1
|
Samanipour S, Barron LP, van Herwerden D, Praetorius A, Thomas KV, O’Brien JW. Exploring the Chemical Space of the Exposome: How Far Have We Gone? JACS AU 2024; 4:2412-2425. [PMID: 39055136 PMCID: PMC11267556 DOI: 10.1021/jacsau.4c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024]
Abstract
Around two-thirds of chronic human disease can not be explained by genetics alone. The Lancet Commission on Pollution and Health estimates that 16% of global premature deaths are linked to pollution. Additionally, it is now thought that humankind has surpassed the safe planetary operating space for introducing human-made chemicals into the Earth System. Direct and indirect exposure to a myriad of chemicals, known and unknown, poses a significant threat to biodiversity and human health, from vaccine efficacy to the rise of antimicrobial resistance as well as autoimmune diseases and mental health disorders. The exposome chemical space remains largely uncharted due to the sheer number of possible chemical structures, estimated at over 1060 unique forms. Conventional methods have cataloged only a fraction of the exposome, overlooking transformation products and often yielding uncertain results. In this Perspective, we have reviewed the latest efforts in mapping the exposome chemical space and its subspaces. We also provide our view on how the integration of data-driven approaches might be able to bridge the identified gaps.
Collapse
Affiliation(s)
- Saer Samanipour
- Van’t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam 1090 GD, The Netherlands
- UvA
Data Science Center, University of Amsterdam, Amsterdam 1090 GD, The Netherlands
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Leon Patrick Barron
- Van’t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam 1090 GD, The Netherlands
- MRC
Centre for Environment and Health, Environmental Research Group, School
of Public Health, Faculty of Medicine, Imperial
College London, London W12 0BZ, United Kingdom
| | - Denice van Herwerden
- Van’t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam 1090 GD, The Netherlands
| | - Antonia Praetorius
- Institute
for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam 1090 GD, The Netherlands
| | - Kevin V. Thomas
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Jake William O’Brien
- Van’t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam 1090 GD, The Netherlands
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Cornwall Street, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
2
|
Quiros-Guerrero LM, Allard PM, Nothias LF, David B, Grondin A, Wolfender JL. Comprehensive mass spectrometric metabolomic profiling of a chemically diverse collection of plants of the Celastraceae family. Sci Data 2024; 11:415. [PMID: 38649352 PMCID: PMC11035674 DOI: 10.1038/s41597-024-03094-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/27/2024] [Indexed: 04/25/2024] Open
Abstract
Natural products exhibit interesting structural features and significant biological activities. The discovery of new bioactive molecules is a complex process that requires high-quality metabolite profiling data to properly target the isolation of compounds of interest and enable their complete structural characterization. The same metabolite profiling data can also be used to better understand chemotaxonomic links between species. This Data Descriptor details a dataset resulting from the untargeted liquid chromatography-mass spectrometry metabolite profiling of 76 natural extracts of the Celastraceae family. The spectral annotation results and related chemical and taxonomic metadata are shared, along with proposed examples of data reuse. This data can be further studied by researchers exploring the chemical diversity of natural products. This can serve as a reference sample set for deep metabolome investigation of this chemically rich plant family.
Collapse
Affiliation(s)
- Luis-Manuel Quiros-Guerrero
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, 1211, Geneva, Switzerland.
- School of Pharmaceutical Sciences, University of Geneva, CMU, 1211, Geneva, Switzerland.
| | | | - Louis-Felix Nothias
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, 1211, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, CMU, 1211, Geneva, Switzerland
| | - Bruno David
- Green Mission Department, Herbal Products Laboratory, Pierre Fabre Research Institute, Toulouse, France
| | - Antonio Grondin
- Green Mission Department, Herbal Products Laboratory, Pierre Fabre Research Institute, Toulouse, France
| | - Jean-Luc Wolfender
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, 1211, Geneva, Switzerland.
- School of Pharmaceutical Sciences, University of Geneva, CMU, 1211, Geneva, Switzerland.
| |
Collapse
|
3
|
Charest N, Lowe CN, Ramsland C, Meyer B, Samano V, Williams AJ. Improving predictions of compound amenability for liquid chromatography-mass spectrometry to enhance non-targeted analysis. Anal Bioanal Chem 2024; 416:2565-2579. [PMID: 38530399 PMCID: PMC11228616 DOI: 10.1007/s00216-024-05229-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/28/2024]
Abstract
Mass-spectrometry-based non-targeted analysis (NTA), in which mass spectrometric signals are assigned chemical identities based on a systematic collation of evidence, is a growing area of interest for toxicological risk assessment. Successful NTA results in better identification of potentially hazardous pollutants within the environment, facilitating the development of targeted analytical strategies to best characterize risks to human and ecological health. A supporting component of the NTA process involves assessing whether suspected chemicals are amenable to the mass spectrometric method, which is necessary in order to assign an observed signal to the chemical structure. Prior work from this group involved the development of a random forest model for predicting the amenability of 5517 unique chemical structures to liquid chromatography-mass spectrometry (LC-MS). This work improves the interpretability of the group's prior model of the same endpoint, as well as integrating 1348 more data points across negative and positive ionization modes. We enhance interpretability by feature engineering, a machine learning practice that reduces the input dimensionality while attempting to preserve performance statistics. We emphasize the importance of interpretable machine learning models within the context of building confidence in NTA identification. The novel data were curated by the labeling of compounds as amenable or unamenable by expert curators, resulting in an enhanced set of chemical compounds to expand the applicability domain of the prior model. The balanced accuracy benchmark of the newly developed model is comparable to performance previously reported (mean CV BA is 0.84 vs. 0.82 in positive mode, and 0.85 vs. 0.82 in negative mode), while on a novel external set, derived from this work's data, the Matthews correlation coefficients (MCC) for the novel models are 0.66 and 0.68 for positive and negative mode, respectively. Our group's prior published models scored MCC of 0.55 and 0.54 on the same external sets. This demonstrates appreciable improvement over the chemical space captured by the expanded dataset. This work forms part of our ongoing efforts to develop models with higher interpretability and higher performance to support NTA efforts.
Collapse
Affiliation(s)
- Nathaniel Charest
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711, USA.
| | - Charles N Lowe
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711, USA
| | | | - Brian Meyer
- Senior Environmental Employment Program, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711, USA
| | - Vicente Samano
- Senior Environmental Employment Program, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711, USA
| | - Antony J Williams
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711, USA
| |
Collapse
|
4
|
Ruan T, Li P, Wang H, Li T, Jiang G. Identification and Prioritization of Environmental Organic Pollutants: From an Analytical and Toxicological Perspective. Chem Rev 2023; 123:10584-10640. [PMID: 37531601 DOI: 10.1021/acs.chemrev.3c00056] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Exposure to environmental organic pollutants has triggered significant ecological impacts and adverse health outcomes, which have been received substantial and increasing attention. The contribution of unidentified chemical components is considered as the most significant knowledge gap in understanding the combined effects of pollutant mixtures. To address this issue, remarkable analytical breakthroughs have recently been made. In this review, the basic principles on recognition of environmental organic pollutants are overviewed. Complementary analytical methodologies (i.e., quantitative structure-activity relationship prediction, mass spectrometric nontarget screening, and effect-directed analysis) and experimental platforms are briefly described. The stages of technique development and/or essential parts of the analytical workflow for each of the methodologies are then reviewed. Finally, plausible technique paths and applications of the future nontarget screening methods, interdisciplinary techniques for achieving toxicant identification, and burgeoning strategies on risk assessment of chemical cocktails are discussed.
Collapse
Affiliation(s)
- Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengyang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haotian Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingyu Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Ateia M, Sigmund G, Bentel MJ, Washington JW, Lai A, Merrill NH, Wang Z. Integrated data-driven cross-disciplinary framework to prevent chemical water pollution. ONE EARTH (CAMBRIDGE, MASS.) 2023; 6:10.1016/j.oneear.2023.07.001. [PMID: 38264630 PMCID: PMC10802893 DOI: 10.1016/j.oneear.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Access to a clean and healthy environment is a human right and a prerequisite for maintaining a sustainable ecosystem. Experts across domains along the chemical life cycle have traditionally operated in isolation, leading to limited connectivity between upstream chemical innovation to downstream development of water-treatment technologies. This fragmented and historically reactive approach to managing emerging contaminants has resulted in significant externalized societal costs. Herein, we propose an integrated data-driven framework to foster proactive action across domains to effectively address chemical water pollution. By implementing this integrated framework, it will not only enhance the capabilities of experts in their respective fields but also create opportunities for novel approaches that yield co-benefits across multiple domains. To successfully operationalize the integrated framework, several concerted efforts are warranted, including adopting open and FAIR (findable, accessible, interoperable, and reusable) data practices, developing common knowledge bases/platforms, and staying vigilant against new substance "properties" of concern.
Collapse
Affiliation(s)
- Mohamed Ateia
- United States Environmental Protection Agency, Center for Environmental Solutions & Emergency Response, Cincinnati, OH 45220, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Gabriel Sigmund
- Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Josef-Holaubeck-Platz 2, 1090 Vienna, Austria
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Michael J. Bentel
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
| | - John W. Washington
- United States Environmental Protection Agency, Center for Environmental Measurement and Modeling, Athens, GA 30605, USA
| | - Adelene Lai
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Nathaniel H. Merrill
- United States Environmental Protection Agency, Center for Environmental Measurement and Modeling, Narragansett, RI, USA
| | - Zhanyun Wang
- Empa Swiss – Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, 9014 St. Gallen, Switzerland
| |
Collapse
|
6
|
Meng W, Sun H, Su G. Plastic packaging-associated chemicals and their hazards - An overview of reviews. CHEMOSPHERE 2023; 331:138795. [PMID: 37116723 DOI: 10.1016/j.chemosphere.2023.138795] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/02/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Plastic packaging contains residues from substances used during manufacturing, such as solvents, as well as non-intentionally added substances (NIAS), such as impurities, oligomers, or degradation products. By searching peer-reviewed literature, we found that at least 10,259 chemicals were related to plastic packaging materials, which include chemicals used during manufacturing and/or present in final packaging items. We then summarized and discussed their chemical structures, analytical instruments, migration characteristics, and hazard categories where possible. For plastic packaging chemicals, examination of the literature reveals gas and liquid chromatography hyphenated to a variety of accurate mass analyzers based on the use of high-resolution mass spectrometry is usually used for the identification of unknown migrants coming from plastic packaging. Chemical migration from food packaging is affected by several parameters, including the nature and complexity of the food, contact time, temperature of the system, type of packaging contact layer, and properties of the migrants. A review of the literature reveals that information on adverse effects is only available for approximately 1600 substances. Among them, it appears that additives are more toxic than monomers to wildlife and humans. Neurotoxicity accounted for the highest proportion of toxicity of all types of chemicals, while benzenoids, organic acids, and derivatives were the most toxic types of chemicals. Furthermore, studies have demonstrated that hydrocarbon derivatives, organic nitrogen compounds, and organometallic compounds have the highest proportions of dermatotoxicity, and organohalogen compounds have the highest proportions of hepatotoxicity. The main contributors to skin sensitization are organic salts. This study provides a basis for comprehensively publicizing information on chemicals in plastics, and could be helpful to better understand their potential risks to the environment and humans.
Collapse
Affiliation(s)
- Weikun Meng
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Hao Sun
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
7
|
Yang J, Zhao F, Zheng J, Wang Y, Fei X, Xiao Y, Fang M. An automated toxicity based prioritization framework for fast chemical characterization in non-targeted analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130893. [PMID: 36746086 DOI: 10.1016/j.jhazmat.2023.130893] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Identification of environmental pollutants with harmful effects is commonly conducted by non-targeted analysis (NTA) using liquid chromatography coupled with high-resolution mass spectrometry. Prioritization of possible candidates is important yet challenging because of the large number of candidates from MS acquisitions. We aimed to prioritize candidates to the exposure potential of organic chemicals by their toxicity and identification evidence in the matrix. We have developed an R package application, "NTAprioritization.R", for fast prioritization of suspect lists. In this workflow, the identification levels of candidates were first rated according to spectral matching and retention time prediction. The toxicity levels were rated according to candidates' toxicity of different endpoints or ToxPi score. Finally, the various levels of candidates were identified as Tier 1 - 5 descending in priority. For validation, we used this workflow to identify pollutants in a sludge water sample spiked with 28 environmental pollutants. The workflow reduced the candidate list of over 6,982 candidates to a final list of 2,779 compounds and prioritized them to 5 tiers (Tier 1 - 5), including 21 out of 28 spiked standards. Overall, this study shows the added value of an automated prioritization R package for the fast screening of environmental pollutants based on the NTA method.
Collapse
Affiliation(s)
- Junjie Yang
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, 636921, Singapore
| | - Fanrong Zhao
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Jie Zheng
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, 636921, Singapore
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, 636921, Singapore
| | - Xunchang Fei
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Yongjun Xiao
- International Food & Water Research Centre, Waters Pacific Pte Ltd, 117528, Singapore.
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
8
|
Boelrijk J, van Herwerden D, Ensing B, Forré P, Samanipour S. Predicting RP-LC retention indices of structurally unknown chemicals from mass spectrometry data. J Cheminform 2023; 15:28. [PMID: 36829215 PMCID: PMC9960388 DOI: 10.1186/s13321-023-00699-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
Non-target analysis combined with liquid chromatography high resolution mass spectrometry is considered one of the most comprehensive strategies for the detection and identification of known and unknown chemicals in complex samples. However, many compounds remain unidentified due to data complexity and limited number structures in chemical databases. In this work, we have developed and validated a novel machine learning algorithm to predict the retention index (r[Formula: see text]) values for structurally (un)known chemicals based on their measured fragmentation pattern. The developed model, for the first time, enabled the predication of r[Formula: see text] values without the need for the exact structure of the chemicals, with an [Formula: see text] of 0.91 and 0.77 and root mean squared error (RMSE) of 47 and 67 r[Formula: see text] units for the NORMAN ([Formula: see text]) and amide ([Formula: see text]) test sets, respectively. This fragment based model showed comparable accuracy in r[Formula: see text] prediction compared to conventional descriptor-based models that rely on known chemical structure, which obtained an [Formula: see text] of 0.85 with an RMSE of 67.
Collapse
Affiliation(s)
- Jim Boelrijk
- AI4Science Lab, University of Amsterdam, Amsterdam, The Netherlands. .,Institute for Informatics, University of Amsterdam, Amsterdam, The Netherlands.
| | - Denice van Herwerden
- grid.7177.60000000084992262Van’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, The Netherlands
| | - Bernd Ensing
- grid.7177.60000000084992262AI4Science Lab, University of Amsterdam, Amsterdam, The Netherlands ,Computational Chemistry Group, Van’t Hoff Institute for Molecular Sciences (HIMS), Amsterdam, The Netherlands
| | - Patrick Forré
- grid.7177.60000000084992262AI4Science Lab, University of Amsterdam, Amsterdam, The Netherlands ,grid.7177.60000000084992262Institute for Informatics, University of Amsterdam, Amsterdam, The Netherlands
| | - Saer Samanipour
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, The Netherlands. .,UvA Data Science Center, University of Amsterdam, Amsterdam, The Netherlands. .,Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, Australia.
| |
Collapse
|
9
|
Nielsen NJ, Christensen P, Poulsen KG, Christensen JH. Investigation of micropollutants in household waste fractions processed by anaerobic digestion: target analysis, suspect- and non-target screening. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48491-48507. [PMID: 36763273 DOI: 10.1007/s11356-023-25692-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Household waste represents a major source of energy, nutrients, and recyclable material. In order to exploit benefits and avoid hazards in the context of circular economy, the risk profile towards human and the environment should be assessed. Here, we investigated the presence of micropollutants by quantitative target analysis, suspect and non-target screening and evaluated changes in the chemical fingerprint upon anaerobic digestion. Extracts were analyzed by reversed phase liquid chromatography high-resolution mass spectrometry (LC-HRMS) and gas chromatography mass spectrometry (GC-MS). Thirty-one of 51 target micropollutants were detected in low ng/mL levels except for few detections at µg/mL levels. The micropollutants quantified in this study included the following: pharmaceuticals (salicylic acid, amitriptyline, carbamazepine); biocides (triclocarban, 2-phenylphenol); industrial compounds used in, e.g., paper industry (pentachlorphenol, PFOS, PFOA, bisphenol A); aromatics, polycyclic aromatics, and heteroaromatics, and their alkylated, hydroxylated, or carboxylated analogues. Fifty of 206 compounds from the suspect screening list were tentatively identified. These included phthalates, methylparaben, phenol, benzophenone, and pharmaceuticals, e.g., ibuprofen. Most compounds detected by GC-MS decreased more than twofold in peak height or remained unaffected by the anaerobic digestion, and very few increased more than twofold, e.g., p-cresol, menthol, and octadecanal. From the LC-HRMS non-target screening analysis, 250 chemical components were resolved using the multiway curve resolution technique PARAFAC2; of these, carbidopa was the only identified unknown.
Collapse
Affiliation(s)
- Nikoline J Nielsen
- Analytical Chemistry Group, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark.
| | - Peter Christensen
- Analytical Chemistry Group, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Kristoffer G Poulsen
- Analytical Chemistry Group, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Jan H Christensen
- Analytical Chemistry Group, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| |
Collapse
|
10
|
Mohammed Taha H, Aalizadeh R, Alygizakis N, Antignac JP, Arp HPH, Bade R, Baker N, Belova L, Bijlsma L, Bolton EE, Brack W, Celma A, Chen WL, Cheng T, Chirsir P, Čirka Ľ, D’Agostino LA, Djoumbou Feunang Y, Dulio V, Fischer S, Gago-Ferrero P, Galani A, Geueke B, Głowacka N, Glüge J, Groh K, Grosse S, Haglund P, Hakkinen PJ, Hale SE, Hernandez F, Janssen EML, Jonkers T, Kiefer K, Kirchner M, Koschorreck J, Krauss M, Krier J, Lamoree MH, Letzel M, Letzel T, Li Q, Little J, Liu Y, Lunderberg DM, Martin JW, McEachran AD, McLean JA, Meier C, Meijer J, Menger F, Merino C, Muncke J, Muschket M, Neumann M, Neveu V, Ng K, Oberacher H, O’Brien J, Oswald P, Oswaldova M, Picache JA, Postigo C, Ramirez N, Reemtsma T, Renaud J, Rostkowski P, Rüdel H, Salek RM, Samanipour S, Scheringer M, Schliebner I, Schulz W, Schulze T, Sengl M, Shoemaker BA, Sims K, Singer H, Singh RR, Sumarah M, Thiessen PA, Thomas KV, Torres S, Trier X, van Wezel AP, Vermeulen RCH, Vlaanderen JJ, von der Ohe PC, Wang Z, Williams AJ, Willighagen EL, Wishart DS, Zhang J, Thomaidis NS, Hollender J, Slobodnik J, Schymanski EL. The NORMAN Suspect List Exchange (NORMAN-SLE): facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry. ENVIRONMENTAL SCIENCES EUROPE 2022; 34:104. [PMID: 36284750 PMCID: PMC9587084 DOI: 10.1186/s12302-022-00680-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Background The NORMAN Association (https://www.norman-network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for "suspect screening" lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide. Results The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community (https://zenodo.org/communities/norman-sle), with a total of > 40,000 unique views, > 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the US EPA's CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard/), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser (https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101). Conclusions The NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the "one substance, one assessment" approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website (https://www.norman-network.com/nds/SLE/). Supplementary Information The online version contains supplementary material available at 10.1186/s12302-022-00680-6.
Collapse
Affiliation(s)
- Hiba Mohammed Taha
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
| | - Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikiforos Alygizakis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
- Environmental Institute, Okružná 784/42, 972 41 Koš, Slovak Republic
| | | | - Hans Peter H. Arp
- Norwegian Geotechnical Institute (NGI), Ullevål Stadion, P.O. Box 3930, 0806 Oslo, Norway
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Richard Bade
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102 Australia
| | | | - Lidia Belova
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | - Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain
| | - Evan E. Bolton
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - Werner Brack
- UFZ, Helmholtz Centre for Environmental Research, Leipzig, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt Am Main, Germany
| | - Alberto Celma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain
- Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Wen-Ling Chen
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, 17 Xuzhou Rd., Zhongzheng Dist., Taipei, Taiwan
| | - Tiejun Cheng
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - Parviel Chirsir
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
| | - Ľuboš Čirka
- Environmental Institute, Okružná 784/42, 972 41 Koš, Slovak Republic
- Faculty of Chemical and Food Technology, Institute of Information Engineering, Automation, and Mathematics, Slovak University of Technology in Bratislava (STU), Radlinského 9, 812 37 Bratislava, Slovak Republic
| | - Lisa A. D’Agostino
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden
| | | | - Valeria Dulio
- INERIS, National Institute for Environment and Industrial Risks, Verneuil en Halatte, France
| | - Stellan Fischer
- Swedish Chemicals Agency (KEMI), P.O. Box 2, 172 13 Sundbyberg, Sweden
| | - Pablo Gago-Ferrero
- Institute of Environmental Assessment and Water Research-Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Barcelona, Spain
| | - Aikaterini Galani
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Birgit Geueke
- Food Packaging Forum Foundation, Staffelstrasse 10, 8045 Zurich, Switzerland
| | - Natalia Głowacka
- Environmental Institute, Okružná 784/42, 972 41 Koš, Slovak Republic
| | - Juliane Glüge
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - Ksenia Groh
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Sylvia Grosse
- Thermo Fisher Scientific, Dornierstrasse 4, 82110 Germering, Germany
| | - Peter Haglund
- Department of Chemistry, Chemical Biological Centre (KBC), Umeå University, Linnaeus Väg 6, 901 87 Umeå, Sweden
| | - Pertti J. Hakkinen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - Sarah E. Hale
- Norwegian Geotechnical Institute (NGI), Ullevål Stadion, P.O. Box 3930, 0806 Oslo, Norway
| | - Felix Hernandez
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain
| | - Elisabeth M.-L. Janssen
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Tim Jonkers
- Department Environment and Health, Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, The Netherlands
| | - Karin Kiefer
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Michal Kirchner
- Water Research Institute (WRI), Nábr. Arm. Gen. L. Svobodu 5, 81249 Bratislava, Slovak Republic
| | - Jan Koschorreck
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, Germany
| | - Martin Krauss
- UFZ, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Jessy Krier
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
| | - Marja H. Lamoree
- Department Environment and Health, Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, The Netherlands
| | - Marion Letzel
- Bavarian Environment Agency, 86179 Augsburg, Germany
| | - Thomas Letzel
- Analytisches Forschungsinstitut Für Non-Target Screening GmbH (AFIN-TS), Am Mittleren Moos 48, 86167 Augsburg, Germany
| | - Qingliang Li
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - James Little
- Mass Spec Interpretation Services, 3612 Hemlock Park Drive, Kingsport, TN 37663 USA
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (SKLECE, RCEES, CAS), No. 18 Shuangqing Road, Haidian District, Beijing, 100086 China
| | - David M. Lunderberg
- Hope College, Holland, MI 49422 USA
- University of California, Berkeley, CA USA
| | - Jonathan W. Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden
| | - Andrew D. McEachran
- Agilent Technologies, Inc., 5301 Stevens Creek Blvd, Santa Clara, CA 95051 USA
| | - John A. McLean
- Department of Chemistry, Center for Innovative Technology, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235 USA
| | - Christiane Meier
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, Germany
| | - Jeroen Meijer
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Frank Menger
- Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Carla Merino
- University Rovira i Virgili, Tarragona, Spain
- Biosfer Teslab, Reus, Spain
| | - Jane Muncke
- Food Packaging Forum Foundation, Staffelstrasse 10, 8045 Zurich, Switzerland
| | | | - Michael Neumann
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, Germany
| | - Vanessa Neveu
- Nutrition and Metabolism Branch, International Agency for Research On Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon Cedex 08, France
| | - Kelsey Ng
- Environmental Institute, Okružná 784/42, 972 41 Koš, Slovak Republic
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Muellerstrasse 44, Innsbruck, Austria
| | - Jake O’Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102 Australia
| | - Peter Oswald
- Environmental Institute, Okružná 784/42, 972 41 Koš, Slovak Republic
| | - Martina Oswaldova
- Environmental Institute, Okružná 784/42, 972 41 Koš, Slovak Republic
| | - Jaqueline A. Picache
- Department of Chemistry, Center for Innovative Technology, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235 USA
| | - Cristina Postigo
- Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
- Technologies for Water Management and Treatment Research Group, Department of Civil Engineering, University of Granada, Campus de Fuentenueva S/N, 18071 Granada, Spain
| | - Noelia Ramirez
- University Rovira i Virgili, Tarragona, Spain
- Institute of Health Research Pere Virgili, Tarragona, Spain
| | | | - Justin Renaud
- Agriculture and Agri-Food Canada/Agriculture et Agroalimentaire Canada, 1391 Sandford Street, London, ON N5V 4T3 Canada
| | | | - Heinz Rüdel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (Fraunhofer IME), Schmallenberg, Germany
| | - Reza M. Salek
- Nutrition and Metabolism Branch, International Agency for Research On Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon Cedex 08, France
| | - Saer Samanipour
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, Amsterdam, 1090 GD The Netherlands
| | - Martin Scheringer
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Ivo Schliebner
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, Germany
| | - Wolfgang Schulz
- Laboratory for Operation Control and Research, Zweckverband Landeswasserversorgung, Am Spitzigen Berg 1, 89129 Langenau, Germany
| | - Tobias Schulze
- UFZ, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Manfred Sengl
- Bavarian Environment Agency, 86179 Augsburg, Germany
| | - Benjamin A. Shoemaker
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - Kerry Sims
- Environment Agency, Horizon House, Deanery Road, Bristol, BS1 5AH UK
| | - Heinz Singer
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Randolph R. Singh
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
- Chemical Contamination of Marine Ecosystems (CCEM) Unit, Institut Français de Recherche pour l’Exploitation de la Mer (IFREMER), Rue de l’Ile d’Yeu, BP 21105, 44311 Cedex 3, Nantes France
| | - Mark Sumarah
- Agriculture and Agri-Food Canada/Agriculture et Agroalimentaire Canada, 1391 Sandford Street, London, ON N5V 4T3 Canada
| | - Paul A. Thiessen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - Kevin V. Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102 Australia
| | | | - Xenia Trier
- Section for Environmental Chemistry and Physics, Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Annemarie P. van Wezel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Roel C. H. Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Jelle J. Vlaanderen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | | | - Zhanyun Wang
- Technology and Society Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Antony J. Williams
- Computational Chemistry and Cheminformatics Branch (CCCB), Chemical Characterization and Exposure Division (CCED), Center for Computational Toxicology and Exposure (CCTE), United States Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711 USA
| | - Egon L. Willighagen
- Department of Bioinformatics-BiGCaT, NUTRIM, Maastricht University, Maastricht, The Netherlands
| | | | - Jian Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - Nikolaos S. Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Juliane Hollender
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | | | - Emma L. Schymanski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
| |
Collapse
|
11
|
Nerín C, Bourdoux S, Faust B, Gude T, Lesueur C, Simat T, Stoermer A, Van Hoek E, Oldring P. Guidance in selecting analytical techniques for identification and quantification of non-intentionally added substances (NIAS) in food contact materials (FCMS). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:620-643. [PMID: 35081016 DOI: 10.1080/19440049.2021.2012599] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
There are numerous approaches and methodologies for assessing the identity and quantities of non-intentionally added substances (NIAS) in food contact materials (FCMs). They can give different results and it can be difficult to make meaningful comparisons. The initial approach was to attempt to prepare a prescriptive methodology but as this proved impossible; this paper develops guidelines that need to be taken into consideration when assessing NIAS. Different approaches to analysing NIAS in FCMs are reviewed and compared. The approaches for preparing the sample for analysis, recommended procedures for screening, identification, and quantification of NIAS as well as the reporting requirements are outlined. Different analytical equipment and procedures are compared. Limitations of today's capabilities are raised along with some research needs.
Collapse
Affiliation(s)
- Cristina Nerín
- Grupo Universitario de Investigación Analítica, Universidad de Zaragoza, Zaragoza, Spain
| | | | - Birgit Faust
- Toxicology and Environmental Research and Consulting (TERC), Dow Olefinverbund GmbH, Schkopau, Germany
| | - Thomas Gude
- Swiss Quality Testing Services, Dietikon, Switzerland
| | - Céline Lesueur
- Department of Analytical Chemistry, Danone, Paris, France
| | - Thomas Simat
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Angela Stoermer
- Fraunhofer Institute Process Engineering and Packaging, Freising, Germany
| | - Els Van Hoek
- Organic Contaminants & Additives, Sciensano, Brussels, Belgium
| | - Peter Oldring
- Regulatory Affairs Department, Sherwin Williams, Witney, UK
| |
Collapse
|
12
|
Tao Y, Liu J, Xu Y, Liu H, Yang G, He Y, Xu J, Lu Z. Suspecting screening "known unknown" pesticides and transformation products in soil at pesticide manufacturing sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152074. [PMID: 34863759 DOI: 10.1016/j.scitotenv.2021.152074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/16/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
The occurrence and risks of pesticides and their transformation products in soil at the manufacturing sites are "known unknowns." In this study, pesticides and their transformation products were screened in soil at 6 pesticide manufacturing sites across China using liquid and gas chromatography coupled with quadrupole time-of-flight mass spectrometry. The screening strategy can correctly identify 75% of 209 pesticides spiked at 50 ng g-1. A total of 212 pesticides were identified; 23.1% of pesticides detected were above 200 ng g-1, and the maximum concentration was 1.5 × 105 ng g-1. The risk quotients of 20% pesticides were greater than 1, and the maximum risk quotient of imidacloprid reached 6.3 × 104. The most recent site showed a larger number of pesticides with higher diversity, whereas older sites were dominated by organochlorine insecticides. The extended screen identified 163 transformation products with concentrations up to 6.6 × 104 ng g-1. Half of the transformation products had higher concentrations than their parent compounds, and metabolic ratios up to 371 were observed. The results of this study validate the prevalence of pesticides and their transformation products in soil at pesticide manufacturing sites. The results also highlight the importance of comprehensive screening at industrial sites and call for improved management and regulation of pesticide manufacturing, particularly for in-service facilities.
Collapse
Affiliation(s)
- Yufeng Tao
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jing Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yiwen Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hang Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Guiling Yang
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Zhijiang Lu
- Department of Environmental Science and Geology, Wayne State University, Detroit, MI 48201, United States.
| |
Collapse
|
13
|
Brack W, Barcelo Culleres D, Boxall ABA, Budzinski H, Castiglioni S, Covaci A, Dulio V, Escher BI, Fantke P, Kandie F, Fatta-Kassinos D, Hernández FJ, Hilscherová K, Hollender J, Hollert H, Jahnke A, Kasprzyk-Hordern B, Khan SJ, Kortenkamp A, Kümmerer K, Lalonde B, Lamoree MH, Levi Y, Lara Martín PA, Montagner CC, Mougin C, Msagati T, Oehlmann J, Posthuma L, Reid M, Reinhard M, Richardson SD, Rostkowski P, Schymanski E, Schneider F, Slobodnik J, Shibata Y, Snyder SA, Fabriz Sodré F, Teodorovic I, Thomas KV, Umbuzeiro GA, Viet PH, Yew-Hoong KG, Zhang X, Zuccato E. One planet: one health. A call to support the initiative on a global science-policy body on chemicals and waste. ENVIRONMENTAL SCIENCES EUROPE 2022; 34:21. [PMID: 35281760 PMCID: PMC8902847 DOI: 10.1186/s12302-022-00602-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/25/2022] [Indexed: 05/08/2023]
Abstract
The chemical pollution crisis severely threatens human and environmental health globally. To tackle this challenge the establishment of an overarching international science-policy body has recently been suggested. We strongly support this initiative based on the awareness that humanity has already likely left the safe operating space within planetary boundaries for novel entities including chemical pollution. Immediate action is essential and needs to be informed by sound scientific knowledge and data compiled and critically evaluated by an overarching science-policy interface body. Major challenges for such a body are (i) to foster global knowledge production on exposure, impacts and governance going beyond data-rich regions (e.g., Europe and North America), (ii) to cover the entirety of hazardous chemicals, mixtures and wastes, (iii) to follow a one-health perspective considering the risks posed by chemicals and waste on ecosystem and human health, and (iv) to strive for solution-oriented assessments based on systems thinking. Based on multiple evidence on urgent action on a global scale, we call scientists and practitioners to mobilize their scientific networks and to intensify science-policy interaction with national governments to support the negotiations on the establishment of an intergovernmental body based on scientific knowledge explaining the anticipated benefit for human and environmental health.
Collapse
Affiliation(s)
- Werner Brack
- UFZ Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany
- Faculty Biological Sciences, Goethe University Frankfurt, Max-von-der-Laue-Straße 13, 60438 Frankfurt, Germany
| | - Damia Barcelo Culleres
- Catalan Institute of Water Research, Carrer Emili Grahit 101, 17003 Girona, Spain
- Spanish National Research Council, Institute for Environmental Assessment & Water Research, Water & Soil Quality Research Group, Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | - Hélène Budzinski
- Université de Bordeaux, 351 crs de la Libération, 33405 Talence, France
| | - Sara Castiglioni
- Department of Environmental Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplen 1, 2610 Wilrijk, Belgium
| | - Valeria Dulio
- INERIS - Direction Milieu et Impacts sur le Vivant (MIV), Parc technologique ALATA, 60550 Verneuil-en-Halatte, France
| | - Beate I. Escher
- UFZ Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Technology, Management and Economics, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs. Lyngby, Denmark
| | - Faith Kandie
- Department of Biological Sciences, Moi University, 3900-30100 Eldoret, Kenya
| | - Despo Fatta-Kassinos
- Department of Civil and Environmental Engineering and Nireas-International Water Research Center, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Félix J. Hernández
- Research Institute for Pesticides and Water, University Jaume I, 12006 Castellon, Spain
| | - Klara Hilscherová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - Henner Hollert
- Faculty Biological Sciences, Goethe University Frankfurt, Max-von-der-Laue-Straße 13, 60438 Frankfurt, Germany
| | - Annika Jahnke
- UFZ Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany
- RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | | | - Stuart J. Khan
- School of Civil & Environmental Engineering, University of New South Wales, Sydney, NSW 2052 Australia
| | - Andreas Kortenkamp
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH UK
| | - Klaus Kümmerer
- Institute for Sustainable Chemistry, Leuphana University Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany
| | - Brice Lalonde
- The French Water Academy, 51 rue Salvador-Allende, 92027 Nanterre, France
| | - Marja H. Lamoree
- Department Environment & Health, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Yves Levi
- The French Water Academy, 51 rue Salvador-Allende, 92027 Nanterre, France
| | - Pablo Antonio Lara Martín
- Departamento de Química Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz – European Universities of the Seas, Campus Río San Pedro, 11510 Puerto Real, Cádiz Spain
| | | | - Christian Mougin
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 78026 Versailles, France
| | - Titus Msagati
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology (CSET), University of South Africa, Pretoria, South Africa
| | - Jörg Oehlmann
- Faculty Biological Sciences, Goethe University Frankfurt, Max-von-der-Laue-Straße 13, 60438 Frankfurt, Germany
| | - Leo Posthuma
- RIVM-National Institute for Public Health and the Environment, PO Box 1, 3720 BA Bilthoven, The Netherlands
- Department of Environmental Science, Radbound University Nijmegen, Nijmegen, The Netherlands
| | - Malcolm Reid
- Norwegian Institute for Water Research, Environmental Chemistry and Technology, Oslo, Norway
| | | | - Susan D. Richardson
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, SC 29208 USA
| | - Pawel Rostkowski
- NILU-Norwegian Institute for Air Research, P.O. Box 100, 2027 Kjeller, Norway
| | - Emma Schymanski
- University of Luxembourg, 6 avenue du Swing, 4367 Belvaux, Luxembourg
| | - Flurina Schneider
- Faculty Biological Sciences, Goethe University Frankfurt, Max-von-der-Laue-Straße 13, 60438 Frankfurt, Germany
- Institute for Social-Ecological Research (ISOE), Hamburger Alee 45, 60486 Frankfurt, Germany
| | | | - Yasuyuki Shibata
- Environmental Safety Center, Tokyo University of Science, 12-1 Ichigaya-Funagawara, Shinjuku, Tokyo 162-0826 Japan
| | - Shane Allen Snyder
- Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, Singapore
| | | | | | - Kevin V. Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102 Australia
| | | | - Pham Hung Viet
- VNU Key Laboratory of Analytical Technology for Environmental Quality, Vietnam National University, 334 Nguyen Trai, Hanoi, Vietnam
| | - Karina Gin Yew-Hoong
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, Singapore
| | - Xiaowei Zhang
- Centre of Chemical Safety and Risks, School of the Environment, Nanjing University, Nanjing, China
| | - Ettore Zuccato
- Department of Environmental Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| |
Collapse
|
14
|
McCord JP, Groff LC, Sobus JR. Quantitative non-targeted analysis: Bridging the gap between contaminant discovery and risk characterization. ENVIRONMENT INTERNATIONAL 2022; 158:107011. [PMID: 35386928 PMCID: PMC8979303 DOI: 10.1016/j.envint.2021.107011] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Chemical risk assessments follow a long-standing paradigm that integrates hazard, dose-response, and exposure information to facilitate quantitative risk characterization. Targeted analytical measurement data directly support risk assessment activities, as well as downstream risk management and compliance monitoring efforts. Yet, targeted methods have struggled to keep pace with the demands for data regarding the vast, and growing, number of known chemicals. Many contemporary monitoring studies therefore utilize non-targeted analysis (NTA) methods to screen for known chemicals with limited risk information. Qualitative NTA data has enabled identification of previously unknown compounds and characterization of data-poor compounds in support of hazard identification and exposure assessment efforts. In spite of this, NTA data have seen limited use in risk-based decision making due to uncertainties surrounding their quantitative interpretation. Significant efforts have been made in recent years to bridge this quantitative gap. Based on these advancements, quantitative NTA data, when coupled with other high-throughput data streams and predictive models, are poised to directly support 21st-century risk-based decisions. This article highlights components of the chemical risk assessment process that are influenced by NTA data, surveys the existing literature for approaches to derive quantitative estimates of chemicals from NTA measurements, and presents a conceptual framework for incorporating NTA data into contemporary risk assessment frameworks.
Collapse
Affiliation(s)
- James P. McCord
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711, USA
- Corresponding author. (J.P. McCord)
| | - Louis C. Groff
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711, USA
- Oak Ridge Institute for Science and Education (ORISE) Participant, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711, USA
| | - Jon R. Sobus
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711, USA
| |
Collapse
|
15
|
Krier J, Singh RR, Kondić T, Lai A, Diderich P, Zhang J, Thiessen PA, Bolton EE, Schymanski EL. Discovering pesticides and their TPs in Luxembourg waters using open cheminformatics approaches. ENVIRONMENT INTERNATIONAL 2022; 158:106885. [PMID: 34560325 PMCID: PMC8688306 DOI: 10.1016/j.envint.2021.106885] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/30/2021] [Accepted: 09/15/2021] [Indexed: 05/05/2023]
Abstract
The diversity of hundreds of thousands of potential organic pollutants and the lack of (publicly available) information about many of them is a huge challenge for environmental sciences, engineering, and regulation. Suspect screening based on high-resolution liquid chromatography-mass spectrometry (LC-HRMS) has enormous potential to help characterize the presence of these chemicals in our environment, enabling the detection of known and newly emerging pollutants, as well as their potential transformation products (TPs). Here, suspect list creation (focusing on pesticides relevant for Luxembourg, incorporating data sources in 4 languages) was coupled to an automated retrieval of related TPs from PubChem based on high confidence suspect hits, to screen for pesticides and their TPs in Luxembourgish river samples. A computational workflow was established to combine LC-HRMS analysis and pre-screening of the suspects (including automated quality control steps), with spectral annotation to determine which pesticides and, in a second step, their related TPs may be present in the samples. The data analysis with Shinyscreen (https://gitlab.lcsb.uni.lu/eci/shinyscreen/), an open source software developed in house, coupled with custom-made scripts, revealed the presence of 162 potential pesticide masses and 96 potential TP masses in the samples. Further identification of these mass matches was performed using the open source approach MetFrag (https://msbi.ipb-halle.de/MetFrag/). Eventual target analysis of 36 suspects resulted in 31 pesticides and TPs confirmed at Level-1 (highest confidence), and five pesticides and TPs not confirmed due to different retention times. Spatio-temporal analysis of the results showed that TPs and pesticides followed similar trends, with a maximum number of potential detections in July. The highest detections were in the rivers Alzette and Mess and the lowest in the Sûre and Eisch. This study (a) added pesticides, classification information and related TPs into the open domain, (b) developed automated open source retrieval methods - both enhancing FAIRness (Findability, Accessibility, Interoperability and Reusability) of the data and methods; and (c) will directly support "L'Administration de la Gestion de l'Eau" on further monitoring steps in Luxembourg.
Collapse
Affiliation(s)
- Jessy Krier
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, Luxembourg.
| | - Randolph R Singh
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, Luxembourg.
| | - Todor Kondić
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, Luxembourg.
| | - Adelene Lai
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, Luxembourg; Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller University, Lessing Strasse 8, 07743 Jena, Germany.
| | - Philippe Diderich
- Water Management Agency, Ministry of the Environment, Climate and Sustainable Development, 1 Avenue du Rock'n'roll, Luxembourg.
| | - Jian Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Paul A Thiessen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Evan E Bolton
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Emma L Schymanski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, Luxembourg.
| |
Collapse
|
16
|
Faber AH, Brunner AM, Dingemans MML, Baken KA, Kools SAE, Schot PP, de Voogt P, van Wezel AP. Comparing conventional and green fracturing fluids by chemical characterisation and effect-based screening. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148727. [PMID: 34323756 DOI: 10.1016/j.scitotenv.2021.148727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
There is public and scientific concern about air, soil and water contamination and possible adverse environmental and human health effects as a result of hydraulic fracturing activities. The use of greener chemicals in fracturing fluid aims to mitigate these effects. This study compares fracturing fluids marketed as either 'conventional' or 'green', as assessed by their chemical composition and their toxicity in bioassays. Chemical composition was analysed via non-target screening using liquid chromatography - high resolution mass spectrometry, while toxicity was evaluated by the Ames fluctuation test to assess mutagenicity and CALUX reporter gene assays to determine specific toxicity. Overall, the results do not indicate that the 'green' fluids are less harmful than the 'conventional' ones. First, there is no clear indication that the selected green fluids contain chemicals present at lower concentrations than the selected conventional fluids. Second, the predicted environmental fate of the identified compounds does not seem to be clearly distinct between the 'green' and 'conventional' fluids, based on the available data for the top five chemicals based on signal intensity that were tentatively identified. Furthermore, Ames fluctuation test results indicate that the green fluids have a similar genotoxic potential than the conventional fluids. Results of the CALUX reporter gene assays add to the evidence that there is no clear difference between the green and conventional fluids. These results do not support the claim that currently available and tested green-labeled fracturing fluids are environmentally more friendly alternatives to conventional fracturing fluids.
Collapse
Affiliation(s)
- Ann-Hélène Faber
- Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands; KWR Water Research Institute, Nieuwegein, the Netherlands; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands.
| | | | - Milou M L Dingemans
- KWR Water Research Institute, Nieuwegein, the Netherlands; Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | | | - Paul P Schot
- Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
| | - Pim de Voogt
- KWR Water Research Institute, Nieuwegein, the Netherlands; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Annemarie P van Wezel
- KWR Water Research Institute, Nieuwegein, the Netherlands; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
17
|
Predicting compound amenability with liquid chromatography-mass spectrometry to improve non-targeted analysis. Anal Bioanal Chem 2021; 413:7495-7508. [PMID: 34648052 DOI: 10.1007/s00216-021-03713-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
With the increasing availability of high-resolution mass spectrometers, suspect screening and non-targeted analysis are becoming popular compound identification tools for environmental researchers. Samples of interest often contain a large (unknown) number of chemicals spanning the detectable mass range of the instrument. In an effort to separate these chemicals prior to injection into the mass spectrometer, a chromatography method is often utilized. There are numerous types of gas and liquid chromatographs that can be coupled to commercially available mass spectrometers. Depending on the type of instrument used for analysis, the researcher is likely to observe a different subset of compounds based on the amenability of those chemicals to the selected experimental techniques and equipment. It would be advantageous if this subset of chemicals could be predicted prior to conducting the experiment, in order to minimize potential false-positive and false-negative identifications. In this work, we utilize experimental datasets to predict the amenability of chemical compounds to detection with liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). The assembled dataset totals 5517 unique chemicals either explicitly detected or not detected with LC-ESI-MS. The resulting detected/not-detected matrix has been modeled using specific molecular descriptors to predict which chemicals are amenable to LC-ESI-MS, and to which form(s) of ionization. Random forest models, including a measure of the applicability domain of the model for both positive and negative modes of the electrospray ionization source, were successfully developed. The outcome of this work will help to inform future suspect screening and non-targeted analyses of chemicals by better defining the potential LC-ESI-MS detectable chemical landscape of interest.
Collapse
|
18
|
Wiesinger H, Wang Z, Hellweg S. Deep Dive into Plastic Monomers, Additives, and Processing Aids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9339-9351. [PMID: 34154322 DOI: 10.1021/acs.est.1c00976] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A variety of chemical substances used in plastic production may be released throughout the entire life cycle of the plastic, posing risks to human health, the environment, and recycling systems. Only a limited number of these substances have been widely studied. We systematically investigate plastic monomers, additives, and processing aids on the global market based on a review of 63 industrial, scientific, and regulatory data sources. In total, we identify more than 10'000 relevant substances and categorize them based on substance types, use patterns, and hazard classifications wherever possible. Over 2'400 substances are identified as substances of potential concern as they meet one or more of the persistence, bioaccumulation, and toxicity criteria in the European Union. Many of these substances are hardly studied according to SciFinder (266 substances), are not adequately regulated in many parts of the world (1'327 substances), or are even approved for use in food-contact plastics in some jurisdictions (901 substances). Substantial information gaps exist in the public domain, particularly on substance properties and use patterns. To transition to a sustainable circular plastic economy that avoids the use of hazardous chemicals, concerted efforts by all stakeholders are needed, starting by increasing information accessibility.
Collapse
Affiliation(s)
- Helene Wiesinger
- Chair of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Zhanyun Wang
- Chair of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Stefanie Hellweg
- Chair of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
19
|
Koulis GA, Tsagkaris AS, Aalizadeh R, Dasenaki ME, Panagopoulou EI, Drivelos S, Halagarda M, Georgiou CA, Proestos C, Thomaidis NS. Honey Phenolic Compound Profiling and Authenticity Assessment Using HRMS Targeted and Untargeted Metabolomics. Molecules 2021; 26:2769. [PMID: 34066694 PMCID: PMC8125859 DOI: 10.3390/molecules26092769] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
Honey consumption is attributed to potentially advantageous effects on human health due to its antioxidant capacity as well as anti-inflammatory and antimicrobial activity, which are mainly related to phenolic compound content. Phenolic compounds are secondary metabolites of plants, and their content in honey is primarily affected by the botanical and geographical origin. In this study, a high-resolution mass spectrometry (HRMS) method was applied to determine the phenolic profile of various honey matrices and investigate authenticity markers. A fruitful sample set was collected, including honey from 10 different botanical sources (n = 51) originating from Greece and Poland. Generic liquid-liquid extraction using ethyl acetate as the extractant was used to apply targeted and non-targeted workflows simultaneously. The method was fully validated according to the Eurachem guidelines, and it demonstrated high accuracy, precision, and sensitivity resulting in the detection of 11 target analytes in the samples. Suspect screening identified 16 bioactive compounds in at least one sample, with abscisic acid isomers being the most abundant in arbutus honey. Importantly, 10 markers related to honey geographical origin were revealed through non-targeted screening and the application of advanced chemometric tools. In conclusion, authenticity markers and discrimination patterns were emerged using targeted and non-targeted workflows, indicating the impact of this study on food authenticity and metabolomic fields.
Collapse
Affiliation(s)
- Georgios A. Koulis
- Analytical Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece; (G.A.K.); (A.S.T.); (R.A.); (E.I.P.); (N.S.T.)
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece;
| | - Aristeidis S. Tsagkaris
- Analytical Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece; (G.A.K.); (A.S.T.); (R.A.); (E.I.P.); (N.S.T.)
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague 6—Dejvice, 16628 Prague, Czech Republic
| | - Reza Aalizadeh
- Analytical Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece; (G.A.K.); (A.S.T.); (R.A.); (E.I.P.); (N.S.T.)
| | - Marilena E. Dasenaki
- Analytical Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece; (G.A.K.); (A.S.T.); (R.A.); (E.I.P.); (N.S.T.)
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece;
| | - Eleni I. Panagopoulou
- Analytical Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece; (G.A.K.); (A.S.T.); (R.A.); (E.I.P.); (N.S.T.)
| | - Spyros Drivelos
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (S.D.); (C.A.G.)
| | - Michał Halagarda
- Department of Food Product Quality, Cracow University of Economics, ul. Sienkiewicza 5, 30033 Krakow, Poland;
| | - Constantinos A. Georgiou
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (S.D.); (C.A.G.)
| | - Charalampos Proestos
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece;
| | - Nikolaos S. Thomaidis
- Analytical Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece; (G.A.K.); (A.S.T.); (R.A.); (E.I.P.); (N.S.T.)
| |
Collapse
|
20
|
Pagliaro M. Open access publishing in chemistry: a practical perspective informing new education. INSIGHTS THE UKSG JOURNAL 2021; 34. [DOI: 10.1629/uksg.540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
21
|
González-Gaya B, Lopez-Herguedas N, Bilbao D, Mijangos L, Iker AM, Etxebarria N, Irazola M, Prieto A, Olivares M, Zuloaga O. Suspect and non-target screening: the last frontier in environmental analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1876-1904. [PMID: 33913946 DOI: 10.1039/d1ay00111f] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Suspect and non-target screening (SNTS) techniques are arising as new analytical strategies useful to disentangle the environmental occurrence of the thousands of exogenous chemicals present in our ecosystems. The unbiased discovery of the wide number of substances present over environmental analysis needs to find a consensus with powerful technical and computational requirements, as well as with the time-consuming unequivocal identification of discovered analytes. Within these boundaries, the potential applications of SNTS include the studies of environmental pollution in aquatic, atmospheric, solid and biological samples, the assessment of new compounds, transformation products and metabolites, contaminant prioritization, bioremediation or soil/water treatment evaluation, and retrospective data analysis, among many others. In this review, we evaluate the state of the art of SNTS techniques going over the normalized workflow from sampling and sample treatment to instrumental analysis, data processing and a brief review of the more recent applications of SNTS in environmental occurrence and exposure to xenobiotics. The main issues related to harmonization and knowledge gaps are critically evaluated and the challenges of their implementation are assessed in order to ensure a proper use of these promising techniques in the near future.
Collapse
Affiliation(s)
- B González-Gaya
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Basque Country, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Saw NMMT, Suwanchaikasem P, Zuniga-Montanez R, Qiu G, Marzinelli EM, Wuertz S, Williams RBH. Influence of Extraction Solvent on Nontargeted Metabolomics Analysis of Enrichment Reactor Cultures Performing Enhanced Biological Phosphorus Removal (EBPR). Metabolites 2021; 11:269. [PMID: 33925970 PMCID: PMC8145293 DOI: 10.3390/metabo11050269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 12/23/2022] Open
Abstract
Metabolome profiling is becoming more commonly used in the study of complex microbial communities and microbiomes; however, to date, little information is available concerning appropriate extraction procedures. We studied the influence of different extraction solvent mixtures on untargeted metabolomics analysis of two continuous culture enrichment communities performing enhanced biological phosphate removal (EBPR), with each enrichment targeting distinct populations of polyphosphate-accumulating organisms (PAOs). We employed one non-polar solvent and up to four polar solvents for extracting metabolites from biomass. In one of the reactor microbial communities, we surveyed both intracellular and extracellular metabolites using the same set of solvents. All samples were analysed using ultra-performance liquid chromatography mass spectrometry (UPLC-MS). UPLC-MS data obtained from polar and non-polar solvents were analysed separately and evaluated using extent of repeatability, overall extraction capacity and the extent of differential abundance between physiological states. Despite both reactors demonstrating the same bioprocess phenotype, the most appropriate extraction method was biomass specific, with methanol: water (50:50 v/v) and methanol: chloroform: water (40:40:20 v/v) being chosen as the most appropriate for each of the two different bioreactors, respectively. Our approach provides new data on the influence of solvent choice on the untargeted surveys of the metabolome of PAO enriched EBPR communities and suggests that metabolome extraction methods need to be carefully tailored to the specific complex microbial community under study.
Collapse
Affiliation(s)
- Nay Min Min Thaw Saw
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; (N.M.M.T.S.); (R.Z.-M.); (G.Q.); (E.M.M.); (S.W.)
| | - Pipob Suwanchaikasem
- Singapore Phenome Centre, Nanyang Technological University, Singapore 636921, Singapore;
| | - Rogelio Zuniga-Montanez
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; (N.M.M.T.S.); (R.Z.-M.); (G.Q.); (E.M.M.); (S.W.)
- Department of Civil and Environmental Engineering, One Shields Avenue, University of California, Davis, CA 95616, USA
| | - Guanglei Qiu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; (N.M.M.T.S.); (R.Z.-M.); (G.Q.); (E.M.M.); (S.W.)
| | - Ezequiel M. Marzinelli
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; (N.M.M.T.S.); (R.Z.-M.); (G.Q.); (E.M.M.); (S.W.)
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; (N.M.M.T.S.); (R.Z.-M.); (G.Q.); (E.M.M.); (S.W.)
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Rohan B. H. Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
23
|
Price EJ, Palát J, Coufaliková K, Kukučka P, Codling G, Vitale CM, Koudelka Š, Klánová J. Open, High-Resolution EI+ Spectral Library of Anthropogenic Compounds. Front Public Health 2021; 9:622558. [PMID: 33768085 PMCID: PMC7985345 DOI: 10.3389/fpubh.2021.622558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/08/2021] [Indexed: 01/21/2023] Open
Abstract
To address the lack of high-resolution electron ionisation mass spectral libraries (HR-[EI+]-MS) for environmental chemicals, a retention-indexed HR-[EI+]-MS library has been constructed following analysis of authentic compounds via GC-Orbitrap MS. The library is freely provided alongside a compound database of predicted physicochemical properties. Currently, the library contains over 350 compounds from 56 compound classes and includes a range of legacy and emerging contaminants. The RECETOX Exposome HR-[EI+]-MS library expands the number of freely available resources for use in full-scan chemical exposure studies and is available at: https://doi.org/10.5281/zenodo.4471217.
Collapse
Affiliation(s)
- Elliott J Price
- Faculty of Sports Studies, Masaryk University, Brno, Czechia.,RECETOX Centre, Masaryk University, Brno, Czechia
| | - Jirí Palát
- RECETOX Centre, Masaryk University, Brno, Czechia
| | | | - Petr Kukučka
- RECETOX Centre, Masaryk University, Brno, Czechia
| | | | | | | | - Jana Klánová
- RECETOX Centre, Masaryk University, Brno, Czechia
| |
Collapse
|
24
|
Lowe CN, Williams AJ. Enabling High-Throughput Searches for Multiple Chemical Data Using the U.S.-EPA CompTox Chemicals Dashboard. J Chem Inf Model 2021; 61:565-570. [PMID: 33481596 DOI: 10.1021/acs.jcim.0c01273] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The core goal of cheminformatics is to efficiently store robust and accurate chemical information and make it accessible for drug discovery, environmental analysis, and the development of prediction models including quantitative structure-activity relationships (QSAR). The U.S. Environmental Protection Agency (EPA) has developed a web-based application, the CompTox Chemicals Dashboard, which provides access to a compilation of data generated within the agency and sourced from public databases and literature and to utilities for real-time QSAR prediction and chemical read-across. While the vast majority of online tools only allow interrogation of chemicals one at a time, the Dashboard provides a batch search feature that allows for the sourcing of data based on thousands of chemical inputs at one time, by chemical identifier (e.g., names, Chemical Abstract Service registry numbers, or InChIKeys), or by mass or molecular formulas. Chemical information that can then be sourced via the batch search includes chemical identifiers and structures; intrinsic, physicochemical and fate and transport properties; in vitro and in vivo toxicity data; and the presence in environmentally relevant lists. We outline how to use the batch search feature and provide an overview regarding the type of information that can be sourced by considering a series of typical-use questions.
Collapse
Affiliation(s)
- Charles N Lowe
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, North Carolina 27711, United States
| | - Antony J Williams
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, North Carolina 27711, United States
| |
Collapse
|
25
|
Pourchet M, Debrauwer L, Klanova J, Price EJ, Covaci A, Caballero-Casero N, Oberacher H, Lamoree M, Damont A, Fenaille F, Vlaanderen J, Meijer J, Krauss M, Sarigiannis D, Barouki R, Le Bizec B, Antignac JP. Suspect and non-targeted screening of chemicals of emerging concern for human biomonitoring, environmental health studies and support to risk assessment: From promises to challenges and harmonisation issues. ENVIRONMENT INTERNATIONAL 2020; 139:105545. [PMID: 32361063 DOI: 10.1016/j.envint.2020.105545] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/02/2020] [Accepted: 02/02/2020] [Indexed: 05/07/2023]
Abstract
Large-scale suspect and non-targeted screening approaches based on high-resolution mass spectrometry (HRMS) are today available for chemical profiling and holistic characterisation of biological samples. These advanced techniques allow the simultaneous detection of a large number of chemical features, including markers of human chemical exposure. Such markers are of interest for biomonitoring, environmental health studies and support to risk assessment. Furthermore, these screening approaches have the promising capability to detect chemicals of emerging concern (CECs), document the extent of human chemical exposure, generate new research hypotheses and provide early warning support to policy. Whilst of growing importance in the environment and food safety areas, respectively, CECs remain poorly addressed in the field of human biomonitoring. This shortfall is due to several scientific and methodological reasons, including a global lack of harmonisation. In this context, the main aim of this paper is to present an overview of the basic principles, promises and challenges of suspect and non-targeted screening approaches applied to human samples as this specific field introduce major specificities compared to other fields. Focused on liquid chromatography coupled to HRMS-based data acquisition methods, this overview addresses all steps of these new analytical workflows. Beyond this general picture, the main activities carried out on this topic within the particular framework of the European Human Biomonitoring initiative (project HBM4EU, 2017-2021) are described, with an emphasis on harmonisation measures.
Collapse
Affiliation(s)
| | - Laurent Debrauwer
- TOXALIM (Research Centre in Food Toxicology), Toulouse University, INRAE UMR 1331, ENVT, INP-Purpan, Paul Sabatier University, 31027 Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics: MetaboHUB, Toxalim, INRAE, F-31027 Toulouse, France
| | - Jana Klanova
- RECETOX Centre, Masaryk University, Brno, Czech Republic
| | - Elliott J Price
- RECETOX Centre, Masaryk University, Brno, Czech Republic; Faculty of Sports Studies, Masaryk University, Brno, Czech Republic
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Belgium
| | | | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Austria
| | - Marja Lamoree
- Vrije Universiteit, Department Environment & Health, Amsterdam, the Netherlands
| | - Annelaure Damont
- Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, MetaboHUB, Gif-sur-Yvette, France
| | - François Fenaille
- Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, MetaboHUB, Gif-sur-Yvette, France
| | - Jelle Vlaanderen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Jeroen Meijer
- Vrije Universiteit, Department Environment & Health, Amsterdam, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Martin Krauss
- UFZ, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Denis Sarigiannis
- HERACLES Research Center on the Exposome and Health, Aristotle University of Thessaloniki, Greece
| | - Robert Barouki
- Unité UMR-S 1124 Inserm-Université Paris Descartes "Toxicologie Pharmacologie et Signalisation Cellulaire", Paris, France
| | | | | |
Collapse
|
26
|
Wang Z, Walker GW, Muir DCG, Nagatani-Yoshida K. Toward a Global Understanding of Chemical Pollution: A First Comprehensive Analysis of National and Regional Chemical Inventories. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2575-2584. [PMID: 31968937 DOI: 10.1021/acs.est.9b06379] [Citation(s) in RCA: 365] [Impact Index Per Article: 91.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chemicals, while bringing benefits to society, may be released during their lifecycles and possibly cause harm to humans and ecosystems. Chemical pollution has been mentioned as one of the planetary boundaries within which humanity can safely operate, but is not comprehensively understood. Here, 22 chemical inventories from 19 countries and regions are analyzed to achieve a first comprehensive overview of chemicals on the market as an essential first step toward a global understanding of chemical pollution. Over 350 000 chemicals and mixtures of chemicals have been registered for production and use, up to three times as many as previously estimated and with substantial differences across countries/regions. A noteworthy finding is that the identities of many chemicals remain publicly unknown because they are claimed as confidential (over 50 000) or ambiguously described (up to 70 000). Coordinated efforts by all stakeholders including scientists from different disciplines are urgently needed, with (new) areas of interest and opportunities highlighted here.
Collapse
Affiliation(s)
- Zhanyun Wang
- Chair of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland, ORCID: 0000-0001-9914-7659
| | - Glen W Walker
- Department of the Environment and Energy, Australian Government, General Post Office Box 787, Canberra, Australian Capital Territory 2601, Australia
| | - Derek C G Muir
- Environment & Climate Change Canada, Canada Centre for Inland Waters, Burlington, Ontario Canada, ORCID: 0000-0001-6631-9776
| | | |
Collapse
|
27
|
Brunner AM, Bertelkamp C, Dingemans MML, Kolkman A, Wols B, Harmsen D, Siegers W, Martijn BJ, Oorthuizen WA, Ter Laak TL. Integration of target analyses, non-target screening and effect-based monitoring to assess OMP related water quality changes in drinking water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135779. [PMID: 31818566 DOI: 10.1016/j.scitotenv.2019.135779] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 05/27/2023]
Abstract
The ever-increasing production and use of chemicals lead to the occurrence of organic micro-pollutants (OMPs) in drinking water sources, and consequently the need for their removal during drinking water treatment. Due to the sheer number of OMPs, monitoring using targeted chemical analyses alone is not sufficient to assess drinking water quality as well as changes thereof during treatment. High-resolution mass spectrometry (HRMS) based non-target screening (NTS) as well as effect-based monitoring using bioassays are promising monitoring tools for a more complete assessment of water quality and treatment performance. Here, we developed a strategy that integrates data from chemical target analyses, NTS and bioassays. We applied it to the assessment of OMP related water quality changes at three drinking water treatment pilot installations. These installations included advanced oxidation processes, ultrafiltration in combination with reverse osmosis, and granular activated carbon filtration. OMPs relevant for the drinking water sector were spiked into the water treated in these installations. Target analyses, NTS and bioassays were performed on samples from all three installations. The NTS data was screened for predicted and known transformation products of the spike-in compounds. In parallel, trend profiles of NTS features were evaluated using multivariate analysis methods. Through integration of the chemical data with the biological effect-based results potential toxicity was accounted for during prioritization. Together, the synergy of the three analytical methods allowed the monitoring of OMPs and transformation products, as well as the integrative biological effects of the mixture of chemicals. Through efficient analysis, visualization and interpretation of complex data, the developed strategy enabled to assess water quality and the impact of water treatment from multiple perspectives. Such information could not be obtained by any of the three methods alone. The developed strategy thereby provides drinking water companies with an integrative tool for comprehensive water quality assessment.
Collapse
Affiliation(s)
| | | | | | | | - Bas Wols
- KWR Water Research Institute, Nieuwegein, the Netherlands
| | - Danny Harmsen
- KWR Water Research Institute, Nieuwegein, the Netherlands
| | - Wolter Siegers
- KWR Water Research Institute, Nieuwegein, the Netherlands
| | | | | | - Thomas L Ter Laak
- KWR Water Research Institute, Nieuwegein, the Netherlands; Univerisity of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
28
|
Hedgespeth ML, Gibson N, McCord J, Strynar M, Shea D, Nichols EG. Suspect screening and prioritization of chemicals of concern (COCs) in a forest-water reuse system watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133378. [PMID: 31386959 PMCID: PMC8425958 DOI: 10.1016/j.scitotenv.2019.07.184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Much research has assessed organic chemicals of concern (COCs) in municipal wastewater and receiving waters, but few studies have examined COCs in land treatment systems. Many prior studies have implemented targeted methods that quantify a relatively small fraction of COCs present in wastewater and receiving waters. This study used suspect screening to assess chemical features in ground- and surface waters from a watershed where secondary-treated wastewater is irrigated onto 900 ha of temperate forest, offering a more holistic view of chemicals that contribute to the exposome. Chemical features were prioritized by abundance and ToxPi scoring across seasonal sampling events to determine if the forest-water reuse system contributed to the chemical exposome of ground- and surface waters. The number of chemical features detected in wastewater was usually higher than on- and off-site ground- and surface waters; in wastewater, chemical features trended with precipitation in which greater numbers of features were detected in months with low precipitation. The number of chemical features detected in off- and on-site waters was similar. The lower overlap between chemical features found in wastewater and downstream surface waters, along with the similar numbers of features being detected in upstream and downstream surface waters, suggests that though wastewater may be a source of chemicals to ground and surface waters on-site, dissipation of wastewater-derived features (in number and peak area abundance) likely occurs with limited off-site surface water export by the forested land treatment system. Further, the numbers of features detected on site and the overlap between wastewater and surface waters did not increase during periods of low rainfall, counter to our initial expectations. The chemical features tentatively identified in this watershed appear common to features identified in other studies, warranting further examination on the potential for resulting impacts of these on humans and the environment.
Collapse
Affiliation(s)
- Melanie L Hedgespeth
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA.
| | - Nancy Gibson
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA.
| | - James McCord
- United States Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC 27709, USA.
| | - Mark Strynar
- United States Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC 27709, USA.
| | - Damian Shea
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| | - Elizabeth Guthrie Nichols
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
29
|
Schymanski EL, Baker NC, Williams AJ, Singh RR, Trezzi JP, Wilmes P, Kolber PL, Kruger R, Paczia N, Linster CL, Balling R. Connecting environmental exposure and neurodegeneration using cheminformatics and high resolution mass spectrometry: potential and challenges. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1426-1445. [PMID: 31305828 DOI: 10.1039/c9em00068b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Connecting chemical exposures over a lifetime to complex chronic diseases with multifactorial causes such as neurodegenerative diseases is an immense challenge requiring a long-term, interdisciplinary approach. Rapid developments in analytical and data technologies, such as non-target high resolution mass spectrometry (NT-HR-MS), have opened up new possibilities to accomplish this, inconceivable 20 years ago. While NT-HR-MS is being applied to increasingly complex research questions, there are still many unidentified chemicals and uncertainties in linking exposures to human health outcomes and environmental impacts. In this perspective, we explore the possibilities and challenges involved in using cheminformatics and NT-HR-MS to answer complex questions that cross many scientific disciplines, taking the identification of potential (small molecule) neurotoxicants in environmental or biological matrices as a case study. We explore capturing literature knowledge and patient exposure information in a form amenable to high-throughput data mining, and the related cheminformatic challenges. We then briefly cover which sample matrices are available, which method(s) could potentially be used to detect these chemicals in various matrices and what remains beyond the reach of NT-HR-MS. We touch on the potential for biological validation systems to contribute to mechanistic understanding of observations and explore which sampling and data archiving strategies may be required to form an accurate, sustained picture of small molecule signatures on extensive cohorts of patients with chronic neurodegenerative disorders. Finally, we reflect on how NT-HR-MS can support unravelling the contribution of the environment to complex diseases.
Collapse
Affiliation(s)
- Emma L Schymanski
- Environmental Cheminformatics Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, L-4367 Belvaux, Luxembourg.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
McEachran AD, Balabin I, Cathey T, Transue TR, Al-Ghoul H, Grulke C, Sobus JR, Williams AJ. Linking in silico MS/MS spectra with chemistry data to improve identification of unknowns. Sci Data 2019; 6:141. [PMID: 31375670 PMCID: PMC6677792 DOI: 10.1038/s41597-019-0145-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/01/2019] [Indexed: 12/21/2022] Open
Abstract
Confident identification of unknown chemicals in high resolution mass spectrometry (HRMS) screening studies requires cohesive workflows and complementary data, tools, and software. Chemistry databases, screening libraries, and chemical metadata have become fixtures in identification workflows. To increase confidence in compound identifications, the use of structural fragmentation data collected via tandem mass spectrometry (MS/MS or MS2) is vital. However, the availability of empirically collected MS/MS data for identification of unknowns is limited. Researchers have therefore turned to in silico generation of MS/MS data for use in HRMS-based screening studies. This paper describes the generation en masse of predicted MS/MS spectra for the entirety of the US EPA's DSSTox database using competitive fragmentation modelling and a freely available open source tool, CFM-ID. The generated dataset comprises predicted MS/MS spectra for ~700,000 structures, and mappings between predicted spectra, structures, associated substances, and chemical metadata. Together, these resources facilitate improved compound identifications in HRMS screening studies. These data are accessible via an SQL database, a comma-separated export file (.csv), and EPA's CompTox Chemicals Dashboard.
Collapse
Affiliation(s)
- Andrew D McEachran
- Oak Ridge Institute for Science and Education (ORISE) Research Participation Program, United States Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, Durham, NC, 27711, USA. .,National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, Durham, NC, 27711, USA.
| | - Ilya Balabin
- CSRA Inc., 109 T.W. Alexander Drive, Research Triangle Park, Durham, NC, 27711, USA
| | - Tommy Cathey
- GDIT, 109 T.W. Alexander Dr., Research Triangle Park, Durham, NC, 27711, USA
| | - Thomas R Transue
- GDIT, 109 T.W. Alexander Dr., Research Triangle Park, Durham, NC, 27711, USA
| | - Hussein Al-Ghoul
- Oak Ridge Associated Universities (ORAU), 109 T.W. Alexander Dr., Research Triangle Park, Durham, NC, 27711, USA
| | - Chris Grulke
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, Durham, NC, 27711, USA
| | - Jon R Sobus
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, Durham, NC, 27711, USA
| | - Antony J Williams
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, Durham, NC, 27711, USA.
| |
Collapse
|
31
|
Hedgespeth ML, Nichols EG. Expanding phytoremediation to the realms of known and unknown organic chemicals of concern. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1385-1396. [PMID: 31257906 DOI: 10.1080/15226514.2019.1633265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recent advancements in analytical chemistry and data analyses via high-resolution mass spectrometry (HRMS) are evolving scientific understanding of the potential totality of organic chemical exposure and pollutant risk. This review addresses the importance of HRMS approaches, namely suspect screening and nontarget chemical analyses, to the realm of phytoremediation. These analytical approaches are not without caveats and constraints, but they provide an opportunity to understand in greater totality how plant-based technologies contribute, mitigate, and reduce organic chemical exposure across scales of experimental and system-level studies. These analytical tools can enlighten the complexity and efficacy of plant-contaminant system design and expand our understanding of biogenic and anthropogenic chemicals at work in phytoremediation systems. Advances in data analytics from biological sciences, such as metabolomics, are crucial to HRMS analysis. This review provides an overview of targeted, suspect screening, and nontarget HRMS approaches, summarizes the expanding knowledge of regulated and unregulated organic chemicals in the environment, addresses requisite HRMS instrumentation, analysis cost, uncertainty, and data processing techniques, and offers potential bridges of HRMS analyses to phytoremediation research and application.
Collapse
Affiliation(s)
- Melanie L Hedgespeth
- Department of Forest and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| | | |
Collapse
|
32
|
Hites RA, Jobst KJ. Response to "Letter to the Editor: Optimism for Nontarget Analysis in Environmental Chemistry". ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5531-5533. [PMID: 31074619 DOI: 10.1021/acs.est.9b02473] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Ronald A Hites
- O'Neill School of Public and Environmental Affairs , Indiana University , Bloomington , Indiana 47405 , United States
| | - Karl J Jobst
- Department of Chemistry and Chemical Biology McMaster University Hamilton , Ontario L8S 4M1 , Canada
| |
Collapse
|
33
|
Hernández F, Bakker J, Bijlsma L, de Boer J, Botero-Coy AM, Bruinen de Bruin Y, Fischer S, Hollender J, Kasprzyk-Hordern B, Lamoree M, López FJ, Laak TLT, van Leerdam JA, Sancho JV, Schymanski EL, de Voogt P, Hogendoorn EA. The role of analytical chemistry in exposure science: Focus on the aquatic environment. CHEMOSPHERE 2019; 222:564-583. [PMID: 30726704 DOI: 10.1016/j.chemosphere.2019.01.118] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/15/2019] [Accepted: 01/20/2019] [Indexed: 06/09/2023]
Abstract
Exposure science, in its broadest sense, studies the interactions between stressors (chemical, biological, and physical agents) and receptors (e.g. humans and other living organisms, and non-living items like buildings), together with the associated pathways and processes potentially leading to negative effects on human health and the environment. The aquatic environment may contain thousands of compounds, many of them still unknown, that can pose a risk to ecosystems and human health. Due to the unquestionable importance of the aquatic environment, one of the main challenges in the field of exposure science is the comprehensive characterization and evaluation of complex environmental mixtures beyond the classical/priority contaminants to new emerging contaminants. The role of advanced analytical chemistry to identify and quantify potential chemical risks, that might cause adverse effects to the aquatic environment, is essential. In this paper, we present the strategies and tools that analytical chemistry has nowadays, focused on chromatography hyphenated to (high-resolution) mass spectrometry because of its relevance in this field. Key issues, such as the application of effect direct analysis to reduce the complexity of the sample, the investigation of the huge number of transformation/degradation products that may be present in the aquatic environment, the analysis of urban wastewater as a source of valuable information on our lifestyle and substances we consumed and/or are exposed to, or the monitoring of drinking water, are discussed in this article. The trends and perspectives for the next few years are also highlighted, when it is expected that new developments and tools will allow a better knowledge of chemical composition in the aquatic environment. This will help regulatory authorities to protect water bodies and to advance towards improved regulations that enable practical and efficient abatements for environmental and public health protection.
Collapse
Affiliation(s)
- F Hernández
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat S/n, E-12071 Castellón, Spain.
| | - J Bakker
- National Institute for Public Health and the Environment (RIVM), Centre for Safety of Substances and Products, P.O. Box 1, 3720, BA Bilthoven, the Netherlands
| | - L Bijlsma
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat S/n, E-12071 Castellón, Spain
| | - J de Boer
- Vrije Universiteit, Department Environment & Health, De Boelelaan 1087, 1081, HV Amsterdam, the Netherlands
| | - A M Botero-Coy
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat S/n, E-12071 Castellón, Spain
| | - Y Bruinen de Bruin
- European Commission Joint Research Centre, Directorate E - Space, Security and Migration, Italy
| | - S Fischer
- Swedish Chemicals Agency (KEMI), P.O. Box 2, SE-172 13, Sundbyberg, Sweden
| | - J Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092, Zürich, Switzerland
| | - B Kasprzyk-Hordern
- University of Bath, Department of Chemistry, Faculty of Science, Bath, BA2 7AY, United Kingdom
| | - M Lamoree
- Vrije Universiteit, Department Environment & Health, De Boelelaan 1087, 1081, HV Amsterdam, the Netherlands
| | - F J López
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat S/n, E-12071 Castellón, Spain
| | - T L Ter Laak
- KWR Watercycle Research Institute, Chemical Water Quality and Health, P.O. Box 1072, 3430, BB Nieuwegein, the Netherlands
| | - J A van Leerdam
- KWR Watercycle Research Institute, Chemical Water Quality and Health, P.O. Box 1072, 3430, BB Nieuwegein, the Netherlands
| | - J V Sancho
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat S/n, E-12071 Castellón, Spain
| | - E L Schymanski
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dübendorf, Switzerland; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - P de Voogt
- KWR Watercycle Research Institute, Chemical Water Quality and Health, P.O. Box 1072, 3430, BB Nieuwegein, the Netherlands; Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1090, GE Amsterdam, the Netherlands
| | - E A Hogendoorn
- National Institute for Public Health and the Environment (RIVM), Centre for Safety of Substances and Products, P.O. Box 1, 3720, BA Bilthoven, the Netherlands
| |
Collapse
|
34
|
The strength in numbers: comprehensive characterization of house dust using complementary mass spectrometric techniques. Anal Bioanal Chem 2019; 411:1957-1977. [PMID: 30830245 PMCID: PMC6458998 DOI: 10.1007/s00216-019-01615-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/20/2018] [Accepted: 01/15/2019] [Indexed: 11/18/2022]
Abstract
Untargeted analysis of a composite house dust sample has been performed as part of a collaborative effort to evaluate the progress in the field of suspect and nontarget screening and build an extensive database of organic indoor environment contaminants. Twenty-one participants reported results that were curated by the organizers of the collaborative trial. In total, nearly 2350 compounds were identified (18%) or tentatively identified (25% at confidence level 2 and 58% at confidence level 3), making the collaborative trial a success. However, a relatively small share (37%) of all compounds were reported by more than one participant, which shows that there is plenty of room for improvement in the field of suspect and nontarget screening. An even a smaller share (5%) of the total number of compounds were detected using both liquid chromatography–mass spectrometry (LC-MS) and gas chromatography–mass spectrometry (GC-MS). Thus, the two MS techniques are highly complementary. Most of the compounds were detected using LC with electrospray ionization (ESI) MS and comprehensive 2D GC (GC×GC) with atmospheric pressure chemical ionization (APCI) and electron ionization (EI), respectively. Collectively, the three techniques accounted for more than 75% of the reported compounds. Glycols, pharmaceuticals, pesticides, and various biogenic compounds dominated among the compounds reported by LC-MS participants, while hydrocarbons, hydrocarbon derivatives, and chlorinated paraffins and chlorinated biphenyls were primarily reported by GC-MS participants. Plastics additives, flavor and fragrances, and personal care products were reported by both LC-MS and GC-MS participants. It was concluded that the use of multiple analytical techniques was required for a comprehensive characterization of house dust contaminants. Further, several recommendations are given for improved suspect and nontarget screening of house dust and other indoor environment samples, including the use of open-source data processing tools. One of the tools allowed provisional identification of almost 500 compounds that had not been reported by participants. ![]()
Collapse
|
35
|
Wolfender JL, Nuzillard JM, van der Hooft JJJ, Renault JH, Bertrand S. Accelerating Metabolite Identification in Natural Product Research: Toward an Ideal Combination of Liquid Chromatography–High-Resolution Tandem Mass Spectrometry and NMR Profiling, in Silico Databases, and Chemometrics. Anal Chem 2018; 91:704-742. [DOI: 10.1021/acs.analchem.8b05112] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jean-Luc Wolfender
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, CMU, 1 Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Jean-Marc Nuzillard
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne Ardenne, 51687 Reims Cedex 2, France
| | | | - Jean-Hugues Renault
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne Ardenne, 51687 Reims Cedex 2, France
| | - Samuel Bertrand
- Groupe Mer, Molécules, Santé-EA 2160, UFR des Sciences Pharmaceutiques et Biologiques, Université de Nantes, 44035 Nantes, France
- ThalassOMICS Metabolomics Facility, Plateforme Corsaire, Biogenouest, 44035 Nantes, France
| |
Collapse
|
36
|
Colby JM, Thoren KL, Lynch KL. Suspect Screening Using LC-QqTOF Is a Useful Tool for Detecting Drugs in Biological Samples. J Anal Toxicol 2018; 42:207-213. [PMID: 29309651 DOI: 10.1093/jat/bkx107] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/06/2017] [Indexed: 11/12/2022] Open
Abstract
High-resolution mass spectrometers (HRMS), including quadrupole time of flight mass analyzers (QqTOF), are becoming more prevalent as screening tools in clinical and forensic toxicology laboratories. Among other advantages, HRMS instruments can collect untargeted, full-scan mass spectra. These datasets can be analyzed retrospectively using a combination of techniques, which can extend the drug detection capabilities. Most laboratories using HRMS in production settings perform untargeted data collection, but analyze data in a targeted manner. To perform targeted analysis, a laboratory must first analyze a reference standard to determine the expected characteristics of a given compound. In an alternate technique known as suspect screening, compounds can be tentatively identified without the use of reference standards. Instead, predicted and/or intrinsic characteristics of a compound, such as the accurate mass, isotope pattern, and product ion spectrum are used to determine its presence in a sample. The fact that reference standards are not required a priori makes this data analysis approach very attractive, especially for the ever-changing landscape of novel psychoactive substances. In this work, we compared the performance of four data analysis workflows (targeted and three suspect screens) for a panel of 170 drugs and metabolites, detected by LC-QqTOF. We found that retention time was not required for drug identification; the suspect screen using accurate mass, isotope pattern, and product ion library matching was able to identify more than 80% of the drugs that were present in human urine samples. We showed that the inclusion of product ion spectral matching produced the largest decrease in false discovery and false negative rates, as compared to suspect screening using mass alone or using just mass and isotope pattern. Our results demonstrate the promise that suspect screening holds for building large, economical drug screens, which may be a key tool to monitor the use of emerging drugs of abuse, including novel psychoactive substances.
Collapse
Affiliation(s)
- Jennifer M Colby
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, 1301 Medical Center Drive, Nashville, TN 37232, USA
| | - Katie L Thoren
- Department of Laboratory Medicine, University of California San Francisco, 1001 Potrero Avenue NH 2M16, San Francisco, CA 94110, USA
| | - Kara L Lynch
- Department of Laboratory Medicine, University of California San Francisco, 1001 Potrero Avenue NH 2M16, San Francisco, CA 94110, USA
| |
Collapse
|
37
|
Frainay C, Schymanski EL, Neumann S, Merlet B, Salek RM, Jourdan F, Yanes O. Mind the Gap: Mapping Mass Spectral Databases in Genome-Scale Metabolic Networks Reveals Poorly Covered Areas. Metabolites 2018; 8:E51. [PMID: 30223552 PMCID: PMC6161000 DOI: 10.3390/metabo8030051] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 11/23/2022] Open
Abstract
The use of mass spectrometry-based metabolomics to study human, plant and microbial biochemistry and their interactions with the environment largely depends on the ability to annotate metabolite structures by matching mass spectral features of the measured metabolites to curated spectra of reference standards. While reference databases for metabolomics now provide information for hundreds of thousands of compounds, barely 5% of these known small molecules have experimental data from pure standards. Remarkably, it is still unknown how well existing mass spectral libraries cover the biochemical landscape of prokaryotic and eukaryotic organisms. To address this issue, we have investigated the coverage of 38 genome-scale metabolic networks by public and commercial mass spectral databases, and found that on average only 40% of nodes in metabolic networks could be mapped by mass spectral information from standards. Next, we deciphered computationally which parts of the human metabolic network are poorly covered by mass spectral libraries, revealing gaps in the eicosanoids, vitamins and bile acid metabolism. Finally, our network topology analysis based on the betweenness centrality of metabolites revealed the top 20 most important metabolites that, if added to MS databases, may facilitate human metabolome characterization in the future.
Collapse
Affiliation(s)
- Clément Frainay
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31555 Toulouse, France.
| | - Emma L Schymanski
- Eawag: Swiss Federal Institute for Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland.
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| | - Steffen Neumann
- Leibniz Institute of Plant Biochemistry, Department of Stress and Developmental Biology, Weinberg 3, 06120 Halle, Germany.
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig Deutscher Platz 5e, 04103 Leipzig, Germany.
| | - Benjamin Merlet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31555 Toulouse, France.
| | - Reza M Salek
- The International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon CEDEX 08, France.
| | - Fabien Jourdan
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31555 Toulouse, France.
| | - Oscar Yanes
- Metabolomics Platform, IISPV, Department of Electronic Engineering, Universitat Rovira i Virgili, Avinguda Paisos Catalans 26, 43007 Tarragona, Spain.
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Monforte de Lemos 3-5, 28029 Madrid, Spain.
| |
Collapse
|
38
|
McEachran AD, Mansouri K, Grulke C, Schymanski EL, Ruttkies C, Williams AJ. "MS-Ready" structures for non-targeted high-resolution mass spectrometry screening studies. J Cheminform 2018; 10:45. [PMID: 30167882 PMCID: PMC6117229 DOI: 10.1186/s13321-018-0299-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/21/2018] [Indexed: 02/05/2023] Open
Abstract
Chemical database searching has become a fixture in many non-targeted identification workflows based on high-resolution mass spectrometry (HRMS). However, the form of a chemical structure observed in HRMS does not always match the form stored in a database (e.g., the neutral form versus a salt; one component of a mixture rather than the mixture form used in a consumer product). Linking the form of a structure observed via HRMS to its related form(s) within a database will enable the return of all relevant variants of a structure, as well as the related metadata, in a single query. A Konstanz Information Miner (KNIME) workflow has been developed to produce structural representations observed using HRMS ("MS-Ready structures") and links them to those stored in a database. These MS-Ready structures, and associated mappings to the full chemical representations, are surfaced via the US EPA's Chemistry Dashboard ( https://comptox.epa.gov/dashboard/ ). This article describes the workflow for the generation and linking of ~ 700,000 MS-Ready structures (derived from ~ 760,000 original structures) as well as download, search and export capabilities to serve structure identification using HRMS. The importance of this form of structural representation for HRMS is demonstrated with several examples, including integration with the in silico fragmentation software application MetFrag. The structures, search, download and export functionality are all available through the CompTox Chemistry Dashboard, while the MetFrag implementation can be viewed at https://msbi.ipb-halle.de/MetFragBeta/ .
Collapse
Affiliation(s)
- Andrew D. McEachran
- Oak Ridge Institute for Science and Education (ORISE) Research Participation Program, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC 27711 USA
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Mail Drop D143-02, 109 T.W. Alexander Dr., Research Triangle Park, NC 27711 USA
| | - Kamel Mansouri
- Oak Ridge Institute for Science and Education (ORISE) Research Participation Program, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC 27711 USA
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Mail Drop D143-02, 109 T.W. Alexander Dr., Research Triangle Park, NC 27711 USA
- Present Address: Integrated Laboratory Systems, Inc., 601 Keystone Dr., Morrisville, NC 27650 USA
| | - Chris Grulke
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Mail Drop D143-02, 109 T.W. Alexander Dr., Research Triangle Park, NC 27711 USA
| | - Emma L. Schymanski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6, avenue du Swing, 4367 Belvaux, Luxembourg
| | - Christoph Ruttkies
- Department of Stress and Development Biology, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120 Halle (Saale), Germany
| | - Antony J. Williams
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Mail Drop D143-02, 109 T.W. Alexander Dr., Research Triangle Park, NC 27711 USA
| |
Collapse
|
39
|
Alygizakis NA, Samanipour S, Hollender J, Ibáñez M, Kaserzon S, Kokkali V, van Leerdam JA, Mueller JF, Pijnappels M, Reid MJ, Schymanski EL, Slobodnik J, Thomaidis NS, Thomas KV. Exploring the Potential of a Global Emerging Contaminant Early Warning Network through the Use of Retrospective Suspect Screening with High-Resolution Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5135-5144. [PMID: 29651850 DOI: 10.1021/acs.est.8b00365] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A key challenge in the environmental and exposure sciences is to establish experimental evidence of the role of chemical exposure in human and environmental systems. High resolution and accurate tandem mass spectrometry (HRMS) is increasingly being used for the analysis of environmental samples. One lauded benefit of HRMS is the possibility to retrospectively process data for (previously omitted) compounds that has led to the archiving of HRMS data. Archived HRMS data affords the possibility of exploiting historical data to rapidly and effectively establish the temporal and spatial occurrence of newly identified contaminants through retrospective suspect screening. We propose to establish a global emerging contaminant early warning network to rapidly assess the spatial and temporal distribution of contaminants of emerging concern in environmental samples through performing retrospective analysis on HRMS data. The effectiveness of such a network is demonstrated through a pilot study, where eight reference laboratories with available archived HRMS data retrospectively screened data acquired from aqueous environmental samples collected in 14 countries on 3 different continents. The widespread spatial occurrence of several surfactants (e.g., polyethylene glycols ( PEGs ) and C12AEO-PEGs ), transformation products of selected drugs (e.g., gabapentin-lactam, metoprolol-acid, carbamazepine-10-hydroxy, omeprazole-4-hydroxy-sulfide, and 2-benzothiazole-sulfonic-acid), and industrial chemicals (3-nitrobenzenesulfonate and bisphenol-S) was revealed. Obtaining identifications of increased reliability through retrospective suspect screening is challenging, and recommendations for dealing with issues such as broad chromatographic peaks, data acquisition, and sensitivity are provided.
Collapse
Affiliation(s)
- Nikiforos A Alygizakis
- Laboratory of Analytical Chemistry, Department of Chemistry , University of Athens , Panepistimiopolis Zografou, 15771 Athens , Greece
- Environmental Institute, s.r.o. , Okružná 784/42 , 972 41 Koš , Slovak Republic
| | - Saer Samanipour
- Norwegian Institute for Water Research (NIVA) , Gaustadalléen 21 , 0349 Oslo , Norway
| | - Juliane Hollender
- Eawag: Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf , Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics , ETH Zürich , 8092 Zürich , Switzerland
| | - María Ibáñez
- Research Institute for Pesticides and Water , University Jaume I , Avda. Sos Baynat s/n , 12071 Castellón de la Plana , Spain
| | - Sarit Kaserzon
- Queensland Alliance for Environmental Health Sciences (QAEHS) , The University of Queensland , 20 Cornwall Street , Woolloongabba , Queensland 4102 , Australia
| | - Varvara Kokkali
- Vitens Laboratory , Snekertrekweg 61 , 8912 AA Leeuwarden , The Netherlands
| | - Jan A van Leerdam
- KWR Watercycle Research Institute , P.O. Box 1072, 3430 BB Nieuwegein , The Netherlands
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS) , The University of Queensland , 20 Cornwall Street , Woolloongabba , Queensland 4102 , Australia
| | - Martijn Pijnappels
- Rijkswaterstaat , Ministry of Infrastructure and the Environment , Zuiderwagenplein 2 , 8224 AD Lelystad , The Netherlands
| | - Malcolm J Reid
- Norwegian Institute for Water Research (NIVA) , Gaustadalléen 21 , 0349 Oslo , Norway
| | - Emma L Schymanski
- Eawag: Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf , Switzerland
- Luxembourg Centre for Systems Biomedicine (LCSB) , University of Luxembourg , 7 Avenue des Hauts Fourneaux , L-4362 Esch-sur-Alzette , Luxembourg
| | - Jaroslav Slobodnik
- Environmental Institute, s.r.o. , Okružná 784/42 , 972 41 Koš , Slovak Republic
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry , University of Athens , Panepistimiopolis Zografou, 15771 Athens , Greece
| | - Kevin V Thomas
- Norwegian Institute for Water Research (NIVA) , Gaustadalléen 21 , 0349 Oslo , Norway
- Queensland Alliance for Environmental Health Sciences (QAEHS) , The University of Queensland , 20 Cornwall Street , Woolloongabba , Queensland 4102 , Australia
| |
Collapse
|
40
|
Newton SR, McMahen RL, Sobus JR, Mansouri K, Williams AJ, McEachran AD, Strynar MJ. Suspect screening and non-targeted analysis of drinking water using point-of-use filters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:297-306. [PMID: 29182974 PMCID: PMC6145080 DOI: 10.1016/j.envpol.2017.11.033] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 05/18/2023]
Abstract
Monitored contaminants in drinking water represent a small portion of the total compounds present, many of which may be relevant to human health. To understand the totality of human exposure to compounds in drinking water, broader monitoring methods are imperative. In an effort to more fully characterize the drinking water exposome, point-of-use water filtration devices (Brita® filters) were employed to collect time-integrated drinking water samples in a pilot study of nine North Carolina homes. A suspect screening analysis was performed by matching high resolution mass spectra of unknown features to molecular formulas from EPA's DSSTox database. Candidate compounds with those formulas were retrieved from the EPA's CompTox Chemistry Dashboard, a recently developed data hub for approximately 720,000 compounds. To prioritize compounds into those most relevant for human health, toxicity data from the US federal collaborative Tox21 program and the EPA ToxCast program, as well as exposure estimates from EPA's ExpoCast program, were used in conjunction with sample detection frequency and abundance to calculate a "ToxPi" score for each candidate compound. From ∼15,000 molecular features in the raw data, 91 candidate compounds were ultimately grouped into the highest priority class for follow up study. Fifteen of these compounds were confirmed using analytical standards including the highest priority compound, 1,2-Benzisothiazolin-3-one, which appeared in 7 out of 9 samples. The majority of the other high priority compounds are not targets of routine monitoring, highlighting major gaps in our understanding of drinking water exposures. General product-use categories from EPA's CPCat database revealed that several of the high priority chemicals are used in industrial processes, indicating the drinking water in central North Carolina may be impacted by local industries.
Collapse
Affiliation(s)
- Seth R Newton
- United States Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC 27709, United States.
| | - Rebecca L McMahen
- United States Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC 27709, United States; Oak Ridge Institute for Science and Education Research Participant, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709, United States
| | - Jon R Sobus
- United States Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC 27709, United States
| | - Kamel Mansouri
- Oak Ridge Institute for Science and Education Research Participant, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709, United States; United States Environmental Protection Agency, National Center for Computational Toxicology, Research Triangle Park, NC 27709, United States
| | - Antony J Williams
- United States Environmental Protection Agency, National Center for Computational Toxicology, Research Triangle Park, NC 27709, United States
| | - Andrew D McEachran
- Oak Ridge Institute for Science and Education Research Participant, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709, United States; United States Environmental Protection Agency, National Center for Computational Toxicology, Research Triangle Park, NC 27709, United States
| | - Mark J Strynar
- United States Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC 27709, United States
| |
Collapse
|
41
|
Brack W, Escher BI, Müller E, Schmitt-Jansen M, Schulze T, Slobodnik J, Hollert H. Towards a holistic and solution-oriented monitoring of chemical status of European water bodies: how to support the EU strategy for a non-toxic environment? ENVIRONMENTAL SCIENCES EUROPE 2018; 30:33. [PMID: 30221105 PMCID: PMC6132835 DOI: 10.1186/s12302-018-0161-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/25/2018] [Indexed: 05/02/2023]
Abstract
The definition of priority substances (PS) according to the Water Framework Directive (WFD) helped to remove many of these chemicals from the market and to reduce their concentrations in the European water bodies. However, it could not prevent that many of these chemicals have been replaced by others with similar risks. Today, monitoring of the PS-based chemical status according to WFD covers only a tiny fraction of toxic risks, extensively ignores mixture effects and lacks incentives and guidance for abatement. Thus, we suggest complement this purely status-related approach with more holistic and solution-oriented monitoring, which at the same time helps to provide links to the ecological status. Major elements include (1) advanced chemical screening techniques supporting mixture risk assessment and unraveling of source-related patterns in complex mixtures, (2) effect-based monitoring for the detection of groups of chemicals with similar effects and the establishment of toxicity fingerprints, (3) effect-directed analysis of drivers of toxicity and (4) to translate chemical and toxicological fingerprints into chemical footprints for prioritization of management measures. The requirement of more holistic and solution-oriented monitoring of chemical contamination is supported by the significant advancement of appropriate monitoring tools within the last years. Non-target screening technology, effect-based monitoring and basic understanding of mixture assessment are available conceptually and in research but also increasingly find their way into practical monitoring. Substantial progress in the development, evaluation and demonstration of these tools, for example, in the SOLUTIONS project enhanced their acceptability. Further advancement, integration and demonstration, extensive data exchange and closure of remaining knowledge gaps are suggested as high priority research needs for the next future to bridge the gap between insufficient ecological status and cost-efficient abatement measures.
Collapse
Affiliation(s)
- Werner Brack
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Beate I. Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- Environmental Toxicology, Center for Applied Geosciences, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Erik Müller
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Mechthild Schmitt-Jansen
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Tobias Schulze
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | | | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
42
|
Peisl BYL, Schymanski EL, Wilmes P. Dark matter in host-microbiome metabolomics: Tackling the unknowns-A review. Anal Chim Acta 2017; 1037:13-27. [PMID: 30292286 DOI: 10.1016/j.aca.2017.12.034] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023]
Abstract
The "dark matter" in metabolomics (unknowns) represents an exciting frontier with significant potential for discovery in relation to biochemistry, yet it also presents one of the largest challenges to overcome. This focussed review takes a close look at the current state-of-the-art and future challenges in tackling the unknowns with specific focus on the human gut microbiome and host-microbe interactions. Metabolomics, like metabolism itself, is a very dynamic discipline, with many workflows and methods under development, both in terms of chemical analysis and post-analysis data processing. Here, we look at developments in the mutli-omic analyses and the use of mass spectrometry to investigate the exchange of metabolites between the host and the microbiome as well as the environment within the microbiome. A case study using HuMiX, a microfluidics-based human-microbial co-culture system that enables the co-culture of human and microbial cells under controlled conditions, is used to highlight opportunities and current limitations. Common definitions, approaches, databases and elucidation techniques from both the environmental and metabolomics fields are covered, with perspectives on how to merge these, as the boundaries blur between the fields. While reflecting on the number of unknowns remaining to be conquered in typical complex samples measured with mass spectrometry (often orders of magnitude above the "knowns"), we provide an outlook on future perspectives and challenges in elucidating the relevant "dark matter".
Collapse
Affiliation(s)
- B Y Loulou Peisl
- Environmental Cheminformatics Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; Eco-Systems Biology Group, LCSB, University of Luxembourg, 7, Avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| | - Emma L Schymanski
- Environmental Cheminformatics Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| | - Paul Wilmes
- Eco-Systems Biology Group, LCSB, University of Luxembourg, 7, Avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
43
|
Xu L, Shi Y, Li C, Song X, Qin Z, Cao D, Cai Y. Discovery of a Novel Polyfluoroalkyl Benzenesulfonic Acid around Oilfields in Northern China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:14173-14181. [PMID: 29218982 DOI: 10.1021/acs.est.7b04332] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The existence of more than 3000 per- and polyfluoroalkyl substances (PFASs) on the global market has prompted the identification and hazard characterization of hitherto unknown PFASs. In the present study, a novel PFAS, sodium p-perfluorous nonenoxybenzenesulfonate (OBS), was identified using Orbitrap MS/MS in water samples around a suspected application area, Daqing Oilfield, China. The peak OBS concentration was 3.2 × 103 ng/L in a sample taken near the oil well with the longest production history in Daqing. The concentrations of OBS and contribution to the sum of PFASs in surface waters displayed considerable variation among the three sampling areas (mean levels at 6.9, 50, and 5.6 × 102 ng/L with mean percentages at 9.8%, 45%, and 69% in the background, new and old oilfield areas respectively) confirming that the density of oil wells and the oil production history are important factors influencing OBS contamination in the studied areas. A preliminary assessment of acute toxicity and environmental fate indicates that OBS exhibits similar toxicity and environmental persistence to perfluorooctanesulfonic acid (PFOS). The widespread occurrence of OBS, in conjunction with its potential hazard properties, underscores the need to further study on the bioaccumulation and potential for human exposure.
Collapse
Affiliation(s)
- Lin Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences , Beijing 100085, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences , Beijing 100085, China
| | - Chuangxiu Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences , Beijing 100085, China
- Institute of Environmental Science and Engineering, Qingdao University of Technology , Qingdao 266520, China
| | - Xiaowei Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences , Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences , Beijing 100085, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences , Beijing 100085, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences , Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
- Institute of Environment and Health, Jianghan University , Wuhan 430056, China
| |
Collapse
|
44
|
|
45
|
Williams AJ, Grulke CM, Edwards J, McEachran AD, Mansouri K, Baker NC, Patlewicz G, Shah I, Wambaugh JF, Judson RS, Richard AM. The CompTox Chemistry Dashboard: a community data resource for environmental chemistry. J Cheminform 2017; 9:61. [PMID: 29185060 PMCID: PMC5705535 DOI: 10.1186/s13321-017-0247-6] [Citation(s) in RCA: 591] [Impact Index Per Article: 84.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/18/2017] [Indexed: 11/10/2022] Open
Abstract
Despite an abundance of online databases providing access to chemical data, there is increasing demand for high-quality, structure-curated, open data to meet the various needs of the environmental sciences and computational toxicology communities. The U.S. Environmental Protection Agency's (EPA) web-based CompTox Chemistry Dashboard is addressing these needs by integrating diverse types of relevant domain data through a cheminformatics layer, built upon a database of curated substances linked to chemical structures. These data include physicochemical, environmental fate and transport, exposure, usage, in vivo toxicity, and in vitro bioassay data, surfaced through an integration hub with link-outs to additional EPA data and public domain online resources. Batch searching allows for direct chemical identifier (ID) mapping and downloading of multiple data streams in several different formats. This facilitates fast access to available structure, property, toxicity, and bioassay data for collections of chemicals (hundreds to thousands at a time). Advanced search capabilities are available to support, for example, non-targeted analysis and identification of chemicals using mass spectrometry. The contents of the chemistry database, presently containing ~ 760,000 substances, are available as public domain data for download. The chemistry content underpinning the Dashboard has been aggregated over the past 15 years by both manual and auto-curation techniques within EPA's DSSTox project. DSSTox chemical content is subject to strict quality controls to enforce consistency among chemical substance-structure identifiers, as well as list curation review to ensure accurate linkages of DSSTox substances to chemical lists and associated data. The Dashboard, publicly launched in April 2016, has expanded considerably in content and user traffic over the past year. It is continuously evolving with the growth of DSSTox into high-interest or data-rich domains of interest to EPA, such as chemicals on the Toxic Substances Control Act listing, while providing the user community with a flexible and dynamic web-based platform for integration, processing, visualization and delivery of data and resources. The Dashboard provides support for a broad array of research and regulatory programs across the worldwide community of toxicologists and environmental scientists.
Collapse
Affiliation(s)
- Antony J. Williams
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC USA
| | - Christopher M. Grulke
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC USA
| | - Jeff Edwards
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC USA
| | | | - Kamel Mansouri
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN USA
- ScitoVation LLC, Research Triangle Park, NC USA
| | | | - Grace Patlewicz
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC USA
| | - Imran Shah
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC USA
| | - John F. Wambaugh
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC USA
| | - Richard S. Judson
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC USA
| | - Ann M. Richard
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC USA
| |
Collapse
|