1
|
Chen Z, Li H, Liu X, Zhou B, Zhang H, Kuang S, Zhang H, Yu L, Liu X, Zhang L, Ai Z. Formic Acid-Intensified Photoreduction of NOx on Iron Minerals Triggers Daytime HONO Formation through Active Hydrogen. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18295-18303. [PMID: 39363448 DOI: 10.1021/acs.est.4c05974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Nitrous acid (HONO) is crucial in atmospheric chemistry as a precursor to morning peak hydroxyl radicals and significantly affects urban air quality by forming secondary pollutants, yet the mechanisms of its daytime formation is not fully understood. This study investigates the role of formic acid (HCOOH), a prevalent electron and proton donor, in the transformation of nitrogen oxides (NOx) and the formation of HONO on photoactive mineral dust. Exploiting hematite (Fe2O3) as an environmental indicator, we demonstrate that HCOOH significantly promotes the photoreduction of NO2 to HONO, while suppressing nitrate accumulation. This occurs through the formation of a surface ≡Fe-OOCH complex, where sunlight activates the C-H bond to generate and transfer active hydrogen, directly converting NO2 to HONO. Additionally, HCOOH can trigger the photolysis of nitrates as predeposited on Fe2O3, further increasing HONO production. These findings show that HCOOH-mediated photochemical reactions on iron minerals may contribute to elevated atmospheric HONO levels, highlighting a crucial pathway with broad effects on atmospheric chemistry and public health.
Collapse
Affiliation(s)
- Ziyue Chen
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Hao Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xupeng Liu
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Biao Zhou
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Hao Zhang
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Siya Kuang
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Hao Zhang
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Linghao Yu
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Xiao Liu
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Zhihui Ai
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| |
Collapse
|
2
|
Yang W, Ji H, Li F, He X, Zhang S, Nan X, Du T, Li K, Han C. Important yet Overlooked HONO Source from Aqueous-phase Photochemical Oxidation of Nitrophenols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15722-15731. [PMID: 39175437 DOI: 10.1021/acs.est.4c05048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Nitrites (NO2-/HONO), as the primary source of hydroxyl radicals (•OH) in the atmosphere, play a key role in atmospheric chemistry. However, the current understanding of the source of NO2-/HONO is insufficient and therefore hinders the accurate quantification of atmospheric oxidation capacity. Herein, we highlighted an overlooked HONO source by the reaction between nitrophenols (NPs) and •OH in the aqueous phase and provided kinetic data to better evaluate the contribution of this process to atmospheric HONO. Three typical NPs, including 4-nitrophenol (4NP), 2-nitrophenol (2NP), and 4-nitrocatechol (4NC), underwent a denitration process to form aqueous NO2- and gaseous HONO through the •OH oxidation, with the yield of NO2-/HONO varied from 15.0 to 33.5%. According to chemical composition and structure analysis, the reaction pathway, where the ipso addition of •OH to the NO2 group on 4NP generated hydroquinone, can contribute to more than 61.9% of the NO2-/HONO formation. The aqueous photooxidation of NPs may account for HONO in the atmosphere, depending on the specific conditions. The results clearly suggest that the photooxidation of NPs should be considered in the field observation and calculation to better evaluate the HONO budget in the atmosphere.
Collapse
Affiliation(s)
- Wangjin Yang
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Hui Ji
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Fu Li
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Xue He
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Shan Zhang
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Xiangli Nan
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Tao Du
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Kun Li
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Chong Han
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| |
Collapse
|
3
|
Li Q, Ma S, Liu Y, Wu X, Fu H, Tu X, Yan S, Zhang L, George C, Chen J. Phase State Regulates Photochemical HONO Production from NaNO 3/Dicarboxylic Acid Mixtures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7516-7528. [PMID: 38629947 DOI: 10.1021/acs.est.3c10980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Field observations of daytime HONO source strengths have not been well explained by laboratory measurements and model predictions up until now. More efforts are urgently needed to fill the knowledge gaps concerning how environmental factors, especially relative humidity (RH), affect particulate nitrate photolysis. In this work, two critical attributes for atmospheric particles, i.e., phase state and bulk-phase acidity, both influenced by ambient RH, were focused to illuminate the key regulators for reactive nitrogen production from typical internally mixed systems, i.e., NaNO3 and dicarboxylic acid (DCA) mixtures. The dissolution of only few oxalic acid (OA) crystals resulted in a remarkable 50-fold increase in HONO production compared to pure nitrate photolysis at 85% RH. Furthermore, the HONO production rates (PHONO) increased by about 1 order of magnitude as RH rose from <5% to 95%, initially exhibiting an almost linear dependence on the amount of surface absorbed water and subsequently showing a substantial increase in PHONO once nitrate deliquescence occurred at approximately 75% RH. NaNO3/malonic acid (MA) and NaNO3/succinic acid (SA) mixtures exhibited similar phase state effects on the photochemical HONO production. These results offer a new perspective on how aerosol physicochemical properties influence particulate nitrate photolysis in the atmosphere.
Collapse
Affiliation(s)
- Qiong Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Shuaishuai Ma
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, PR China
| | - Yu Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
| | - Xinyuan Wu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
| | - Hongbo Fu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science and Technology, Nanjing 210044, PR China
- Institute of Eco-Chongming (SIEC), 20 Cuiniao Road, Shanghai 202162, PR China
| | - Xiang Tu
- Jiangxi Key Laboratory of Environmental Pollution Control, Jiangxi Academy of Eco-Environmental Sciences and Planning, Nanchang 330000, PR China
| | - Shuwen Yan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
| | - Christian George
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne F-69626, France
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China
| |
Collapse
|
4
|
Tang MX, He LY, Xia SY, Jiang Z, He DY, Guo S, Hu RZ, Zeng H, Huang XF. Coarse particles compensate for missing daytime sources of nitrous acid and enhance atmospheric oxidation capacity in a coastal atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170037. [PMID: 38232856 DOI: 10.1016/j.scitotenv.2024.170037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/19/2024]
Abstract
Large missing sources of daytime atmospheric nitrous acid (HONO), a vital source of hydroxyl radicals (OH) through its photolysis, frequently exist in global coastal regions. In this study, ambient HONO and relevant species were measured at a coastal site in the Pearl River Delta (PRD), China, during October 2019. Relatively high concentrations (0.32 ± 0.19 ppbv) and daytime peaks at approximately 13:00 of HONO were observed, and HONO photolysis was found to be the dominant (55.5 %) source of the primary OH production. A budget analysis of HONO based on traditional sources suggested large unknown sources during the daytime (66.4 %), which had a significant correlation with the mass of coarse particles (PM2.5-10) and photolysis frequency (J(NO2)). When incorporating photolysis of the abundant nitrate measured in coarse particles with a reasonable enhancement factor relative to fine particles due to favorable aerosol conditions, the missing daytime sources of HONO could be fully compensated by coarse particles serving as the largest source at this coastal site. Our study revealed great potential of coarse particles as a strong daytime HONO source, which has been ignored before but can efficiently promote NOx recycling and thus significantly enhance atmospheric oxidation capacity.
Collapse
Affiliation(s)
- Meng-Xue Tang
- Key Laboratory for Urban Habitat Environmental Science and Technology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ling-Yan He
- Key Laboratory for Urban Habitat Environmental Science and Technology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Shi-Yong Xia
- Key Laboratory for Urban Habitat Environmental Science and Technology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhen Jiang
- Key Laboratory for Urban Habitat Environmental Science and Technology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Dong-Yi He
- Key Laboratory for Urban Habitat Environmental Science and Technology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Song Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ren-Zhi Hu
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Hui Zeng
- Key Laboratory for Urban Habitat Environmental Science and Technology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiao-Feng Huang
- Key Laboratory for Urban Habitat Environmental Science and Technology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
5
|
Xu K, Liu Y, Li C, Zhang C, Liu X, Li Q, Xiong M, Zhang Y, Yin S, Ding Y. Enhanced secondary organic aerosol formation during dust episodes by photochemical reactions in the winter in Wuhan. J Environ Sci (China) 2023; 133:70-82. [PMID: 37451790 DOI: 10.1016/j.jes.2022.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/23/2022] [Accepted: 04/10/2022] [Indexed: 07/18/2023]
Abstract
To investigate the effect of frequently occurring mineral dust on the formation of secondary organic aerosol (SOA), 106 volatile organic compounds (VOCs), trace gas pollutants and chemical components of PM2.5 were measured continuously in January 2021 in Wuhan, Central China. The observation period was divided into two stages that included a haze period and a following dust period, based on the ratio of PM2.5 and PM10 concentrations. The average ratio of secondary organic carbon (SOC) to elemental carbon (EC) was 1.98 during the dust period, which was higher than that during the haze period (0.69). The contribution of SOA to PM2.5 also increased from 2.75% to 8.64%. The analysis of the relationships between the SOA and relative humidity (RH) and the odd oxygen (e.g., OX = O3 + NO2) levels suggested that photochemical reactions played a more important role in the enhancement of SOA production during the dust period than the aqueous-phase reactions. The heterogeneous photochemical production of OH radicals in the presence of metal oxides during the dust period was believed to be enhanced. Meanwhile, the ratios of trans-2-butene to cis-2-butene and m-/p-xylene to ethylbenzene (X/E) dropped significantly, confirming that stronger photochemical reactions occurred and SOA precursors formed efficiently. These results verified the laboratory findings that metal oxides in mineral dust could catalyse the oxidation of VOCs and induce higher SOA production.
Collapse
Affiliation(s)
- Kai Xu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yafei Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chenlu Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chen Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xingang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Qijie Li
- Wuhan Municipality Environmental Monitoring Center, Wuhan 430015, China
| | - Min Xiong
- College of Environment and Ecology, Chongqing University, Chongqing 400030, China
| | - Yujun Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shijie Yin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yu Ding
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
6
|
Zhang S, Li G, Ma N, He Y, Zhu S, Pan X, Dong W, Zhang Y, Luo Q, Ditas J, Kuhn U, Zhang Y, Yuan B, Wang Z, Cheng P, Hong J, Tao J, Xu W, Kuang Y, Wang Q, Sun Y, Zhou G, Cheng Y, Su H. Exploring HONO formation and its role in driving secondary pollutants formation during winter in the North China Plain. J Environ Sci (China) 2023; 132:83-97. [PMID: 37336612 DOI: 10.1016/j.jes.2022.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/24/2022] [Accepted: 09/24/2022] [Indexed: 06/21/2023]
Abstract
Daytime HONO photolysis is an important source of atmospheric hydroxyl radicals (OH). Knowledge of HONO formation chemistry under typical haze conditions, however, is still limited. In the Multiphase chemistry experiment in Fogs and Aerosols in the North China Plain in 2018, we investigated the wintertime HONO formation and its atmospheric implications at a rural site Gucheng. Three different episodes based on atmospheric aerosol loading levels were classified: clean periods (CPs), moderately polluted periods (MPPs) and severely polluted periods (SPPs). Correlation analysis revealed that HONO formation via heterogeneous conversion of NO2 was more efficient on aerosol surfaces than on ground, highlighting the important role of aerosols in promoting HONO formation. Daytime HONO budget analysis indicated a large missing source (with an average production rate of 0.66 ± 0.26, 0.97 ± 0.47 and 1.45 ± 0.55 ppbV/hr for CPs, MPPs and SPPs, respectively), which strongly correlated with photo-enhanced reactions (NO2 heterogeneous reaction and particulate nitrate photolysis). Average OH formation derived from HONO photolysis reached up to (0.92 ± 0.71), (1.75 ± 1.26) and (1.82 ± 1.47) ppbV/hr in CPs, MPPs and SPPs respectively, much higher than that from O3 photolysis (i.e., (0.004 ± 0.004), (0.006 ± 0.007) and (0.0035 ± 0.0034) ppbV/hr). Such high OH production rates could markedly regulate the atmospheric oxidation capacity and hence promote the formation of secondary aerosols and pollutants.
Collapse
Affiliation(s)
- Shaobin Zhang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Guo Li
- Max Planck Institute for Chemistry, Mainz 55128, Germany.
| | - Nan Ma
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China.
| | - Yao He
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Shaowen Zhu
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Xihao Pan
- Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Wenlin Dong
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Yanyan Zhang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Qingwei Luo
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Jeannine Ditas
- Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Uwe Kuhn
- Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Yuxuan Zhang
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Bin Yuan
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Zelong Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Peng Cheng
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Juan Hong
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Jiangchuan Tao
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Wanyun Xu
- State Key Laboratory of Severe Weather & Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Ye Kuang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Qiaoqiao Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Guangsheng Zhou
- Gucheng Experimental Station of Ecological and Agricultural Meteorology, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Yafang Cheng
- Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Hang Su
- Max Planck Institute for Chemistry, Mainz 55128, Germany
| |
Collapse
|
7
|
Payne ZC, Dalton EZ, Gandolfo A, Raff JD. HONO Measurement by Catalytic Conversion to NO on Nafion Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:85-95. [PMID: 36533654 DOI: 10.1021/acs.est.2c05944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A selective catalytic converter has been developed to quantify nitrous acid (HONO), a photochemical precursor to NO and OH radicals that drives the formation of ozone and other pollutants in the troposphere. The converter is made from a sulfonated tetrafluoroethylene-based fluoropolymer-copolymer (Nafion) that was found to convert HONO to NO with unity yield under specific conditions. When coupled to a commercially available NOx (=NO + NO2) chemiluminescence (CL) analyzer, the system measures HONO with a limit of detection as low as 64 parts-per-trillion (ppt) (1 min average) in addition to NOx. The converter is selective for HONO when tested against other common gas-phase reactive nitrogen species, although loss of O3 on Nafion is a potential interference. The sensitivity and selectivity of this method allow for accurate measurement of atmospherically relevant concentrations of HONO. This was demonstrated by good agreement between HONO measurements made with the Nafion-CL method and those made with chemical ionization mass spectrometry in a simulation chamber and in indoor air. The observed reactivity of HONO on Nafion also has significant implications for the accuracy of CL NOx analyzers that use Nafion to remove water from sampling lines.
Collapse
Affiliation(s)
- Zachary C Payne
- Department of Chemistry, Indiana University, Bloomington, Indiana47405, United States
| | - Evan Z Dalton
- Department of Chemistry, Indiana University, Bloomington, Indiana47405, United States
| | - Adrien Gandolfo
- Paul H. O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana47405, United States
| | - Jonathan D Raff
- Department of Chemistry, Indiana University, Bloomington, Indiana47405, United States
- Paul H. O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana47405, United States
| |
Collapse
|
8
|
Lin D, Tong S, Zhang W, Li W, Li F, Jia C, Zhang G, Chen M, Zhang X, Wang Z, Ge M, He X. Formation mechanisms of nitrous acid (HONO) during the haze and non-haze periods in Beijing, China. J Environ Sci (China) 2022; 114:343-353. [PMID: 35459497 DOI: 10.1016/j.jes.2021.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 06/14/2023]
Abstract
As an important precursor of hydroxyl radical (OH), nitrous acid (HONO) plays a significant role in atmospheric chemistry. Here, an observation of HONO and relevant air pollutants in an urban site of Beijing from 14 to 28 April, 2017 was performed. Two distinct peaks of HONO concentrations occurred during the observation. In contrast, the concentration of particulate matter in the first period (period Ⅰ) was significantly higher than that in the second period (period Ⅱ). Comparing to HONO sources in the two periods, we found that the direct vehicle emission was an essential source of the ambient HONO during both periods at night, especially in period Ⅱ. The heterogeneous reaction of NO2 was the dominant source in period Ⅰ, while the homogeneous reaction of NO with OH was more critical source at night in period Ⅱ. In the daytime, the heterogeneous reaction of NO2 was a significant source and was confirmed by the good correlation coefficients (R2) between the unknown sources (Punknown) with NO2, PM2.5, NO2 × PM2.5 in period Ⅰ. Moreover, when solar radiation and OH radicals were considered to explore unknown sources in the daytime, the enhanced correlation of Punknown with photolysis rate of NO2 and OH ( [Formula: see text] × OH) were 0.93 in period Ⅰ, 0.95 in period Ⅱ. These excellent correlation coefficients suggested that the unknown sources released HONO highly related to the solar radiation and the variation of OH radicals.
Collapse
Affiliation(s)
- Deng Lin
- Key Laboratory of Oasis Ecology, College of Resource and Environment Sciences, Xinjiang University, Urumqi 830046, China; State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Shengrui Tong
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China.
| | - Wenqian Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Weiran Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangjie Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China; College of Chemistry, Liaoning University, Shenyang 110036, Liaoning, China
| | - Chenhui Jia
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Gen Zhang
- State Key Laboratory of Severe Weather & Key Laboratory for Atmospheric Chemistry of CMA, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Meifang Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China; College of Chemistry and Material Science, Anhui Normal University, Wuhu 241000, China
| | - Xinran Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang He
- Key Laboratory of Oasis Ecology, College of Resource and Environment Sciences, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
9
|
Zhu C, Jagdale G, Gandolfo A, Alanis K, Abney R, Zhou L, Bish D, Raff JD, Baker LA. Surface Charge Measurements with Scanning Ion Conductance Microscopy Provide Insights into Nitrous Acid Speciation at the Kaolin Mineral-Air Interface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12233-12242. [PMID: 34449200 PMCID: PMC9277718 DOI: 10.1021/acs.est.1c03455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Unique surface properties of aluminosilicate clay minerals arise from anisotropic distribution of surface charge across their layered structures. Yet, a molecular-level understanding of clay mineral surfaces has been hampered by the lack of analytical techniques capable of measuring surface charges at the nanoscale. This is important for understanding the reactivity, colloidal stability, and ion-exchange capacity properties of clay minerals, which constitute a major fraction of global soils. In this work, scanning ion conductance microscopy (SICM) is used for the first time to visualize the surface charge and topography of dickite, a well-ordered member of the kaolin subgroup of clay minerals. Dickite displayed a pH-independent negative charge on basal surfaces whereas the positive charge on edges increased from pH 6 to 3. Surface charges responded to malonate addition, which promoted dissolution/precipitation reactions. Results from SICM were used to interpret heterogeneous reactivity studies showing that gas-phase nitrous acid (HONO) is released from the protonation of nitrite at Al-OH2+ groups on dickite edges at pH well above the aqueous pKa of HONO. This study provides nanoscale insights into mineral surface processes that affect environmental processes on the local and global scale.
Collapse
Affiliation(s)
- Cheng Zhu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Gargi Jagdale
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Adrien Gandolfo
- Paul H. O'Neill School of Public & Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
| | - Kristen Alanis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Rebecca Abney
- Paul H. O'Neill School of Public & Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia 30602, United States
| | - Lushan Zhou
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - David Bish
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Jonathan D Raff
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
- Paul H. O'Neill School of Public & Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
| | - Lane A Baker
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| |
Collapse
|
10
|
Xia D, Zhang X, Chen J, Tong S, Xie HB, Wang Z, Xu T, Ge M, Allen DT. Heterogeneous Formation of HONO Catalyzed by CO 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12215-12222. [PMID: 34323471 DOI: 10.1021/acs.est.1c02706] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gas-phase nitrous acid (HONO) is a major precursor of hydroxyl radicals that dominate atmospheric oxidizing capacity. Nevertheless, pathways of HONO formation remain to be explored. This study unveiled an important CO2-catalysis mechanism of HONO formation, using Born-Oppenheimer molecular dynamics simulations and free-energy samplings. In the mechanism, HCO3- formed from CO2 hydrolysis reacts with NO2 dimers to produce HONO at water surfaces, and simultaneously, itself reconverts back to CO2 via intermediates OC(O)ONO- and HOC(O)ONO. A flow system experiment was performed to confirm the new mechanism, which indicated that HONO concentrations with CO2 injections were increased by 29.4-68.5%. The new mechanism can be extended to other humid surfaces. Therefore, this study unveiled a previously overlooked vital role of CO2 that catalyzes formation of HONO and affects atmospheric oxidizing capacity.
Collapse
Affiliation(s)
- Deming Xia
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xinran Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shengrui Tong
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhongyu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Tong Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - David T Allen
- Center for Energy and Environmental Resources, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
11
|
Cui L, Wang S. Mapping the daily nitrous acid (HONO) concentrations across China during 2006-2017 through ensemble machine-learning algorithm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147325. [PMID: 33957584 DOI: 10.1016/j.scitotenv.2021.147325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Nitrous acid (HONO) is a major source of the hydroxyl radical (OH) and plays a key role in atmospheric photochemistry. The lack of spatially resolved HONO concentration information results in large knowledge gaps of HONO and its role in atmospheric chemistry and air pollution in China. In this work, an ensemble machine learning model comprising of random forest, gradient boosting, and back propagation neural network was proposed, for the first time, to estimate the long-term (2006-2017) daily HONO concentrations across China in 0.25° resolution. Further, the key factors controlling the space-time variablity of HONO concentrations were analyzed based on variable importance values. The ensemble model well characterized the spatiotemporal distribution of daily HONO concentrations with the sampled-based, site-based and by-year cross-validation (CV) R2 (RMSE) of 0.7 (0.36 ppbv), 0.67 (0.36 ppbv), and 0.62 (0.40 ppbv), respectively. HONO hotspots were mainly distributed in the Beijing-Tianjin-Hebei (BTH), Pearl River Delta (PRD), Yangtze River Delta (YRD), and several sites of Sichuan Basin, in line with the distribution patterns of the tropospheric NO2 columns and assimilated surface NO3- levels. The national HONO levels stagnated during 2006-2013, then declined after 2013 benefiting from the implementation of the Action Plan for Air Pollution Prevention and Control. The NO3- concentration, urban area, NO2 column density ranked as important variables for HONO prediction, while agricultral land, forest and grassland played minor roles in affecting HONO concentrations, suggesting the significant role of heterogeneous HONO production from anthropogenic precursor emissions. Leveraging the ground-level HONO observations, this study fills the gap of statistically modelling nationwide HONO in China, which provides essential data for atmospheric chemistry research.
Collapse
Affiliation(s)
- Lulu Cui
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China.
| |
Collapse
|
12
|
Dhakal P, Coyne MS, McNear DH, Wendroth OO, Vandiviere MM, D'Angelo EM, Matocha CJ. Reactions of nitrite with goethite and surface Fe(II)-goethite complexes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146406. [PMID: 33839658 DOI: 10.1016/j.scitotenv.2021.146406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 05/22/2023]
Abstract
Chemodenitrification-the abiotic (chemical) reduction of nitrite (NO2-) by iron (II)-plays an important role in nitrogen cycling due in part to this process serving as a source of nitrous oxide (N2O). Questions remain about the fate of NO2- in the presence of mineral surfaces formed during chemodenitrification, such as iron(III) (hydr) oxides, particularly relative to dissolved iron(II). In this study, stirred-batch kinetic experiments were conducted under anoxic conditions (to mimic iron(III)-reducing conditions) from pH 5.5-8 to investigate NO2- reactivity with goethite (FeOOH(s)) and Fe(II)-treated goethite using wet chemical and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. Nitrite removal from solution by goethite was more rapid at pH 5.5 than at pH 7 and 8. Spectral changes upon nitrite adsorption imply an inner-sphere surface interaction (monodentate and bidentate) at pH 5.5 based on ATR-FTIR spectra of the nitrite-goethite interface over time. In iron(II)-amended experiments at pH 5.5 with high aqueous Fe(II) in equilibrium with goethite, nitrous oxide was generated, indicating that nitrite removal involved a combination of sorption and reduction processes. The presence of a surface complex resembling protonated nitrite (HONO) with an IR peak near ~1258 cm-1 was observed in goethite-only and iron(II)-goethite experiments, with a greater abundance of this species observed in the latter treatment. These results might help explain gaseous losses of nitrogen where nitrite and iron(II)/goethite coexist, with implications for nutrient cycling and release of atmospheric air pollutants.
Collapse
Affiliation(s)
- P Dhakal
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - M S Coyne
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - D H McNear
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - O O Wendroth
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - M M Vandiviere
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - E M D'Angelo
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - C J Matocha
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
13
|
Yang W, Han C, Zhang T, Tang N, Yang H, Xue X. Heterogeneous photochemical uptake of NO 2 on the soil surface as an important ground-level HONO source. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116289. [PMID: 33383427 DOI: 10.1016/j.envpol.2020.116289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Nitrous acid (HONO) production from the heterogeneous photochemical reaction of NO2 on several Chinese soils was performed in a cylindrical reactor at atmospheric pressure. The NO2 uptake coefficient (γ) and HONO yield (YHONO) on different soils were (0.42-5.16) × 10-5 and 6.3%-69.6%, respectively. Although the photo-enhanced uptake of NO2 on different soils was observed, light could either enhance or inhibit the conversion efficiency of NO2 to HONO, depending on the properties of the soils. Soils with lower pH generally had larger γ and YHONO. Soil organics played a key role in HONO formation through the photochemical uptake of NO2 on soil surfaces. The γ showed a positive correlation with irradiation and temperature, while it exhibited a negative relationship with relative humidity (RH). YHONO inversely depended on the soil mass (0.32-3.25 mg cm-2), and it positively relied on the irradiance and RH (7%-22%). There was a maximum value for YHONO at 298 K. Based on the experimental results, HONO source strengths from heterogeneous photochemical reaction of NO2 on the soil surfaces were estimated to be 0.2-2.7 ppb h-1 for a mixing layer height of 100 m, which could account for the missing daytime HONO sources in most areas.
Collapse
Affiliation(s)
- Wangjin Yang
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Chong Han
- School of Metallurgy, Northeastern University, Shenyang, 110819, China.
| | - Tingting Zhang
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Ning Tang
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, 920-1192, Japan
| | - He Yang
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Xiangxin Xue
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
14
|
Mushinski RM, Payne ZC, Raff JD, Craig ME, Pusede SE, Rusch DB, White JR, Phillips RP. Nitrogen cycling microbiomes are structured by plant mycorrhizal associations with consequences for nitrogen oxide fluxes in forests. GLOBAL CHANGE BIOLOGY 2020; 27:1068-1082. [PMID: 33319480 PMCID: PMC7898693 DOI: 10.1111/gcb.15439] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 05/02/2023]
Abstract
Volatile nitrogen oxides (N2 O, NO, NO2 , HONO, …) can negatively impact climate, air quality, and human health. Using soils collected from temperate forests across the eastern United States, we show microbial communities involved in nitrogen (N) cycling are structured, in large part, by the composition of overstory trees, leading to predictable N-cycling syndromes, with consequences for emissions of volatile nitrogen oxides to air. Trees associating with arbuscular mycorrhizal (AM) fungi promote soil microbial communities with higher N-cycle potential and activity, relative to microbial communities in soils dominated by trees associating with ectomycorrhizal (ECM) fungi. Metagenomic analysis and gene expression studies reveal a 5 and 3.5 times greater estimated N-cycle gene and transcript copy numbers, respectively, in AM relative to ECM soil. Furthermore, we observe a 60% linear decrease in volatile reactive nitrogen gas flux (NOy ≡ NO, NO2 , HONO) as ECM tree abundance increases. Compared to oxic conditions, gas flux potential of N2 O and NO increase significantly under anoxic conditions for AM soil (30- and 120-fold increase), but not ECM soil-likely owing to small concentrations of available substrate ( NO 3 - ) in ECM soil. Linear mixed effects modeling shows that ECM tree abundance, microbial process rates, and geographic location are primarily responsible for variation in peak potential NOy flux. Given that nearly all tree species associate with either AM or ECM fungi, our results indicate that the consequences of tree species shifts associated with global change may have predictable consequences for soil N cycling.
Collapse
Affiliation(s)
- Ryan M. Mushinski
- School of Life SciencesUniversity of WarwickCoventryUK
- O'Neill School of Public and Environmental AffairsIndiana UniversityBloomingtonINUSA
| | - Zachary C. Payne
- O'Neill School of Public and Environmental AffairsIndiana UniversityBloomingtonINUSA
- Department of ChemistryIndiana UniversityBloomingtonINUSA
| | - Jonathan D. Raff
- O'Neill School of Public and Environmental AffairsIndiana UniversityBloomingtonINUSA
- Department of ChemistryIndiana UniversityBloomingtonINUSA
| | - Matthew E. Craig
- Department of BiologyIndiana UniversityBloomingtonINUSA
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTNUSA
| | - Sally E. Pusede
- Department of Environmental SciencesUniversity of VirginiaCharlottesvilleVAUSA
| | - Douglas B. Rusch
- Center for Genomics and BioinformaticsIndiana UniversityBloomingtonINUSA
| | - Jeffrey R. White
- O'Neill School of Public and Environmental AffairsIndiana UniversityBloomingtonINUSA
- Department of Earth and Atmospheric SciencesIndiana UniversityBloomingtonINUSA
| | | |
Collapse
|
15
|
Abou-Ghanem M, Oliynyk AO, Chen Z, Matchett LC, McGrath DT, Katz MJ, Locock AJ, Styler SA. Significant Variability in the Photocatalytic Activity of Natural Titanium-Containing Minerals: Implications for Understanding and Predicting Atmospheric Mineral Dust Photochemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13509-13516. [PMID: 33058682 DOI: 10.1021/acs.est.0c05861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The billions of tons of mineral dust released into the atmosphere each year provide an important surface for reaction with gas-phase pollutants. These reactions, which are often enhanced in the presence of light, can change both the gas-phase composition of the atmosphere and the composition and properties of the dust itself. Because dust contains titanium-rich grains, studies of dust photochemistry have largely employed commercial titanium dioxide as a proxy for its photochemically active fraction; to date, however, the validity of this model system has not been empirically determined. Here, for the first time, we directly investigate the photochemistry of the complement of natural titanium-containing minerals most relevant to mineral dust, including anatase, rutile, ilmenite, titanite, and several titanium-bearing species. Using ozone as a model gas-phase pollutant, we show that titanium-containing minerals other than titanium dioxide can also photocatalyze trace gas uptake, that samples of the same mineral phase can display very different reactivity, and that prediction of dust photoreactivity based on elemental/mineralogical analysis and/or light-absorbing properties is challenging. Together, these results show that the photochemistry of atmospheric dust is both richer and more complex than previously considered, and imply that a full understanding of the scope and impact of dust-mediated processes will require the community to engage with this complexity via the study of ambient mineral dust samples from diverse source regions.
Collapse
Affiliation(s)
- Maya Abou-Ghanem
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Anton O Oliynyk
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Now at Chemistry and Biochemistry Department, Manhattan College, Riverdale, New York, New York 10471, United States
| | - Zhihao Chen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Laura C Matchett
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Now at Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Devon T McGrath
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3X7, Canada
| | - Michael J Katz
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3X7, Canada
| | - Andrew J Locock
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Sarah A Styler
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Now at Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
16
|
Yang C, Zhang C, Luo X, Liu X, Cao F, Zhang YL. Isomerization and Degradation of Levoglucosan via the Photo-Fenton Process: Insights from Aqueous-Phase Experiments and Atmospheric Particulate Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11789-11797. [PMID: 32897062 DOI: 10.1021/acs.est.0c02499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
So far, studies on the conversion of stereochemistry under photo-Fenton conditions and their atmospheric implication are still rare. Here, we found that the biomass burning marker, the chiral compound levoglucosan (L), undergoes oxidative degradation under photo-Fenton conditions and can be isomerized into mannosan (M) and galactosan (G) simultaneously. Among the formic acid, acetic acid, and oxalic acid in the degradation products of levoglucosan, it was found that the yield of formation of formic acid in the photo-Fenton pathway can be as high as 86%. It is worth noting that both levoglucosan and its isomers are present in the atmosphere and their concentrations are strongly correlated. At the same time, the range of their concentration ratios, L/(G + M), measured in the photo-Fenton experiments in the laboratory was found to agree well with that measured in atmospheric PM2.5 samples. However, the sources of L, G, and M in the atmosphere are complex, and the photo-Fenton reaction may be an essential pathway for the distribution of L, G, and M in the atmosphere.
Collapse
Affiliation(s)
- Chi Yang
- School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Chunyan Zhang
- School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Xiaosan Luo
- School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Xiaoyan Liu
- School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Fang Cao
- School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yan-Lin Zhang
- School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
17
|
Romanias MN, Ren Y, Grosselin B, Daële V, Mellouki A, Dagsson-Waldhauserova P, Thevenet F. Reactive uptake of NO 2 on volcanic particles: A possible source of HONO in the atmosphere. J Environ Sci (China) 2020; 95:155-164. [PMID: 32653175 DOI: 10.1016/j.jes.2020.03.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/28/2019] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
The heterogeneous degradation of nitrogen dioxide (NO2) on five samples of natural Icelandic volcanic particles has been investigated. Laboratory experiments were carried out under simulated atmospheric conditions using a coated wall flow tube (CWFT). The CWFT reactor was coupled to a blue light nitrogen oxides analyzer (NOx analyzer), and a long path absorption photometer (LOPAP) to monitor in real time the concentrations of NO2, NO and HONO, respectively. Under dark and ambient relative humidity conditions, the steady state uptake coefficients of NO2 varied significantly between the volcanic samples probably due to differences in magma composition and morphological variation related with the density of surface OH groups. The irradiation of the surface with simulated sunlight enhanced the uptake coefficients by a factor of three indicating that photo-induced processes on the surface of the dust occur. Furthermore, the product yields of NO and HONO were determined under both dark and simulated sunlight conditions. The relative humidity was found to influence the distribution of gaseous products, promoting the formation of gaseous HONO. A detailed reaction mechanism is proposed that supports our experimental observations. Regarding the atmospheric implications, our results suggest that the NO2 degradation on volcanic particles and the corresponding formation of HONO is expected to be significant during volcanic dust storms or after a volcanic eruption.
Collapse
Affiliation(s)
| | | | | | | | | | - Pavla Dagsson-Waldhauserova
- Agricultural University of Iceland, Keldnaholt, Reykjavik 112, Iceland; Faculty of Environmental Sciences, Czech University of Life Sciences, Prague 165 21, Czech Republic
| | | |
Collapse
|
18
|
Li R, Jia X, Wang F, Ren Y, Wang X, Zhang H, Li G, Wang X, Tang M. Heterogeneous reaction of NO 2 with hematite, goethite and magnetite: Implications for nitrate formation and iron solubility enhancement. CHEMOSPHERE 2020; 242:125273. [PMID: 31896195 DOI: 10.1016/j.chemosphere.2019.125273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/06/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Atmospheric processing may significantly increase solubility of iron in mineral dust, but the effects of heterogeneous reactions on iron solubility have been poorly understood. In this work, we investigated heterogeneous reaction of NO2 (15 ± 1 and 2.5 ± 0.1 ppmv, equal to ∼3.7 × 1014 and ∼6.2 × 1013 molecule cm-3) with hematite, magnetite and goethite at different relative humidities (RH, 0-90%), and changes in particulate nitrate and soluble iron due to heterogeneous reaction with NO2 were quantified as a function of time (up to 24 h). After reaction with 2.5 ± 0.1 ppmv NO2 for 24 h (or less time), hematite and magnetite were fully saturated, while goethite was only partly deactivated. Nitrate yield was largest for goethite, and the mass ratio of formed nitrate to unreacted mineral only reached ∼1% or less after 24 h reaction. All the three minerals showed low reactivities towards NO2, and the average reactive uptake coefficients of NO2 in the first 3 h were found to be < 5 × 10-8. In addition, the increase in iron solubility was found to be small and in some cases even insignificant for the three minerals after heterogeneous reaction with NO2 for 24 h. Overall, the impacts of heterogeneous reaction of NO2 with hematite, magnetite and goethite on nitrate aerosol formation and iron solubility could be very limited.
Collapse
Affiliation(s)
- Rui Li
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohong Jia
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fu Wang
- Longhua Center for Disease Control and Prevention of Shenzhen, Shenzhen 518109, China
| | - Yan Ren
- Longhua Center for Disease Control and Prevention of Shenzhen, Shenzhen 518109, China
| | - Xiao Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huanhuan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanghui Li
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Mingjin Tang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
19
|
Yu Q, Feng L, Chai X, Qiu X, Ouyang H, Deng G. Enhanced surface Fenton degradation of BPA in soil with a high pH. CHEMOSPHERE 2019; 220:335-343. [PMID: 30590299 DOI: 10.1016/j.chemosphere.2018.12.141] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/05/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
Although the heterogeneous Fenton process of iron-bearing minerals has been widely studied due to its potential use for the removal of organic pollutants, the transformation mediated by Fe species in soil particles remains poorly understood. Here, we compared the removal of bisphenol A (BPA) from soil using a Fenton system at low and high pH values. At low pH value, the BPA removal rate decreased with increasing pH value; this result was consistent with the amount of soluble Fe(II) and surface-bound Fe(II) observed in the soil systems. In contrast, an increased BPA degradation efficiency was observed at high pH, which is different from the traditional Fenton system. The electron spin resonance analysis verified that the high BPA degradation rate was attributed to enhanced ·OH generation. The binding environments of the Fe species in the soil for different reaction pH values were investigated by using Mössbauer spectroscopy combined with selective chemical extraction. A mixed-valence Fe(II) phase was observed at pH 12.0 and accounted for 12% of the total Fe content. The results indicate that in addition to the well-studied soluble Fe(II) and surface-bound Fe(II), structural Fe(II) located in the newly formed secondary precipitates may play a more important role in the generation of ·OH, especially at high pH values. These findings may provide insights into the utilization of Fe-bearing soil minerals as a renewable source for the degradation of organic pollutants over a wide pH range.
Collapse
Affiliation(s)
- Qianqian Yu
- School of Earth Science, China University of Geosciences, Wuhan, 430074, China.
| | - Ling Feng
- School of Earth Science, China University of Geosciences, Wuhan, 430074, China
| | - Xinna Chai
- School of Earth Science, China University of Geosciences, Wuhan, 430074, China
| | - Xinhong Qiu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Hubei 430073, China
| | - Hao Ouyang
- School of Earth Science, China University of Geosciences, Wuhan, 430074, China
| | - Guanyu Deng
- School of Earth Science, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
20
|
Microbial mechanisms and ecosystem flux estimation for aerobic NO y emissions from deciduous forest soils. Proc Natl Acad Sci U S A 2019; 116:2138-2145. [PMID: 30659144 DOI: 10.1073/pnas.1814632116] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Reactive nitrogen oxides (NOy; NOy = NO + NO2 + HONO) decrease air quality and impact radiative forcing, yet the factors responsible for their emission from nonpoint sources (i.e., soils) remain poorly understood. We investigated the factors that control the production of aerobic NOy in forest soils using molecular techniques, process-based assays, and inhibitor experiments. We subsequently used these data to identify hotspots for gas emissions across forests of the eastern United States. Here, we show that nitrogen oxide soil emissions are mediated by microbial community structure (e.g., ammonium oxidizer abundances), soil chemical characteristics (pH and C:N), and nitrogen (N) transformation rates (net nitrification). We find that, while nitrification rates are controlled primarily by chemoautotrophic ammonia-oxidizing archaea (AOA), the production of NOy is mediated in large part by chemoautotrophic ammonia-oxidizing bacteria (AOB). Variation in nitrification rates and nitrogen oxide emissions tracked variation in forest communities, as stands dominated by arbuscular mycorrhizal (AM) trees had greater N transformation rates and NOy fluxes than stands dominated by ectomycorrhizal (ECM) trees. Given mapped distributions of AM and ECM trees from 78,000 forest inventory plots, we estimate that broadleaf forests of the Midwest and the eastern United States as well as the Mississippi River corridor may be considered hotspots of biogenic NOy emissions. Together, our results greatly improve our understanding of NOy fluxes from forests, which should lead to improved predictions about the atmospheric consequences of tree species shifts owing to land management and climate change.
Collapse
|
21
|
Collins DB, Hems RF, Zhou S, Wang C, Grignon E, Alavy M, Siegel JA, Abbatt JPD. Evidence for Gas-Surface Equilibrium Control of Indoor Nitrous Acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12419-12427. [PMID: 30346749 DOI: 10.1021/acs.est.8b04512] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nitrous acid (HONO) is an important component of indoor air as a photolabile precursor to hydroxyl radicals and has direct health effects. HONO concentrations are typically higher indoors than outdoors, although indoor concentrations have proved challenging to predict using box models. In this study, time-resolved measurements of HONO and NO2 in a residence showed that [HONO] varied relatively weakly over contiguous periods of hours, while [NO2] fluctuated in association with changes in outdoor [NO2]. Perturbation experiments were performed in which indoor HONO was depleted or elevated and were interpreted using a two-compartment box model. To reproduce the measurements, [HONO] had to be predicted using persistent source and sink processes that do not directly involve NO2, suggesting that HONO was in equilibrium with indoor surfaces. Production of gas phase HONO directly from conversion of NO2 on surfaces had a weak influence on indoor [HONO] during the time of the perturbations. Highly similar temporal responses of HONO and semivolatile carboxylic acids to ventilation of the residence along with the detection of nitrite on indoor surfaces support the concept that indoor HONO mixing ratios are controlled strongly by gas-surface equilibrium.
Collapse
Affiliation(s)
- Douglas B Collins
- Department of Chemistry , University of Toronto , 80 Street George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Rachel F Hems
- Department of Chemistry , University of Toronto , 80 Street George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Shouming Zhou
- Department of Chemistry , University of Toronto , 80 Street George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Chen Wang
- Department of Chemistry , University of Toronto , 80 Street George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Eloi Grignon
- Department of Chemistry , University of Toronto , 80 Street George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Masih Alavy
- Department of Civil and Mineral Engineering , University of Toronto , 35 Street George Street , Toronto , Ontario M5S 1A4 , Canada
| | - Jeffrey A Siegel
- Department of Civil and Mineral Engineering , University of Toronto , 35 Street George Street , Toronto , Ontario M5S 1A4 , Canada
- Dalla Lana School of Public Health , University of Toronto , 223 College Street , Toronto , Ontario M5T 1R4 , Canada
| | - Jonathan P D Abbatt
- Department of Chemistry , University of Toronto , 80 Street George Street , Toronto , Ontario M5S 3H6 , Canada
| |
Collapse
|
22
|
Yang W, Ma Q, Liu Y, Ma J, Chu B, Wang L, He H. Role of NH3 in the Heterogeneous Formation of Secondary Inorganic Aerosols on Mineral Oxides. J Phys Chem A 2018; 122:6311-6320. [DOI: 10.1021/acs.jpca.8b05130] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Weiwei Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Qingxin Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yongchun Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jinzhu Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ling Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
23
|
Scharko NK, Martin ET, Losovyj Y, Peters DG, Raff JD. Evidence for Quinone Redox Chemistry Mediating Daytime and Nighttime NO 2-to-HONO Conversion on Soil Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9633-9643. [PMID: 28742971 DOI: 10.1021/acs.est.7b01363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Humic acid (HA) is thought to promote NO2 conversion to nitrous acid (HONO) on soil surfaces during the day. However, it has proven difficult to identify the reactive sites in natural HA substrates. The mechanism of NO2 reduction on soil surrogates composed of HA and clay minerals was studied by use of a coated-wall flow reactor and cavity-enhanced spectroscopy. Conversion of NO2 to HONO in the dark was found to be significant and correlated to the abundance of C-O moieties in HA determined from the X-ray photoelectron spectra of the C 1s region. Twice as much HONO was formed when NO2 reacted with HA that was photoreduced by irradiation with UV-visible light compared to the dark reaction; photochemical reactivity was correlated to the abundance of C═O moieties rather than C-O groups. Bulk electrolysis was used to generate HA in a defined reduction state. Electrochemically reduced HA enhanced NO2-to-HONO conversion by a factor of 2 relative to non-reduced HA. Our findings suggest that hydroquinones and benzoquinones, which are interchangeable via redox equilibria, contribute to both thermal and photochemical HONO formation. This conclusion is supported by experiments that studied NO2 reactivity on mineral surfaces coated with the model quinone, juglone. Results provide further evidence that redox-active sites on soil surfaces drive ground-level NO2-to-nitrite conversion in the atmospheric boundary layer throughout the day, while amphoteric mineral surfaces promote the release of nitrite formed as gaseous HONO.
Collapse
Affiliation(s)
- Nicole K Scharko
- School of Public and Environmental Affairs, Indiana University , 1315 East 10th Street, Bloomington, Indiana 47405, United States
| | - Erin T Martin
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Yaroslav Losovyj
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Dennis G Peters
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Jonathan D Raff
- School of Public and Environmental Affairs, Indiana University , 1315 East 10th Street, Bloomington, Indiana 47405, United States
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
24
|
Ma Q, Wang T, Liu C, He H, Wang Z, Wang W, Liang Y. SO 2 Initiates the Efficient Conversion of NO 2 to HONO on MgO Surface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:3767-3775. [PMID: 28248489 DOI: 10.1021/acs.est.6b05724] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nitrous acid (HONO) is an important source of hydroxyl radical (OH) that determines the fate of many chemically active and climate relevant trace gases. However, the sources and the formation mechanisms of HONO remain poorly understood. In this study, the effect of SO2 on the heterogeneous reactions of NO2 on MgO as a mineral dust surrogate was investigated. The reactivity of MgO to NO2 is weak, while coexisting SO2 can increase the uptake coefficients of NO2 on MgO by 2-3 orders of magnitude. The uptake coefficients of NO2 on SO2-aged MgO are independent of NO2 concentrations in the range of 20-160 ppbv and relative humidity (0-70%RH). The reaction mechanism was demonstrated to be a redox reaction between NO2 and surface sulfite. In the presence of SO2, NO2 was reduced to nitrite under dry conditions, which could be further converted to gas-phase HONO in humid conditions. These results suggest that the reductive effect of SO2 on the heterogeneous conversion of NO2 to HONO may have a significant contribution to the unknown sources of HONO observed in polluted areas (for example, in China).
Collapse
Affiliation(s)
- Qingxin Ma
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University , Kowloon, Hong Kong 999077, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Tao Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University , Kowloon, Hong Kong 999077, China
| | - Chang Liu
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of China Meteorological Administration, Chinese Academy of Meteorological Sciences , Beijing 100081, China
| | - Hong He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Zhe Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University , Kowloon, Hong Kong 999077, China
| | - Weihao Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University , Kowloon, Hong Kong 999077, China
| | - Yutong Liang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University , Kowloon, Hong Kong 999077, China
| |
Collapse
|