results with other source tracing approaches using radiocarbon signatures and Hg : C ratios provides additional support for the strong coupling between Hg and NOM. The exploratory results from this study illustrate the potential of Hg stable isotopes to trace the source of Hg from atmospheric deposition through the terrestrial ecosystem to soil runoff, and provide a basis for more in-depth studies investigating the mobility of Hg in terrestrial ecosystems using Hg isotope signatures.
Collapse
Affiliation(s)
- Martin Jiskra
- Soil Chemistry, Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich, CHN, CH-8092 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
37
|
Wang X, Luo J, Yin R, Yuan W, Lin CJ, Sommar J, Feng X, Wang H, Lin C. Using Mercury Isotopes To Understand Mercury Accumulation in the Montane Forest Floor of the Eastern Tibetan Plateau. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:801-809. [PMID: 27951639 DOI: 10.1021/acs.est.6b03806] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mercury accumulation in montane forested areas plays an important role in global Hg cycling. In this study, we measured stable Hg isotopes in soil and litter samples to understand Hg accumulation on the forest floor along the eastern fringe of the Tibetan Plateau (TP). The low atmospheric Hg inputs lead to the small Hg pool size (23 ± 9 mg m-2 in 0-60 cm soil horizon), up to 1 order of magnitude lower than those found at sites in Southwest China, North America, and Europe. The slightly negative Δ199Hg (-0.12 to -0.05‰) in the litter at low elevations (3100 to 3600 m) suggests an influence of local anthropogenic emissions, whereas the more significant negative Δ199Hg (-0.38 to -0.15‰) at high elevations (3700 to 4300 m) indicates impact from long-range transport. Hg input from litter is more important than wet deposition to Hg accumulation on the forest floor, as evidenced by the negative Δ199Hg found in the surface soil samples. Correlation analyses of Δ199Hg versus total carbon and leaf area index suggest that litter biomass production is a predominant factor in atmospheric Hg inputs to the forest floor. Precipitation and temperature show indirect effects on Hg accumulation by influencing litter biomass production in the eastern TP.
Collapse
Affiliation(s)
- Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences , Guiyang 550081, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Ji Luo
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, and Ministry of Water Conservancy , Chengdu 610041, China
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences , Guiyang 550081, China
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences , Guiyang 550081, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Che-Jen Lin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences , Guiyang 550081, China
- Center for Advances in Water and Air Quality, Lamar University , Beaumont, Texas 77710, United States
| | - Jonas Sommar
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences , Guiyang 550081, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences , Guiyang 550081, China
| | - Haiming Wang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, and Ministry of Water Conservancy , Chengdu 610041, China
| | - Cynthia Lin
- The McKetta Department of Chemical Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
38
|
Li M, Schartup AT, Valberg AP, Ewald JD, Krabbenhoft DP, Yin R, Balcom PH, Sunderland EM. Environmental Origins of Methylmercury Accumulated in Subarctic Estuarine Fish Indicated by Mercury Stable Isotopes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11559-11568. [PMID: 27690400 DOI: 10.1021/acs.est.6b03206] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Methylmercury (MeHg) exposure can cause adverse reproductive and neurodevelopmental health effects. Estuarine fish may be exposed to MeHg produced in rivers and their watersheds, benthic sediment, and the marine water column, but the relative importance of each source is poorly understood. We measured stable isotopes of mercury (δ202Hg, Δ199Hg, and Δ201Hg), carbon (δ13C), and nitrogen (δ15N) in fish with contrasting habitats from a large subarctic coastal ecosystem to better understand MeHg exposure sources. We identify two distinct food chains exposed to predominantly freshwater and marine MeHg sources but do not find evidence for a benthic marine MeHg signature. This is consistent with our previous research showing benthic sediment is a net sink for MeHg in the estuary. Marine fish display lower and less variable Δ199Hg values (0.78‰ to 1.77‰) than freshwater fish (0.72‰ to 3.14‰) and higher δ202Hg values (marine: 0.1‰ to 0.57‰; freshwater: -0.76‰ to 0.15‰). We observe a shift in the Hg isotopic composition of juvenile and adult rainbow smelt (Osmerus mordax) when they transition between the freshwater and marine environment as their dominant foraging territory. The Hg isotopic composition of Atlantic salmon (Salmo salar) indicates they receive most of their MeHg from the marine environment despite a similar or longer duration spent in freshwater regions. We conclude that stable Hg isotopes effectively track fish MeHg exposure sources across different ontogenic stages.
Collapse
Affiliation(s)
- Miling Li
- Department of Environmental Health, Harvard T. H. Chan School of Public Health , Boston, Massachusetts 02115, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Amina T Schartup
- Department of Environmental Health, Harvard T. H. Chan School of Public Health , Boston, Massachusetts 02115, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Amelia P Valberg
- Department of Environmental Health, Harvard T. H. Chan School of Public Health , Boston, Massachusetts 02115, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Jessica D Ewald
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
| | | | - Runsheng Yin
- Department of Civil and Environmental Engineering, University of Wisconsin , Madison, Wisconsin 53706, United States
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences , Guiyang 550002, China
| | - Prentiss H Balcom
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Elsie M Sunderland
- Department of Environmental Health, Harvard T. H. Chan School of Public Health , Boston, Massachusetts 02115, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
| |
Collapse
|
39
|
Sun G, Sommar J, Feng X, Lin CJ, Ge M, Wang W, Yin R, Fu X, Shang L. Mass-Dependent and -Independent Fractionation of Mercury Isotope during Gas-Phase Oxidation of Elemental Mercury Vapor by Atomic Cl and Br. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:9232-41. [PMID: 27501307 DOI: 10.1021/acs.est.6b01668] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This study presents the first measurement of Hg stable isotope fractionation during gas-phase oxidation of Hg(0) vapor by halogen atoms (Cl(•), Br(•)) in the laboratory at 750 ± 1 Torr and 298 ± 3 K. Using a relative rate technique, the rate coefficients for Hg(0)+Cl(•) and Hg(0)+Br(•) reactions are determined to be (1.8 ± 0.5) × 10(-11) and (1.6 ± 0.8) × 10(-12) cm(3) molecule(-1) s(-1), respectively. Results show that heavier isotopes are preferentially enriched in the remaining Hg(0) during Cl(•) initiated oxidation, whereas being enriched in the product during oxidation by Br(•). The fractionation factors for (202)Hg/(198)Hg during the Cl(•) and Br(•) initiated oxidations are α(202/198) = 0.99941 ± 0.00006 (2σ) and 1.00074 ± 0.00014 (2σ), respectively. A Δ(199)Hg/Δ(201)Hg ratio of 1.64 ± 0.30 (2σ) during oxidation of Hg(0) by Br atoms suggests that Hg-MIF is introduced by the nuclear volume effect (NVE). In contrast, the Hg(0) + Cl(•) reaction produces a Δ(199)Hg/Δ(201)Hg-slope of 1.89 ± 0.18 (2σ), which in addition to a high degree of odd-mass-number isotope MIF suggests impacts from MIF effects other than NVE. This reaction also exhibits significant MIF of (200)Hg (Δ(200)Hg, up to -0.17‰ in the reactant) and is the first physicochemical process identified to trigger (200)Hg anomalies that are frequently detected in atmospheric samples.
Collapse
Affiliation(s)
- Guangyi Sun
- University of Chinese Academy of Sciences, Beijing 100190, China
| | | | | | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University , Beaumont, Texas 77710, United States
| | - Maofa Ge
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Weigang Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Runsheng Yin
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | | | | |
Collapse
|