1
|
Wang Y, Ding D, Kang N, Xu Z, Yuan H, Ji X, Dou Y, Guo L, Shu M, Wang X. Effects of combined exposure to PM 2.5, O 3, and NO 2 on health risks of different disease populations in the Beijing-Tianjin-Hebei region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178103. [PMID: 39693662 DOI: 10.1016/j.scitotenv.2024.178103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/01/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
Air pollution adversely affects people's health. Under the current background of compound air pollution in China, the emission reduction potential of air pollution control has significantly decreased, and there are few studies on multi-pollutant emission reduction and synergistic effects. PM2.5, O3, and NO2 have caused the enormous disease burden and health risks. This study evaluated the single and combined health effects of pollutants in the Beijing-Tianjin-Hebei region, and discussed the differences in susceptibility among disease populations. Identified the interactions of multiple pollutants and evaluated current environmental policies. This study provided evidence of the interactive effect of combined PM2.5, O3, and NO2 exposure on the health risks of different disease populations. Among them, the interaction between PM2.5 and O3 posed the most significant health risks (Odds Ratio of 3.026) and had the greatest impact on the health of people with cardiovascular diseases (Odds Ratio of 3.136). The excess deaths affected by combined exposure exceeded 40 % of the total excess deaths. The assessment of environmental policies indicated that compliance with the AQG 2021 guideline values would reduce ambient air pollution-related deaths in the Beijing-Tianjin-Hebei region alone by about 30,000 per year. Our national standards were still far from the benchmarks given by the World Health Organization, especially for NO2. In the future, attentions should also be paid to the control of NO2 and other reaction precursors while coordinating the control of PM2.5 and O3.
Collapse
Affiliation(s)
- Yu Wang
- Center Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China
| | - Ding Ding
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China; School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ning Kang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics/Ministry of Education Key Laboratory of Epidemiology of Major Diseases (PKU), School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Zhizhen Xu
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China
| | - Hanyu Yuan
- Center Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Computing Center, Beijing Academy of Science and Technology, Yongfeng Industrial Base, Beijing 100094, China
| | - Xiaohui Ji
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China
| | - Yan Dou
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China
| | - Ling Guo
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China
| | - Mushui Shu
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China.
| | - Xiayan Wang
- Center Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
2
|
Wu K, Fan W, Wei J, Lu J, Ma X, Yuan Z, Huang Z, Zhong Q, Huang Y, Zou F, Wu X. Effects of fine particulate matter and its chemical constituents on influenza-like illness in Guangzhou, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117540. [PMID: 39689457 DOI: 10.1016/j.ecoenv.2024.117540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Although the link between fine particulate matter (PM2.5) and influenza-like illness (ILI) is well established, the effect of the chemical constituents of PM2.5 on ILI remains unclear. This study aims to explore this effect in Guangzhou, China. METHODS Daily data on ILI cases, PM2.5 levels, and specific PM2.5 constituents (black carbon [BC], chlorine [Cl-], ammonia [NH4+], nitrate [NO3-], and sulfate [SO42-]) in Guangzhou, China, were collected for the period of 2014-2019. Additionally, data on gaseous pollutants and meteorological conditions were obtained. By using quasi-Poisson regression models, the association between exposure to PM2.5 and its constituents and ILI risk was estimated. Stratified subgroup analyses were performed by gender, age, and season to explore in depth the effects of these factors on disease risk. RESULTS Single-pollutant modeling results showed that an increase of one interquartile range (IQR) in Cl-, SO42-, PM2.5, NH4+, BC, and NO3- corresponded to relative risks of ILI of 1.046 (95 % CI: 1.004, 1.090) (lag03), 1.098 (95 % CI: 1.058, 1.139) (lag01), 1.091 (95 % CI: 1.054, 1.130) (lag02), 1.093 (95 % CI: 1.049, 1.138) (lag02), 1.111 (95 % CI: 1.074, 1.150) (lag03), and 1.103 (95 % CI: 1.061, 1.146) (lag03), respectively. Notably, the association between ILI and BC remained significant even after adjusting for PM2.5 mass. Subgroup analyses indicated that individuals aged 5-14 and 15-24 years may exhibit higher sensitivity to BC and Cl- exposure than other individuals. Furthermore, stronger associations were observed during the cold season than during the warm season. CONCLUSIONS Results showed that the mass and constituents of PM2.5 were significantly correlated with ILI. Specifically, the carbonaceous fractions of PM2.5 were found to have a pronounced effect on ILI. These findings underscore the importance of implementing effective measures to reduce the emission of specific sources of PM2.5 constituents to mitigate the risk of ILI. Nevertheless, limitations such as potential exposure misclassification and regional constraints should be considered.
Collapse
Affiliation(s)
- Keyi Wu
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No.1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Weidong Fan
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No.1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA
| | - Jianyun Lu
- Guangzhou Baiyun Center for Disease Control and Prevention, Guangzhou City, Guangdong 510440, China
| | - Xiaowei Ma
- Guangzhou Center for Disease Control and Prevention, Guangzhou City, Guangdong 510440, China
| | - Zelin Yuan
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No.1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Zhiwei Huang
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No.1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Qi Zhong
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No.1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Yining Huang
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No.1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Fei Zou
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China.
| | - Xianbo Wu
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No.1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China.
| |
Collapse
|
3
|
Stothers BT, Hung A, Gonçalves PEO, Pei LX, van de Kerkhof T, Arnold JI, Harris OD, Borduas-Dedekind N, Sheel AW, Koehle MS. Examining the effect of salbutamol use in ozone air pollution by people with exercise-induced bronchoconstriction. Physiol Rep 2024; 12:e70117. [PMID: 39472279 PMCID: PMC11521788 DOI: 10.14814/phy2.70117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
Previous studies based on animal models have raised concerns about salbutamol use in ozone air pollution with regard to ozone related lung injury. We conducted a double-blind, randomized, placebo-controlled crossover study including 18 subjects diagnosed with EIB by a eucapnic voluntary hyperpnea (EVH) test. Participants completed 30 min of standardized moderate to vigorous exercise in four conditions: ozone plus salbutamol; room air plus salbutamol; ozone plus placebo medication; and room air plus placebo medication. Spirometry, fraction of exhaled nitric oxide, and symptoms were measured before, immediately after, 30 min after and 1 h after exercise. Measurements between the four conditions were compared using percent change from pre to post exercise. There was a statistically significant difference between the salbutamol and placebo medication groups for spirometric variables including FEV1 (Estimate = 6.3, 95% CI: 4.23-8.37, p < 0.001). No differences were observed between ozone and room air exposures. There were no significant differences in FeNO response between experimental conditions. We found that salbutamol improved pulmonary function in individuals with EIB when exercising in ozone and did not increase eosinophilic airway inflammation as indicated by FeNO. This evidence suggests that it is safe for people with EIB to continue to use salbutamol as proscribed when ozone levels are elevated.
Collapse
Affiliation(s)
| | - Andy Hung
- University of British Columbia, Vancouver, Canada
| | | | - Lulu X Pei
- University of British Columbia, Vancouver, Canada
| | | | - Jem I Arnold
- University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
4
|
Gui ZH, Guo ZY, Zhou Y, Dharmage S, Morawska L, Heinrich J, Cheng ZK, Gan H, Lin ZW, Zhang DY, Huang JW, Lin LZ, Liu RQ, Chen W, Sun BQ, Dong GH. Long-term ambient ozone exposure and childhood asthma, rhinitis, eczema, and conjunctivitis: A multi-city study in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135577. [PMID: 39178774 DOI: 10.1016/j.jhazmat.2024.135577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024]
Abstract
Evidence on the link of long-term exposure to ozone (O3) with childhood asthma, rhinitis, conjunctivitis and eczema is inconclusive. We did a population-based cross-sectional survey, including 177,888 children from 173 primary and middle schools in 14 Chinese cities. A satellite-based spatiotemporal model was employed to assess four-year average O3 exposure at both residential and school locations. Information on asthma, allergic rhinitis, eczema and conjunctivitis was collected by a standard questionnaire developed by the American Thoracic Society. We used generalized non-linear and linear mixed models to test the associations. We observed linear exposure-response associations between O3 and all outcomes. The odds ratios of doctor-diagnosed asthma, rhinitis, eczema, and conjunctivitis associated with per interquartile increment in home-school O3 concentration were 1.31 (95 % confidence interval [CI]: 1.28, 1.34), 1.25 (95 %CI: 1.23, 1.28), 1.19 (95 %CI: 1.16, 1.21), and 1.28 (95 %CI: 1.21, 1.34), respectively. Similar associations were observed for asthma-related outcomes including current asthma, wheeze, current wheeze, persistent phlegm, and persistent cough. Moreover, stronger associations were observed among children who were aged > 12 years, physically inactive, and exposed to higher temperature. In conclusion, long-term O3 exposure was associated with higher risks of asthma, allergic rhinitis, conjunctivitis and eczema in children.
Collapse
Affiliation(s)
- Zhao-Huan Gui
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhan-Yu Guo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China
| | - Shyamali Dharmage
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia
| | - Joachim Heinrich
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Melbourne, Australia; Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Zhang-Kai Cheng
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hui Gan
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhi-Wei Lin
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dong-Ying Zhang
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing-Wen Huang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Zi Lin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bao-Qing Sun
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
5
|
Anand A, Castiglia E, Zamora ML. The Association Between Personal Air Pollution Exposures and Fractional Exhaled Nitric Oxide (FeNO): A Systematic Review. Curr Environ Health Rep 2024; 11:210-224. [PMID: 38386269 PMCID: PMC11180488 DOI: 10.1007/s40572-024-00430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
PURPOSE OF REVIEW Airway inflammation is a common biological response to many types of environmental exposures and can lead to increased nitric oxide (NO) concentrations in exhaled breath. In recent years, several studies have evaluated airway inflammation using fractional exhaled nitric oxide (FeNO) as a biomarker of exposures to a range of air pollutants. This systematic review aims to summarize the studies that collected personal-level air pollution data to assess the air pollution-induced FeNO responses and to determine if utilizing personal-level data resulted in an improved characterization of the relationship between air pollution exposures and FeNO compared to using only ambient air pollution exposure data. RECENT FINDINGS Thirty-six eligible studies were identified. Overall, the studies included in this review establish that an increase in personal exposure to particulate and gaseous air pollutants can significantly increase FeNO. Nine out of the 12 studies reported statistically significant FeNO increases with increasing personal PM2.5 exposures, and up to 11.5% increase in FeNO per IQR increase in exposure has also been reported between FeNO and exposure to gas-phase pollutants, such as ozone, NO2, and benzene. Furthermore, factors such as chronic respiratory diseases, allergies, and medication use were found to be effect modifiers for air pollution-induced FeNO responses. About half of the studies that compared the effect estimates using both personal and ambient air pollution exposure methods reported that only personal exposure yielded significant associations with FeNO response. The evidence from the reviewed studies confirms that FeNO is a sensitive biomarker for air pollutant-induced airway inflammation. Personal air pollution exposure assessment is recommended to accurately assess the air pollution-induced FeNO responses. Furthermore, comprehensive adjustments for the potential confounding factors including the personal exposures of the co-pollutants, respiratory disease status, allergy status, and usage of medications for asthma and allergies are recommended while assessing the air pollution-induced FeNO responses.
Collapse
Affiliation(s)
- Abhay Anand
- Department of Public Health Sciences, UConn School of Medicine, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-6325, USA
| | - Elliana Castiglia
- Department of Public Health Sciences, UConn School of Medicine, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-6325, USA
| | - Misti Levy Zamora
- Department of Public Health Sciences, UConn School of Medicine, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-6325, USA.
| |
Collapse
|
6
|
Li L, Zhang W, Liu S, Wang W, Ji X, Zhao Y, Shima M, Yoda Y, Yang D, Huang J, Guo X, Deng F. Cardiorespiratory effects of indoor ozone exposure during sleep and the influencing factors: A prospective study among adults in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171561. [PMID: 38458472 DOI: 10.1016/j.scitotenv.2024.171561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/16/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Ambient ozone (O3) is recognized as a significant air pollutant with implications for cardiorespiratory health, yet the effects of indoor O3 exposure have received less consideration. Furthermore, while sleep occupies one-third of life, research on the health consequences of O3 exposure during this crucial period is scarce. This study aimed to investigate associations of indoor O3 during sleep with cardiorespiratory function and potential predisposing factors. A prospective study among 81 adults was conducted in Beijing, China. Repeated measurements of cardiorespiratory indices reflecting lung function, airway inflammation, cardiac autonomic function, blood pressure, systemic inflammation, platelet and glucose were performed on each subject. Real-time concentrations of indoor O3 during sleep were monitored. Associations of O3 with cardiorespiratory indices were evaluated using linear mixed-effect model. Effect modification by baseline lifestyles (diet, physical activity, sleep-related factors) and psychological status (stress and depression) were investigated through interaction analysis. The average indoor O3 concentration during sleep was 20.3 μg/m3, which was well below current Chinese indoor air quality standard of 160 μg/m3. O3 was associated with most respiratory indicators of decreased airway function except airway inflammation; whereas the cardiovascular effects were only manifested in autonomic dysfunction and not in others. An interquartile range increases in O3 at 6-h average was associated with changes of -3.60 % (95 % CI: -6.19 %, -0.93 %) and -9.60 % (95 % CI: -14.53 %, -4.39 %) in FVC and FEF25-75, respectively. Further, stronger effects were noted among participants with specific dietary patterns, poorer sleep and higher level of depression. This study provides the first general population-based evidence that low-level exposure to indoor O3 during sleep has greater effects on the respiratory system than on the cardiovascular system. Our findings identify the respiratory system as an important target for indoor O3 exposure, and particularly highlight the need for greater awareness of indoor air quality, especially during sleep.
Collapse
Affiliation(s)
- Luyi Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Shan Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Xuezhao Ji
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Yetong Zhao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Masayuki Shima
- Department of Public Health, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan
| | - Yoshiko Yoda
- Department of Public Health, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan
| | - Di Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Center for Environment and Health, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
7
|
Zhu R, Gao J, Li M, Wu Y, Gao Q, Wu X, Zhang Y. Ultrasensitive Online NO Sensor Based on a Distributed Parallel Self-Regulating Neural Network and Ultraviolet Differential Optical Absorption Spectroscopy for Exhaled Breath Diagnosis. ACS Sens 2024; 9:1499-1507. [PMID: 38382078 DOI: 10.1021/acssensors.3c02625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The concentration of fractional exhaled nitric oxide (FeNO) is closely related to human respiratory inflammation, and the detection of its concentration plays a key role in aiding diagnosing inflammatory airway diseases. In this paper, we report a gas sensor system based on a distributed parallel self-regulating neural network (DPSRNN) model combined with ultraviolet differential optical absorption spectroscopy for detecting ppb-level FeNO concentrations. The noise signals in the spectrum are eliminated by discrete wavelet transform. The DPSRNN model is then built based on the separated multipeak characteristic absorption structure of the UV absorption spectrum of NO. Furthermore, a distributed parallel network structure is built based on each absorption feature region, which is given self-regulating weights and finally trained by a unified model structure. The final self-regulating weights obtained by the model indicate that each absorption feature region contributes a different weight to the concentration prediction. Compared with the regular convolutional neural network model structure, the proposed model has better performance by considering the effect of separated characteristic absorptions in the spectrum on the concentration and breaking the habit of bringing the spectrum as a whole into the model training in previous related studies. Lab-based results show that the sensor system can stably achieve high-precision detection of NO (2.59-750.66 ppb) with a mean absolute error of 0.17 ppb and a measurement accuracy of 0.84%, which is the best result to date. More interestingly, the proposed sensor system is capable of achieving high-precision online detection of FeNO, as confirmed by the exhaled breath analysis.
Collapse
Affiliation(s)
- Rui Zhu
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Jie Gao
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Mu Li
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yongqi Wu
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Qiang Gao
- State Key Laboratory of Engines, School of Tianjin University, Tianjin 300072, China
| | - Xijun Wu
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yungang Zhang
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
8
|
Cai X, Li K, Meng X, Song Q, Shi S, Li W, Niu Y, Jin L, Kan H, Wang S. Epigenome-wide association study on short-, intermediate- and long-term ozone exposure in Han Chinese, the NSPT study. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132780. [PMID: 37898092 DOI: 10.1016/j.jhazmat.2023.132780] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023]
Abstract
Epidemiological and epigenetic studies have acknowledged ambient ozone exposure associated with inflammatory and cardiovascular disease. However, the molecular mechanisms still remained unclear, and epigenome-wide analysis in cohort were lacking, especially in Chinese. We included blood-derived DNA methylation for 3365 Chinese participants from the NSPT cohort and estimated individual ozone exposure level of short-, intermediate- and long-term, based on a validated prediction model. We performed epigenome-wide association studies which identified 59 CpGs and 30 DMRs at a strict genome-wide significance (P < 5 ×10-8). We also conducted comparison on the DNA methylation alteration corresponding to different time windows, and observed an enhanced differentiated methylation trend for intermediate- and long-term exposure, while the short-term exposure associated methylation changes did not retain. The targeted genes of methylation alteration were involved in mechanism related to aging, inflammation disease, metabolic syndrome, neurodevelopmental disorders, and oncogenesis. Underlying pathways were enriched in biological activities including telomere maintenance process, DNA damage response and megakaryocyte differentiation. In conclusion, our study is the first EWAS on ozone exposure conducted in large-scale Han Chinese cohort and identified associated DNA methylation change on CpGs and regions, as well as related gene functions and pathways.
Collapse
Affiliation(s)
- Xiyang Cai
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kaixuan Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xia Meng
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Qinglin Song
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Su Shi
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Wenran Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yue Niu
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, and Human Phenome Institute, Fudan University, Shanghai, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China; Taizhou Institute of Health Sciences, Fudan University, Taizhou, Jiangsu, China
| | - Haidong Kan
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai 201102, China.
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; Taizhou Institute of Health Sciences, Fudan University, Taizhou, Jiangsu, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
9
|
Zhu Y, Chen R, Liu C, Niu Y, Meng X, Shi S, Yu K, Huang G, Xie L, Lin S, Huang M, Huang M, Chen S, Kan H, Liu F, Chu C. Short-term exposure to ozone may trigger the onset of Kawasaki disease: An individual-level, case-crossover study in East China. CHEMOSPHERE 2024; 349:140828. [PMID: 38040257 DOI: 10.1016/j.chemosphere.2023.140828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/14/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Kawasaki disease (KD) is an acute, systemic vasculitis that primarily affects children aged under the age of 5. While environmental factors have been linked to the development of KD, the specific role of ozone (O3) pollution in triggering the disease onset remains uncertain. This study aimed to examine the associations between short-term O3 exposure and KD onset in children. Utilizing a satellite-based model with a spatial resolution of 1 × 1 km, we matched 1808 KD patients (out of a total of 6115 eligible individuals) to pre-onset ozone exposures based on their home addresses in East China between 2013 and 2020. Our findings revealed a significant association of O3 exposure with KD onset on the day of onset (lag 0 day). However, this association attenuated and became statistically insignificant on lag 1 and lag 2 days. Each interquartile range (52.32 μg/m3) increase in O3 concentration at lag 0 day was associated with a 16.2% (95% CI: 3.6%, 30.3%) increased risk of KD onset. The E-R curve for O3 exhibited a plateau at low concentrations and then increased rapidly at concentrations ≥75 μg/m3. Notably, these associations were stronger in male children, younger children (<2 years of age) and patients experiencing KD onset during the warm season. This study provides novel epidemiological evidence indicating that short-term O3 exposure is associated with an increased risk of childhood KD onset. These findings emphasized the importance of considering this environmental risk factor in KD prevention strategies.
Collapse
Affiliation(s)
- Yixiang Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Su Shi
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Kexin Yu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Guoying Huang
- Heart Center, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Liping Xie
- Heart Center, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Siyuan Lin
- Heart Center, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Min Huang
- Department of Cardiology, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Meirong Huang
- Pediatric Heart Center, Shanghai Children's Medical Center, Shanghai, China
| | - Sun Chen
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China; Heart Center, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Fang Liu
- Heart Center, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, 201102, China.
| | - Chen Chu
- Heart Center, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|
10
|
Li Y, Pu R. Ozone Therapy for Breast Cancer: An Integrative Literature Review. Integr Cancer Ther 2024; 23:15347354241226667. [PMID: 38258533 PMCID: PMC10807353 DOI: 10.1177/15347354241226667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/04/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Breast cancer is the most prevalent form of cancer in women. Despite significant advances in conventional treatment, additional safer complementary treatment options are needed. Recently, ozone therapy has been considered as a type of medical adjunctive treatment that could inhibit cancer cell survival and reduce chemoresistance. However, only a few studies have been conducted on its use in breast cancer, and the optimal dosage and time of administration are unknown. Currently, preclinical studies suggest that ozone alone or in combination with chemotherapy is an effective method for inhibiting breast cancer cell growth. However, rather than investigating the effects of ozone as an antitumor therapy, current clinical trials have generally assessed its effect as an adjunctive therapy for reducing chemotherapy-induced side effects, increasing oxygen tension, normalizing blood flow, restoring blood lymphocytes more rapidly, and reducing fatigue symptoms. In this article, the use of ozone as a medical adjunctive treatment for breast cancer and its role in integrative therapy are summarized and discussed.
Collapse
Affiliation(s)
- Yanchu Li
- West China Hospital of Sichuan University, Chengdu, China
| | - Rong Pu
- Chengdu Fuxing Hospital, Chengdu, China
| |
Collapse
|
11
|
Qu R, Sun B, Jiang J, An Z, Li J, Wu H, Wu W, Song J. Short-term ozone exposure and serum neural damage biomarkers in healthy elderly adults: Evidence from a panel study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167209. [PMID: 37730053 DOI: 10.1016/j.scitotenv.2023.167209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/28/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Although converging lines of research have pointed to the adverse neural effects of air pollution, evidence linking ozone (O3) and neural damage remains limited. OBJECTIVES To investigate the subclinical neural effects of short-term ozone (O3) exposure in elderly adults. METHODS A panel of healthy elderly individuals was recruited, and five repeated measurements were conducted from December 2018 to April 2019 in Xinxiang, China. Serum neural damage biomarkers, including brain-derived neurotrophic factor (BDNF), neurofilament light chain (NfL), neuron-specific enolase (NSE), protein gene product 9.5 (PGP9.5), and S100 calcium-binding protein B (S100B) were measured at each follow-up session. Personal O3 exposure levels were calculated based on outdoor monitoring and sampling times. A linear mixed-effects model was adopted to quantify the acute effect of O3 on serum neural damage biomarkers. Stratification analysis based on sex, education level, physical activity, and glutathione S-transferases (GST) gene polymorphism analysis was performed to explore their potential modifying effects. RESULTS A total of 34 healthy volunteers aged 63.7 ± 5.7 y were enlisted and completed the study. The concentration of the daily maximum 8-h average O3 (O3-8h) ranged from 19.5 to 160.5 μg/m3 during the study period. Regression analysis showed that short-term O3 exposure was associated positively with serum concentrations of neural damage biomarkers. A 10 μg/m3 increase in O3-8h exposure was associated with an increment of 74 % (95 % CI:1 %-146 %) and 197 % (95 % CI:39 %-356 %) in BDNF (lag 2 d) and NfL (lag 1 d), respectively. The stratification results suggest that males, people with lower education levels, lower physical activity, and GST theta 1 (GSTT1)-sufficient genotype might be marginally more vulnerable. CONCLUSIONS This study provides new evidence for the neural damage risk posed by O3 exposure, even at relatively low concentrations, which, therefore, requires that stringent air quality standards be developed and implemented.
Collapse
Affiliation(s)
- Rongrong Qu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Beibei Sun
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jing Jiang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Hui Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| | - Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
12
|
Wang S, Niu Y, Zhang H, Zhao Z, Zhang X. Metabolomic alterations in healthy adults traveling to low-pollution areas: A natural experiment with ozone exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165501. [PMID: 37442463 DOI: 10.1016/j.scitotenv.2023.165501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Numerous epidemiological studies have demonstrated links between short-term ozone exposure to various adverse health outcomes, but some ozone-induced pathological mechanisms remain unclear. To fill this knowledge gap, we enrolled 36 healthy young adults living in high-ozone areas and performed an untargeted metabolomic analysis in serum collected before, during, and after their travel to a low-ozone scenic area. Reviewing the literature, we found 16 metabolites significantly associated with ozone, pointing to neurological health, type 2 diabetes (T2D) risk, and cardiovascular health. Notably, we observed significant changes in these 16 metabolites from the ozone reduction when participants traveled from the campus to the scenic area (adjusted p-value < 0.05). However, when ozone increased after participants returned to campus from the scenic area, we observed that T2D risk and cardiovascular health-related metabolites returned to their original state (adjusted p-value < 0.05), but neurological health-related metabolites did not change significantly with ozone exposure. Our study showed that ozone exposure was linked to prompt alterations in serum metabolites related to cardiovascular health and T2D risk but less sensitive changes in neurological health-related metabolites. Among many lipids, free fatty acids and acylcarnitines were the most sensitive compounds positively associated with changes in ozone exposure.
Collapse
Affiliation(s)
- Shengchun Wang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Yue Niu
- Department of Environmental Health, School of Public Health, Fudan University, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai 200032, China
| | - Huilin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Zhuohui Zhao
- Department of Environmental Health, School of Public Health, Fudan University, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai 200032, China.
| | - Xin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
13
|
Chen C, Xie J, Chen X, Zhang W, Chen J, Jia A. Cu Species-Modified OMS-2 Materials for Enhancing Ozone Catalytic Decomposition under Humid Conditions. ACS OMEGA 2023; 8:19632-19644. [PMID: 37305299 PMCID: PMC10249024 DOI: 10.1021/acsomega.3c01186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023]
Abstract
Manganese oxide octahedral molecular sieves (OMS-2) exhibit an excellent performance in ozone catalytic decomposition in dry atmosphere conditions, which however is severely limited by deactivation in humid conditions. Herein, it was found that the OMS-2 materials modified with Cu species could obviously improve both the ozone decomposition activity and water resistance. Based on the characterization results, it was found that these CuOx/OMS-2 catalysts exhibited dispersed CuOx nanosheets attached and located at the external surface accompanied with ionic Cu species entering the MnO6 octahedral framework of OMS-2. In addition, it was demonstrated that the main reason for the promotion of ozone catalytic decomposition could be ascribed to the combined effect of different Cu species in these catalysts. On the one hand, ionic Cu entered the MnO6 octahedral framework of OMS-2 near the catalyst surface and substituted ionic Mn species, resulting in an enhanced mobility of surface oxygen species and formation of more oxygen vacancies, which act as the active sites for ozone decomposition. On the other hand, the CuOx nanosheets could serve as non-oxygen vacancy sites for H2O adsorption, which could alleviate the catalyst deactivation to some extent caused by the occupancy of H2O on surface oxygen vacancies. Finally, different reaction pathways for ozone catalytic decomposition over OMS-2 and CuOx/OMS-2 under humid conditions were proposed. The findings in this work may shed new light on the design of highly efficient catalysts for ozone decomposition with improved water resistance.
Collapse
Affiliation(s)
- Chonglai Chen
- Jinhua
Polytechnic, Jinhua 321007, People’s Republic
of China
| | - Jun Xie
- Wenzhou
Water Supply Co. Ltd., Wenzhou 325000, People’s
Republic of China
| | - Xiao Chen
- Jinhua
Polytechnic, Jinhua 321007, People’s Republic
of China
| | - Wenxia Zhang
- Jinhua
Polytechnic, Jinhua 321007, People’s Republic
of China
| | - Jian Chen
- Key
Laboratory of the Ministry of Education for Advanced Catalysis Materials,
Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces,
Institute of Physical Chemistry, Zhejiang
Normal University, Jinhua 321004, People’s
Republic of China
| | - Aiping Jia
- Key
Laboratory of the Ministry of Education for Advanced Catalysis Materials,
Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces,
Institute of Physical Chemistry, Zhejiang
Normal University, Jinhua 321004, People’s
Republic of China
| |
Collapse
|
14
|
Bai S, Cui L, Du S, Zhao X, Lin S, Yang X, Zhang J, Liang Y, Wang Z. A life course approach to asthma and wheezing among young children caused by ozone: A prospective birth cohort in northern China. ENVIRONMENTAL RESEARCH 2023; 226:115687. [PMID: 36925033 DOI: 10.1016/j.envres.2023.115687] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/22/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Given differences in vulnerability of children in early life, a life course approach to asthma and wheezing (AW) in young children caused by ozone (O3) is not fully understood. METHODS We conducted a birth cohort in Jinan, China from 2018 to 2021 to elucidate the onset model of childhood AW due to O3 exposure. An inverse distance weighted model was used for individual exposure assessment. The time-dependent Cox proportional-hazard model and logistic model were used to investigate the effects of O3 exposure on AW. Principal component analysis, interaction analysis, and distributed lag model were used to analyze the life course approach. RESULTS The cumulative incidence rate for AW among 6501 children aged 2 was 1.4%. A high level of O3 was related to AW (HR: 2.10, 95% CI: 1.31, 3.37). Only O3 exposure after birth was associated with AW, with an OR of 1.82 (1.08, 3.12), after adjusting for the effect before birth. Furthermore, adjusting for other air pollutants, the HR for the individual effect of high O3 exposure on AW was 2.44 (1.53, 3.89). Interestingly, P values for interactions for O3 and the principal components of other pollutants, as well as the characteristic variable of open windows were less than 0.1. Moreover, an increase in the IQR of O3 exposure at the 31st to 37th weeks before birth and the 1st to 105th weeks after birth was associated with an increase in the HRs for AW. CONCLUSIONS High-level of O3 exposure after birth could lead to AW among young children. Importantly, the AW onset model may include the risk factors accumulation and the sensitive period model. Specifically, there are two sensitive windows in early life, and the correlated insults between the high level of O3 and other pollutants as well as open windows in the asthma-inducing effect.
Collapse
Affiliation(s)
- Shuoxin Bai
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Liangliang Cui
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong, PR China
| | - Shuang Du
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Xiaodong Zhao
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong, PR China
| | - Shaoqian Lin
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong, PR China
| | - Xiwei Yang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Jiatao Zhang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Yuxiu Liang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Zhiping Wang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
15
|
Sun N, Huang Y, Zhang X, Niu Y, Duan Y, Kan H, Zhang R. Involvements of Nrf2 and oxidative stress in the ozone-elicited exacerbation in an allergic rhinitis model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114822. [PMID: 36965277 DOI: 10.1016/j.ecoenv.2023.114822] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE AND DESIGN An experimental rat allergic rhinitis(AR) model was made to explore the effect of different concentrations of ozone exposure and evaluate the roles of nuclear factor erythroid 2-related factor 2(Nrf2) and oxidative stress in ozone exposure. METHOD Sprague-Dawley rats were sensitized with ovalbumin (OVA). Three groups of AR rats were exposed respectively to different concentrations of ozone for 2 h on 6 weeks. Nasal symptoms and OVA- specific Ig E in the serum were evaluated. The pathological changes in the nasal mucosa were examined. Malondialdehyde (MDA) level and activity of superoxide dismutase(SOD) and glutathione peroxidase (GSH-Px,GPX) in the nasal mucosa tissue were measured through a spectrophotometry-based method. Nrf2、Kelch-1ike ECH- associated protein-l (Keap1) proteins was measured by western blotting. GPX1、GPX2 mRNA were detected by quantitative real time-PCR(qRT-PCR). RESULTS Our results showed that ozone exposure induced a significant increase of the number of sneezes, nasal rubs, amount of nasal secretion and OVA-sIgE in the serum of AR model. Ozone effected oxidative stress in different concentration. The content of MDA in AREH group was significantly higher than AR groups. The activities of SOD and GSH-Px in nasal mucosa showed different trends in different concentration groups. The activities of SOD and GSH-Px in AREL and AREM groups were higher than AR group, but decreased at AREH group. The nucleoprotein level of Nrf2 in AREL and AREM groups was higher than AR groups. However, in AREH group, it was significantly decreased, compared with AREL and AREM groups. GPX1 and GPX2 mRNA levels in nasal mucosa showed the same trend in different exposure groups. CONCLUSIONS Different concentrations of ozone inhalation causes changes of the expression of Nrf2 nuclear protein and its target genes in nasal mucosa of AR. High concentration ozone breaks the redox balance and aggravates oxidative damage in AR. This study suggests that inhibiting oxidative stress might be a solution for ozone-elicited detrimental effects on AR.
Collapse
Affiliation(s)
- Na Sun
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| | - Yu Huang
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| | - Xueyan Zhang
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China
| | - Yusen Duan
- Shanghai Environmental Monitoring Center, Shanghai, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China
| | - Ruxin Zhang
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Munnia A, Bollati V, Russo V, Ferrari L, Ceppi M, Bruzzone M, Dugheri S, Arcangeli G, Merlo F, Peluso M. Traffic-Related Air Pollution and Ground-Level Ozone Associated Global DNA Hypomethylation and Bulky DNA Adduct Formation. Int J Mol Sci 2023; 24:ijms24032041. [PMID: 36768368 PMCID: PMC9916664 DOI: 10.3390/ijms24032041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Studies have indicated that air pollution, including surface-level ozone (O3), can significantly influence the risk of chronic diseases. To better understand the carcinogenic mechanisms of air pollutants and identify predictive disease biomarkers, we examined the association between traffic-related pollutants with DNA methylation alterations and bulky DNA adducts, two biomarkers of carcinogen exposure and cancer risk, in the peripheral blood of 140 volunteers-95 traffic police officers, and 45 unexposed subjects. The DNA methylation and adduct measurements were performed by bisulfite-PCR and pyrosequencing and 32P-postlabeling assay. Airborne levels of benzo(a)pyrene [B(a)P], carbon monoxide, and tropospheric O3 were determined by personal exposure biomonitoring or by fixed monitoring stations. Overall, air pollution exposure was associated with a significant reduction (1.41 units) in global DNA methylation (95% C.I. -2.65-0.04, p = 0.026). The decrement in ALU repetitive elements was greatest in the policemen working downtown (95% C.I. -3.23--0.49, p = 0.008). The DNA adducts were found to be significantly increased (0.45 units) in the municipal officers with respect to unexposed subjects (95% C.I. 0.02-0.88, p = 0.039), mainly in those who were controlling traffic in downtown areas (95% C.I. 0.39-1.29, p < 0.001). Regression models indicated an increment of ALU methylation at higher B(a)P concentrations (95% C.I. 0.03-0.60, p = 0.032). Moreover, statistical models showed a decrement in ALU methylation and an increment of DNA damage only above the cut-off value of 30 µg/m3 O3. A significant increment of 0.73 units of IL-6 gene methylation was also found in smokers with respect to non-smokers. Our results highlighted the role of air pollution on epigenetic alterations and genotoxic effects, especially above the target value of 30 µg/m3 surface-level O3, supporting the necessity for developing public health strategies aimed to reduce traffic-related air pollution molecular alterations.
Collapse
Affiliation(s)
- Armelle Munnia
- Research Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy
| | - Valentina Bollati
- EPIGET Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, 20122 Milan, Italy
- Occupational Health Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Valentina Russo
- Research Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy
| | - Luca Ferrari
- EPIGET Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, 20122 Milan, Italy
- Occupational Health Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Marcello Ceppi
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Marco Bruzzone
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Stefano Dugheri
- Laboratorio di Igiene e Tossicologia Industriale, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| | - Giulio Arcangeli
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, 50121 Florence, Italy
| | - Franco Merlo
- Research and Statistics Infrastructure, Azienda Unità Sanitaria Locale, IRCCS, 42121 Reggio Emilie, Italy
| | - Marco Peluso
- Research Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy
- Correspondence:
| |
Collapse
|
17
|
Fang X, Huang S, Zhu Y, Lei J, Xu Y, Niu Y, Chen R. Short-term exposure to ozone and asthma exacerbation in adults: A longitudinal study in China. Front Public Health 2023; 10:1070231. [PMID: 36684992 PMCID: PMC9854395 DOI: 10.3389/fpubh.2022.1070231] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
Background The relationships between short-term ozone exposure and the acute exacerbations of asthma in adults have not been fully studied. Existing studies commonly ignored the effects of ozone on mild or early asthma exacerbations. Objective To investigate the associations between short-term ozone exposure and asthma exacerbations in Chinese adults. Methods We administered health management for adult asthma patients through the Respiratory Home Platform and required them to monitor their lung function every morning and evening by themselves. Finally, a total of 4,467 patients in 18 Chinese cities were included in the current analyses, with 79,217 pairs of lung function records. The maximum daily 8-h average ozone concentrations were collected from fixed-site air quality monitoring stations. We calculated diurnal peak expiratory flow (PEF) variation using morning and evening measurements of PEF and then defined different severity of asthma exacerbations with diurnal PEF variations >10, 15, and 20%, respectively. A binomial distributed generalized additive mixture model combined with distribution non-linear models was applied to examine the association of ozone with asthma exacerbations. We further conducted stratified analyses by sex, age, season of lung function tests, and region. Measurements and results We found that short-term ozone exposure was independently associated with an elevated risk of asthma exacerbations defined by lung function and the effects could last for about 2 days. At lag 0-2 days, each 10 μg/m3 increment in ozone concentration was associated with odds ratios of 1.010 [95% confidence interval (CI): 1.003, 1.017], 1.014 (95% CI: 1.005, 1.023), and 1.017 (95% CI: 1.006, 1.028) for asthma exacerbations that were defined by diurnal PEF variation over 10, 15, and 20%, respectively. The associations remained significant after adjusting for other pollutants, and became unstable when using 24-h average ozone concentration. We also found that the associations were relatively stronger in males, those aged 45 years and older, and in the warm season. Conclusions Our results suggest that short-term ozone exposure can increase the risk of asthma exacerbations, even in the early stage of exacerbation. Male and older asthma patients may be more vulnerable to ozone air pollution, especially in the warm season.
Collapse
Affiliation(s)
- Xinyi Fang
- Key Laboratory of Public Health Safety of the Ministry of Education, NHC Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai, China
| | - Suijie Huang
- Guangzhou Homesun Medical Technology Co. Ltd., Guangzhou, Guangdong Province, China
| | - Yixiang Zhu
- Key Laboratory of Public Health Safety of the Ministry of Education, NHC Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai, China
| | - Jian Lei
- Key Laboratory of Public Health Safety of the Ministry of Education, NHC Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai, China
| | - Yanyi Xu
- Key Laboratory of Public Health Safety of the Ministry of Education, NHC Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai, China
| | - Yue Niu
- Key Laboratory of Public Health Safety of the Ministry of Education, NHC Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai, China
| | - Renjie Chen
- Key Laboratory of Public Health Safety of the Ministry of Education, NHC Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Song J, An Z, Zhu J, Li J, Qu R, Tian G, Wang G, Zhang Y, Li H, Jiang J, Wu H, Wang Y, Wu W. Subclinical cardiovascular outcomes of acute exposure to fine particulate matter and its constituents: A glutathione S-transferase polymorphism-based longitudinal study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157469. [PMID: 35868381 DOI: 10.1016/j.scitotenv.2022.157469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/03/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
To explore the acute subclinical cardiovascular effects of fine particulate matter (PM2.5) and its constituents, a longitudinal study with 61 healthy young volunteers was conducted in Xinxiang, China. Linear mixed-effect models were used to analyze the association of PM2.5 and its constituents with cardiovascular outcomes, respectively, including blood pressure (BP), heart rate (HR), serum levels of high-sensitivity C-reactive protein (hs-CRP), 8-hydroxy-2'-deoxyguanosine (8-OHdG), tissue-type plasminogen activator (t-PA), and platelet-monocyte aggregation (PMA). Additionally, the modifying effects of glutathione S-transferase mu 1 (GSTM1) and glutathione S-transferase theta 1 (GSTT1) polymorphisms were examined. A 10 μg/m3 increase in PM2.5 was associated with -1.04 (95 % CI: -1.86 to -0.22) mmHg and -0.90 (95 % CI: -1.69 to -0.11) mmHg decreases in diastolic BP (DBP) and mean arterial BP (MABP) along with 1.83 % (95 % CI: 0.59-3.08 %), 5.93 % (95 % CI: 0.70-11.16 %) increases in 8-OHdG and hs-CRP, respectively. Ni content was positively associated with the 8-OHdG levels whereas several other metals presented negative association with 8-OHdG and HR. Intriguingly, GSTT1+/GSTTM1+ subjects showed higher susceptibility to PM2.5-induced alterations of DBP and PMA, and GSTT1-/GSTM1+ subjects showed higher alteration on t-PA. Taken together, our findings indicated that short-term PM2.5 exposure induced oxidative stress, systemic inflammation, autonomic alterations, and fibrinolysis in healthy young subjects. Among multiple examined metal components Ni appeared to positively associated with systematic oxidative stress. In addition, GST-sufficient subjects might be more prone to PM2.5-induced autonomic alterations.
Collapse
Affiliation(s)
- Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jingfang Zhu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Rongrong Qu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Ge Tian
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Gui Wang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Yange Zhang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Huijun Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jing Jiang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Hui Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Yinbiao Wang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
19
|
Du X, Niu Y, Wang C, Wang W, Liu C, Meng X, Chu C, Chen R, Kan H. Ozone exposure and blood transcriptome: A randomized, controlled, crossover trial among healthy adults. ENVIRONMENT INTERNATIONAL 2022; 163:107242. [PMID: 35430440 DOI: 10.1016/j.envint.2022.107242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/01/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
RATIONALE Transcriptome-wide analysis is powerful in studying systemic RNA changes following environmental exposures. However, impacts of ozone inhalation on circulating transcriptome have not yet been examined. OBJECTIVES To explore the impact of acute ozone exposure on circulating transcriptome using RNA sequencing (RNA-seq). METHODS We recruited 32 healthy young adults in a randomized, crossover, controlled exposure trial. Each participant completed two 2-h exposure sessions of ozone (200 ppb) and clean air, respectively. Blood samples were collected at the end of each session and were used for RNA-seq. The differentially expressed genes associated with ozone exposure were assessed using Bayesian adjusted statistics from linear models in the limma R package. RESULTS A total of 29 participants finished this trial and donated their blood samples for transcriptome analysis. The average concentration of ozone was 7.8 ± 2.6 ppb under clean air and 201.1 ± 1.7 ppb under ozone exposure session. A total of 1899 genes were significantly changed (1067 up-regulated and 832 down-regulated) by ozone exposure at a false discovery rate < 0.05, in which 403 genes had a fold change of > 1.2 or < 0.8. The top 10 terms of biological processes showed that most of the differentially expressed genes were related to various functions, such as neutrophil degranulation, immune response, and neutrophil activation. Pathway enrichment analysis showed dozens of pathways were dysregulated after ozone exposure, including mitochondrial dysfunction, and glucocorticoid receptor signaling. CONCLUSION For the first time this trial characterized the genome-wide changes of mRNA in response to ozone exposure. We identified a range of differentially expressed genes that were involved in dozens of biological processes and pathways, providing novel biological insights into the systemic health effects of ozone.
Collapse
Affiliation(s)
- Xihao Du
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yue Niu
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Cuiping Wang
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Weidong Wang
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Cong Liu
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Xia Meng
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Chen Chu
- Heart Center, Children's Hospital of Fudan University, National Center for Children's Health, Shanghai 201102, China.
| | - Renjie Chen
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| | - Haidong Kan
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| |
Collapse
|
20
|
Qiu H, Niu XY, Cao JJ, Xu HM, Xiao S, Zhang NN, Xia X, Shen ZX, Huang Y, Lau GNC, Yim SHL, Ho KF. Inflammatory and oxidative stress responses of healthy elders to solar-assisted large-scale cleaning system (SALSCS) and changes in ambient air pollution: A quasi-interventional study in Xi'an, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151217. [PMID: 34717999 DOI: 10.1016/j.scitotenv.2021.151217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
An outdoor solar assisted large-scale cleaning system (SALSCS) was constructed to mitigate the levels of fine particulate matter (PM2.5) in urban areas of Xi'an China, providing a quasi-experimental opportunity to examine the biologic responses to the changes in pollution level. We conducted this outdoor SALSCS based real-world quasi-interventional study to examine the associations of the SALSCS intervention and changes in air pollution levels with the biomarkers of systemic inflammation and oxidative stress in healthy elders. We measured the levels of 8-hydrox-2-deoxyguanosine (8-OHdG), Interlukin-6 (IL-6), as well as tumor necrosis factor alpha (TNF-α) from urine samples, and IL-6 from saliva samples of 123 healthy retired participants from interventional/control residential areas in two sampling campaigns. We collected daily 24-h PM2.5 samples in two residential areas during the study periods using mini-volume samplers. Data on PM10, gaseous pollutants and weather factors were collected from the nearest national air quality monitoring stations. We used linear mixed-effect models to examine the percent change in each biomarker associated with the SALSCS intervention and air pollution levels, after adjusting for time trend, seasonality, weather factors and personal characteristics. Results showed that the SALSCS intervention was significantly associated with decreases in the geometric mean of biomarkers by 47.6% (95% confidence interval: 16.5-67.2%) for 8-OHdG, 66% (31.0-83.3%) for TNF-α, 41.7% (0.2-65.9%) and 43.4% (13.6-62.9%) for urinary and salivary IL-6, respectively. An inter-quartile range increase of ambient PM2.5 exposure averaged on the day of the collection of bio-samples and the day before (34.1 μg/m3) was associated, albeit non-significantly so, with 22.8%-37.9% increases in the geometric mean of these biomarkers. This study demonstrated that the SALSCS intervention and decreased ambient air pollution exposure results in lower burden of systemic inflammation and oxidative stress in older adults.
Collapse
Affiliation(s)
- Hong Qiu
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, HKSAR, China
| | - Xin-Yi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, China; The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, HKSAR, China
| | - Jun-Ji Cao
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China.
| | - Hong-Mei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Shun Xiao
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, China
| | - Ning-Ning Zhang
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Xi Xia
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, HKSAR, China
| | - Zhen-Xing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Yu Huang
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Gabriel Ngar-Cheung Lau
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, HKSAR, China; Department of Geography and Resource Management, The Chinese University of Hong Kong, HKSAR, China
| | - Steve Hung-Lam Yim
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, HKSAR, China; Department of Geography and Resource Management, The Chinese University of Hong Kong, HKSAR, China; The Asian School of the Environment, Nanyang Technological University, Singapore
| | - Kin-Fai Ho
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, HKSAR, China; The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, HKSAR, China.
| |
Collapse
|
21
|
Xia Y, Niu Y, Cai J, Liu C, Meng X, Chen R, Kan H. Personal ozone exposure and stress hormones in the hypothalamus-pituitary-adrenal and sympathetic-adrenal-medullary axes. ENVIRONMENT INTERNATIONAL 2022; 159:107050. [PMID: 34923369 DOI: 10.1016/j.envint.2021.107050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The effect of ozone exposure on neuroendocrine responses in humans has not been fully studied. METHODS We conducted a longitudinal panel study with four rounds of visits among 43 college students in Shanghai, China, from May to October 2016. For each visit, we monitored personal real-time ozone exposure for consecutive 3 days (from 8:00 a.m. to 6:00p.m. each day), followed by blood sample collection. We measured serum levels of three hormones in the hypothalamus-pituitaryadrenal (HPA) axis, including corticotropin releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and cortisol, and three catacholamines indicating sympathetic-adrenal-medullary (SAM) axis activation, including adrenaline, noradrenaline, and dopamine. We applied linear mixed-effect models to evaluate the associations between ozone exposure and these neurohormones and further compared models using personal and fixed-site ozone measurements. MAIN RESULTS At lag 0-8 h, personal ozone exposure ranged from 4.5 ppb to 104.3 ppb with an average of 21.0 ± 14.7 ppb, which was approximately half of the ambient ozone concentration. Per 10-ppb increase in personal ozone exposure (lag 0-8 h) was associated with increases of 5.60% [95% confidence interval (CI): 2.30%, 9.01%] in CRH, 5.91% (95% CI: 0.55%, 11.56%) in cortisol, and 10.13% (95% CI: 2.75%, 18.05%) in noradrenaline, whereas associated with a 12.15% (95% CI: 1.23%, 21.87%) decrease in dopamine. Overall, models using personal ozone measurements yielded larger effect estimates and better model fits than models using fixed-site measurements. CONCLUSIONS Short-term exposure to low levels of ozone may lead to activation of the HPA and SAM axes.
Collapse
Affiliation(s)
- Yongjie Xia
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai 201102, China.
| |
Collapse
|
22
|
Zhu X, Chen C, Zhang B, Ge Y, Wang W, Cai J, Kan H. Acute effects of personal exposure to fine particulate matter on salivary and urinary biomarkers of inflammation and oxidative stress in healthy adults. CHEMOSPHERE 2021; 272:129906. [PMID: 33592518 DOI: 10.1016/j.chemosphere.2021.129906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/18/2021] [Accepted: 02/05/2021] [Indexed: 05/13/2023]
Abstract
Non-invasive bio-samples, such as saliva and urine, are promising tools for assessment of inflammation and oxidative stress biomarkers. Few studies have investigated potential responses of those biomarkers towards short-term PM2.5 exposure. We conducted a longitudinal study with 4 repeated examinations among 40 healthy, nonsmoking adults in Shanghai, China. Personal samplings were performed for PM2.5 exposure assessment. Then, five biomarkers, including C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), alpha-1 antitrypsin (A1AT) in saliva and 8-Iso-Prostaglanding F2α (8-iso-PGF2α), total antioxidant capacity (TAC) in urine, were measured. We fitted linear mixed-effect models to evaluate short-term effect of personal PM2.5 exposure on salivary and urinary biomarkers, adjusting for potential confounders of meteorology, sociodemographic characteristics and biomarker detection. We also explored sensitive time windows of exposure for different biomarkers. We found robust associations of salivary CRP, TNF-α, and urinary 8-iso-PGF2α with PM2.5 exposure, and responses of salivary inflammatory markers occurred more acutely than urinary oxidative stress markers. For instance, a 10 μg/m3 increase in PM2.5 was associated with an elevation of 5.49% (95% CI: 1.17%, 9.99%) in CRP and 7.05% (95% CI: 1.29%, 13.13%) in TNF-α both at lag 12 h, and 6.97% (95% CI: 1.33%, 12.92%) in 8-iso-PGF2α at lag 01 d. Based on non-invasive samples, this study provided evidence on effect of PM2.5 exposure on responses of systematic inflammation and oxidative stress. Sub-daily (6-12 h) and daily (≥24 h) period after PM2.5 exposure might be sensitive time window to detect the responses of salivary (i.e. CRP, TNF) and urinary biomarkers (i.e. 8-iso-PGF2α), respectively.
Collapse
Affiliation(s)
- Xinlei Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Chen Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Bo Zhang
- Shanghai Huangpu Center for Disease Prevention and Control, Shanghai, 200001, China
| | - Yihui Ge
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Weidong Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, 201102, China.
| |
Collapse
|
23
|
Sun N, Niu Y, Zhang R, Huang Y, Wang J, Qiu W, Zhang X, Han Z, Bao J, Zhu H, Duan Y, Kan H. Ozone inhalation induces exacerbation of eosinophilic airway inflammation and Th2-skew immune response in a rat model of AR. Biomed Pharmacother 2021; 137:111261. [PMID: 33482509 DOI: 10.1016/j.biopha.2021.111261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Ozone (O3) exposure elicits allergic rhinitis (AR) exacerbations by mechanisms that remain poorly understood. We used a rat model to investigate the effects of O3 on eosinophilic airway inflammation and Th2-related response. METHODS Sprague-Dawley (SD) rats were sensitized and challenged with ovalbumin (OVA) to make AR models. Three groups of AR rats were exposed respectively to 0.5, 1.0, 2.0 ppm of O3 for 2 h daily over 6 weeks consecutively and studied 24 h later. Normal rats exposed to O3 alone were used as controls. Nasal symptoms and OVA-specific immunoglobulin E (OVA-sIg E) in the serum were evaluated. Inflammatory cells in nasal lavage fluid (NLF) were classified and counted. Cytokines protein levels in NLF were assessed by ELISA. The pathological changes in the nasal mucosa were examined by histology. RESULTS The combination of allergen and repeated O3 exposure in rats induced a significant increase of the number of sneezes, nasal rubs, amount of nasal secretion and OVA-sIgE in the serum, accompanied by enhancement of eosinophils in NLF and nasal mucosa. The increase of interleukin-5 (IL-5), IL-13, Eotaxin and decrease of INF-γ protein levels in NLF were detected in AR rats after O3 inhalation. Hematoxylin and eosin staining showed disordered arrangement of the nasal mucosa epithelium and eosinophilic infiltration in a concentration-dependent manner. CONCLUSIONS O3 inhalation deteriorated symptoms in AR rats, and the possible mechanism is that ozone co-exposure could enhance the expression of Th2 cytokines, eosinophilic airway inflammation dose-dependently. The observation is helpful for us to understand the synergistic effect of O3 in the air pollution and allergen on aggravating allergic rhinitis.
Collapse
Affiliation(s)
- Na Sun
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China
| | - Ruxin Zhang
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China.
| | - Yu Huang
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| | - Jinchao Wang
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| | - Wenjia Qiu
- Department of Respiratory Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Xueyan Zhang
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| | - Zhijin Han
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| | - Jing Bao
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| | - Huili Zhu
- Department of Respiratory Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Yusen Duan
- Shanghai Environmental Monitoring Center, Shanghai, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Ji N, Fang M, Baptista A, Cepeda C, Greenberg M, Mincey IC, Ohman-Strickland P, Haynes F, Fiedler N, Kipen HM, Laumbach RJ. Exposure to traffic-related air pollution and changes in exhaled nitric oxide and DNA methylation in arginase and nitric oxide synthase in children with asthma. Environ Health 2021; 20:12. [PMID: 33573660 PMCID: PMC7879528 DOI: 10.1186/s12940-020-00678-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Traffic-related air pollution (TRAP) has been associated with increased risk of airway inflammation in children with asthma. While epigenetic changes could potentially modulate TRAP-induced inflammatory responses, few studies have assessed the temporal pattern of exposure to TRAP, epigenetic changes and inflammation in children with asthma. Our goal was to test the time-lag patterns of personal exposure to TRAP, airway inflammation (measured as fractional exhaled nitric oxide, FeNO), and DNA methylation in the promoter regions of genes involved in nitric oxide synthesis among children with asthma. METHODS We measured personal exposure to black carbon (BC) and FeNO for up to 30 days in a panel of children with asthma. We collected 90 buccal cell samples for DNA methylation analysis from 18 children (5 per child). Methylation in promoter regions of nitric oxide synthase (NOS1, NOS2A, NOS3) and arginase (ARG1, ARG2) was assessed by bisulfite pyrosequencing. Linear-mixed effect models were used to test the associations of BC at different lag periods, percent DNA methylation at each site and FeNO level. RESULTS Exposure to BC was positively associated with FeNO, and negatively associated with DNA methylation in NOS3. We found strongest association between FeNO and BC at lag 0-6 h while strongest associations between methylation at positions 1 and 2 in NOS3 and BC were at lag 13-24 h and lag 0-24 h, respectively. The strengths of associations were attenuated at longer lag periods. No significant associations between exposure to TRAP and methylation levels in other NOS and ARG isoforms were observed. CONCLUSIONS Exposure to TRAP was associated with higher levels of FeNO and lower levels of DNA methylation in the promoter regions of the NOS3 gene, indicating that DNA methylation of the NOS3 gene could be an important epigenetic mechanism in physiological responses to TRAP in children with asthma.
Collapse
Affiliation(s)
- N Ji
- Rutgers, The State University of New Jersey, 170 Frelinghuysen Rd, Room 204, Piscataway, NJ, 08854, USA
| | - M Fang
- Rutgers, The State University of New Jersey, 170 Frelinghuysen Rd, Room 204, Piscataway, NJ, 08854, USA
| | | | - C Cepeda
- Rutgers, The State University of New Jersey, 170 Frelinghuysen Rd, Room 204, Piscataway, NJ, 08854, USA
| | | | | | - P Ohman-Strickland
- Rutgers, The State University of New Jersey, 170 Frelinghuysen Rd, Room 204, Piscataway, NJ, 08854, USA
| | - F Haynes
- Rutgers, The State University of New Jersey, 170 Frelinghuysen Rd, Room 204, Piscataway, NJ, 08854, USA
| | - N Fiedler
- Rutgers, The State University of New Jersey, 170 Frelinghuysen Rd, Room 204, Piscataway, NJ, 08854, USA
| | - H M Kipen
- Rutgers, The State University of New Jersey, 170 Frelinghuysen Rd, Room 204, Piscataway, NJ, 08854, USA
| | - R J Laumbach
- Rutgers, The State University of New Jersey, 170 Frelinghuysen Rd, Room 204, Piscataway, NJ, 08854, USA.
| |
Collapse
|
25
|
Tiotiu AI, Novakova P, Nedeva D, Chong-Neto HJ, Novakova S, Steiropoulos P, Kowal K. Impact of Air Pollution on Asthma Outcomes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176212. [PMID: 32867076 PMCID: PMC7503605 DOI: 10.3390/ijerph17176212] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022]
Abstract
Asthma is a chronic respiratory disease characterized by variable airflow obstruction, bronchial hyperresponsiveness, and airway inflammation. Evidence suggests that air pollution has a negative impact on asthma outcomes in both adult and pediatric populations. The aim of this review is to summarize the current knowledge on the effect of various outdoor and indoor pollutants on asthma outcomes, their burden on its management, as well as to highlight the measures that could result in improved asthma outcomes. Traffic-related air pollution, nitrogen dioxide and second-hand smoking (SHS) exposures represent significant risk factors for asthma development in children. Nevertheless, a causal relation between air pollution and development of adult asthma is not clearly established. Exposure to outdoor pollutants can induce asthma symptoms, exacerbations and decreases in lung function. Active tobacco smoking is associated with poorer asthma control, while exposure to SHS increases the risk of asthma exacerbations, respiratory symptoms and healthcare utilization. Other indoor pollutants such as heating sources and molds can also negatively impact the course of asthma. Global measures, that aim to reduce exposure to air pollutants, are highly needed in order to improve the outcomes and management of adult and pediatric asthma in addition to the existing guidelines.
Collapse
Affiliation(s)
- Angelica I. Tiotiu
- Department of Pulmonology, University Hospital of Nancy, 54395 Nancy, France
- Development of Adaptation and Disadvantage, Cardiorespiratory Regulations and Motor Control (EA 3450 DevAH), University of Lorraine, 54395 Nancy, France
- Correspondence: ; Tel.: +33-383-154-299
| | - Plamena Novakova
- Clinic of Clinical Allergy, Medical University, 1000 Sofia, Bulgaria;
| | | | - Herberto Jose Chong-Neto
- Division of Allergy and Immunology, Department of Pediatrics, Federal University of Paraná, Curitiba 80000-000, Brazil;
| | - Silviya Novakova
- Allergy Unit, Internal Consulting Department, University Hospital “St. George”, 4000 Plovdiv, Bulgaria;
| | - Paschalis Steiropoulos
- Department of Respiratory Medicine, Medical School, Democritus University of Thrace, University General Hospital Dragana, 68100 Alexandroupolis, Greece;
| | - Krzysztof Kowal
- Department of Allergology and Internal Medicine, Medical University of Bialystok, 15-037 Bialystok, Poland;
| |
Collapse
|
26
|
Huff RD, Carlsten C, Hirota JA. An update on immunologic mechanisms in the respiratory mucosa in response to air pollutants. J Allergy Clin Immunol 2020; 143:1989-2001. [PMID: 31176381 DOI: 10.1016/j.jaci.2019.04.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/16/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022]
Abstract
Every day, we breathe in more than 10,000 L of air that contains a variety of air pollutants that can pose negative consequences to lung health. The respiratory mucosa formed by the airway epithelium is the first point of contact for air pollution in the lung, functioning as a mechanical and immunologic barrier. Under normal circumstances, airway epithelial cells connected by tight junctions secrete mucus, airway surface lining fluid, host defense peptides, and antioxidants and express innate immune pattern recognition receptors to respond to inhaled foreign substances and pathogens. Under conditions of air pollution exposure, the defenses of the airway epithelium are compromised by reductions in barrier function, impaired host defense to pathogens, and exaggerated inflammatory responses. Central to the mechanical and immunologic changes induced by air pollution are activation of redox-sensitive pathways and a role for antioxidants in normalizing these negative effects. Genetic variants in genes important in epithelial cell function and phenotype contribute to a diversity of responses to air pollution in the population at the individual and group levels and suggest a need for personalized approaches to attenuate the respiratory mucosal immune responses to air pollution.
Collapse
Affiliation(s)
- Ryan D Huff
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chris Carlsten
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeremy A Hirota
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Firestone Institute for Respiratory Health, Division of Respirology, Department of Medicine, Hamilton, Ontario, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
27
|
Qiu H, Xia X, Man CL, Ko FWS, Yim SHL, Kwok TCY, Ho KF. Real-Time Monitoring of the Effects of Personal Temperature Exposure on the Blood Oxygen Saturation Level in Elderly People with and without Chronic Obstructive Pulmonary Disease: A Panel Study in Hong Kong. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6869-6877. [PMID: 32363866 DOI: 10.1021/acs.est.0c01799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Few studies have investigated the short-term effect of personal temperature exposure on blood oxygen saturation (SpO2). We conducted this longitudinal panel study with real-time monitoring of SpO2 and environmental exposure for 3 continuous days for 20 patients with chronic obstructive pulmonary disease (COPD) and 20 healthy volunteers in Hong Kong, to explore the time course (from minutes to hours) of change in SpO2 in response to temperature in elderly people. We employed a generalized additive mixed model to evaluate the acute effects of personal temperature exposure on changes in SpO2 and risk of oxygen desaturation while adjusting for seasonality, environmental co-exposures, and personal characteristics. We observed a concurrent decline in SpO2 by 0.27% (95% confidence interval [CI]: 0.22-0.32%) and an increase in the risk of oxygen desaturation by an OR of 1.14 (95% CI, 1.10-1.18) associated with a 1 °C increase in personal temperature, and the association lasted over several hours. Results showed that the decline in SpO2 in elderly people was associated with an increase in personal temperature exposure within minutes to hours, particularly in women and male patients with COPD. Temperature-induced oxygen desaturation may play a pivotal role in COPD exacerbation.
Collapse
Affiliation(s)
- Hong Qiu
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, HKSAR, China
| | - Xi Xia
- School of Public Health and Primary Care, The Chinese University of Hong Kong, HKSAR, China
| | - Chung Ling Man
- School of Public Health and Primary Care, The Chinese University of Hong Kong, HKSAR, China
| | - Fanny W S Ko
- Division of Respiratory Medicine, Faculty of Medicine, The Chinese University of Hong Kong, HKSAR, China
| | - Steve H L Yim
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, HKSAR, China
- Department of Geography and Resource Management, The Chinese University of Hong Kong, HKSAR, China
| | - Timothy C Y Kwok
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, HKSAR, China
| | - Kin-Fai Ho
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, HKSAR, China
- School of Public Health and Primary Care, The Chinese University of Hong Kong, HKSAR, China
| |
Collapse
|
28
|
Yao M, Weschler CJ, Zhao B, Zhang L, Ma R. Breathing-rate adjusted population exposure to ozone and its oxidation products in 333 cities in China. ENVIRONMENT INTERNATIONAL 2020; 138:105617. [PMID: 32155513 DOI: 10.1016/j.envint.2020.105617] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 05/28/2023]
Abstract
While PM2.5 (particles with aerodynamic diameter less than 2.5 µm) concentrations in China are beginning to decline because of pollution abatement measures, ozone (O3) concentrations continue to rise. In this study, we have used a Monte Carlo approach to estimate breathing-rate adjusted (BRA) population exposure to ozone and its oxidation products based on hourly O3 measurements collected in 2017 from monitoring stations in 333 Chinese cities. The median measured outdoor O3 concentration in these cities was 31 ppb, while the median calculated indoor concentrations of ozone and ozone-derived oxidation products were 7.5 ppb and 21 ppb, respectively. The median BRA O3 exposure concentration was 12 ppb, ranging from 2.2 ppb to 18 ppb among the cities. Eastern and central cities had higher exposure concentrations, while northeastern and western cities had lower. On average, the residents of these cities spent 88% of their time indoors. Consequently, even with breathing rate adjustments, indoor O3 exposure averaged 50% of the total O3 exposure nationwide. The median BRA exposure concentration for ozone-derived products was 18 ppb, ranging from 4.5 ppb to 32 ppb among the cities. On average, BRA exposure concentrations were 1.6 times larger for oxidation products than for ozone, while seasonal variations of exposure concentrations were smaller for oxidation products than for ozone. As many of the products of indoor ozone chemistry are toxic, the health consequences of exposure to such products should be further investigated.
Collapse
Affiliation(s)
- Mingyao Yao
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China
| | - Charles J Weschler
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; International Centre for Indoor Environment and Energy, Technical University of Denmark, Lyngby, Denmark.
| | - Bin Zhao
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China.
| | - Lin Zhang
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, China
| | - Rui Ma
- Department of Electronic Engineering, Tsinghua University, China
| |
Collapse
|
29
|
Fu L, Yang X, Liu X, Yu G, Wang Z. Prenatal O 3 exposure increases the severity of OVA-induced asthma in offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109867. [PMID: 31689658 DOI: 10.1016/j.ecoenv.2019.109867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Accumulating epidemiological studies showed that prenatal and early life exposure to ambient air pollution was important contributor to the development of childhood asthma. However, the effects and mechanisms of prenatal exposure to ozone (O3), a type of ambient air pollution, on the progression of asthma in offspring remain unclear. OBJECTIVE This study aimed to determine the effects and mechanism of asthma in offspring after prenatal O3 exposure. METHODS Pregnant BALB/c mice were exposed to O3 or air on gestational days (GDs) 13-18. Their offspring were sensitized and challenged to ovalbumin (OVA) to establish asthma model, and the asthma features were evaluated. The splenic natural killer (NK) cells in the offspring were measured to explore the mechanism on the effects of asthma in the offspring. The responses of the pregnant mice and dams after O3 exposure were evaluated. RESULTS Airway inflammation, mucus secretion, OVA-specific immunoglobulin (Ig) E, T helper (Th) 2-skewed response, the frequency of CD3ε-CD49b+ splenic NK cells, the expression of tumor necrosis factor (TNF)-α, and IL (interleukin)-17 were significantly exacerbated in the OVA-induced asthma offspring after prenatal O3 exposure. In addition, airway inflammation, a lower number of CD3ε-CD49b+ splenic NK cells, and systemic oxidative stress were caused at the end of pregnancy after O3 exposure, which did not recover at the end of lactation for the first two responses. CONCLUSIONS Prenatal O3 exposure increased the severity of OVA-induced asthma in the offspring, which might be directly induced by CD3ε-CD49b+ splenic NK cells in the offspring and indirectly related to the damaged maternal immune system.
Collapse
Affiliation(s)
- Lingling Fu
- Department of Occupational and Environmental Health, School of Public Health, Shandong University, Jinan, 250000, Shandong, China
| | - Xiwei Yang
- Department of Occupational and Environmental Health, School of Public Health, Shandong University, Jinan, 250000, Shandong, China
| | - Xinai Liu
- Department of Occupational and Environmental Health, School of Public Health, Shandong University, Jinan, 250000, Shandong, China
| | - Gongchang Yu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China
| | - Zhiping Wang
- Department of Occupational and Environmental Health, School of Public Health, Shandong University, Jinan, 250000, Shandong, China.
| |
Collapse
|
30
|
Yang L, Ma J, Li X, He G, Zhang C, He H. Improving the catalytic performance of ozone decomposition over Pd-Ce-OMS-2 catalysts under harsh conditions. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01298j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Durable Pd-Ce-OMS-2 catalysts for ozone catalytic decomposition under harsh conditions were successfully prepared via a simple one-step hydrothermal process.
Collapse
Affiliation(s)
- Li Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Jinzhu Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Xiaotong Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Guangzhi He
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| |
Collapse
|
31
|
Yang L, Ma J, Li X, Zhang C, He H. Enhancing Oxygen Vacancies of Ce-OMS-2 via Optimized Hydrothermal Conditions to Improve Catalytic Ozone Decomposition. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05967] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Li Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Engineering & Technology Research Center for Environmental Protection Materials and Equipment of Jiangxi Province, Pingxiang University, Pingxiang 337055, China
| | - Jinzhu Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaotong Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Overexpression of Inducible Nitric Oxide Synthase in Allergic and Nonallergic Nasal Polyp. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7506103. [PMID: 31827697 PMCID: PMC6885221 DOI: 10.1155/2019/7506103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/15/2019] [Accepted: 05/27/2019] [Indexed: 11/18/2022]
Abstract
Sinonasal polyps are very common benign lesions of the nasal mucosa. Most of nasal polyps (NP) are idiopathic, and the pathophysiology of this disease is still incompletely understood. Nitric oxide (NO) is a reactive molecule generated by nitric oxide synthase (NOS). NO has been identified as an important mediator in airway function and pathogenesis of several respiratory system diseases. Histological and genetical expression of iNOS was detected to evaluate the role of NO in the pathogenesis of allergic (ANP) and nonallergic nasal polyps (NANP). Forty patients with nasal polyps (20 allergic and 20 nonallergic) were identified by history, clinical examination, and investigation. NPs were obtained from the middle turbinate (MT) during concha bullosa surgery. Twenty normal MT nasal tissues were taken as the control from patients undergoing concha bullosa surgery, without any evidence of allergy or inflammation. A nasal polyp specimen from each patient was subjected for immune-histochemical study followed by histological examination to detect the expression of iNOS. RT-PCR was used to evaluate the iNOS gene expression in isolated tissues. The expression of iNOS in both epithelial and stromal layers was greater in NP than in MT tissues. The ANP group showed more iNOS expression than those of the NANP group. The relative mRNA levels of iNOS gene were significantly higher in ANP (2.5-fold) compared to the normal (1.02-fold, P < 0.001) and NANP (1.5-fold, P < 0.01) groups. NP exhibited a significantly high expression of iNOS at both histological and genetical levels. NO might be an essential factor in the life history of NP. Further studies in a larger sample size are required to explain the probable mechanisms of NO in pathogenesis of NP.
Collapse
|
33
|
Lim CC, Hayes RB, Ahn J, Shao Y, Silverman DT, Jones RR, Garcia C, Bell ML, Thurston GD. Long-Term Exposure to Ozone and Cause-Specific Mortality Risk in the United States. Am J Respir Crit Care Med 2019; 200:1022-1031. [PMID: 31051079 PMCID: PMC6794108 DOI: 10.1164/rccm.201806-1161oc] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 05/03/2019] [Indexed: 01/18/2023] Open
Abstract
Rationale: Many studies have linked short-term exposure to ozone (O3) with morbidity and mortality, but epidemiologic evidence of associations between long-term O3 exposure and mortality is more limited.Objectives: To investigate associations of long-term (annual or warm season average of daily 8-h maximum concentrations) O3 exposure with all-cause and cause-specific mortality in the NIH-AARP Diet and Health Study, a large prospective cohort of U.S. adults with 17 years of follow-up from 1995 to 2011.Methods: The cohort (n = 548,780) was linked to census tract-level estimates for O3. Associations between long-term O3 exposure (averaged values from 2002 to 2010) and multiple causes of death were evaluated using multivariate Cox proportional hazards models, adjusted for individual- and census tract-level covariates, and potentially confounding copollutants and temperature.Measurements and Main Results: Long-term annual average exposure to O3 was significantly associated with deaths caused by cardiovascular disease (per 10 ppb; hazard ratio [HR], 1.03; 95% confidence interval [CI], 1.01-1.06), ischemic heart disease (HR, 1.06; 95% CI, 1.02-1.09), respiratory disease (HR, 1.04; 95% CI, 1.00-1.09), and chronic obstructive pulmonary disease (HR, 1.09; 95% CI, 1.03-1.15) in single-pollutant models. The results were robust to alternative models and adjustment for copollutants (fine particulate matter and nitrogen dioxide), although some evidence of confounding by temperature was observed. Significantly elevated respiratory disease mortality risk associated with long-term O3 exposure was found among those living in locations with high temperature (Pinteraction < 0.05).Conclusions: This study found that long-term exposure to O3 is associated with increased risk for multiple causes of mortality, suggesting that establishment of annual and/or seasonal federal O3 standards is needed to more adequately protect public health from ambient O3 exposures.
Collapse
Affiliation(s)
| | - Richard B. Hayes
- Department of Environmental Medicine and
- Department of Population Health, New York University School of Medicine, New York, New York
| | - Jiyoung Ahn
- Department of Environmental Medicine and
- Department of Population Health, New York University School of Medicine, New York, New York
| | - Yongzhao Shao
- Department of Environmental Medicine and
- Department of Population Health, New York University School of Medicine, New York, New York
| | - Debra T. Silverman
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Rena R. Jones
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Cynthia Garcia
- California Air Resources Board, Sacramento, California; and
| | - Michelle L. Bell
- School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut
| | - George D. Thurston
- Department of Environmental Medicine and
- Department of Population Health, New York University School of Medicine, New York, New York
| |
Collapse
|
34
|
Jiang Y, Niu Y, Xia Y, Liu C, Lin Z, Wang W, Ge Y, Lei X, Wang C, Cai J, Chen R, Kan H. Effects of personal nitrogen dioxide exposure on airway inflammation and lung function. ENVIRONMENTAL RESEARCH 2019; 177:108620. [PMID: 31400563 DOI: 10.1016/j.envres.2019.108620] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Few epidemiological studies have evaluated the respiratory effects of personal exposure to nitrogen dioxide (NO2), a major traffic-related air pollutant. The biological pathway for these effects remains unknown. OBJECTIVES To evaluate the short-term effects of personal NO2 exposure on lung function, fractional exhaled nitric oxide (FeNO) and DNA methylation of genes involved. METHODS We conducted a longitudinal panel study among 40 college students with four repeated measurements in Shanghai from May to October in 2016. We measured DNA methylation of the key encoding genes of inducible nitric oxide synthase (NOS2A) and arginase (ARG2). We applied linear mixed-effect models to assess the effects of NO2 on respiratory outcomes. RESULTS Personal exposure to NO2 was 27.39 ± 23.20 ppb on average. In response to a 10-ppb increase in NO2 exposure, NOS2A methylation (%5 mC) decreased 0.19 at lag 0 d, ARG2 methylation (%5 mC) increased 0.21 and FeNO levels increased 2.82% at lag 1 d; and at lag 2 d the percentage of forced vital capacity, forced expiratory volume in 1 s and peak expiratory flow in predicted values decreased 0.12, 0.37 and 0.67, respectively. The model performance was better compared with those estimated using fixed-site measurements. These effects were robust to the adjustment for co-pollutants and weather conditions. CONCLUSIONS Our study suggests that short-term personal exposure to NO2 is associated with NOS2A hypomethylation, ARG2 hypermethylation, respiratory inflammation and lung function impairment. The use of personal measurements may better predict the respiratory effects of NO2.
Collapse
Affiliation(s)
- Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yongjie Xia
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Zhijing Lin
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Weidong Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yihui Ge
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Xiaoning Lei
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Cuiping Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai, 200030, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, 201102, China.
| |
Collapse
|
35
|
Xiang J, Weschler CJ, Zhang J, Zhang L, Sun Z, Duan X, Zhang Y. Ozone in urban China: Impact on mortalities and approaches for establishing indoor guideline concentrations. INDOOR AIR 2019; 29:604-615. [PMID: 31077433 DOI: 10.1111/ina.12565] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/12/2019] [Accepted: 05/07/2019] [Indexed: 05/03/2023]
Abstract
Reducing indoor ozone levels may be an effective strategy to reduce total exposure and associated mortality. Here we estimate (a) premature mortalities attributable to ozone for China's urban population ≥25 years of age; (b) the fraction of total exposure occurring indoors; and (c) mortalities that can be potentially avoided through meeting current and more stringent indoor ozone standards/guidelines based on 1-hour daily maxima. To estimate ozone-attributable premature mortalities, we used hourly outdoor ozone concentrations measured at 1497 monitoring stations located in 339 Chinese cities and a published concentration-response model. We proceeded to estimate province-specific infiltration factors and co-occurring hourly indoor ozone concentrations. For the year 2015, we estimated that indoor exposures accounted for 59% (95% confidence interval (CI): 26%-79%) of the total ozone exposure that resulted in 70800 (95% CI: 35 900-137 700) premature all-cause mortalities in urban China. If the current Chinese indoor ozone standards (80 ppbv (160 µg/m3 ); 56 ppbv (112 µg/m3 )) were met, the mean estimates of reduction in mortalities would be indistinguishable from zero. With stricter 1-hour indoor ozone guidelines, the expected mortality reductions increase exponentially per unit decrease in indoor ozone. The analysis in this paper should help facilitate formulating present and future indoor ozone guidelines.
Collapse
Affiliation(s)
- Jianbang Xiang
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Charles J Weschler
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey
| | - Junfeng Zhang
- Global Health Institute and the Nicholas School of Environment, Duke University, Durham, North Carolina
- Global and Environmental Health, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Lin Zhang
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, Guangdong, China
| | - Zhiwei Sun
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Xiaoli Duan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| |
Collapse
|
36
|
Yu Y, Liu S, Ji J, Huang H. Amorphous MnO2 surviving calcination: an efficient catalyst for ozone decomposition. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01426h] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Calcination at 300 °C of amorphous MnO2 maintains the structure and results in superior stability owing to the enhanced water-resistant ability.
Collapse
Affiliation(s)
- Yi Yu
- School of Environmental Science and Engineering
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Shuilian Liu
- School of Environmental Science and Engineering
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Jian Ji
- School of Environmental Science and Engineering
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Haibao Huang
- School of Environmental Science and Engineering
- Sun Yat-sen University
- Guangzhou 510006
- China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology
| |
Collapse
|
37
|
Xia Y, Niu Y, Cai J, Lin Z, Liu C, Li H, Chen C, Song W, Zhao Z, Chen R, Kan H. Effects of Personal Short-Term Exposure to Ambient Ozone on Blood Pressure and Vascular Endothelial Function: A Mechanistic Study Based on DNA Methylation and Metabolomics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12774-12782. [PMID: 30259740 DOI: 10.1021/acs.est.8b03044] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Short-term exposure to ambient ozone is associated with adverse cardiovascular effects, with inconsistent evidence on the molecular mechanisms. We conducted a longitudinal panel study among 43 college students in Shanghai to explore the effects of personal ozone exposure on blood pressure (BP), vascular endothelial function, and the potential molecular mechanisms. We measured real-time personal ozone exposure levels, serum angiotensin-converting enzyme (ACE) and endothelin-1 (ET-1), and locus-specific DNA methylation of ACE and EDN1 (coding ET-1). We used an untargeted metabolomic approach to explore potentially important metabolites. We applied linear mixed-effect models to examine the effects of ozone on the above biomarkers. An increase in 2 h-average ozone exposure was significantly associated with elevated levels of BP, ACE, and ET-1. ACE and EDN1 methylation decreased with ozone exposure, but the magnitude differed by genomic loci. Metabolomics analysis showed significant changes in serum lipid metabolites following ozone exposure that are involved in maintaining vascular endothelial function. Our findings suggested that acute exposure to ambient ozone can elevate serum levels of ACE and ET-1, decrease their DNA methylation, and alter the lipid metabolism, which may be partly responsible for the effects of ozone on BP and vascular endothelial function.
Collapse
Affiliation(s)
- Yongjie Xia
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment , Fudan University , Shanghai 200032 , China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment , Fudan University , Shanghai 200032 , China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment , Fudan University , Shanghai 200032 , China
| | - Zhijing Lin
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment , Fudan University , Shanghai 200032 , China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment , Fudan University , Shanghai 200032 , China
| | - Huichu Li
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment , Fudan University , Shanghai 200032 , China
| | - Chen Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment , Fudan University , Shanghai 200032 , China
| | - Weimin Song
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment , Fudan University , Shanghai 200032 , China
| | - Zhuohui Zhao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment , Fudan University , Shanghai 200032 , China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment , Fudan University , Shanghai 200032 , China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3) , Fudan University , Shanghai 200032 , China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment , Fudan University , Shanghai 200032 , China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3) , Fudan University , Shanghai 200032 , China
- Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research , Institute of Reproduction and Development, Fudan University , Shanghai 200032 , China
| |
Collapse
|