1
|
Lakkasandrum C, Vasilev M, Holsen TM, Thagard SM. Assessing the efficacy of the Plasma Spinning Disc Reactor (PSDR) in treating undiluted Aqueous Film Forming Foams (AFFFs). JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136805. [PMID: 39672064 DOI: 10.1016/j.jhazmat.2024.136805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/22/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
This work used pulsed electrical discharge plasma to treat undiluted Aqueous Film Forming Foam (AFFF) solution that contained significant quantities of per- and polyfluoroalkyl substances (PFAS). The plasma was generated within a plasma spinning disc reactor (PSDR), which utilizes the electric breakdown of argon gas to create plasma over a thin liquid film generated on a spinning disc. The PSDR performance toward degradation of AFFF constituents such as fluorotelomers, perfluorinated C2-C7 alkyl acids, and unidentified precursors was investigated. The PSDR performance sensitivity to the process parameters, such as reactor electrode design, disc rotational speed, liquid flowrate across the disc, and discharge voltage, was explored. The results indicate degradation of all quantified PFAS with chain length ≥ 4 to below detection limit within a 250 mL sample after 86 h of treatment on a 6.5 cm disc rotating at 200 rpm. The overall PSDR performance was insensitive to the tested process parameters. A direct comparison with a UV/H2O2 process revealed the superior performance of the plasma-based treatment toward degradation of perfluorinated compounds, evidenced by higher precursor removal rates and lower energy consumption. The energy efficiency of the UV/H2O2 system was approximately 100 times lower than that of the plasma process under all conditions. This study confirms that PSDR is a promising technology for effectively remediating PFAS in undiluted AFFF.
Collapse
Affiliation(s)
- Chandana Lakkasandrum
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, 8 Clarkson Avenue, Clarkson University, Potsdam, NY 13699, USA
| | - Mikhail Vasilev
- Department of Chemical and Biomolecular Engineering, 8 Clarkson Avenue, Clarkson University, Potsdam, NY 13699, USA
| | - Thomas M Holsen
- Department of Civil and Environmental Engineering, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Selma Mededovic Thagard
- Department of Chemical and Biomolecular Engineering, 8 Clarkson Avenue, Clarkson University, Potsdam, NY 13699, USA.
| |
Collapse
|
2
|
Yang N, Guan Y, Yang S, Ma Q, Olive C, Fernando S, Zhang W, Holsen TM, Yang Y. PFAS Destruction and Near-Complete Defluorination of Undiluted Aqueous Film-Forming Foams at Ambient Conditions by Piezoelectric Ball Milling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1854-1863. [PMID: 39817583 DOI: 10.1021/acs.est.4c07906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The nonthermal destruction of aqueous film-forming foam (AFFF) stockpiles, one of the major culprits responsible for water and soil contamination by per- and polyfluoroalkyl substances (PFAS), is extremely challenging because of the coexistence of mixed recalcitrant PFAS and complicated organic matrices at extremely high concentrations. To date, the complete defluorination of undiluted AFFF at ambient conditions has not been demonstrated. This study reports a novel piezoelectric ball milling approach for treating AFFF with a total organic fluorine concentration of 9080 mg/L and total organic carbon of 234 g/L. Near-complete defluorination (>95% conversion of organofluorine to fluoride) of undiluted AFFF was achieved by comilling with boron nitride. By carefully examining the experimental data, we identified AFFF liquid film thickness (Z) at the collision interface as a descriptor of treatment performance. We further validated that effective defluorination proceeded when Z was less than the criteria value of 2.3 μm. In light of this new understanding, the addition of SiO2 as a dispersant and the pre-evaporation solvents to reduce Z have been validated as effective strategies to promote AFFF treatment capacity.
Collapse
Affiliation(s)
- Nanyang Yang
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Yunqiao Guan
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Shasha Yang
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
- Institute for a Sustainable Environment, Clarkson University, Potsdam, New York 13699, United States
| | - Qingquan Ma
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Caitlyn Olive
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Sujan Fernando
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Wen Zhang
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Thomas M Holsen
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Yang Yang
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
| |
Collapse
|
3
|
Xiao H, Jiang B, Zhang Z, Zhu C, Chen J, Wang Y, Dong Y, Hao Y, Liu Y, Li Y, Xiao X, He G, Zhou Y, Luo X. New insight of electrogenerated H 2O 2 into oxychlorides inhibition and decontamination promotion: From radical to nonradical pathway during anodic oxidation of high Cl --laden wastewater process. JOURNAL OF HAZARDOUS MATERIALS 2024; 486:136948. [PMID: 39721481 DOI: 10.1016/j.jhazmat.2024.136948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Anodic oxidation (AO) has been extensively hailed as a robust and promising technology for pollutant degradation, but the parasitic formation of oxychlorides (ClOx-) would induce a seriously over-evaluated electrochemical COD removal performance and dramatical biotoxicity increasement of the AO-treated Cl--laden effluents. Herein, we shed new light on the roles of H2O2 high-efficiently electrogenerated in three-dimensional (3D) reactor in inhibiting ClOx- production and promoting pollutant degradation, which has been overlooked in previous literature. Total yield of ClOx- in phenol simulated wastewater containing 30 mM Cl- was dropped from 25 mM and 24.3 mM to only 0.26 mM and 0.23 mM within 120 min after treating by 3D H2O2-involing systems with Ti/Ru-IrO2 and BDD anode, respectively. Meanwhile, the COD removal of 3D Ti/Ru-IrO2-based system was increased by 57 % (85 % removal at 0.011 kWh g-1 COD), comparable to that of 3D BDD-based system (90 % removal at 0.008 kWh g-1 COD), the energy consumption of which were far less than those of conventional 2D and 3D electro-Fenton systems (0.08-0.2 kWh g-1 COD). During degradation process of Cl--bearing phenol by 3D AO-H2O2 systems, the anodically produced species (Cl•, Cl2•-, ClO-) were rapidly quenched by the in-situ electrogenerated H2O2 and then successfully transformed into 1O2. The radical pathway of reaction between H2O2 and Cl•/Cl2•- had a more obviously thermodynamical advantage (∆G = 11.5 kJ mol-1) than nonradical pathway between H2O2 and ClO- (∆G = 171 kJ mol-1) based on DFT analysis. And the steady-state concentration of 1O2 was 8.8 × 10-9 M and 4.2 × 10-10 M in 3D Ti/Ru-IrO2 and BDD-based system, respectively, which collectively took responsibility for the termination of ClOx- production and promotion of organic pollutant degradation. This work provides a technical feasibility in the practical utilization of AO technology to wastewater treatment without toxic oxychloride by-products.
Collapse
Affiliation(s)
- Huiji Xiao
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| | - Zhitong Zhang
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Chenxi Zhu
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Jing Chen
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Yinghong Wang
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Yinghao Dong
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yongjie Hao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yijie Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yifan Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Xiaoyu Xiao
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Genhe He
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Yanbo Zhou
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Xubiao Luo
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China.
| |
Collapse
|
4
|
Rehnstam S, Smith SJ, Ahrens L. Suspect and non-target screening of per- and polyfluoroalkyl substances (PFAS) and other halogenated substances in electrochemically oxidized landfill leachate and groundwater. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136316. [PMID: 39488114 DOI: 10.1016/j.jhazmat.2024.136316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/07/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Release of persistent and potentially toxic per- and polyfluoroalkyl substances (PFAS) and other halogenated compounds into the aqueous environment is an emerging issue and advanced treatment methods are needed for their removal from contaminated water. Destructive treatment methods for PFAS exist, but there is a risk of incomplete degradation, resulting in creation of transformation products during treatment. This study assessed the potential of electrochemical oxidation (EO) for destruction of PFAS and other halogenated compounds, and their transformation products. Suspect and non-target screening were used to explore the chemical space of these samples and identify compounds present before and after the treatment, including transformation products. In total, 21 PFAS classes and 53 individual PFAS were identified using suspect and non-target screening, with confidence level (CL) 3d or higher. Two new classes of PFAS (FASHN and MeOH-FASA) were discovered for the first time. Suspect screening of PFAS revealed that hydro-substituted and ether PFAS could be formed during EO. A total of 12 chlorinated and two brominated compounds were also detected and confirmed with CL 1-3, with six compounds determined to be transformation products. Formation of ammonium oxidation byproducts was hypothesized as being responsible for most identified transformation products formed during EO.
Collapse
Affiliation(s)
- Svante Rehnstam
- Swedish University of Agricultural Sciences (SLU), Department of Aquatic Sciences and Assessment, Lennart Hjelms vag 9, 756 51 Uppsala, Sweden.
| | - Sanne J Smith
- Swedish University of Agricultural Sciences (SLU), Department of Aquatic Sciences and Assessment, Lennart Hjelms vag 9, 756 51 Uppsala, Sweden; Delft University of Technology, Department of Water Management, Stevinweg 1, 2628 CN Delft, the Netherlands
| | - Lutz Ahrens
- Swedish University of Agricultural Sciences (SLU), Department of Aquatic Sciences and Assessment, Lennart Hjelms vag 9, 756 51 Uppsala, Sweden
| |
Collapse
|
5
|
Fang Y, Devon J, Rao D, Liu J, Schaefer C. Destruction of perfluorooctane sulfonic acid (PFOS) in gas sparging incorporated UV-indole reductive treatment system - Benefits and challenges. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135935. [PMID: 39326146 DOI: 10.1016/j.jhazmat.2024.135935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/30/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Ultraviolet (UV) reductive treatment systems that generate hydrated electrons (eaq-) have emerged as a promising technology for the destruction of chemically inert per- and polyfluoroalkyl substances (PFAS). Here, we report on the evaluation of an indole derivative-based UV reductive treatment system that utilizes the amphipathic properties of PFAS at the gas-water interface (via nitrogen (N2) sparging) for more energy-efficient destruction of perfluorooctane sulfonic acid (PFOS). Results from this work illustrated that N2 sparging within UV systems can enhance the degradation and defluorination of PFOS compared to non-sparged conditions, but their overall treatment efficiency is low to industry standard. The inadequate system performance is likely originated from the insufficient accumulation of electron sources at the gas-water interface and their low water solubility level. In addition, carbonate species, which are ubiquitous in natural water and commonly applied as buffers in UV reductive treatment systems, negatively impact PFOS defluorination when indole is the electron source. The species-specific quenching imposed by carbonate species (e.g., HCO3- > H2CO3*) indicates that naturally occurring constituents and varying reactor conditions can substantially influence the remediation of PFOS. Other notable findings in this work include: 1) gramine, a cationic indole derivative, was able to remove > 99 % PFOS mass via electrostatic interaction within 0.5 h of reaction, signifying the electron source's structural property importance in UV reductive treatment systems, and 2) energy consumption calculations showed indole species are less energy-efficient as electron sources for PFOS destruction comparing to sulfite-iodide, but performance tradeoffs exist in both systems. The results of this work revealed both the benefits and challenges of utilizing N2 sparging and indole derivatives in UV-PFAS reductive treatment processes and provided critical information needed to improve the prediction and design of similar PFAS destruction technologies.
Collapse
Affiliation(s)
- Yida Fang
- Haley & Aldrich, 3131 Elliot Ave, Suite 600, Seattle, WA 98121, United States.
| | - Julie Devon
- CDM Smith, 14432 SE Eastgate Way, #100, Bellevue, WA 98007, United States
| | - Dandan Rao
- University of California, Riverside, 900 University Ave, Riverside, CA 92521, United States
| | - Jinyong Liu
- University of California, Riverside, 900 University Ave, Riverside, CA 92521, United States
| | - Charles Schaefer
- CDM Smith, 110 Fieldcrest Ave, #8, Edison, NJ 08837, United States
| |
Collapse
|
6
|
Fennell BD, Chavez S, McKay G. Destruction of Per- and Polyfluoroalkyl Substances in Reverse Osmosis Concentrate Using UV-Advanced Reduction Processes. ACS ES&T WATER 2024; 4:4818-4827. [PMID: 39539762 PMCID: PMC11555674 DOI: 10.1021/acsestwater.4c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
UV-advanced reduction processes (UV-ARP), characterized by the strongly reducing aqueous electron (eaq -), have been shown to degrade perfluoroalkyl and polyfluoroalkyl substances (PFAS). Due to the high cost of PFAS destruction technologies, concentrated waste streams derived from physical treatment processes, such as ion exchange or membrane concentrates, are promising targets for implementation of these technologies. However, there are limited studies on the application of UV-ARP for PFAS destruction in concentrated waste streams. This study evaluates the effectiveness of the UV/sulfite ARP in reverse osmosis concentrate (ROC) containing high concentrations of dissolved organic carbon (DOC), nitrate, and carbonate species, spiked with mg/L concentrations of perfluorooctanesulfonic acid, perfluorobutanesulfonic acid, perfluorooctanoic acid, and perfluorobutanoic acid. We demonstrate that hardness removal and preoxidation of ROC with UV/persulfate enables >90% PFAS defluorination within 24 h of subsequent UV/sulfite treatment, a 3-fold enhancement in defluorination % compared to UV/sulfite treatment without preoxidation. This enhancement is shown to result from abatement of the light shielding and eaq - scavenging capacity of DOC during UV/persulfate oxidation. Collectively, these results demonstrate that appropriate pretreatment steps increase the effectiveness of PFAS destruction using UV-ARP, supporting the application of UV-ARP for PFAS destruction in ROC and other concentrated waste streams.
Collapse
Affiliation(s)
- Benjamin D. Fennell
- Zachry
Department of Civil & Environmental Engineering Texas A&M
University, College
Station, Texas 77845, United States
- Department
of Civil & Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37916, United States
| | - Shawnee Chavez
- Zachry
Department of Civil & Environmental Engineering Texas A&M
University, College
Station, Texas 77845, United States
| | - Garrett McKay
- Zachry
Department of Civil & Environmental Engineering Texas A&M
University, College
Station, Texas 77845, United States
| |
Collapse
|
7
|
Zhang H, Chen JX, Qu JP, Kang YB. Photocatalytic low-temperature defluorination of PFASs. Nature 2024; 635:610-617. [PMID: 39567791 DOI: 10.1038/s41586-024-08179-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 10/08/2024] [Indexed: 11/22/2024]
Abstract
Polyfluoroalkyl and perfluoroalkyl substances (PFASs) are found in many everyday consumer products, often because of their high thermal and chemical stabilities, as well as their hydrophobic and oleophobic properties1. However, the inert carbon-fluorine (C-F) bonds that give PFASs their properties also provide resistance to decomposition through defluorination, leading to long-term persistence in the environment, as well as in the human body, raising substantial safety and health concerns1-5. Despite recent advances in non-incineration approaches for the destruction of functionalized PFASs, processes for the recycling of perfluorocarbons (PFCs) as well as polymeric PFASs such as polytetrafluoroethylene (PTFE) are limited to methods that use either elevated temperatures or strong reducing reagents. Here we report the defluorination of PFASs with a highly twisted carbazole-cored super-photoreductant KQGZ. A series of PFASs could be defluorinated photocatalytically at 40-60 °C. PTFE gave amorphous carbon and fluoride salts as the major products. Oligomeric PFASs such as PFCs, perfluorooctane sulfonic acid (PFOS), polyfluorooctanoic acid (PFOA) and derivatives give carbonate, formate, oxalate and trifluoroacetate as the defluorinated products. This allows for the recycling of fluorine in PFASs as inorganic fluoride salt. The mechanistic investigation reveals the difference in reaction behaviour and product components for PTFE and oligomeric PFASs. This work opens a window for the low-temperature photoreductive defluorination of the 'forever chemicals' PFASs, especially for PTFE, as well as the discovery of new super-photoreductants.
Collapse
Affiliation(s)
- Hao Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Jin-Xiang Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China.
| | - Yan-Biao Kang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
8
|
Modiri M, Sasi PC, Thompson KA, Lee LS, Marjanovic K, Hystad G, Khan K, Norton J. State of the science and regulatory acceptability for PFAS residual management options: PFAS disposal or destruction options. CHEMOSPHERE 2024; 368:143726. [PMID: 39532253 DOI: 10.1016/j.chemosphere.2024.143726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/25/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
This systematic review covers the urgent challenges posed by per- and polyfluoroalkyl substances (PFAS) in managing residuals from municipal, industrial, and waste treatment sources. It covers regulatory considerations, treatment technologies, residual management strategies, and critical conclusions and recommendations. A rigorous methodology was employed, utilizing scientific search engines and a wide array of peer-reviewed journal articles, technical reports, and regulatory guidance, to ensure the inclusion of the most relevant and up-to-date information on PFAS management of impacted residuals. The increasing public and regulatory focus underscores the persistence and environmental impact of PFAS. Emerging technologies for removing and sequestrating PFAS from environmental media are evaluated, and innovative destruction methods for addressing the residual media and the concentrated waste streams generated from such treatment processes are reviewed. Additionally, the evolving regulatory landscape in the United States is summarized and insights into the complexities of PFAS in residual management are discussed. Overall, this systematic review serves as a vital resource to inform stakeholders, guide research, and facilitate responsible PFAS management, emphasizing the pressing need for effective residual management solutions amidst evolving regulations and persistent environmental threats.
Collapse
Affiliation(s)
- Mahsa Modiri
- EA Engineering, Science, and Technology, Inc., PBC, 225 Schilling Circle, Suit #400, Hunt Valley, MD, 21031, United States.
| | - Pavankumar Challa Sasi
- EA Engineering, Science, and Technology, Inc., PBC, 225 Schilling Circle, Suit #400, Hunt Valley, MD, 21031, United States
| | - Kyle A Thompson
- Carollo Engineers, Quarry Oaks II, Stonelake Blvd Bldg. 2, Ste. 126, Austin, TX, 78759, United States
| | - Linda S Lee
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, United States
| | - Katie Marjanovic
- Los Angeles County Sanitation Districts, 1955 Workman Mill Rd, Whittier, CA, 90601, United States
| | - Graeme Hystad
- Metro Vancouver, Vancouver, British Columbia, Canada
| | - Kamruzzaman Khan
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, United States
| | - John Norton
- Great Lakes Water Authority, Water Board Building, 735 Randolph Street, Detroit, MI, 48226, United States
| |
Collapse
|
9
|
Zeng Y, Dai Y, Yin L, Huang J, Hoffmann MR. Rethinking alternatives to fluorinated pops in aqueous environment and corresponding destructive treatment strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174200. [PMID: 38936705 DOI: 10.1016/j.scitotenv.2024.174200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/25/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Alternatives are being developed to replace fluorinated persistent organic pollutants (POPs) listed in the Stockholm Convention, bypass environmental regulations, and overcome environmental risks. However, the extensive usage of fluorinated POPs alternatives has revealed potential risks such as high exposure levels, long-range transport properties, and physiological toxicity. Therefore, it is imperative to rethink the alternatives and their treatment technologies. This review aims to consider the existing destructive technologies for completely eliminating fluorinated POPs alternatives from the earth based on the updated classification and risks overview. Herein, the types of common alternatives were renewed and categorized, and their risks to the environment and organisms were concluded. The efficiency, effectiveness, energy utilization, sustainability, and cost of various degradation technologies in the treatment of fluorinated POPs alternatives were reviewed and evaluated. Meanwhile, the reaction mechanisms of different fluorinated POPs alternatives are systematically generalized, and the correlation between the structure of alternatives and the degradation characteristics was discussed, providing mechanistic insights for their removal from the environment. Overall, the review supplies a theoretical foundation and reference for the control and treatment of fluorinated POPs alternatives pollution.
Collapse
Affiliation(s)
- Yuxin Zeng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | - Yunrong Dai
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Lifeng Yin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | - Jun Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), School of Environment, POPs Research Center, Tsinghua University, Beijing 100084, PR China.
| | - Michael R Hoffmann
- Department of Environmental Science & Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| |
Collapse
|
10
|
Cioni L, Nikiforov V, Benskin JP, Coêlho ACM, Dudášová S, Lauria MZ, Lechtenfeld OJ, Plassmann MM, Reemtsma T, Sandanger TM, Herzke D. Combining Advanced Analytical Methodologies to Uncover Suspect PFAS and Fluorinated Pharmaceutical Contributions to Extractable Organic Fluorine in Human Serum (Tromsø Study). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12943-12953. [PMID: 38985529 PMCID: PMC11271008 DOI: 10.1021/acs.est.4c03758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
A growing number of studies have reported that routinely monitored per- and polyfluoroalkyl substances (PFAS) are not sufficient to explain the extractable organic fluorine (EOF) measured in human blood. In this study, we address this gap by screening pooled human serum collected over 3 decades (1986-2015) in Tromsø (Norway) for >5000 PFAS and >300 fluorinated pharmaceuticals. We combined multiple analytical techniques (direct infusion Fourier transform ion cyclotron resonance mass spectrometry, liquid chromatography-Orbitrap-high-resolution mass spectrometry, and total oxidizable precursors assay) in a three-step suspect screening process which aimed at unequivocal suspect identification. This approach uncovered the presence of one PFAS and eight fluorinated pharmaceuticals (including some metabolites) in human serum. While the PFAS suspect only accounted for 2-4% of the EOF, fluorinated pharmaceuticals accounted for 0-63% of the EOF, and their contribution increased in recent years. Although fluorinated pharmaceuticals often contain only 1-3 fluorine atoms, our results indicate that they can contribute significantly to the EOF. Indeed, the contribution from fluorinated pharmaceuticals allowed us to close the organofluorine mass balance in pooled serum from 2015, indicating a good understanding of organofluorine compounds in humans. However, a portion of the EOF in human serum from 1986 and 2007 still remained unexplained.
Collapse
Affiliation(s)
- Lara Cioni
- NILU,
Fram Centre, Tromsø NO-9296, Norway
- Department
of Community Medicine, UiT—the Arctic
University of Norway, Tromsø NO-9037, Norway
| | | | - Jonathan P. Benskin
- Department
of Environmental Science, Stockholm University, Stockholm SE-10691, Sweden
| | | | - Silvia Dudášová
- Helmholtz
Centre for Environmental Research—UFZ, Leipzig DE-04103, Germany
| | - Melanie Z. Lauria
- Department
of Environmental Science, Stockholm University, Stockholm SE-10691, Sweden
| | | | - Merle M. Plassmann
- Department
of Environmental Science, Stockholm University, Stockholm SE-10691, Sweden
| | - Thorsten Reemtsma
- Helmholtz
Centre for Environmental Research—UFZ, Leipzig DE-04103, Germany
| | - Torkjel M. Sandanger
- NILU,
Fram Centre, Tromsø NO-9296, Norway
- Department
of Community Medicine, UiT—the Arctic
University of Norway, Tromsø NO-9037, Norway
| | - Dorte Herzke
- NILU,
Fram Centre, Tromsø NO-9296, Norway
- Norwegian
Institute for Public Health, Oslo NO-0213, Norway
| |
Collapse
|
11
|
Guelfo JL, Ferguson PL, Beck J, Chernick M, Doria-Manzur A, Faught PW, Flug T, Gray EP, Jayasundara N, Knappe DRU, Joyce AS, Meng P, Shojaei M. Lithium-ion battery components are at the nexus of sustainable energy and environmental release of per- and polyfluoroalkyl substances. Nat Commun 2024; 15:5548. [PMID: 38977667 PMCID: PMC11231300 DOI: 10.1038/s41467-024-49753-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/18/2024] [Indexed: 07/10/2024] Open
Abstract
Lithium-ion batteries (LiBs) are used globally as a key component of clean and sustainable energy infrastructure, and emerging LiB technologies have incorporated a class of per- and polyfluoroalkyl substances (PFAS) known as bis-perfluoroalkyl sulfonimides (bis-FASIs). PFAS are recognized internationally as recalcitrant contaminants, a subset of which are known to be mobile and toxic, but little is known about environmental impacts of bis-FASIs released during LiB manufacture, use, and disposal. Here we demonstrate that environmental concentrations proximal to manufacturers, ecotoxicity, and treatability of bis-FASIs are comparable to PFAS such as perfluorooctanoic acid that are now prohibited and highly regulated worldwide, and we confirm the clean energy sector as an unrecognized and potentially growing source of international PFAS release. Results underscore that environmental impacts of clean energy infrastructure merit scrutiny to ensure that reduced CO2 emissions are not achieved at the expense of increasing global releases of persistent organic pollutants.
Collapse
Affiliation(s)
- Jennifer L Guelfo
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX, USA.
| | - P Lee Ferguson
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA.
- Nicholas School of the Environment, Duke University, Durham, NC, USA.
| | | | - Melissa Chernick
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Alonso Doria-Manzur
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX, USA
| | - Patrick W Faught
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
| | | | - Evan P Gray
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX, USA
| | | | - Detlef R U Knappe
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, USA
| | - Abigail S Joyce
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
| | - Pingping Meng
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, USA
- Department of Chemistry, Eastern Carolina University, Greenville, NC, USA
| | - Marzieh Shojaei
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
12
|
Lorah MM, He K, Blaney L, Akob DM, Harris C, Tokranov A, Hopkins Z, Shedd BP. Anaerobic biodegradation of perfluorooctane sulfonate (PFOS) and microbial community composition in soil amended with a dechlorinating culture and chlorinated solvents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172996. [PMID: 38719042 DOI: 10.1016/j.scitotenv.2024.172996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Perfluorooctane sulfonate (PFOS), one of the most frequently detected per- and polyfluoroalkyl substances (PFAS) occurring in soil, surface water, and groundwater near sites contaminated with aqueous film-forming foam (AFFF), has proven to be recalcitrant to many destructive remedies, including chemical oxidation. We investigated the potential to utilize microbially mediated reduction (bioreduction) to degrade PFOS and other PFAS through addition of a known dehalogenating culture, WBC-2, to soil obtained from an AFFF-contaminated site. A substantial decrease in total mass of PFOS (soil and water) was observed in microcosms amended with WBC-2 and chlorinated volatile organic compound (cVOC) co-contaminants - 46.4 ± 11.0 % removal of PFOS over the 45-day experiment. In contrast, perfluorooctanoate (PFOA) and 6:2 fluorotelomer sulfonate (6:2 FTS) concentrations did not decrease in the same microcosms. The low or non-detectable concentrations of potential metabolites in full PFAS analyses, including after application of the total oxidizable precursor assay, indicated that defluorination occurred to non-fluorinated compounds or ultrashort-chain PFAS. Nevertheless, additional research on the metabolites and degradation pathways is needed. Population abundances of known dehalorespirers did not change with PFOS removal during the experiment, making their association with PFOS removal unclear. An increased abundance of sulfate reducers in the genus Desulfosporosinus (Firmicutes) and Sulfurospirillum (Campilobacterota) was observed with PFOS removal, most likely linked to initiation of biodegradation by desulfonation. These results have important implications for development of in situ bioremediation methods for PFAS and advancing knowledge of natural attenuation processes.
Collapse
Affiliation(s)
- Michelle M Lorah
- U.S. Geological Survey, Maryland-Delaware-D.C. Water Science Center, Baltimore, MD 21228, USA.
| | - Ke He
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, Baltimore, MD 21250, USA
| | - Lee Blaney
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, Baltimore, MD 21250, USA
| | - Denise M Akob
- U.S. Geological Survey, Geology, Energy, & Minerals Science Center, Reston, VA 20192, USA
| | - Cassandra Harris
- U.S. Geological Survey, Geology, Energy, & Minerals Science Center, Reston, VA 20192, USA
| | - Andrea Tokranov
- U.S. Geological Survey, New England Water Science Center, Pembroke, NH 03275, USA
| | - Zachary Hopkins
- U.S. Geological Survey, Eastern Ecological Science Center, Kearneysville, WV 25430, USA
| | - Brian P Shedd
- U.S. Army Corps of Engineers, U.S. DOD Environmental Programs Branch, Environmental Division, Headquarters, Washington, D.C. 20314, USA
| |
Collapse
|
13
|
Hughes K, Pineda M, Omanovic S, Yargeau V. Study on the importance of the reductive degradation of GenX in its overall electrochemical degradation process on different cathode materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168415. [PMID: 37944604 DOI: 10.1016/j.scitotenv.2023.168415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Per- and polyfluoro alkylated substances (PFAS) are well known for their recalcitrant nature caused by the abundance of CF bonds. It has been proven that electrochemical degradation is a potentially suitable technique for treating PFAS; however, most studies solely focus on electrochemical oxidation, with limited attention given to electrochemical reduction, and the relative contribution of the two towards the total PFAS degradation has not yet been elucidated. This manuscript reports an investigation on the contribution of electroreduction to the overall electrodegradation of a target PFAS, HFPO-DA (i.e. GenX), using a boron doped diamond (BDD) anode and different cathode materials (Cu, Ti, Au). The oxidation and reduction reactions were successfully decoupled from each other and studied simultaneously using an electrochemical H-cell with an agar membrane. It was determined that reduction plays a significant role in the overall degradation of GenX for each of the cathodes studied, with its contribution ranging from 52 % for the Ti cathode, to 66 % for Cu, and to 92 % for Au.
Collapse
Affiliation(s)
- Kara Hughes
- Department of Chemical Engineering, McGill University Montreal, Quebec, Canada.
| | - Marco Pineda
- Department of Chemical Engineering, McGill University Montreal, Quebec, Canada
| | - Sasha Omanovic
- Department of Chemical Engineering, McGill University Montreal, Quebec, Canada
| | - Viviane Yargeau
- Department of Chemical Engineering, McGill University Montreal, Quebec, Canada
| |
Collapse
|
14
|
Falzone S, Schaefer C, Siegenthaler E, Keating K, Werkema D, Slater LD. Geophysical signatures of soil AFFF contamination from spectral induced polarization and low field nuclear magnetic resonance methods. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 260:104268. [PMID: 38064801 PMCID: PMC10809598 DOI: 10.1016/j.jconhyd.2023.104268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 01/05/2024]
Abstract
Few field methods are available for characterizing source zones impacted with aqueous film forming foam (AFFF). Non-invasive geophysical characterization of AFFF source zone contamination in situ could assist with the delineation and characterization of these sites, allowing for more informed sampling regimes aimed at quantifying subsurface poly- and perfluoroalkyl substances (PFAS) contamination. We present initial results from the investigation of the sensitivity of two existing surface and borehole-deployable geophysical technologies, spectral induced polarization (SIP), and low field nuclear magnetic resonance (NMR), to soils impacted with AFFF. To investigate the sensitivity of these methods to AFFF-impacted soil, bench-scale column experiments were conducted on samples consisting of natural and synthetic soils and groundwater. While our findings do not show strong evidence of NMR sensitivity to soil PFAS contamination, we do find evidence that SIP has sufficient sensitivity to detect sorption of AFFF constituents (including PFAS) to soils. This finding is based on evidence that AFFF constituents associated with the pore surface produce a measurable polarization response in both freshly impacted synthetic soils and in soils historically impacted with AFFF. Our findings encourage further exploration of the SIP method as a technology for characterizing contaminant concentrations across AFFF source zones.
Collapse
Affiliation(s)
- Samuel Falzone
- Department of Earth and Environmental Sciences, Rutgers University Newark, Newark, NJ, USA.
| | | | - Ethan Siegenthaler
- Department of Earth and Environmental Sciences, Rutgers University Newark, Newark, NJ, USA
| | | | - Dale Werkema
- Environmental Protection Agency (EPA), Newport, OR 97365, USA
| | - Lee D Slater
- Department of Earth and Environmental Sciences, Rutgers University Newark, Newark, NJ, USA; Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA.
| |
Collapse
|
15
|
Sinha S, Chaturvedi A, Gautam RK, Jiang JJ. Molecular Cu Electrocatalyst Escalates Ambient Perfluorooctanoic Acid Degradation. J Am Chem Soc 2023; 145:27390-27396. [PMID: 38064755 DOI: 10.1021/jacs.3c08352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Groundwater reservoirs contaminated with perfluoroalkyl and polyfluoroalkyl substances (PFASs) need purifying remedies. Perfluorooctanoic acid (PFOA) is the most abundant PFAS in drinking water. Although different degradation strategies for PFOA have been explored, none of them disintegrates the PFOA backbone rapidly under mild conditions. Herein, we report a molecular copper electrocatalyst that assists in the degradation of PFOA up to 93% with a 99% defluorination rate within 4 h of cathodic controlled-current electrolysis. The current-normalized pseudo-first-order rate constant has been estimated to be quite high for PFOA decomposition (3.32 L h-1 A-1), indicating its fast degradation at room temperature. Furthermore, comparatively, rapid decarboxylation over the first 2 h of electrolysis has been suggested to be the rate-determining step in PFOA degradation. The related Gibbs free energy of activation has been calculated as 22.6 kcal/mol based on the experimental data. In addition, we did not observe the formation of short-alkyl-chain PFASs as byproducts that are typically found in chain-shortening PFAS degradation routes. Instead, free fluoride (F-), trifluoroacetate (CF3COO-), trifluoromethane (CF3H), and tetrafluoromethane (CF4) were detected as fragmented PFOA products along with the evolution of CO2 using gas chromatography (GC), ion chromatography (IC), and gas chromatography-mass spectrometry (GC-MS) techniques, suggesting comprehensive cleavage of C-C bonds in PFOA. Hence, this study presents an effective method for the rapid degradation of PFOA into small ions/molecules.
Collapse
Affiliation(s)
- Soumalya Sinha
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Ashwin Chaturvedi
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Rajeev K Gautam
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Jianbing Jimmy Jiang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
16
|
Han BC, Liu JS, Bizimana A, Zhang BX, Kateryna S, Zhao Z, Yu LP, Shen ZZ, Meng XZ. Identifying priority PBT-like compounds from emerging PFAS by nontargeted analysis and machine learning models. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122663. [PMID: 37783416 DOI: 10.1016/j.envpol.2023.122663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
As traditional per and polyfluoroalkyl substances (PFAS) are phased out, emerging PFAS are being developed and widely used. However, little is known about their properties, including persistence, bioaccumulation, and toxicity (PBT). Screening for emerging PFAS relies on available chemical inventory databases. Here, we compiled a database of emerging PFAS obtained from nontargeted analysis and assessed their PBT properties using machine learning models, including qualitative graph attention networks, Insubria PBT Index and quantitative EAS-E Suite, VEGA, and ProTox-II platforms. Totally 282 homologues (21.8% of emerging PFAS) were identified as PBT based on the combined qualitative and quantitative prediction, in which 140 homologues were detected in industrial and nonbiological/biological samples, belong to four categories, i.e. modifications of perfluoroalkyl carboxylic acids, perfluoroalkane sulfonamido substances, fluorotelomers and modifications of perfluoroalkyl sulfonic acids. Approximately 10.1% of prioritized emerging PFAS were matched to chemical vendors and 19.6% to patents. Aqueous film-forming foams and fluorochemical factories are the predominant sources for prioritized emerging PFAS. The database and screening results can update the assessment related to legislative bodies such as the US Toxic Substances Control Act and the Stockholm Convention. The combined qualitative and quantitative machine learning models can provide a methodological tool for prioritizing other emerging organic contaminants.
Collapse
Affiliation(s)
- Bao-Cang Han
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Jin-Song Liu
- College of Advanced Materials Engineering, Jiaxing Nanhu University. 572 South Yuexiu Road, Jiaxing, 314001, Zhejiang Province, China
| | - Aaron Bizimana
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; UNEP-Tongji Institute of Environment for Sustainable Development (IESD), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Bo-Xuan Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Sukhodolska Kateryna
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; UNEP-Tongji Institute of Environment for Sustainable Development (IESD), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhen Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Li-Ping Yu
- Suzhou Jingtian Lover Environmental Technology Co. Ltd., Suzhou, 215228, Jiangsu Province, China
| | - Zhong-Zeng Shen
- Suzhou Jingtian Lover Environmental Technology Co. Ltd., Suzhou, 215228, Jiangsu Province, China
| | - Xiang-Zhou Meng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
17
|
Xiao F, Challa Sasi P, Alinezhad A, Sun R, Abdulmalik Ali M. Thermal Phase Transition and Rapid Degradation of Forever Chemicals (PFAS) in Spent Media Using Induction Heating. ACS ES&T ENGINEERING 2023; 3:1370-1380. [PMID: 37705671 PMCID: PMC10497035 DOI: 10.1021/acsestengg.3c00114] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 09/15/2023]
Abstract
In this study, we have developed an innovative thermal degradation strategy for treating per- and polyfluoroalkyl substance (PFAS)-containing solid materials. Our strategy satisfies three criteria: the ability to achieve near-complete degradation of PFASs within a short timescale, nonselectivity, and low energy cost. In our method, a metallic reactor containing a PFAS-laden sample was subjected to electromagnetic induction that prompted a rapid temperature rise of the reactor via the Joule heating effect. We demonstrated that subjecting PFASs (0.001-12 μmol) to induction heating for a brief duration (e.g., <40 s) resulted in substantial degradation (>90%) of these compounds, including recalcitrant short-chain PFASs and perfluoroalkyl sulfonic acids. This finding prompted us to conduct a detailed study of the thermal phase transitions of PFASs using thermogravimetric analysis and differential scanning calorimetry (DSC). We identified at least two endothermic DSC peaks for anionic, cationic, and zwitterionic PFASs, signifying the melting and evaporation of the melted PFASs. Melting and evaporation points of many PFASs were reported for the first time. Our data suggest that the rate-limiting step in PFAS thermal degradation is linked with phase transitions (e.g., evaporation) occurring on different time scales. When PFASs are rapidly heated to temperatures similar to those produced during induction heating, the evaporation of melted PFAS slows down, allowing for the degradation of the melted PFAS.
Collapse
Affiliation(s)
- Feng Xiao
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Pavankumar Challa Sasi
- Department of Civil
Engineering, University of North Dakota, 243 Centennial Drive Stop 8115, Grand Forks, North Dakota 58202, United States
- EA Engineering, Science, and Technology, Inc., Hunt Valley, Maryland 21031, United States
| | - Ali Alinezhad
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Runze Sun
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Mansurat Abdulmalik Ali
- Department of Civil
Engineering, University of North Dakota, 243 Centennial Drive Stop 8115, Grand Forks, North Dakota 58202, United States
| |
Collapse
|
18
|
Gonda N, Choyke S, Schaefer C, Higgins CP, Voelker B. Hydroxyl Radical Transformations of Perfluoroalkyl Acid (PFAA) Precursors in Aqueous Film Forming Foams (AFFFs). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:8053-8064. [PMID: 37200532 DOI: 10.1021/acs.est.2c08689] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Historical releases of aqueous film forming foam (AFFF) are significant sources of poly- and perfluoroalkyl substances (PFASs), including perfluoroalkyl acids (PFAAs) and their precursors, to the environment. While several studies have focused on microbial biotransformation of polyfluorinated precursors to PFAAs, the role of abiotic transformations at AFFF-impacted sites is less clear. Herein, we use photochemically generated hydroxyl radical to demonstrate that environmentally relevant concentrations of hydroxyl radical (•OH) can play a significant role in these transformations. High-resolution mass spectrometry (HRMS) was used to perform targeted analysis, suspect screening, and nontargeted analyses, which were used to identify the major products of AFFF-derived PFASs as perfluorocarboxylic acids, though several potentially semi-stable intermediates were also observed. Using competition kinetics in a UV/H2O2 system, hydroxyl radical rate constants (kOH) for 24 AFFF-derived polyfluoroalkyl precursors were measured to be 0.28 to 3.4 × 109 M-1 s-1. Differences in kOH were observed for compounds with differing headgroups and perfluoroalkyl chain lengths. Also, differences in kOH measured for the only relevant precursor standard available, n-[3-propyl]tridecafluorohexanesulphonamide (AmPr-FHxSA), as compared to AmPr-FHxSA present in AFFF suggest that intermolecular associations in the AFFF matrix may affect kOH. Considering environmentally relevant [•OH]ss, polyfluoroalkyl precursors are expected to exhibit half-lives of ∼8 days in sunlit surface waters and possibly as short as ∼2 h during oxygenation of Fe(II)-rich subsurface systems.
Collapse
Affiliation(s)
- Nicholas Gonda
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Sarah Choyke
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | | | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Bettina Voelker
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
19
|
Hu J, Lyu Y, Chen H, Cai L, Li J, Cao X, Sun W. Integration of target, suspect, and nontarget screening with risk modeling for per- and polyfluoroalkyl substances prioritization in surface waters. WATER RESEARCH 2023; 233:119735. [PMID: 36801580 DOI: 10.1016/j.watres.2023.119735] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Though thousands of per- and polyfluoroalkyl substances (PFAS) have been on the global market, most research focused on only a small fraction, potentially resulting in underestimated environmental risks. Here, we used complementary target, suspect, and nontarget screening for quantifying and identifying the target and nontarget PFAS, respectively, and developed a risk model considering their specific properties to prioritize the PFAS in surface waters. Thirty-three PFAS were identified in surface water in the Chaobai river, Beijing. The suspect and nontarget screening by Orbitrap displayed a sensitivity of > 77%, indicating its good performance in identifying the PFAS in samples. We used triple quadrupole (QqQ) under multiple-reaction monitoring for quantifying PFAS with authentic standards due to its potentially high sensitivity. To quantify the nontarget PFAS without authentic standards, we trained a random forest regression model which presented the differences up to only 2.7 times between measured and predicted response factors (RFs). The maximum/minimum RF in each PFAS class was as high as 1.2-10.0 in Orbitrap and 1.7-22.3 in QqQ. A risk-based prioritization approach was developed to rank the identified PFAS, and four PFAS (i.e., perfluorooctanoic acid, hydrogenated perfluorohexanoic acid, bistriflimide, 6:2 fluorotelomer carboxylic acid) were flagged with high priority (risk index > 0.1) for remediation and management. Our study highlighted the importance of a quantification strategy during environmental scrutiny of PFAS, especially for nontarget PFAS without standards.
Collapse
Affiliation(s)
- Jingrun Hu
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Yitao Lyu
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Huan Chen
- Department of Environmental Engineering and Earth Sciences, Clemson University, SC 29634, USA.
| | - Leilei Cai
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Jie Li
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Xiaoqiang Cao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Weiling Sun
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
20
|
Smith SJ, Lauria M, Ahrens L, McCleaf P, Hollman P, Bjälkefur Seroka S, Hamers T, Arp HPH, Wiberg K. Electrochemical Oxidation for Treatment of PFAS in Contaminated Water and Fractionated Foam-A Pilot-Scale Study. ACS ES&T WATER 2023; 3:1201-1211. [PMID: 37090120 PMCID: PMC10111409 DOI: 10.1021/acsestwater.2c00660] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 05/03/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent synthetic contaminants that are present globally in water and are exceptionally difficult to remove during conventional water treatment processes. Here, we demonstrate a practical treatment train that combines foam fractionation to concentrate PFAS from groundwater and landfill leachate, followed by an electrochemical oxidation (EO) step to degrade the PFAS. The study combined an up-scaled experimental approach with thorough characterization strategies, including target analysis, PFAS sum parameters, and toxicity testing. Additionally, the EO kinetics were successfully reproduced by a newly developed coupled numerical model. The mean total PFAS degradation over the designed treatment train reached 50%, with long- and short-chain PFAS degrading up to 86 and 31%, respectively. The treatment resulted in a decrease in the toxic potency of the water, as assessed by transthyretin binding and bacterial bioluminescence bioassays. Moreover, the extractable organofluorine concentration of the water decreased by up to 44%. Together, these findings provide an improved understanding of a promising and practical approach for on-site remediation of PFAS-contaminated water.
Collapse
Affiliation(s)
- Sanne J. Smith
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07 Uppsala, Sweden
| | - Melanie Lauria
- Department
of Environmental Science, Stockholm University, Svante Arrhenius Väg 8, 10691 Stockholm, Sweden
| | - Lutz Ahrens
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07 Uppsala, Sweden
| | - Philip McCleaf
- Uppsala
Water and Waste AB, P.O. Box 1444, SE-751 44 Uppsala, Sweden
| | | | | | - Timo Hamers
- Amsterdam
Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Hans Peter H. Arp
- Norwegian
Geotechnical Institute (NGI), P.O. Box
3930, Ullevål Stadion, NO-0806 Oslo, Norway
- Department
of Chemistry, Norwegian University of Science
and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Karin Wiberg
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07 Uppsala, Sweden
| |
Collapse
|
21
|
Mirabediny M, Sun J, Yu TT, Åkermark B, Das B, Kumar N. Effective PFAS degradation by electrochemical oxidation methods-recent progress and requirement. CHEMOSPHERE 2023; 321:138109. [PMID: 36787844 DOI: 10.1016/j.chemosphere.2023.138109] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The presence of per- and poly-fluoroalkyl substances (PFASs) in water is of global concern due to their high stability and toxicity even at very low concentrations. There are several technologies for the remediation of PFASs, but most of them are inadequate either due to limited effectiveness, high cost, or production of a large amount of sludge. Electrochemical oxidation (EO) technology shows great potential for large-scale application in the degradation of PFASs due to its simple procedure, low loading of chemicals, and least amount of waste. Here, we have reviewed the recent progress in EO methods for PFAS degradation, focusing on the last 10 years, to explore an efficient, cost-effective, and environmentally benign remediation technology. The effects of important parameters (e.g., anode material, current density, solution pH, electrolyte, plate distance, and electrical connector type) are summarized and evaluated. Also, the energy consumption, the consequence of different PFASs functional groups, and water matrices are discussed to provide an insight that is pivotal for developing new EO materials and technologies. The proposed degradation pathways of shorter-chain PFAS by-products during EO of PFAS are also discussed.
Collapse
Affiliation(s)
- Maryam Mirabediny
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney, 2052, Australia
| | - Jun Sun
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney, 2052, Australia
| | - Tsz Tin Yu
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney, 2052, Australia
| | - Björn Åkermark
- Department of Organic Chemistry, Arrhenius Laboratory Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| | - Biswanath Das
- Department of Organic Chemistry, Arrhenius Laboratory Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden.
| | - Naresh Kumar
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney, 2052, Australia.
| |
Collapse
|
22
|
Ateia M, Chiang D, Cashman M, Acheson C. Total Oxidizable Precursor (TOP) Assay-Best Practices, Capabilities and Limitations for PFAS Site Investigation and Remediation. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2023; 10:292-301. [PMID: 37313434 PMCID: PMC10259459 DOI: 10.1021/acs.estlett.3c00061] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The comprehensive characterization of per- and polyfluoroalkyl substances (PFASs) is necessary for the effective assessment and management of risk at contaminated sites. While current analytical methods are capable of quantitatively measuring a number of specific PFASs, they do not provide a complete picture of the thousands of PFASs that are utilized in commercial products and potentially released into the environment. These unmeasured PFASs include many PFAS precursors, which may be converted into related PFAS chemicals through oxidation. The total oxidizable precursor (TOP) assay offers a means of bridging this gap by oxidizing unknown PFAS precursors and intermediates and converting them into stable PFASs with established analytical standards. The application of the TOP assay to samples from PFAS-contaminated sites has generated several new insights, but it has also presented various technical challenges for laboratories. Despite the increased number of literature studies that include the TOP assay, there is a critical and growing gap in the application of this method beyond researchers in academia. This article outlines the benefits and challenges of using the TOP assay with aqueous samples for site assessments and suggests ways to address some of its limitations.
Collapse
Affiliation(s)
- Mohamed Ateia
- United States Environmental Protection Agency, Center for Environmental Solutions & Emergency Response, Cincinnati, Ohio 45268, United States; Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Dora Chiang
- WSP USA, Atlanta, Georgia 30326, United States
| | - Michaela Cashman
- United States Environmental Protection Agency, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narraganset, Rhode Island 02882, United States
| | - Carolyn Acheson
- United States Environmental Protection Agency, Center for Environmental Solutions & Emergency Response, Cincinnati, Ohio 45268, United States
| |
Collapse
|
23
|
Fang Y, Meng P, Schaefer C, Knappe DRU. Removal and destruction of perfluoroalkyl ether carboxylic acids (PFECAs) in an anion exchange resin and electrochemical oxidation treatment train. WATER RESEARCH 2023; 230:119522. [PMID: 36577256 DOI: 10.1016/j.watres.2022.119522] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/18/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Perfluoroalkyl ether carboxylic acids (PFECAs) are a group of emerging recalcitrant contaminants that are being developed to replace legacy per- and polyfluoroalkyl substances (PFAS) in industrial applications and that are generated as by-products in fluoropolymer manufacturing. Here, we report on the removal and destruction of four structurally different PFECAs using an integrated anion exchange resin (AER) and electrochemical oxidation (ECO) treatment train. Results from this work illustrated that (1) flow-through columns packed with PFAS-selective AERs are highly effective for the removal of PFECAs and (2) PFECA affinity is strongly correlated with their hydrophobic features. Regeneration of the spent resin columns revealed that high percentage (e.g., 80%) of organic cosolvent is necessary for achieving 60-100% PFECA release, and regeneration efficiency was higher for a macroporous resin than a gel-type resin. Treatment of spent regenerants showed (1) >99.99% methanol removal was achieved by distillation, (2) >99.999% conversion of the four studied PFECAs was achieved during the ECO treatment of the still bottoms after 24 hours with an energy per order of magnitude of PFECA removal (EE/O) <1.03 kWh/m3 of total groundwater treated, and (3) >85% of the organic fluorine was recovered as inorganic fluoride. Trifluoroacetic acid (TFA), perfluoropropionic acid (PFPrA), and perfluoro-2-methoxyacetic acid (PFMOAA) were confirmed via high-resolution mass spectrometry as transformation products (TPs) in the treated still bottoms, and two distinctive degradation schemes and four reaction pathways are proposed for the four PFECAs. Lastly, dissolved organic matter (DOM) inhibited uptake, regeneration, and oxidation of PFECAs throughout the treatment train, suggesting pretreatment steps targeting DOM removal can enhance the system's treatment efficiency. Results from this work provide guidelines for developing effective separation-concentration-destruction treatment trains and meaningful insights for achieving PFECA destruction in impacted aquatic systems.
Collapse
Affiliation(s)
- Yida Fang
- CDM Smith, 14432 SE Eastgate Way, #100, Bellevue, Washington 98007, United States.
| | - Pingping Meng
- North Carolina State University, 915 Partners Way, Raleigh, North Carolina 27695, United States
| | - Charles Schaefer
- CDM Smith, 110 Fieldcrest Avenue, #8, Edison, New Jersey 08837, United States
| | - Detlef R U Knappe
- North Carolina State University, 915 Partners Way, Raleigh, North Carolina 27695, United States
| |
Collapse
|
24
|
Zhang W, Wellington TE, Liang Y. Effect of two sorbents on the distribution and transformation of N-ethyl perfluorooctane sulfonamido acetic acid (N-EtFOSAA) in soil-soybean systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120941. [PMID: 36566675 DOI: 10.1016/j.envpol.2022.120941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
The broad application of perfluoroalkyl acid (PFAA) precursors has led to their occurrence in soil, resulting in potential uptake and bioaccumulation in plants. In this study, we investigated the effect of powdered activated carbon (PAC) and montmorillonite on the distribution and transformation of a perfluorooctanesulfonic acid (PFOS) precursor, N-ethyl perfluorooctane sulfonamido acetic acid (N-EtFOSAA), in soil-plant systems. The results showed that N-EtFOSAA at 300 μg/kg was taken up by soybean roots and shoots together with its transformation products (i.e., perfluorooctane sulfonamide (PFOSA), PFOS), while decreasing the biomass of shoots and roots by 47.63% and 61.16%, respectively. PAC amendment significantly reduced the water leachable and methanol extractable N-EtFOSAA and its transformation products in soil. In the presence of soybean and after 60 days, 73.5% of the initially spiked N-EtFOSAA became non-extractable bound residues. Compared to the spiked controls, the PAC addition also decreased the total plant uptake of N-EtFOSAA by 94.96%. In contrast, montmorillonite showed limited stabilization performance for N-EtFOSAA and its transformation products and was ineffective to lower their bioavailability. Overall, the combination of PAC and soybean was found to be effective in immobilizing N-EtFOSAA in soil.
Collapse
Affiliation(s)
- Weilan Zhang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, USA.
| | - Tamia E Wellington
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, USA
| |
Collapse
|
25
|
Wang Y, Ji Y, Tishchenko V, Huang Q. Removing per- and polyfluoroalkyl substances (PFAS) in water by foam fractionation. CHEMOSPHERE 2023; 311:137004. [PMID: 36374630 DOI: 10.1016/j.chemosphere.2022.137004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Treatment of large volumes of waters contaminated by per- and polyfluoroalkyl substances (PFAS) remains a challenge. This work presented a systematic study on PFAS removal by foam fractionation (FF). Experiments were conducted on both laboratory-spiked and environmental water samples containing PFASs. It is found that higher air flow, greater ionic strength, and addition of thickener boosted PFAS removal in the defoamed bottom solutions and intensified enrichment in the collected foam. FF treatments of a landfill leachate, a groundwater contaminated by aqueous film-forming foams, and a wastewater treatment plant effluent sample were evaluated. The removal reached above 70% for most monitored PFASs, except the ones of short alkyl chains. PFAS concentrations in the final collected foams were up to over 30 × than that in the original samples. Analysis using high-resolution mass spectrometry revealed enrichment of non-target PFASs by FF. The results of this study demonstrate great effectiveness of FF in removing most PFASs from waters, producing low-volume, highly concentrated solutions of PFASs in all tested environmental samples.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, 30223, USA
| | - Yuqing Ji
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, 30223, USA
| | - Viktor Tishchenko
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, 30223, USA
| | - Qingguo Huang
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, 30223, USA.
| |
Collapse
|
26
|
Meegoda JN, Bezerra de Souza B, Casarini MM, Kewalramani JA. A Review of PFAS Destruction Technologies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16397. [PMID: 36554276 PMCID: PMC9778349 DOI: 10.3390/ijerph192416397] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/19/2022] [Accepted: 12/02/2022] [Indexed: 05/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a family of highly toxic emerging contaminants that have caught the attention of both the public and private sectors due to their adverse health impacts on society. The scientific community has been laboriously working on two fronts: (1) adapting already existing and effective technologies in destroying organic contaminants for PFAS remediation and (2) developing new technologies to remediate PFAS. A common characteristic in both areas is the separation/removal of PFASs from other contaminants or media, followed by destruction. The widely adopted separation technologies can remove PFASs from being in contact with humans; however, they remain in the environment and continue to pose health risks. On the other hand, the destructive technologies discussed here can effectively destroy PFAS compounds and fully address society's urgent need to remediate this harmful family of chemical compounds. This review reports and compare widely accepted as well as emerging PFAS destruction technologies. Some of the technologies presented in this review are still under development at the lab scale, while others have already been tested in the field.
Collapse
Affiliation(s)
- Jay N. Meegoda
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | | | | | | |
Collapse
|
27
|
Tenorio R, Maizel AC, Schaefer CE, Higgins CP, Strathmann TJ. Application of High-Resolution Mass Spectrometry to Evaluate UV-Sulfite-Induced Transformations of Per- and Polyfluoroalkyl Substances (PFASs) in Aqueous Film-Forming Foam (AFFF). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14774-14787. [PMID: 36162863 DOI: 10.1021/acs.est.2c03228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
UV-sulfite has been shown to effectively degrade per- and polyfluoroalkyl substances (PFASs) in single-solute experiments. We recently reported treatment of 15 PFASs, including perfluoroalkyl sulfonic acids (PFSAs), perfluoroalkyl carboxylic acids (PFCAs), and fluorotelomer sulfonic acids (FTSs), detected in aqueous film-forming foam (AFFF) using high-resolution liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) targeted analysis. Here, we extend the analysis within those original reaction solutions to include the wider set of PFASs in AFFF for which reactivity is largely unknown by applying recently established LC-QTOF-MS suspect screening and semiquantitative analysis protocols. Sixty-eight additional PFASs were detected (15 targeted + 68 suspect screening = 83 PFASs) with semiquantitative analysis, and their behavior was binned on the basis of (1) detection in untreated AFFF, (2) PFAS photogeneration, and (3) reactivity. These 68 structures account for an additional 20% of the total fluorine content in the AFFF (targeted + suspect screening = 57% of total fluorine content). Structure-reactivity trends were also revealed. During treatment, transformations of highly reactive structures containing sulfonamide (-SO2N-) and reduced sulfur groups (e.g., -S- and -SO-) adjacent to the perfluoroalkyl [F(CF2)n-] or fluorotelomer [F(CF2)n(CH2)2-] chain are likely sources of PFCA, PFSA, and FTS generation previously reported during the early stages of reactions. The results also show the character of headgroup moieties adjacent to the F(CF2)n-/F(CF2)n(CH2)2- chain (e.g., sulfur oxidation state, sulfonamide type, and carboxylic acids) and substitution along the F(CF2)n- chain (e.g., H-, ketone, and ether) together may determine chain length-dependent reactivity trends. The results highlight the importance of monitoring PFASs outside conventional targeted analytical methodologies.
Collapse
Affiliation(s)
- Raul Tenorio
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, Illinois 61801, United States
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| | - Andrew C Maizel
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
- Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, D.C. 20057, United States
| | - Charles E Schaefer
- CDM Smith, 110 Fieldcrest Avenue, Edison, New Jersey 08837, United States
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| | - Timothy J Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| |
Collapse
|
28
|
Liu F, Guan X, Xiao F. Photodegradation of per- and polyfluoroalkyl substances in water: A review of fundamentals and applications. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129580. [PMID: 35905606 DOI: 10.1016/j.jhazmat.2022.129580] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent, mobile, and toxic chemicals that are hazardous to human health and the environment. Several countries, including the United States, plan to set an enforceable maximum contamination level for certain PFAS compounds in drinking water sources. Among the available treatment options, photocatalytic treatment is promising for PFAS degradation and mineralization in the aqueous solution. In this review, recent advances in the abatement of PFAS from water using photo-oxidation and photo-reduction are systematically reviewed. Degradation mechanisms of PFAS by photo-oxidation involving the holes (hvb+) and oxidative radicals and photo-reduction using the electrons (ecb-) and hydrated electrons (eaq-) are integrated. The recent development of innovative heterogeneous photocatalysts and photolysis systems for enhanced degradation of PFAS is highlighted. Photodegradation mechanisms of alternative compounds, such as hexafluoropropylene oxide dimer acid (GenX) and chlorinated polyfluorinated ether sulfonate (F-53B), are also critically evaluated. This paper concludes by identifying major knowledge gaps and some of the challenges that lie ahead in the scalability and adaptability issues of photocatalysis for natural water treatment. Development made in photocatalysts design and system optimization forges a path toward sustainable treatment of PFAS-contaminated water through photodegradation technologies.
Collapse
Affiliation(s)
- Fuqiang Liu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaohong Guan
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| | - Feng Xiao
- Department of Civil Engineering, University of North Dakota, 243 Centennial Drive Stop 8115, Grand Forks, ND 58202, United States.
| |
Collapse
|
29
|
Veciana M, Bräunig J, Farhat A, Pype ML, Freguia S, Carvalho G, Keller J, Ledezma P. Electrochemical oxidation processes for PFAS removal from contaminated water and wastewater: fundamentals, gaps and opportunities towards practical implementation. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128886. [PMID: 35436757 DOI: 10.1016/j.jhazmat.2022.128886] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/20/2022] [Accepted: 04/07/2022] [Indexed: 05/27/2023]
Abstract
Electrochemical oxidation (EO) is emerging as one of the most promising methods for the degradation of recalcitrant per- and poly-fluoroalkyl substances (PFASs) in water and wastewater, as these compounds cannot be effectively treated with conventional bio- or chemical approaches. This review examines the state of the art of EO for PFASs destruction, and comprehensively compares operating parameters and treatment performance indicators for both synthetic and real contaminated water and wastewater media. The evaluation shows the need to use environmentally-relevant media to properly quantify the effectiveness/efficiency of EO for PFASs treatment. Additionally, there is currently a lack of quantification of sorption losses, resulting in a likely over-estimation of process' efficiencies. Furthermore, the majority of experimental results to date indicate that short-chain PFASs are the most challenging and need to be prioritized as environmental regulations become more stringent. Finally, and with a perspective towards practical implementation, several operational strategies are proposed, including processes combining up-concentration followed by EO destruction.
Collapse
Affiliation(s)
- Mersabel Veciana
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia.
| | - Jennifer Bräunig
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane QLD 4102, Australia
| | - Ali Farhat
- GHD Pty Ltd, Brisbane QLD 4000, Australia
| | - Marie-Laure Pype
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Stefano Freguia
- Department of Chemical Engineering, The University of Melbourne, Parkville VIC 3010, Australia
| | - Gilda Carvalho
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Jürg Keller
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Pablo Ledezma
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia.
| |
Collapse
|
30
|
Fan X, Jiang Y, Guan X, Bao Y, Gu M, Mumtaz M, Huang J, Yu G. Determination of total reducible organofluorine in PFAS-impacted aqueous samples based on hydrated electron defluorination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154548. [PMID: 35288136 DOI: 10.1016/j.scitotenv.2022.154548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/26/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) is a large group of thousands of anthropogenic chemicals. Recently, measurement of total organic fluorine (TOF) to reflect the total PFASs has been recommended in limits and advisories. In this study, a total reducible organofluorine (TROF) assay is developed based on hydrated electron (eaq-) conversion of PFASs into inorganic fluorine combined with ion chromatograph, which is a common and widespread instrument. The eaq- is generated in UV/sulfite system with alkaline condition, and the concentration of TROF (CF_TROF) is the difference of fluoride concentration before and after assay. Method validation uses perfluorooctanesulfonic acid, perfluorooctanoic acid and their main alternatives, and F- recoveries are 76.6%-101%, except for perfluorobutanesulfonic acid (48.5%). Method application of TROF assay uses industrial surfactant products and fluorochemical industry-contaminated water, meanwhile, target PFAS analysis and total oxidizable precursors (TOP) assay are concurrently conducted. Concentrations of PFASs detected in target analysis and TOP assay were converted to fluorine equivalents concentrations (CF_Target and CF_TOP). ∑CF_Target and ∑CF_TOP account for 0.80%-36% of CF_TROF in industrial samples, 0.12%-54% in environmental water and 9.7%-14% in wastewater. The TROF assay can be used to initially judge whether PFASs contamination occurred near a hotspot with known sources. The CF_TROF could infer the extent of PFAS contamination in PFAS-impacted samples and estimate the fraction of uncharacterized PFAS.
Collapse
Affiliation(s)
- Xueqi Fan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Yiming Jiang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoyu Guan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Yixiang Bao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Mengbin Gu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Mehvish Mumtaz
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Jun Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China.
| | - Gang Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
31
|
Kazwini T, Yadav S, Ibrar I, Al-Juboori RA, Singh L, Ganbat N, Karbassiyazdi E, Samal AK, Subbiah S, Altaee A. Updated review on emerging technologies for PFAS contaminated water treatment. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Field demonstration of coupling ion-exchange resin with electrochemical oxidation for enhanced treatment of per- and polyfluoroalkyl substances (PFAS) in groundwater. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2021.100216] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
33
|
Gao Z, Zhou J, Xue M, Liu S, Guo J, Zhang Y, Cao C, Wang T, Zhu L. Theoretical and experimental insights into the mechanisms of C6/C6 PFPiA degradation by dielectric barrier discharge plasma. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127522. [PMID: 34879517 DOI: 10.1016/j.jhazmat.2021.127522] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/22/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
As an emerging alternative legacy perfluoroalkyl substance, C6/C6 PFPiA (perfluoroalkyl phosphinic acids) has been detected in aquatic environments and causes potential risks to human health. The degradation mechanisms of C6/C6 PFPiA in a dielectric barrier discharge (DBD) plasma system were explored using validated experimental data and density functional theory (DFT) calculations. Approximately 94.5% of C6/C6 PFPiA was degraded by plasma treatment within 15 min at 18 kV. A relatively higher discharge voltage and alkaline conditions favored its degradation. C6/C6 PFPiA degradation was attributed to attacks of •OH, •O2-, and 1O2. Besides PFHxPA and C2 -C6 shorter-chain perfluorocarboxylic acids, several other major intermediates including C4/C6 PFPiA, C4/C4 PFPiA, and C3/C3 PFPiA were identified. According to DFT calculations, the potential energy surface was proposed for possible reactions during C6/C6 PFPiA degradation in the discharge plasma system. Integrating the identified intermediates and DFT results, C6/C6 PFPiA degradation was deduced to occur by stepwise losing CF2, free radical polymerization, and C-C bond cleavage. Furthermore, the DBD plasma treatment process decreased the toxicity of C6/C6 PFPiA to some extent. This study provides a comprehensive understanding of C6/C6 PFPiA degradation by plasma advanced oxidation.
Collapse
Affiliation(s)
- Zhuo Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Mingming Xue
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Siqian Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Jia Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Ying Zhang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, PR China
| | - Chunshuai Cao
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
34
|
Aly NA, Dodds JN, Luo YS, Grimm FA, Foster M, Rusyn I, Baker ES. Utilizing ion mobility spectrometry-mass spectrometry for the characterization and detection of persistent organic pollutants and their metabolites. Anal Bioanal Chem 2022; 414:1245-1258. [PMID: 34668045 PMCID: PMC8727508 DOI: 10.1007/s00216-021-03686-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/12/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
Persistent organic pollutants (POPs) are xenobiotic chemicals of global concern due to their long-range transport capabilities, persistence, ability to bioaccumulate, and potential to have negative effects on human health and the environment. Identifying POPs in both the environment and human body is therefore essential for assessing potential health risks, but their diverse range of chemical classes challenge analytical techniques. Currently, platforms coupling chromatography approaches with mass spectrometry (MS) are the most common analytical methods employed to evaluate both parent POPs and their respective metabolites and/or degradants in samples ranging from d rinking water to biofluids. Unfortunately, different types of analyses are commonly needed to assess both the parent and metabolite/degradant POPs from the various chemical classes. The multiple time-consuming analyses necessary thus present a number of technical and logistical challenges when rapid evaluations are needed and sample volumes are limited. To address these challenges, we characterized 64 compounds including parent per- and polyfluoroalkyl substances (PFAS), pesticides, polychlorinated biphenyls (PCBs), industrial chemicals, and pharmaceuticals and personal care products (PPCPs), in addition to their metabolites and/or degradants, using ion mobility spectrometry coupled with MS (IMS-MS) as a potential rapid screening technique. Different ionization sources including electrospray ionization (ESI) and atmospheric pressure photoionization (APPI) were employed to determine optimal ionization for each chemical. Collectively, this study advances the field of exposure assessment by structurally characterizing the 64 important environmental pollutants, assessing their best ionization sources, and evaluating their rapid screening potential with IMS-MS.
Collapse
Affiliation(s)
- Noor A Aly
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - James N Dodds
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Yu-Syuan Luo
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Fabian A Grimm
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - MaKayla Foster
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
35
|
Deng Y, Liang Z, Lu X, Chen D, Li Z, Wang F. The degradation mechanisms of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) by different chemical methods: A critical review. CHEMOSPHERE 2021; 283:131168. [PMID: 34182635 DOI: 10.1016/j.chemosphere.2021.131168] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a class of artificial compounds comprised of a perfluoroalkyl main chain and a terminal functional group. With them being applied in a wide range of applications, PFASs have drawn increasing regulatory attention and research interests on their reductions and treatments due to their harmful effects on environment and human beings. Among numerous studies, chemical treatments (e.g., photochemical, electrochemical, and thermal technologies) have been proved to be important methods to degradation PFASs. However, the pathways and mechanisms for the degradation of PFASs through these chemical methods still have not been well documented. This article therefore provides a comprehensive review on the degradation mechanisms of two important PFASs (perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS)) with photochemical, electrochemical and thermal methods. Different decomposition mechanisms of PFOA and PFOS are reviewed and discussed. Overall, the degradation pathways of PFASs are associated closely with their head groups and chain lengths, and H/F exchange and chain shortening were found to be predominant degradation mechanisms. The clear study on the degradation mechanisms of PFOA and PFOS should be very useful for the complete degradation or mineralization of PFASs in the future.
Collapse
Affiliation(s)
- Yun Deng
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Zhihong Liang
- The Pearl River Water Resources Research Institute, Guangzhou, Guangdong, 510611, China
| | - Xingwen Lu
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Zhe Li
- School of Engineering and Materials Science, Faculty of Science and Engineering, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Fei Wang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
36
|
Deng J, Hu XM, Gao E, Wu F, Yin W, Huang LZ, Dionysiou DD. Electrochemical reductive remediation of trichloroethylene contaminated groundwater using biomimetic iron-nitrogen-doped carbon. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126458. [PMID: 34186422 DOI: 10.1016/j.jhazmat.2021.126458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/15/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Electrochemical dechlorination is a prospective strategy to remediate trichloroethylene (TCE)-contaminated groundwater. In this work, iron-nitrogen-doped carbon (FeNC) mimicking microbiological dechlorination coenzymes was developed for TCE removal under environmentally related conditions. The biomimetic FeNC-900, FeNC-1000, and FeNC-1100 materials were synthesized via pyrolysis at different temperatures (900, 1000, and 1100 °C). Due to the synergistic effect of Fe-N4 active sites and graphitic N sites, FeNC-1000 had the highest electron transfer efficiency and the largest electrochemical active surface area among the as-synthesized FeNC catalysts. The pseudo-first-order rate constants for TCE reduction using FeNC-1000 catalyst are 0.19, 0.28 and 0.36 h-1 at potentials of -0.8 V, -1.0 V and -1.2 V, respectively. Active hydrogen and direct electrons transfer both contribute to the dechlorination from TCE to C2H4 and C2H6. FeNC maintain a high reactivity after five reuse cycles. Our study provides a novel approach for the dechlorination of chlorinated organic contaminants in groundwater.
Collapse
Affiliation(s)
- Jia Deng
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan, PR China
| | - Xin-Ming Hu
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Enlai Gao
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan, PR China
| | - Feng Wu
- School of Resources and Environmental Science, Wuhan University, Wuhan, PR China
| | - Weizhao Yin
- School of Environment, Jinan University, Guangzhou 510632, PR China
| | - Li-Zhi Huang
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan, PR China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, PR China.
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0012, United States
| |
Collapse
|
37
|
Uwayezu JN, Carabante I, Lejon T, van Hees P, Karlsson P, Hollman P, Kumpiene J. Electrochemical degradation of per- and poly-fluoroalkyl substances using boron-doped diamond electrodes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 290:112573. [PMID: 33873022 DOI: 10.1016/j.jenvman.2021.112573] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 05/28/2023]
Abstract
Electrochemical degradation using boron-doped diamond (BDD) electrodes has been proven to be a promising technique for the treatment of water contaminated with per- and poly-fluoroalkyl substances (PFAS). Various studies have demonstrated that the extent of PFAS degradation is influenced by the composition of samples and electrochemical conditions. This study evaluated the significance of several factors, such as the current density, initial concentration of PFAS, concentration of electrolyte, treatment time, and their interactions on the degradation of PFAS. A 24 factorial design was applied to determine the effects of the investigated factors on the degradation of perfluorooctanoic acid (PFOA) and generation of fluoride in spiked water. The best-performing conditions were then applied to the degradation of PFAS in wastewater samples. The results revealed that current density and time were the most important factors for PFOA degradation. In contrast, a high initial concentration of electrolyte had no significant impact on the degradation of PFOA, whereas it decreased the generation of F-. The experimental design model indicated that the treatment of spiked water under a current density higher than 14 mA cm-2 for 3-4 h could degrade PFOA with an efficiency of up to 100% and generate an F- fraction of approximately 40-50%. The observed high PFOA degradation and a low concentration of PFAS degradation products indicated that the mineralization of PFOA was effective. Under the obtained best conditions, the degradation of PFOA in wastewater samples was 44-70%. The degradation efficiency for other PFAS in these samples was 65-80% for perfluorooctane sulfonic acid (PFOS) and 42-52% for 6-2 fluorotelomer sulfonate (6-2 FTSA). The presence of high total organic carbon (TOC) and chloride contents was found to be an important factor affecting the efficiency of PFAS electrochemical degradation in wastewater samples. The current study indicates that the tested method can effectively degrade PFAS in both water and wastewater and suggests that increasing the treatment time is needed to account for the presence of other oxidizable matrices.
Collapse
Affiliation(s)
- Jean Noel Uwayezu
- Waste Science and Technology, Luleå University of Technology, Luleå, Sweden.
| | - Ivan Carabante
- Waste Science and Technology, Luleå University of Technology, Luleå, Sweden
| | - Tore Lejon
- UiT-The Arctic University of Norway, Norway
| | | | | | | | - Jurate Kumpiene
- Waste Science and Technology, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
38
|
Xu B, Liu S, Zhou JL, Zheng C, Weifeng J, Chen B, Zhang T, Qiu W. PFAS and their substitutes in groundwater: Occurrence, transformation and remediation. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125159. [PMID: 33951855 DOI: 10.1016/j.jhazmat.2021.125159] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/29/2020] [Accepted: 01/13/2021] [Indexed: 05/27/2023]
Abstract
Poly- and perfluoroalkyl substances (PFAS) are increasingly investigated due to their global occurrence and potential human health risk. The ban on PFOA and PFOS has led to the use of novel substitutes such as GenX, F-53B and OBS. This paper reviews the studies on the occurrence, transformation and remediation of major PFAS i.e. PFOA, PFNA, PFBA, PFOS, PFHxS, PFBS and the three substitutes in groundwater. The data indicated that PFOA, PFBA, PFOS and PFBS were present at high concentrations up to 21,200 ng L-1 while GenX and F-53B were found up to 30,000 ng L-1 and 0.18-0.59 ng L-1, respectively. PFAS in groundwater are from direct sources e.g. surface water and soil. PFAS remediation methods based on membrane, redox, sorption, electrochemical and photocatalysis are analyzed. Overall, photocatalysis is considered to be an ideal technology with low cost and high degradation efficacy for PFAS removal. Photocatalysis could be combined with electrochemical or membrane filtration to become more advantageous. GenX, F-53B and OBS in groundwater treatment by UV/sulfite system and electrochemical oxidation proved effective. The review identified gaps such as the immobilization and recycling of materials in groundwater treatment, and recommended visible light photocatalysis for future studies.
Collapse
Affiliation(s)
- Bentuo Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Shuai Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - John L Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Chunmiao Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jin Weifeng
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Bei Chen
- Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Ting Zhang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
39
|
Hao S, Choi YJ, Wu B, Higgins CP, Deeb R, Strathmann TJ. Hydrothermal Alkaline Treatment for Destruction of Per- and Polyfluoroalkyl Substances in Aqueous Film-Forming Foam. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3283-3295. [PMID: 33557522 DOI: 10.1021/acs.est.0c06906] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The widespread use of aqueous film-forming foam (AFFF) for firefighting activities (e.g., fire training to extinguish fuel-based fires at aircraft facilities) has led to extensive groundwater and soil contamination by per- and polyfluoroalkyl substances (PFASs) that are highly recalcitrant to destruction using conventional treatment technologies. This study reports on the hydrothermal alkaline treatment of diverse PFASs present in AFFFs. Quantitative and semiquantitative high-resolution mass spectrometry analyses of PFASs demonstrate a rapid degradation of all 109 PFASs identified in two AFFFs (sulfonate- and fluorotelomer-based formulations) in water amended with an alkali (e.g., 1-5 M NaOH) at near-critical temperature and pressure (350 °C, 16.5 MPa). This includes per- and polyfluoroalkyl acids and a range of acid precursors. Most PFASs were degraded to nondetectable levels within 15 min, and the most recalcitrant perfluoroalkyl sulfonates were degraded within 30 min when treated with 5 M NaOH. 19F NMR spectroscopic analysis and fluoride ion analysis confirm the near-complete defluorination of PFASs in both dilute and concentrated AFFF mixtures, and no stable volatile organofluorine species were detected in reactor headspace gases by the gas chromatography-mass spectrometry analysis. These findings indicate a significant potential for application of hydrothermal treatment technologies to manage PFAS waste streams, including on-site treatment of unused AFFF chemical stockpiles, investigation-derived wastes, and concentrated source zone materials.
Collapse
Affiliation(s)
- Shilai Hao
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Youn-Jeong Choi
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Boran Wu
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rula Deeb
- Geosyntec Consultants, Oakland, California 94607, United States
| | - Timothy J Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
40
|
Lu Y, Hua Z, Chu K, Gu L, Liu Y, Liu X. Distribution behavior and risk assessment of emerging perfluoroalkyl acids in multiple environmental media at Luoma Lake, East China. ENVIRONMENTAL RESEARCH 2021; 194:110733. [PMID: 33434608 DOI: 10.1016/j.envres.2021.110733] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/18/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are ubiquitous in various environments. This has caused great public concern, particularly in the shallow freshwater lake region, where the lake, rivers, and estuaries form a highly interconnected continuum. However, little is known about the environmental behaviors of PFAAs in the continuum. For the first time, a high-resolution monitoring framework covering the river-estuary-lake continuum of Luoma Lake was built, and the concentrations, sources, and environmental fates of PFAAs were identified and analyzed. The results revealed that the total concentration of PFAAs was at a moderate level in the water and at a high level in the sediment compared to global levels respectively. Perfluorooctanesulfonate (PFOS) was the most abundant PFAA in the continuum. In particular, the ∑PFAA concentration in the particle phase was much higher than that in the sediment phase. Distinct spatial heterogeneities were observed in the behaviors of distribution and the multiphase fate of PFAAs in the continuum, mainly driven by the turbulent mixing during transport, dilution of lake water, and spatial differences of hydrodynamic features and sedimentary properties among the sub-regions. Interestingly, the pH of the sediment and water had significant effects on the water-sediment portioning of PFAAs in contrasting ways. Furthermore, based on the composition of the sediments, four possible migration paths for PFAAs were deduced and the main sources of PFAAs were identified as sewage, domestic, and industrial effluents using the positive matrix factorization model. During the human health assessment, no risk was found under the median exposure scenario; however, under the high exposure scenario, PFAAs posed uncertain risks to human health, which cannot be ignored. This study provides basic information for simulating the fate and transport of PFAAs in the continuum and is significant for developing cost-effective control and remediation strategies in the near future.
Collapse
Affiliation(s)
- Ying Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zulin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; National Engineering Research of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing, 210098, China
| | - Kejian Chu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; National Engineering Research of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing, 210098, China.
| | - Li Gu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; National Engineering Research of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing, 210098, China
| | - Yuanyuan Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiaodong Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; National Engineering Research of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing, 210098, China
| |
Collapse
|
41
|
Zhang W, Pang S, Lin Z, Mishra S, Bhatt P, Chen S. Biotransformation of perfluoroalkyl acid precursors from various environmental systems: advances and perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115908. [PMID: 33190976 DOI: 10.1016/j.envpol.2020.115908] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are widely used in industrial production and daily life because of their unique physicochemical properties, such as their hydrophobicity, oleophobicity, surface activity, and thermal stability. Perfluorosulfonic acids (PFSAs) and perfluorocarboxylic acids (PFCAs) are the most studied PFAAs due to their global occurrence. PFAAs are environmentally persistent, toxic, and the long-chain homologs are also bioaccumulative. Exposure to PFAAs may arise directly from emission or indirectly via the environmental release and degradation of PFAA precursors. Precursors themselves or their conversion intermediates can present deleterious effects, including hepatotoxicity, reproductive toxicity, developmental toxicity, and genetic toxicity. Therefore, exposure to PFAA precursors constitutes a potential hazard for environmental contamination. In order to comprehensively evaluate the environmental fate and effects of PFAA precursors and their connection with PFSAs and PFCAs, we review environmental biodegradability studies carried out with microbial strains, activated sludge, plants, and earthworms over the past decade. In particular, we review perfluorooctyl-sulfonamide-based precursors, including perfluroooctane sulfonamide (FOSA) and its N-ethyl derivative (EtFOSA), N-ethyl perfluorooctane sulfonamido ethanol (EtFOSE), and EtFOSE-based phosphate diester (DiSAmPAP). Fluorotelomerization-based precursors are also reviewed, including fluorotelomer alcohols (FTOH), fluorotelomer sulfonates (FTSA), and a suite of their transformation products. Though limited information is currently available on zwitterionic PFAS precursors, a preliminary review of data available for 6:2 fluorotelomer sulfonamide betaine (FTAB) was also conducted. Furthermore, we update and refine the recent knowledge on biotransformation strategies with a focus on metabolic pathways and mechanisms involved in the biotransformation of PFAA precursors. The biotransformation of PFAA precursors mainly involves the cleavage of carbon-fluorine (C-F) bonds and the degradation of non-fluorinated functional groups via oxidation, dealkylation, and defluorination to form shorter-chained PFAAs. Based on the existing research, the current problems and future research directions on the biotransformation of PFAA precursors are proposed.
Collapse
Affiliation(s)
- Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
42
|
Enhanced treatment of perfluoroalkyl acids in groundwater by membrane separation and electrochemical oxidation. CHEMICAL ENGINEERING JOURNAL ADVANCES 2020. [DOI: 10.1016/j.ceja.2020.100042] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
43
|
Radjenovic J, Duinslaeger N, Avval SS, Chaplin BP. Facing the Challenge of Poly- and Perfluoroalkyl Substances in Water: Is Electrochemical Oxidation the Answer? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14815-14829. [PMID: 33191730 DOI: 10.1021/acs.est.0c06212] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Electrochemical treatment systems have the unique ability to completely mineralize poly- and perfluoroalkyl substances (PFASs) through potential-driven electron transfer reactions. In this review, we discuss the state-of-the-art on electrooxidation of PFASs in water, aiming at elucidating the impact of different operational and design parameters, as well as reported mechanisms of PFAS degradation at the anode surface. We have identified several shortcomings of the existing studies that are largely limited to small-scale laboratory batch systems and unrealistic synthetic solutions, which makes extrapolation of the obtained data to real-world applications difficult. PFASs are surfactant molecules, which display significant concentration-dependence on adsorption, electrosorption, and dissociation. Electrooxidation experiments conducted with high initial PFAS concentration and/or in high conductivity supporting electrolytes likely overestimate process performance. In addition, the formation of organohalogen byproducts, chlorate and perchlorate, was seldom considered. Nevertheless, the first step toward advancing from laboratory-scale to industrial-scale applications is recognizing both the strengths and limitations of electrochemical water treatment systems. More comprehensive and rigorous evaluation of novel electrode materials, application of scalable proof-of-concept studies, and acknowledgment of all treatment outputs (not just the positive ones) are imperative. The presence of PFASs in drinking water and in the environment is an urgent global public health issue. Developments made in material science and application of novel three-dimensional, porous electrode materials and nanostructured coatings are forging a path toward more sustainable water treatment technologies and potential chemical-free treatment of PFAS-contaminated water.
Collapse
Affiliation(s)
- Jelena Radjenovic
- Catalan Institute for Water Research (ICRA), c/Emili Grahit 101, 17003 Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Nick Duinslaeger
- Catalan Institute for Water Research (ICRA), c/Emili Grahit 101, 17003 Girona, Spain
- University of Girona, 17004 Girona, Spain
| | - Shirin Saffar Avval
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Brian P Chaplin
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
44
|
Zhou Y, Zhang Y, Li Z, Hao C, Wang Y, Li Y, Dang Y, Sun X, Han G, Fu Y. Oxygen reduction reaction electrocatalysis inducing Fenton-like processes with enhanced electrocatalytic performance based on mesoporous ZnO/CuO cathodes: Treatment of organic wastewater and catalytic principle. CHEMOSPHERE 2020; 259:127463. [PMID: 32599388 DOI: 10.1016/j.chemosphere.2020.127463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/27/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
To treat typical organic wastewater efficiently, a novel Fenton-like processes based on ZnO/CuO composite cathode induced by oxygen reduction reaction (ORR) electrocatalysis with enhanced electrocatalytic performance was established successfully. Electrochemical testing investigation indicated that the ZnO/CuO cathode possessed conspicuous redox peak and better conductivity than uncompounded electrodes. Additionally, the removal efficiency of methylene blue and its chemical oxygen demand (COD) reached 96.4% and 70.8% after 120 min, respectively. Next, the feasibility of the material in practical application was also discussed. Subsequently, electrocatalytic principle based on valence state changes of metal elements on the electrode surface were also studied by x-ray photoelectron spectroscopy (XPS). Redox reactions between the active species H2O2 and the species Cu+ promoting Fenton-like processes were deduced. Namely, the conversion of Cu(I) and Cu(II) on the electrode surface was accompanied by OH generation. The combination of ZnO and CuO improved the surface morphology, increasing the active site of ORR and the yield of H2O2, thus greatly enhanced the Fenton-like activity. Finally, the main intermediates were identified by Gas chromatography-mass spectrometer (GC-MS), and possible pathways for dye degradation were proposed. In short, the research of ZnO/CuO cathode provided great significance for heterogeneous Fenton-like degradation and also showed its application potential in water treatment and remediation.
Collapse
Affiliation(s)
- Yuanzhen Zhou
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Yichen Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zonglu Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Chentao Hao
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yao Wang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yang Li
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yuan Dang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiaoqin Sun
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Guoping Han
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yile Fu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
45
|
Lin MH, Bulman DM, Remucal CK, Chaplin BP. Chlorinated Byproduct Formation during the Electrochemical Advanced Oxidation Process at Magnéli Phase Ti 4O 7 Electrodes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12673-12683. [PMID: 32841010 DOI: 10.1021/acs.est.0c03916] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This research investigated chlorinated byproduct formation at Ti4O7 anodes. Resorcinol was used as a model organic compound representative of reactive phenolic groups in natural organic matter and industrial phenolic contaminants and was oxidized in the presence of NaCl (0-5 mM). Resorcinol mineralization was >68% in the presence and absence of NaCl at 3.1 V/SHE (residence time = 13 s). Results indicated that ∼4.3% of the initial chloride was converted to inorganic byproducts (free Cl2, ClO2-, ClO3-) in the absence of resorcinol, and this value decreased to <0.8% in the presence of resorcinol. Perchlorate formation rates from chlorate oxidation were 115-371 mol m-2 h-1, approximately two orders of magnitude lower than reported values for boron-doped diamond anodes. Liquid chromatography-mass spectroscopy detected two chlorinated organic products. Multichlorinated alcohol compounds (C3H2Cl4O and C3H4Cl4O) at 2.5 V/SHE and a monochlorinated phenolic compound (C8H7O4Cl) at 3.1 V/SHE were proposed as possible structures. Density functional theory calculations estimated that the proposed alcohol products were resistant to direct oxidation at 2.5 V/SHE, and the C8H7O4Cl compound was likely a transient intermediate. Chlorinated byproducts should be carefully monitored during electrochemical advanced oxidation processes, and multibarrier treatment approaches are likely necessary to prevent halogenated byproducts in the treated water.
Collapse
Affiliation(s)
- Meng-Hsuan Lin
- Department of Chemical Engineering, University of Illinois at Chicago, 929 West Taylor Street, Chicago, Illinois 60607, United States
| | - Devon Manley Bulman
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, 660 North Park Street, Madison, Wisconsin 53706, United States
| | - Christina K Remucal
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, 660 North Park Street, Madison, Wisconsin 53706, United States
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, 660 North Park Street, Madison, Wisconsin 53706, United States
| | - Brian P Chaplin
- Department of Chemical Engineering, University of Illinois at Chicago, 929 West Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
46
|
Zenobio JE, Modiri-Gharehveran M, de Perre C, Vecitis CD, Lee LS. Reductive transformation of perfluorooctanesulfonate by nNiFe 0-Activated carbon. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122782. [PMID: 32361141 DOI: 10.1016/j.jhazmat.2020.122782] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
Degradation of linear (L) and branched (Br) perfluorooctanesulfonate (PFOS) using nNiFe° particles supported on activated carbon (AC) and heat is demonstrated for the first time and with several lines of evidence. At 60 °C, PFOS degradation plateaued at 50 ± 6%, while at 50 °C, 94 ± 4.1 % PFOS transformed. The accelerated iron corrosion at the higher temperature is attributed to the lower PFOS transformation at 60 °C. However, at both temperatures, ≥ 97 % of the PFOS transformed was accounted for by the moles of fluoride generated. At 60 °C, PFOS degradation rates were estimated at 0.028 ± 0.003 h-1 and fluoride and sulfite generation rates of 0.70 ± 0.165 h-1 and 0.62 ± 0.157 h-1, respectively, with no differences between L-PFOS and total Br-PFOS. Using time-of-flight mass spectrometry, some organic products were identified in the particle extracts from the 60 °C reaction. Products included single-bonded C8 polyfluoroalkyl sulfonates (F16 to F7) and alkyl acids (PFCAs, C4-C8) and one perfluorinated C8 desulfonated product supporting both defluorination and desulfonation pathways. Most of the organic products were gone after the first 25 h. High PFOS mineralization using nNiFe°-AC technology warrants further investigation for its use in permeable reactive barriers.
Collapse
Affiliation(s)
- Jenny E Zenobio
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907-2054, USA; Interdisciplinary Ecological Sciences & Engineering, Purdue University, West Lafayette, IN, 47907-2054, USA; Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | | | - Chloe de Perre
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907-2054, USA
| | - Chad D Vecitis
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Linda S Lee
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907-2054, USA; Interdisciplinary Ecological Sciences & Engineering, Purdue University, West Lafayette, IN, 47907-2054, USA.
| |
Collapse
|
47
|
Yukioka S, Tanaka S, Suzuki Y, Echigo S, Kärrman A, Fujii S. A profile analysis with suspect screening of per- and polyfluoroalkyl substances (PFASs) in firefighting foam impacted waters in Okinawa, Japan. WATER RESEARCH 2020; 184:116207. [PMID: 32717490 DOI: 10.1016/j.watres.2020.116207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/23/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a group of persistent contaminants detected in firefighting foam impacted waters. Previous studies have performed suspect and non-target screening by high-resolution mass spectrometry (HRMS) to determine the composition of PFAS contamination and to discover unknown PFASs. Here, we performed a profile analysis with suspect screening against two lists in the NORMAN Suspect List Exchange in firefighting foam impacted environmental and drinking water (n = 18) collected in Okinawa, Japan, in April 2019. Samples were analyzed by liquid chromatography (LC) quadrupole time-of-flight (QTOF) MS in electron spray ionization mode. Suspect screening returned 116 candidate PFASs with their molecular weights, functional groups, and perfluoroalkyl chain lengths. Long-chain perfluoroalkyl acids (PFAAs) and some of their precursors were specifically found around the firefighting training area. Short-chain PFAAs were assumed to be formed from precursors by environmental processes. Perfluoroalkyl sulfonamide precursors were found to be transformed to perfluoroalkyl sulfonic acids (PFSAs) in the drinking water treatment process. In contrast, biological activated carbon filtration formed perfluoroalkyl carboxylic acids (PFCAs). The PFAS profile showed that a large number of different substances needs to be considered.
Collapse
Affiliation(s)
- Satoru Yukioka
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida, Sakyo-Ku, Kyoto, Japan.
| | - Shuhei Tanaka
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida, Sakyo-Ku, Kyoto, Japan
| | - Yuji Suzuki
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida, Sakyo-Ku, Kyoto, Japan
| | - Shinya Echigo
- Graduate School of Engineering, Kyoto University, Nishikyo, Kyoto, Japan
| | - Anna Kärrman
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Shigeo Fujii
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida, Sakyo-Ku, Kyoto, Japan
| |
Collapse
|
48
|
Dai Y, Guo X, Wang S, Yin L, Hoffmann MR. Photochemical transformation of perfluoroalkyl acid precursors in water using engineered nanomaterials. WATER RESEARCH 2020; 181:115964. [PMID: 32492590 DOI: 10.1016/j.watres.2020.115964] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
The production of perfluoroalkyl acids (PFAAs) has been phased out over recent decades; however, no significant decline in their environmental concentrations has been observed. This is partly due to the photochemical decomposition of PFAAs precursors (PrePFAAs) which remain in extensive use. The decomposition of PrePFAAs may be accelerated by the light-activated engineered nanomaterials (ENMs) in water. In light of this hypothesis, we investigated the photochemical transformation of three PrePFAAs, which are 8:2 fluorotelomer sulfonic acid (8:2 FTSA), 8:2 fluorotelomer alcohol (8:2 FTOH), and 2-(N-ethylperfluorooctane-1-sulfonamido ethyl] phosphate (SAmPAP), in the presence of six ENMs under simulated sunlight irradiation. The transformation rates of 8:2 FTSA and 8:2 FTOH were increased by 2-6 times when in the presence of six ENMs. However, most of ENMs appeared to inhibit the decomposition of SAmPAP. The transformation rates of PrePFAAs were found to depend on the yield of reactive oxygen species generated by ENMs, but the rates were also related to compound photo-stability, adsorption to surfaces, and photo-shielding effects. The PrePFAAs are transformed to perfluorooctanoic acid (PFOA) or/and perfluorooctane sulfonate (PFOS) with higher toxicity and longer half-life, PFOA or PFOS and a few PFAAs having shorter carbon chain lengths. Higher concentrations of the PFAAs photodegradation products were observed in the presence of most of the ENMs.
Collapse
Affiliation(s)
- Yunrong Dai
- School of Water Resources and Environment, Beijing Key Laboratory of Water Resources & Environmental Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China; Department of Environmental Science & Engineering, California Institute of Technology, Pasadena, CA, 91125, United States.
| | - Xingxing Guo
- School of Water Resources and Environment, Beijing Key Laboratory of Water Resources & Environmental Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| | - Siyu Wang
- Department of Urban Water Environmental Research, Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, 100012, Beijing, PR China.
| | - Lifeng Yin
- Department of Environmental Science & Engineering, California Institute of Technology, Pasadena, CA, 91125, United States; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Michael R Hoffmann
- Department of Environmental Science & Engineering, California Institute of Technology, Pasadena, CA, 91125, United States.
| |
Collapse
|
49
|
Luo C, Hou R, Chen G, Liu C, Zhou L, Yuan Y. UVC-assisted electrochemical degradation of novel bisphenol analogues with boron-doped diamond electrodes: kinetics, pathways and eco-toxicity removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134539. [PMID: 32000307 DOI: 10.1016/j.scitotenv.2019.134539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
In the present study, the UVC-assisted electrochemical degradation ofthree novel bisphenol analogues (BPs; including bisphenol F, S, and B, i.e., BPF, BPS and BPB, respectively), along with bisphenol A (BPA), was investigated using boron-doped diamond (BDD) electrode. At first, this study demonstrated a significant influence ofcurrent density on the degradation rates of BPF by the BDD anode. The pseudo-first order rate constants for BPF were calculated as 0.012, 0.028 and 0.029 min-1 at the applied current densities of 10, 20 and 30 mA/cm2, respectively. UVC irradiation significantly enhanced the electrochemical degradation of BPF in the concentration range from 5 to 30 mg/L, with synergistic effects in the range of 32.0%-40.9%. The UVC-BDD electrolysisshowed comparable or even lower electric energy per order (EEO) than single BDD electrolysis. The UVC-assisted degradation of the investigated BPs showed decreased pseudo-first order rate constants in the following order: BPF > BPA > BPB > BPS. Based on the identifiedtransformation products, UVC-assisted electrochemical degradation pathways of the novel BPs were proposed to be mainly hydroxylation and bond-cleavage. UVC irradiation has been proved to promote the formation of hydroxyl radicals by BDD electrode to facilitate the degradation process. For these BPs, nearly 100% mineralization can be achieved by a modified strategy using a short-time UVC-assisted BDD electrolysis (120 min) that is followed by UVC photolysis (360 min). Finally, the eco-toxicity of the BPs solutions towardsVibrio Fischeri was significantly removed after 120 min of the electrochemical degradation period. Based on these results, the UVC-assisted electrochemical treatment using a BDD electrode can be considered a promising technology for the removal of novel BPs and the reduction of their hazardous effects to aqueous environments.
Collapse
Affiliation(s)
- Cheng Luo
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Rui Hou
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guanhua Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Chuangchuang Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Lihua Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yong Yuan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
50
|
Shi H, Wang Y, Li C, Pierce R, Gao S, Huang Q. Degradation of Perfluorooctanesulfonate by Reactive Electrochemical Membrane Composed of Magnéli Phase Titanium Suboxide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14528-14537. [PMID: 31730354 DOI: 10.1021/acs.est.9b04148] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This study investigated the degradation of perfluorooctanesulfonate (PFOS) in a reactive electrochemical membrane (REM) system in which a porous Magnéli phase titanium suboxide ceramic membrane served simultaneously as the anode and the membrane. Near complete removal (98.30 ± 0.51%) of PFOS was achieved under a cross-flow filtration mode at the anodic potential of 3.15 V vs standard hydrogen electrode (SHE). PFOS removal efficiency during the REM operation is much greater than that of the batch operation mode under the same anodic potential. A systematic reaction rate analysis in combination with electrochemical characterizations quantitatively elucidated the enhancement of PFOS removal in REM operation in relation to the increased electroactive surface area and improved interphase mass transfer. PFOS appeared to undergo rapid mineralization to CO2 and F-, with only trace levels of short-chain perfluorocarboxylic acids (PFCAs, C4-C8) identified as intermediate products. Density functional theory (DFT) simulations and experiments involving free radical scavengers indicated that PFOS degradation was initiated by direct electron transfer (DET) on anode to yield PFOS free radicals (PFOS•), which further react with hydroxyl radicals that were generated by water oxidation and adsorbed on the anode surface (•OHads). The attack of •OHads is essential to PFOS degradation, because, otherwise, PFOS• may react with water and revert to PFOS.
Collapse
Affiliation(s)
- Huanhuan Shi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment , Nanjing University , Nanjing 210023 , P.R. China
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences , University of Georgia , Griffin , Georgia 30223 , United States
| | - Yaye Wang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences , University of Georgia , Griffin , Georgia 30223 , United States
| | - Chenguang Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment , Nanjing University , Nanjing 210023 , P.R. China
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences , University of Georgia , Griffin , Georgia 30223 , United States
| | - Randall Pierce
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences , University of Georgia , Griffin , Georgia 30223 , United States
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment , Nanjing University , Nanjing 210023 , P.R. China
| | - Qingguo Huang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences , University of Georgia , Griffin , Georgia 30223 , United States
| |
Collapse
|